
Link state agreement
Link state agreement
Mick Seaman

Two earlier notes1 proposed an agreement protocol that ensures loop-free active
topology(ies) without requiring that bridges cease to forward after every topology change.
The protocol has been documented in P802.1aq, and in particular in clause 13.17 of
P802.1aq/D2.5. This note proves that the forwarding rules and protocol guarantee loop-free
link state operation for (a) simple shortest path destination-based unicast (b) hop-by-hop
multipath unicast (c) spanning tree (unicast with possible flooding, and multicast) (d)
multicast forwarding with source-specific multicast addresses. The analysis can be
extended to additional forwarding rules (for E-TREE, for example).
The agreement protocol was originally modelled on RSTP/MSTP’s Proposal/Agreement
mechanism2 and used per tree explicit priority vector communication. The simple
extension to use an Agreement Digest had forwarding constraints that were stronger than
necessary3, inviting different and possibly incompatible readings of D2.5. This note
improves the description, selecting optimizations that use a common approach to details for
SPBM and SPBV, and for explicit priority vectors (for the CIST) and the agreement digest
(for all other trees) — minimizing the record keeping required for a full compatible set of
forwarding rule. Thanks to Nigel Bragg for his comments on D2.54, which made me realize
the need for the improvements: these provide additional detail for the ballot comment
resolution changes.
This note was primarily written to explore alternatives. The arguments developed are thus
more complex than needed just to prove the principal results A simpler contribution,
specific to the latter would be welcome.
This note is not yet complete, various opportunities for optimization and extension are
being considered, as well as improvements in presentation. However its present state
should be good enough to facilitate discussion during the March 2010 meeting.

1. Overview

A goal of this note is to increase the rigour used in the
loop-free arguments, and to provide tools for their
extension and refinement. Mathematical notation is
used (2) in an effort to be concise and exact, though
the argument is spelled out in plain English5.

Agreement protocol exchanges occur between link
state neighbours6, who use the agreements sent and
received to ensure that a network’s active topology at
any instant is loop-free—even if delays in information
propagation and processing mean that network nodes
have arbitrarily different ideas of the physical
topology as it changes.

The agreements and agreement protocols considered
in this note are restricted in two ways. First, the
information extracted from a participating node’s link
state database should always be that for the currently
calculated topology, and not extend beyond that for the
node, or its immediate neighbours on each port. Any
additional record of past topologies is to be at worst
proportional to the number of immediate neighbours.
This restriction limits the complexity of the ways in
which we examine the topology—the agreement
algorithms themselves cannot be allowed to become a
significant contributor to the delays that necessitate
their use. Second, the agreements have to be

1Link state bridging, 24th March 2008. Link state bridging part 2, July 12th 2008.
2Those familiar with IP fast reroute will also find some parallels or similarities here, though the objectives are somewhat different and the development of the
agreement protocol has proceeded independently. I have not had the time to revisit IP FRR and translate terminology or add specific references.
3Because distance vector and link state operation pose different challenges. In the former distance information flows down the tree, so a child never ‘jumps
above’ its parent and agreements only have to be checked when new connectivity is made. In contrast one of link states’ key advantages would be negated by
requiring agreement information to propogate along a tree, even if that were possible with a digest. Connectivity has to be broken whenever the agreements in
place are insufficient to justify that connectivity were it new. With this breaking the obvious extension from distance vector to link state is over constraining.
4And for comments on an earlier draft of this note.
5I have read too many published papers in which a perfectly simple argument is dressed up in mathematics, apparently to add ‘weight’ or merit and to
establish that the author belongs to the same club as the reviewers (a club excluding most implementers). Translating into English is often tedious (virtus
dormitiva).
6The link state neighbours of immediate interest are bridges attached to the same LAN, but the technique could obviously be applied to routing at any level.
Revision 0.9 March 12th 2010 Mick Seaman 1

http://www.ieee802.org/1/files/public/docs2008/aq-seaman-link-state-bridging-part2-0708.pdf
http://www.ieee802.org/1/files/public/docs2008/aq-seaman-link-state-bridging-0508.pdf

Link state agreement
compact—easily carried by a simple protocol within a
single frame even in the largest networks we aim to
support—again to limit the complexity and delay
associated with agreements. This second restriction
points to the use of a summary (digest) for all but a
few destinations or trees, with an agreement
convention that uses the link state database identified
by a given digest value1.

The agreements considered, whether explicit or digest
based, use comparisons between and the values of the
per tree (per destination or source) priority vectors for
a bridge and each of its neighbours.

