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This note describes the Agreement Protocol specified for P802.1aq Shortest Path
Bridging1, and in particular the use of the Agreement Number (AN) and Discarded
Agreement Number (DAN) sequence numbers. The protocol’s Agreement Digest
summarizes the physical topology of the network, and is computed in a way that ensures
that the risk of protocol participants with different views of that topology computing the
same Digest is negligible. As a protocol participant encounters topology changes, it2

successively limits the frames it forwards to a subset determined by a set of loop-free
forwarding rules3 for those successive topologies. Each participant forwards using the full
set of active topologies corresponding to its currently perceived physical topology (i.e.
ignores prior topologies) only when its Digest matches4 that of its neighbours and sequence
number conditions are met: it can then be sure that they are also forwarding using that
topology, or one of its subsequent subsets.

The AN and DAN are needed because there is buffering between protocol participants. SPB
may run over long distance services that can exhibit significant delays and a non-negligible,
if small, risk of misordering. A participant needs to know that a prior Digest value is not ‘in
flight’ before declaring a topology match. Otherwise a neighbour might use that value as a
starting point after communicating a different prior value. The sequence numbering also
deals with misordering, without requiring additional mechanisms to recover from arbitrary
disruption or participant re-initialization.

In addition to providing an overview of the protocol and its operation, this note provides a
proof of correctness (guaranteeing loop-free behavior independent of message transit
delays) when protocol participants are connected by a service that either does not misorder
frames or where misordering can be detected by the specified protocol mechanisms (i.e.
when misordered messages are no more than one set of changes out of date).

1. Introduction

In the absence of the AN and DAN sequence numbers,
the scenario illustrated in Figure 1 would be possible.
It starts with participants A(lice) and B(ob) basing
their calculations on the physical topologies
represented by digests ‘1’ and ‘2’ respectively. Then
(more or less at the same time) each receives link state
information communicating the other topology.
Agreement protocol messages originating with the
prior topology views cross, and each adopts full
forwarding based on two topologies whose arbitrary
combination might cause a loop.

While such a loop would have been resolved as soon
as Alice and Bob converge (using IS-IS mechanisms)
on the same physical topology, and the circumstances
that would cause it might be thought unlikely, they are
certainly not impossible if there are a number of

flapping links. Further agreement messages do not
resolve the issue by themselves: see Figure 2.

When each participant receives the second message in
Figure 2 (for topology ‘1’ in the case of Alice
receiving) it has no longer has a detailed record of the
old topology—it might differ slightly or considerably
from that current. Certainly the receiving participant
should not stop forwarding entirely because its peer

1P802.1aq/D2.7 clauses 13.17, 13.27, 13.29.14, 13.29.28, 14, 28.11.3.5.1.
2There is a participant per Bridge Port and forwarding is limited only on a per port basis, so the neighbours concerned are only those attached to a single LAN
(often just one). A single match does not have to propagate throughout the network before forwarding is improved.
3See Link state agreement, September 6th 2010, prior version was Link state agreement, March18th 2010.
4This note uses the term match rather than sync, synchronization, agree etc. as the latter already have meanings in the context of 802.1Q Clause 13. A ‘digest
match’ or ‘matching digests’ is used to mean that the Digests transmitted and received by a participant have the same value. A ‘topology match’ is only
declared if the digests match and the AN/DAN conditions specified in this note are met.

Figure 1—Crossing agreements
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sees a different topology: indeed an agreement
message with an unknown digest should be cached so
each participants need send only one message and
receive only one to move from complete forwarding
on one topology to complete forwarding on its
successor, as in Figure 3.

The scenario in Figure 1 is prevented by including the
AN (agreement number) and DAN (discarded
agreement number) in each agreement message. When
a participant calculates a new topology and the
accompanying digest, it increments its own AN and
checks for a topology match. When the participant
receives an agreement protocol message, it sets its
transmitted DAN to the received AN, and then checks
for a topology match. If, on checking for a topology
match, the participant finds that the last received and
currently transmitted digests are equal, it sets its
transmitted DAN equal to the last received AN plus 1,
and if the last received DAN is also equal to its AN or
AN plus 1, it has matched topologies. In other words,
as a first step towards a complete protocol description
(below):

topologyUpdate()
{ tx.digest = calculatedDigest; tx.an++; 

checkTopologyMatch();
}

messageReception()
{ rx.digest = msg.digest; rx.an = msg.an;

rx.dan = msg.dan; tx.dan = rx.an;
checkTopologyMatch();

}

checkTopologyMatch()
{ if (rx.digest == tx.digest)

{ tx.dan = rx.an+1;
if ((rx.dan == tx.an) || (rx.dan == tx.an+1))
{ topologyMatched();

} } }

Figure 4 shows how the sequence numbering handles
the Figure 1 scenario.