NOTE—A priority vector is equivalent to the routing concept of distance,
generalized to allow for (a) the construction of a tree whose root (to or
from which distance is measured) can change; (b) multiple regions, within
which any distance is less significant than distance between regions. A
priority vector with components {Root Identifier, Root Path Cost} is
equivalent to the distance from the best possible Root with priority vector
{0, 0}.

A number of different forwarding rules are defined
(3.1– 3.6) with the choice of rule for any particular
frame depending on the frame’s VID and whether that
frame is multicast or unicast. VID based rule selection
allows SPBV, SPBM, and other forwarding methods
(e.g. PBB-TE, E-TREE) to coexist. To minimize the
total state, each rule is described as specifying a tree,
though that may confuse readers who focus on just one
rule: for shortest path unicast forwarding the tree is
rooted at the destination; for shortest path multicast
the tree is source rooted; and in general spanning tree
forwarding the root can be at any node, and frames
travel both up and down the tree.

The chosen forwarding rules (and supporting
agreement conventions) focus on maintaining
connectivity when links or LANs fail, rather than (for
example) the earliest possible use of using links that
are added to the network. If a node’s distance for a
path2 to the root (a bridge’s priority vector) decreases
(gets better) that node has to either (a) delay sending
agreements with the new distance or (b) stop
forwarding frames on that path, until (c) the agreement
messages from the node’s neighbours signal their
awareness of the new distance. On the other hand if a
node’s distance gets worse, the node can begin or
continue forwarding from (and/or to, as specified by
the particular rule) any given neighbour—up to the
point where that neighbour is forwarding to the node
in the belief that the node is closer to the root but that
is no longer guaranteed. Figure 1 shows a fragment of
a network using spanning tree forwarding (bridges A,

B, C, and D, connected by point-to-point LANs) to
illustrate this ‘failure friendly’ approach.

In Figure 1 the relative distance of bridges from the
root is indicated by their height on the page. The initial
network topology, for which each bridge has
transmitted and received agreements, is on the left (a).
The path from D to the root lies through C and then B.
If the link C-A were to fail (b), C can start forwarding
to B, provided C is still above D’s minimal agreed
distance for forwarding through C. An additional
failure in the network might increase B’s distance (c)
but provided B remains above (closer to the root than)
C’s minimal forwarding distance as shown in (b), B
can continue to forward frames. Note that this distance
can be greater than C’s previous best distance to the
root through A (in (a)).

So forwarding can be maintained, even in the face of
(some) multiple failures which cause the network
nodes to have temporarily different views of the
topology. Eventually their views will converge, their
agreement digests will become intelligible to one
another once more, and fresh agreements will be made
(and superseded agreements discarded). However it
has to be said that some network failures will result in
a loss of connectivity that cannot be repaired until
fresh agreements have been exchanged. The behavior
of the agreement protocol in these cases is
summarized below, after discussion of the preferred
form of each of the forwarding rules.

1In principle a very small amount of additional information, just a few bits, could also be carried per destination/tree/network node. I have not yet seriously
studied the potential benefit/opportunity, as the digest alone yields satisfactory results.
2Each path considered comprises the port/next hop node to/from which forwarding is in question and the best path from that first hop node on.

Figure 1—Connectivity restoration and continued
forwarding after multiple failures

A
B

C

D

A
B

C

D

(a)

B’s B-C
forwarding

range

C’s
range

A

B

C

D
(b) (c)
Revision 0.9 March 12th 2010 Mick Seaman 2

Link state agreement
In simple shortest path forwarding to known unicast
destinations (for point-to-point LANs, as used by
SPBM, 3.1) each frame is forwarded (or not) through
the one port that provides the shortest path to the
destination, no matter what port the frame is received
on. Each bridge ensures that it has an agreement from
every neighbour, that that neighbour is either closer to
the destination (and so will not forward a frame for
that destination to the bridge) or is further away and
will not forward the frame unless the minimum
forwarding distance criteria is met. To put this another
way, each agreement comprises two elements:

a) A statement as to the relative distance of the two
bridges—is the neighbour ‘above’ (closer to the
root) or ‘below’ (further away).

b) The minimum distance, “I guarantee to remain
below”, at which the lower bridge will forward
frames to the upper.

Item (a) is equivalent to the neighbour’s Port Role (as
defined in 802.1Q1) with each bridge’s Root Port
providing connectivity towards the root, while
Designated Ports provide connectivity toward the
leaves of the tree. The role names ‘Up Port’ (towards
the root) and ‘Down Port’ can be also used to avoid
accidentally invoking the additional characteristics
associated with spanning tree port role names (bi-
directional forwarding, applying port state on egress
and ingress for every port). The ‘Up Port’ role can be
considered to cover both Root and Alternate Ports.