When the crossing messages are received, their DANs
lag rather than precede or equal the receivers’ ANs, so
a false topology match is not declared.

Figure 6 shows the influence of further messages, as
IS-IS converges on a stable physical topology.

Figure 6 shows the normal topology progression
introduced in Figure 3, including the last periodic
messages transmissions for the initial topology so the
initial state of the participants is clear. The actual
change to complete forwarding on the new topology
takes just two messages—one from each of the
participants.

Figure 2—Further agreement messages
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Figure 3—Normal topology progression
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Figure 4—Handling crossing agreements
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Figure 5—Further messages and stable topology
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Figure 7 shows what happens when there is a ‘glitch’
in the topology, a temporary change that is noted by
only one of the participants1.

2. Misordering

Without further refinement, the protocol as described
so far in this note handles a number of cases of
message reordering without creating potential
topology conflicts. The received DAN checking is
often a sufficient defence. However such conflicts are
possible, as illustrated in Figure 8.

These conflicts could be prevented by simply
discarding out-of-order frames, but if one participant
gets out of sync with the other (perhaps because it is
reinitialized) connectivity will be lost permanently. It
is highly undesirable to have to introduce additional
mechanisms to recover from this eventuality. The
solution is to restrict topology matches following out-
of-order reception to those where the received DAN is
the transmit AN plus one. This guarantees that the

received message was sent after both the receiving and
transmitting participants have settled on the same
topology. Such a match will always occur eventually
provided that IS-IS does cause both participants to
settle on the same topology. Subsequent matches can
use either the received DAN equals the received AN
and the ‘plus one’ condition. So the next step towards
a complete protocol description (below) is:

topologyUpdate()
{ tx.digest = calculatedDigest; tx.an++; 

checkTopologyMatch();
}

messageReception()
{ if (msg.an < rx.an) outOfOrder = True;

rx.digest = msg.digest; rx.an = msg.an;
rx.dan = msg.dan; tx.dan = rx.an;
checkTopologyMatch();

}

checkTopologyMatch()
{ if (rx.digest == tx.digest)

{ tx.dan = rx.an+1;
if ( ((rx.dan == tx.an) && !outOfOrder)

|| ( rx.dan == tx.an+1))
{ topologyMatched(); outOfOrder = False;

} } }

3. When to transmit

An agreement protocol message should be scheduled
for transmission whenever the transmit AN and
transmit DAN are updated, but not otherwise. The
result is that (in the absence of message loss) any
digest change that will result in a match will cause the
necessary exchange of messages to take place, but the
message sequence will not be prolonged when that is
not an immediate possibility. Figures 5 through 7
illustrate the desired behavior. It is of course safe to

1The Agreement Digest reflects the physical topology, not the whole of the IS-IS state, in particular it omits IS-IS sequence numbers so one participant might
simply process the latest of a number of LSPs and thus miss temporary topology perturbations visible to others.

Figure 6—Handling normal topology progression
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Figure 7—Recovering from a glitch
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Figure 8—Misordering and conflict
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transmit a message at any time, so agreement protocol
messages can be embedded in other protocol messages
(such as BPDUS and IS-IS Hellos) whose
transmission may be scheduled for other reasons.

Transmissions should occur periodically, so that
message loss does not delay topology agreement
indefinitely. When the Agreement Digest is carried in
BPDUs, the natural Hello Time of 2 seconds suffices
for this purpose. When it is desirable to also carry the
Agreement Digest in IS-IS Hellos (other message) a
refresh frequency suited to that of the carrying
protocol should be chosen.