Since an agreement protocol participant may not
receive all frames sent by his neighbour, and not all
values of the agreement digest may be intelligible to a
bridge that has chanced to process a succession of
changes in a different order or in different
combinations, it is the greatest value of the minimum
distances agreed that is of interest. A bridge that
transmits an agreement digest (for a given topology)
through an ‘Up Port’ is making a promise not to
forward a frame through that port unless its distance is
greater than or equal to the sum of its neighbour’s
distance (in that topology) plus the link cost2. If the
neighbour uses that agreement in a forwarding rule he
is promising not to forward the frame unless his
distance to the root is less than that sum. Consistent
application of the forwarding rule in successive
bridges ensures that any forwarded frame gets
successively closer to the destination.

This simple rule does not require additional logic to
ensure that a frame is not forwarded through the same
port on which it was received, and in fact the frame
can be forwarded through any ‘Up Port’ with an
agreed ‘Down Port’ neighbour (subject to the
forwarding bridge abiding by the terms of any
agreement transmitted). Loop-free hop-by-hop multi-
path forwarding (3.3) is completely covered.

Spanning tree forwarding uses both ingress and egress
controls. Frames are relayed from a bridge’s Root
Port3 (provided that port’s outstanding agreements
allow it to forward at its current distance from the
root) to Designated Ports (that have received
agreements that commit their neighbours to forward
only if they are at a greater distance), while frames
received on an agreed Designated Port can be
transmitted on the Root Port and other agreed
Designated Ports. Thus an upward going frame
(proceeding towards the Root, through bridges with
successively better priority vectors4) can be turned
into a downward going frame. However this change of
direction can happen at most once: since each bridge
has just one Root Port a downward going frame
(heading away from the Root) cannot be turned into an
upward going frame. Further, since each LAN has a
single agreed Designated Port (and Designated
Bridge), the turned around frame will not revisit any
LAN. The proof that the spanning tree forwarding
rules guarantee loop-free operation thus comprises two
parts: (a) frames proceeding successively from the
Root Port of one bridge to the next Designated Port of
the next pass through bridges that are successively
closer to the root (successively further away for a
frame proceeding in the other direction) so those ports
canot be arranged in a loop; and (b) there is at most
one forwarding Designated Port (and thus one
Designated Bridge with a single Root Port) for each
LAN in the network.

The forwarding rules specify which ports can relay
frames given the agreements held (received, and not
explicitly discarded by the protocol) and outstanding
(transmitted, without receipt of a subsequent discard).
Equally they determine what agreements can be sent,
and which discarded, given the forwarding ports.
Since the agreements for different trees are associated
with the same digest, and cannot be separated one
from another except by filtering through the current

1In exactly the same way as originally defined for IEEE Std 802.1D.
2EISS-SPB includes mechanisms to ensure that link costs are symmetric.
3The port currently providing the shortest path to the root.
4As is conventional in computer science and graph theory, and despite the confusion this causes (unicast ‘upstream’ being ‘downward’, and ‘downstream’
being ‘upward’) trees are considered to have their roots at the top. with trunk and branches proceeding downward. Equivalently better priority vectors
(numerically lesser) are depicted higher on a page, with worse priority vectors (numerically greater) below.
Revision 0.9 March 12th 2010 Mick Seaman 3

Link state agreement
state of the link state database, there is little scope for
strategically delaying agreement transmission once a
new topology (and its corresponding digest) has been
calculated—the forwarding pattern is reduced as
required and fresh agreements sent as soon as possible.
This note maps the mathematical description of the
agreements and forwarding rules of most interest to
SPB (4.3) to the real state variables and conditions
(4.3) used in the P802.1aq state machine description.
An important aspect of the agreement algorithm and
protocol is that a number of messages can be ‘in flight’
between the participants, even if that only means
sitting in a transmit or receive queue. Agreements are
not necessarily delivered faster than new link state
topologies are computed. One bridge can never be sure
of the state of another except as circumscribed by
agreements received (and not yet discarded) and by
those sent and still outstanding. The fact that a port
attached to a point-to-point link is an agreed
Designated Port does not directly mean that the
neigbouring bridge’s port is a Root or Alternate Port,
but that it is not also an agreed Designated Port and is
thus only forwarding if it is a Root Port (for simple
spanning tree, for example). The protocol’s use of
sequence numbers, and the precise conditions under
which new agreements are sent, old agreements
discarded, and protocol state variables updated are
detailed in 4.5. While absolute protection against
misordering of agreement protocol messages is

difficult, moderate misordering (2-3 messages) is
handled (as discussed in 5).