As with other 802.1 protocol specifications, message
transmission is modelled as occurring in two steps.
First the protocol indicates the need to transmit a
message by setting the variable ntt to True. This tells
the operating environment that a transmission should
be scheduled. Secondly, the protocol variables are
encoded in the message PDU when that becomes
available (notionally through some call back
mechanism). This two step process explicitly answers
the questions that might arise when a buffer is not
immediately available for transmission, or the protocol
state changes more rapidly than such buffers can be
provided. It should also be clear that the protocol state
is always such that a transmission is possible—
delaying or avoiding transmission in order to conceal
confusion or inconsistency is not permitted.

Transmission prompts are shown explicitly in the
complete protocol procedures (below) after
initialization and sequence number space issues are
discussed.

4. Initialization

In principle, protocol participants can start in any state
whatsoever—the normal operation of the protocol will
ensure that the participants transition to the correct
states. In practice, implementations are easier to debug
if the initial states are specified, and some unnecessary
message exchanges can be avoided. Recommended
initial states are shown as set as part of the operation
of begin() (below).

5. Sequence number space

So far the protocol description has ignored the
limitations imposed by the small (two-bit) AN
sequence number space. In order to distinguish old
out-of-order messages from AN increments resulting
from several closely spaced changes with possible
message loss, the use of fresh AN’s needs to be

modified by feedback from each participant’s peer.
This is done by using the received DAN to rotate the
sequence number window. The transmit AN can be
increased as far as the received DAN plus one. Thus if
Alice’s AN is currently a, and her digest matches with
Bob’s she would naturally expect to receive a message
with a DAN of a+1, giving her permission to transmit
with an AN of a+1 or a+21 before a further message
from Bob is required to rotate the window once more.
Thus a+3, which is indistinguishable from a-1, is
temporarily outside the widow, and Bob can identify
misordered messages as long as they are no more than
one topology change out of date. 

The sequence number modifications are shown as part
of the completed protocol description (below).

6. Early matching

Before transmitting a digest that Bob can use for a
match, Alice has to reduce her forwarding to a subset
permitted by the forwarding rules and the agreements
implied by the topology identified by that digest. If she
continues to transmit the prior digest in the meantime,
the forwarding rules have to take account of its
implied agreements as well, just in case Bob reverts to
that prior topology and matches its digest. The effort
that Alice expends in reducing her topology to satisfy
both new and old digests is likely to be a waste of
effort if her newer digest already matches Bob’s—she
has reduce her forwarding to transmit the new digest,
then declare the match, and then adjust the forwarding
again to be all that permitted by the new topology.

A more efficient approach is for Alice to transmit (and
match) with her newly calculated digest, but include
an agree flag in the message that remains False until
her forwarding aligns with the matched topology. In
this way only one of two protocol participants on a
point-to-point link (all but one on a shared media
LAN) needs to reduce forwarding to the point that it
satisfies the constraints of the loop-free forwarding
rules for the agreements implied by both current and
prior topologies. In the extreme case where one
participant is at the edge of the shortest path domain
for all trees (i.e. does not provide transit forwarding
within the domain for any tree) it may have no
forwarding changes to make at all, so it can send a
digest to be matched (with msg.agree set) almost
immediately, allowing the other participant to make
just the forwarding changes need to align with the new
matching topology before he sets tx.agree.

1If the peer participant has declared a topology match with the current digest, otherwise the window advances by one.
Revision 2.0 September 7th 2010 Mick Seaman 4
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Of course, if FDB changes can be made much more
rapidly than messages can be sent, this potential
optimization may prove unnecessary. If this is the
case, allowing and specifying the optimization does no
harm—by the time that ntt (see 3 above) results in an
opportunity to transmit tx.agree is already set.
Optimizing forwarding updates is an implementation
specific problem, but a general approach, likely to
yield good results is first to remove entries that are
simply not permitted by the new topology before
subsetting the forwarding for that topology using the
loop-free forwarding rule constraints from prior
topologies—thus maximizing the chance that the other
protocol partner(s) will complete the latter first and
render some of those changes unnecessary. The last
step, following a successful match, is to install new
FDB entries that would not be permitted by the
forwarding rules if agreements were outsanding for
prior topologies.

Checking rx.agree to ensure that it is set before
declaring match could be modelled by overloading the
‘==’ operator in (rx.digest == tx.digest), so need not
complicate either the examples given so far or proofs
of protocol operation, but it as well to make the test
explicit in pseudo-code to ensure that it is not missed,
and this is done in the completed protocol description
(below). Completion of the forwarding changes
necessary for tx.agree to be set for the latest calculated
tx.digest results in a call to messageUpdate() with
allSptAgree (reset as a direct consequence or side-
effect of calculating the new topology) True.

7. Complete protocol

begin()
{ tx.digest = initDigest1; tx.agree = False;

rx.digest = initDigest; rx.agree = False;
outOfOrder = True;
rx.an = 0; rx.dan = 0;
tx.an = 1; tx.dan = 0;
messageUpdate();

}

topologyUpdate()
{ messageUpdate(); checkTopologyMatch();
}

forwardingUpdate()
{ messageUpdate(); checkTopologyMatch();
}

messageReception()
{ if (msg.an == rx.an+3) outOfOrder = True;

rx.digest = msg.digest; rx.agree = msg.agree;
rx.an = msg.an; rx.dan = msg.dan;
messageUpdate()2; checkTopologyMatch();

}

messageUpdate()
{ if ( (tx.digest != calculatedDigest) && 

(tx.an+1 == rx.dan) || (tx.an+1 == rx.dan+1))
{ tx.digest = calculatedDigest; tx.an++; 

tx.agree = False;
}
if (allSptAgree && !tx.agree)
{ tx.agree = True; ntt = True;

} }

checkTopologyMatch()
{ if ( (tx.digest == calculatedDigest) &&

(rx.digest == tx.digest) && rx.agree)
{ if (tx.dan != rx.an+1)

{ tx.dan = rx.an+1; ntt = True;
}
if ( (rx.dan == tx.an) && !outOfOrder)

|| (rx.dan == tx.an+1))
{ topologyMatched(); outOfOrder = False;

} }
else if (tx.dan != rx.an)
{ tx.dan = rx.an; ntt = True;

} }

8. Multiple participants

Although not explicitly detailed so far in this note, I
hope it is reasonably clear that the protocol easily
accommodates groups of participants connected over
shared or pseudo-shared media3, at the cost of four bits
per participant4 in each protocol message multicast by
each participant to all the others. A topology match is
generally declared only when the digest and received
AN and DAN from each and every participant meets
the specified criteria.

In this way the agreement protocol can also be used in
non IS-IS scenarios where topology information is
directly carried in messages, and there is some set of
well defined rules as to what behavior is expected in
any configuration and how that behavior should
change in successive periods of change before the next
match is declared. The protocol is naturally efficient in
those scenarios, as its rules for matching involve the
minimal possible message exchange.

1The initial value of rx.digest, initDigest is arbitrary, provided that allSptAgree does not become True until after calculatedDigest is calculated.
2Message reception may have advanced the transmit AN window so that tx.digest can be updated. 
3Or over some more complex set of links.
4The cost of identifying which participant each set of bits belong to can be avoided as the participants are easily placed in order (by system id or MAC
address). The digest itself ensures that different participants agree on which participants are participating and which bits go with which.
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9. Proofs

9.1 Loop-free in the absence of misordering

First we show that, unless protocol messages are
misordered, one participant will only declare a
topology match and remain forwarding on that
topology without further subsetting if the other has
declared a match or subsetted his forwarding using
that same topology.

The development of some simple terminology and
temporal logic allows us to see the wood for the trees
when representing the changing states of the protocol
participants and their inter-dependencies. We treat the
protocol as having an unlimited supply of sequence
numbers that are never reused, with only the real
integer part modulo 4 being carried in the two-bit
message fields. Since each increase in a transmitter’s
two-bit AN field is limited, knowledge of the prior
extended value allows a protocol observer to
determine the corresponding extended values without
ambiguity. It is also convenient to view the ANs
generated by Alice in any protocol run, together with
the DANs returned by Bob, as being drawn from a
different number space (ANA) from Bob’s ANs and
Alice’s DANs (ANB)1. Let:

a,a’,a’’ ∈ ANA
b,b’,b’’ ∈ ANB
∀x ∈ ANA (x+1 ∈ ANA)
∀x ∈ ANB (x+1 ∈ ANB)
ANA ∩ ANB = ∅