Since the complete absence of agreement means that
loop-free forwarding is impossible, an agreement
protocol participant never simply discards all past
agreements. However this restriction does not require
an excessive number of message exchanges when
fresh agreements are required for forwarding.
Consider the case where two participants A and B, say
(attached to the same LAN, and agreed on a stable
topology) process a new link state database change.
Assume A completes the link state calculation first,
reduces its forwarding to the intersection of that
permitted by past agreements and the new topology,
and sends the new agreement digest to B, implicitly
discarding any prior agreements that conflict with that
digest. At this point B has not yet finished its
calculation, but when it does it will recognize and use
the fresh agreements from A, put all the forwarding for
the new topology in place, discard all previous
received agreements and transmit to A. On receipt of
this message A can also put all the forwarding for the
new topology in place, and discard all agreements it
has from prior topologies. To achieve full forwarding
on the new topology required A and B to each transmit
(and receive) just one message. The same is true if
they complete their link state calculations at much the
same time and the messages ‘cross’.
Revision 0.9 March 12th 2010 Mick Seaman 4

Link state agreement
2. Basic terminology and notation
The following terminology and notation is used to facilitate discussion:

{A, B,... H} — the bridges in a network.
{W, X,Y, Z} — free variables identifying any neighbouring bridges W, X, Y, Z ∈ {A, B,... H}.
nY — the immediate neighbours of any given bridge Y.
pY–Z — the port of bridge Y that connects to bridge Z ∈ nY.
cost — a priority vector (distance) increment.
distance — a priority vector (distance from the root of a tree).
up, upward — connectivity, potential connectivity, or forwarding a frame, towards the root of a tree.
down, downward— connectivity, potential connectivity, or forwarding a frame away from the root of a tree.
downstream — ‘downstream’ is used only in the context of known unicast forwarding, and denotes

connectivity, potentially connectivity, or forwarding towards the destination. The term
is potentially but inevitably confusing as the communication may be modeled as
forwarding on a tree rooted at the destination, in which case ‘downstream’ and ‘up’ (or
‘upward’) refer to the same direction.

upstream — ‘upstream’ is used only in the context of known unicast forwarding. When the
communication is modeled as forwarding along on a tree rooted at the destination,
‘upstream’ and ‘down’ (or ‘downward’) refers the same direction.

cY–Z — the cost (priority vector increment) associated with pY–Z. Note that mechanisms are
used to ensure that costs are symmetric: cY–Z = cZ–Y.

ti — a network topology (and all the information that can be extracted from that topology),
ti ∈ {any possible active topology}.

gi — the agreement digest for ti . We assume that, to an acceptable level of probability in any
given network, ∀ ti ≠ tj (gi ≠ gj), so each agreement digest identifies the complete
network topology when received (or subsequently processed) by a bridge whose link
database reflects that topology. Thus any given digest can convey all the agreements
possible in any agreement convention based on the bridges in a given active topology,
their identifiers, port identifiers and costs, distances on shortest or constrained paths etc.

ai — an agreement that can be expressed by reference to ti.
aY→ Z — the set of agreements transmitted (advertised) by Y to Z, Z ∈ nY, and considered

outstanding by Y.
aY← Z — the set of agreements received from Z, and held (i.e. not discarded) by Y, that matched

an agreement calculated by Y (either on receipt or subsequently). Note aY← Z ⊆ aY→ Z.
Yi — the shortest path distance for bridge Y in topology i, similarly Xi, Zi for bridges X, Z.
Yi.Y– Z — the distance for bridge Y (in topology i) for the path that is constrained to visit Z as the

first hop and is the shortest path thereafter: Yi.Y–Z = cY–Z + Zi. Similarly Xi.X– Y.
Zi.Y– Z — the distance for bridge Z (in topology i) for the path that is constrained to visit Y as the

first hop and is the shortest path thereafter: Zi.Y–Z = cY–Z + Yi. Similarly Xi.X– Y.
YY — the shortest path distance for bridge Y in the latest topology computed by bridge Y.
Zi < Yi — ‘Zi less than Yi’, meaning that Z is closer to the root than Y in ti, also (since trees are

conventionally shown with their roots uppermost, with better priority values higher on
the page) ‘Zi is above Yi’, ‘Yi is below Zi’. Entirely equivalent to Yi > Zi .

YY– Z — the distance for bridge Y (for the latest topology computed by Y) for the path that is
constrained to visit Z as the first hop and is the shortest path thereafter.