Since each participant increments its AN when and
only when the transmitted digest changes, we can
identify the digest value by its AN and define the
function D(x,y) as being True iff the digests identified
by x, y ∈ ANA ∪ ANB have the same value. Further:

∀ x ∀ y:(D(x,y)) ( ¬ D(x-1,y) ∧ ¬ D(x+1,y))

In addition each message can be represented simply by
its <an>.<dan> tuple, for example:

a.b+1

If we know to which participant we refer, the separate
sequence number spaces also facilitate identification
of receive and transmit variables2. These change, their
value in a logical expression is a function of time3 t:

a.b+1A — is True iff Alice’s ((tx.an == a) ∧
(tx.dan == b+1)) at time t

b.aA — refers to Alice’s receive variables
b.aB — refers to Bob’s transmit variables
a+1.*A — refers to Alice’s tx.an alone, and is

True iff her ((tx.an = a) at t, independent of tx.dan.

Strictly speaking:

a+1.*A ≡ ∃ x: (a+1.xA)

and similarly for all other expressions including ‘*’.

If parts of any given logical statement are not qualified
as to time, the entire statement is considered as being
evaluated at the same time, e.g if p and q are declared
to be time dependent variables:

p ⇒ q

means that q is True when p is True. Note that the
individual members of ANA and ANB are time
independent (and are not boolean variables).

Let Mab denote the declaration of a topology match by
Alice at time t when her AN is a and the last message
she received from Bob had AN b. From the definition
of the protocol:

1 Mab ≡ . . . . . . (1)
(a.*A ∧ D(a,b)) . . . . . (1a)
∧ ( (b.aA) . . . . (1b.1)

∨ (b.a+1)A) . . . . (1b.2)

Equation 1 says that Alice declares a topology match
at time t when her transmit AN is a and the last
message she received from Bob had AN b iff: (a) her
transmit AN is indeed a, and the digests for a and b
match, and either: (b.1) the received AN is b (as
required) and the received DAN a; or (b.2) the
received AN is b and the received DAN a+1.

We wish to prove that:

2 ∃ t1:((t = t1) ∧ Mab) . . . . . . (2)
⇒ ∃ t0:(

∀ t:((t = t0) ∧ (t0 < t1))
(b.aB ∨ b.a+1B) . . . . . (2a)

∧ ∀ t:((t0 < t) ∧ (t < t1))(
∀ b’:(¬D(b,b’))(¬Mb’*)) . . . . (2b)

Equation 2 (required to prove) says that Alice’s
declaration of a topology match with transmit AN a
and received AN b at some time t1 implies that at some
earlier time t0 : (a) Bob’s transmit AN was b, and his

1The sets generated by a1 = 1 and b1 = 1+i and the successor function for each set are suitable.
2The messages are only interesting in that they permit one participant’s variables to result in a later change in the others. Conventional advice is to model the
channel(s) containing the messages within the overall system state, which causes the latter to be rather complex. Here we model the channel purely in terms of
possible changes to receive variables, or requirements on transmit variables if receive variables are to change.
3Formally there is a set of times, with an ordering relation, and a set of tuples for each time-dependent variable, with one element for each time value with that
value as part of the tuple and the value of the variable at that time as the other part of the tuple. Spelling this out every time we want the value of the variable
at a particular time is just a little tedious.
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transmit DAN a or a+1—these are necessary
conditions for a message transmitted by Bob at that
time to result in the topology match Mab (see eqn. 1);
and (b) Bob did not declare a conflicting topology
match (with a digest that didn’t match that for b) in the
intervening time. These are sufficient conditions for
loop-freeness: the rules for transmitting any Digest
require Bob to reduce his forwarding to that (or a
subset of that) for the topology identified by the
Digest, and not to increase it unless he declares a
topology match. The equation (once proven) can be
applied (with the substitution of different free
variables in place of a and b) to successive topology
matches by both Alice and Bob, so a loop-free
condition will persist for ever.

Whenever t0 and t1 are used in this proof they refer to
time values that satisfy eqn. 2.

Alice’s declaration Mab requires her prior reception of
b.a or b.a+1 so proving (2a)—the existence of a
suitable t0—is trivial, it follows directly from:

3 ∃ tj:((t = tj) ∧ y.xX) ⇒  . . . . . . (3)
∃ ti:((ti < tj) ∧ ∀ t:(t = ti)y.xY≠X)

Equation 3: one participant’s receive AN and DAN
will not take given values unless those have previously
been the values of the other participant’s transmit AN
and DAN respectively1. This causality is generally
assumed without explicit reference below. The rules of
the protocol also require that each participant’s
(transmit) AN only increase over time:

4 ∃ ti:(x.*X)  . . . . . . (4)
⇒ ∀ t:(t ≥ ti)(∀y:(y < x)(¬y.*X))

Equation 4: If a participant’s (X’s) transmit AN is x at
time ti, then it cannot be y less than x later. Conversely
it was x at time tj it cannot be y greater than x earlier. If
messages are not delivered out of order, or out of order
messages are detected and discarded on receipt then
eqn. 4 means that the recipient’s receive AN can also
only increase over time. Any reference below to the
behavior of the protocol in the absence of misordering
may assume these properties.

Looking at (2a), we have from the protocol definition:

5 b.aB ∧ D(a,b) ⇒ (a-1.b’’B) :(b’’ ≤ b)  . . . . . . . (5)

Equation 5: If Bob’s transmit AN and DAN were
respectively b and a (with matching digests), then his

receive AN was a-12, with a digest matching that for
Bob’s transmit AN at or after the time of receipt but
before Bob’s transmit AN became b, since D(a-1,b) is
False (see above). As a consequence Bob’s received
DAN (b” above) cannot be greater than b3.
Furthermore (from eqn. 1):

6 ∀ t:(t = t1)(a.*A ∧ b.*A) . . . . . . (6)

so:

7 ¬∃ t:(∃ b’:(a-1.*A ∧ b’.*A ∧ (b’ > b)) . . . . . . (7)

and therefore (from (5) and (7)):

8 ∀ t(¬∃ b’:((b’ > b) ∧ a-1.b‘B)) . . . . . . (8)

Also4 looking at (2a), from the protocol definition:

9 b.a+1B ∧ D(a,b)⇒ a.*B ∨ a+1.*B . . . . . . . . (9)

In the absence of misordering:

10∀ t:((t0 ≤t) ∧ (t ≤t1))( . . . . . (10)
(∀b':(b’.*B)(b’ ≥ b))

∧(∀a’:(a’.*B)((a’ = a) ∨ (a’ = a-1))

at and between t0 and t1 Bob’s transmit AN was
greater than or equal to b, and his receive AN was a or
a-1. A conflicting topology match could have only
taken place if these were not b and a respectively, so
using eqn. 1 and 10:

11∀ t:((t0 < t) ∧ (t < t1))(∀ a' ∀ b’: . . . . . (11)
(¬D(b,b’) ∧ Mb’a’)
(b’.*B ∧ (b’ > b) ∧ (a’ = a-1)

∧ ∃ b’’:(a’.b’’B ∧ ((b’’ = b’) ∨
(b’’ = b’+1))

Equation 11: At any time between t0 and t1, for any
transmit AN values a’, b’ such that Bob declares a
topology match conflicting with that for b (and, by
extension, with that for a), Bob’s transmit AN is b’
(greater than b), his receive AN is a-1, and his receive
DAN b’’ (equal to b’ or b’+1). But, eqn. 8 stated that
Bob’s receive variables can never be set to that
combination of values. So Bob cannot declare a
conflicting topology match.

Q.E.D.

Postscript

The conditions for the topology match and their
relationships as developed in the proof are illustrated
in the four time sequences shown in Figure 9. In each
case Bob cannot create a conflicting match in the

1Messages can be lost, otherwise the implication ‘⇒’ would be bi-directional.
2Only the reception of a-1 (with a digest match at or after the time of receipt) and a could result in Bob having a transmit DAN of a, and if D(a.b) the latter
would result in a DAN of a+1, as in the following equation. Reception of an in-order message always results in tx.dan being set, it is not carried forward as it
can be on a topology update.
3If a participant’s AN is b-1 then its DAN cannot be greater than (b-1)+1.
4See eqn. 5 above.
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interval t0 to t1, since he would have to adopt a further
digest with an AN of b+1 (or greater), which in turn
would require reception of a DAN of b+1 (or greater),
but the only message Alice can have transmitted prior
to t1 with a DAN of b+1 has an AN of a, and hence the
same digest as M(a,b) and she has not transmitted a
message with a greater DAN.

10. State machine variable description

The variable names used by P802.1aq to describe the
agreement protocol, and the corresponding names
used in this note are as follows:

• agreementDigest — calculatedDigest

• agreedN — rx.an

• agreedND — rx.dan

• agreeN — tx.an

• agreeND — tx.dan

• agreedDigest — rx.digest

• agreeDigest — tx.digest

• agreedPriority

• agreementOutstanding

• designatedPriority

• neighbourPriority

The following variables are missing from P802.1aq/
D3.0, suggested names for a revised draft are as
follows:

• agreedMisorder — outOfOrder

The following variables are included in P802.1aq/
D3.0 but are not required, and should be removed in a
revised draft:

• agreePending — tx.pending

As noted in one of the ballot comments P802.1aq/D3.0
continues to refer to TAP instead of simply ‘agreement
protocol’ and there are some variables whose names
are out of sync, in particular there are references to
tapTxDigest and tapOwnDigest in the Port Transmit
machine and these should be removed.

Figure 9—Sequences for a match

A B

 a-1.* 

 b.a    

t0

t1
M(a,b)

M(a-1,b-1)

t0...t1

A B

 a-1.* 

 b.a   

t0

t1
M(a,b)

M(a-1,b-1)

t0...t1

A B

 a.* 

 b.a+1 

t0

t1
M(a,b)

M(a,b)

t0...t1

A B

 a.* 

 b.a+1 

t0
M(a,b)

t1
M(a,b)

t0...t1
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11. Topology and forwarding updates

The loop-free forwarding rules use the following per
tree system variables to determine whether FDB
entries that permit frame forwarding can be made (or
indeed retained) if allSptAgree is to be set for a new
topology and an agreement message with tx.digest =
calculatedDigest and tx.agree = True can be sent:

• designatedPriority1 

and the following for each bridge port per tree:

• agreementOutstanding—the greatest outstanding
distance advertised to the neighbour(s) on that port
for paths from the bridge constrained to one of the
neighbours as the first hop (with the neighbour’s
designatedPriority being less than that of the
bridge), zero if no such agreement is outstanding.
YY→ Z

2.

• agreementsBelow—True if the neighbour on that
port is closer to the Root in all outstanding
agreements (or there are no outstanding
agreements). βY→ Z

 2. Note that, for the current
agreement digest conventions and processing,
agreementsBelow and agreedAbove will have
exactly the same values, as the transmission of a
digest (with tx.agree) that a protocol partner could
match discards any held agreement that would
cause agreedAbove to be set whenever
agreementsBelow would transition False, and the
same synchronization holds for the receiver. The
pseudo-code in this section (11.1) uses both
variables—both to confirm the above point and in
case some agreement convention or processing is
designed that would separate their values, but the
use of agreedAbove alone is suggested when an
agreement digest is used. The loop-free forwarding
rules described below make this simplification.

• agreedPriority—the greatest distance for (all) the
neighbour(s) on this port for paths from the
neighbour(s) constrained to the bridge as the first
hop in held agreements with the neighbour’s
designatedPriority being greater than that of the
bridge, zero if there is no such agreement. ZY←Z

 2.

• agreedAbove—True if the neighbour on that port is
closer to the Root in any received agreement held,
False if no such agreement is held. αY←Z

 2.
portPathCost—ensuring that it is symmetric.

• selectedRole—the Port Role in the current
topology.

• neighbourRole —the neighbour’s Port Role in the
current topology.

The designatedPriority, portPathCost, selectedRole,
and neighbourRole are direct results of the link state
calculation, and allow agreementOutstanding and
agreedPriority to be updated per tree per port (with
results depending on whether or not the agreement
protocol has declared a topology match for the current
topology—topologyMatched) as follows:

per Tree, per Port:
{ if ( (selectedRole == RootPort) ||

(selectedRole == AlternatePort))
{ agreedPriority = LowestAgreementPriority;

if (agreedTopology)
{ agreementOutstanding = 

neighbourPriority + portPathCost;
agreementsBelow = True;
agreedAbove = True;

}
else
{ if (agreementOutstanding <

neighbourPriority + portPathCost)
agreementOutstanding = 
neighbourPriority + portPathCost;

} }

if (selectedRole == DesignatedPort)
{ agreementsBelow = False;

agreedAbove = False;
if (agreedTopology)
{ agreementOutstanding =

 LowestAgreementPriority;
agreedPriority = 

neighbourPriority + portPathCost;
}
else
{ if (agreedPriority <

neighbourPriority + portPathCost)
agreedPriority = 
neighbourPriority + portPathCost;

} } }

At any stage topology matching agreement messages
may be received and agreementOutstanding and
agreedPriority recalculated, relaxing the loop-free

1802.1D and 802.1Q’s concept of a priority vector is equivalent to the routing concept of distance, generalized to allow for (a) the construction of a tree whose
root (to or from which distance is measured) can change; (b) multiple regions, within which any distance is less significant than distance between regions. A
priority vector with components {Root Identifier, Root Path Cost} is equivalent to the distance from the best possible Root with priority vector {0, 0}. The
bridge’s designatedPriority lacks the tie-breaker components used by RSTP/MSTP as ISIS-SPB tie-breaks to produce symmetric trees, picking Port Roles
explicitly rather than leaving them to priority vector comparisons.
2In Link state agreement, September 6th 2010.
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forwarding constraints so further FDB entries can be
made (or replaced), for trees and/or ports previously
considered. The following sequence of operations is
suggested with a view to sending such agreement
messages to the system’s neighbours as early as
possible, and so minimizing the number of transient
FDB changes. The optimal approach will be heavily
implementation dependent:

1) Remove FDB entries (or ports from port maps in
FDB entries) that enable forwarding not permitted
in the newly calculated topology.

2) Update agreementOutstanding and agreedPriority.

3) Remove FDB entries so agreement messages can be
sent, and send them.

4) Add FDB entries as permitted by the loop-free
forwarding rules.

12. SPB forwarding rules

12.1 SPBM unicast forwarding 

SPBM unicast forwarding is supported by the
“shortest path unicast” forwarding rule (Eqn. 6 for
spUnicastY-Z1). This does not require any form of
ingress checking, but can be supported simply by
controlling the filtering database (FDB) entry for the
unicast MAC address (frames for VLANs supported
by SPBM are discarded (and not flooded) if their FDB
entry is not found).

Such frames are considered by SPB as travelling on
the shortest path tree rooted at the destination. The
FDB entry can be made for an address and port if and
only if, for the tree in question:

(selectedRole == RootPort) &&
(agreementOutstanding <= designatedPriority) &&
agreedAbove2

and for all ports (including the Root Port), for that tree:

(designatedPriority < agreedPriority) ||
agreedAbove

12.2 SPBV multicast and unicast forwarding

SPBV multicast and unicast frames are both supported
by the “spanning tree” forwarding rule (Eqn.10 for
stForwardingY-Z 1), as source address learning and
unknown unicast destination flooding are used. For all
ports that permit frame ingress or egress:

(selectedRole == RootPort) &&
(agreementOutstanding <= designatedPriority)

or

(designatedPriority < agreedPriority) &&
(agreementOutstanding <= designatedPriority)

12.3 SPBM multicast forwarding

SPBM multicast forwarding is supported by the
“source specific multicast” rule (Eqn. 13 for
ssMulticastX–Y–Z

 1). This uses source (unicast)
address ingress checking and source specific multicast
egress.

For the ingress port:

(selectedRole == RootPort) &&
(agreementOutstanding <= designatedPriority)

and for all ports which allow the source specific
multicast to egress:

(neighbourRole == RootPort) &&
(designatedPriority < agreedPriority)

Note that the ingress port checking requires that the
frame be admitted on one port only, unlike the case of
multi-path unicast forwarding with loop mitigation (as
opposed to loop prevention which does not require
ingress checking).

1In Link state agreement, September 6th 2010.
2This variable is “really” agreementsBelow, see the discussion in 11.1.
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