XY→ X = the least distance advertised by Y (transmitted by and considered to be currently
outstanding by Y) for paths from X constrained to Y as the first hop with Y < X, infinite
Revision 0.9 March 12th 2010 Mick Seaman 5

Link state agreement
if there is no such outstanding agreement. Similarly for YZ→ Y (distance for Y,
constrained to Z as first hop and advertised by Z).

YY← Z = the least distance for Y, for paths constrained to Z as the first hop, in agreements
received from Z with (Z < Y), infinite if there is no such received agreement.
Note (aY← Z ⊆ aZ→ Y) ⇒ (YZ→ Y ≤ YY← Z)

YY→ Z = the greatest outstanding distance advertised by Y for paths from Y constrained to Z as
the first hop with Z < Y, infinite if any of the outstanding agreements have (Y < Z), and
zero if there is no outstanding agreement. Similarly YY→ X.

ZY← Z = the greatest distance for Z (for paths constrained to Y as the first hop) in agreements
received from Z with (Y < Z), infinite if any of the agreements received from Z has
(Z < Y), zero if no agreement has been received. Similarly XY← X.
Note (aY← Z ⊆ aZ→ Y) ⇒ (YZ→ Y ≥ YY← Z)

A single port on bridge Y (say) can provided connectivity to more than one neighbouring bridge. The following
notation covers shared media, without complicating the presentation of the simpler point-to-point only case to the
extent that it would be desirable to present the latter separately (thus bulking out this note and increasing the
chance of mistakes):

{X, Y, Z} — sets of bridges X, Y, Z ⊂ {A, B,... H} attached to the same LAN.
pY–Z — a port of bridge Y that connects to bridge Z ∈ Z, Z ∈ nY. Z ∈ Z ⇒ pY–Z ≡ pY– Z
aY→ Z — the set of Agreements transmitted by bridge Y to each bridge Z ∈ Z, Z ∈ nY, (Y ∉ Z)

and considered outstanding by Y.
aY← Z — the set of Agreements received from all bridges in Z, and held by Y.

Conventional logic and set notation is used with the above.For those for whom this is a distant memory, and to save
my self embarrassment lest I have stretched this in unapproved ways, here is a quick refresher:

∈ — is a member of.
∧ — logical and.
∨ — logical or.
¬ — logical not (higher precedence than ∧ and ∨).
∀ — for all, as in ∀ x(p(x)) — for all x, proposition or condition p(x) is true.
: — such that, as in ∀ x:(q(x))(p(x)) — for all x such that q(x) is true, p(x) is true.
∃ — there exists, as in ∃x:(p(x)) — there exists an x such that p(x) is true.
≡ — is equivalent to, for example (x < y) ≡ (y > x).
⇒ — implies, for example (x < 2) ∧ (y > 3) ⇒ (y > x).

There are, of course, many ways of saying the same thing, and I have often picked what seems (to me) to be the
clearest exposition in a local context without attempting overall consistency or minimal use of variants. In
particular note that ∀ x:(q(x))(p(x)) ≡ ∀ x(¬q(x) ∨ (p(x)) — saying ‘for all x such that q(x), p(x) is true’ is
equivalent to saying ‘for all x, either q(x) is false or p(x) is true’.
Revision 0.9 March 12th 2010 Mick Seaman 6

Link state agreement
3. Loop-free forwarding conditions

This section (3) considers a number of sets of forwarding rules (3.1– 3.6).

3.1 Destination-based unicast forwarding

In simple destination-based unicast forwarding, each frame destined for a destination D (say) is forwarded through
the one port that provides the shortest path to D, no matter what port the frame is received on. A bridge’s
forwarding logic usually discards a received frame rather than forwarded it back through the receiving port, but this
forwarding rule does not rely on that ‘split-horizon’ check’ (see also 3.2). The only forwarding plane control
available to each bridge is to remove the entry for D from its forwarding database, thus causing the frame to be
dropped. For the tree rooted at D:

1 spUnicastY– Z ≡ (YY–Z = YY) ∧ (1a.1)

(∃ai ∈ aY← Z : ((Zi < Yi) ∧ (Yi.Y–Z ≤ YY))) (1a.2)
∧ (∀ X ∈nY (1b)

(∀ ai ∈ aY→ X : (Yi < Xi) (YY < Xi.X–Y))) (1b.1)

Equation 1 considers forwarding of any given data frame through port pY–Z of bridge Y. spUnicastY–Z is true iff the
frame can be forwarded, and depends on the agreements received and sent on pY–Z and sent onY’s other ports. It
can be summarized as allowing Y to forward frames to Z only if: (a.1) Y’s shortest path to the destination lies
through Z; and (a.2) an agreement has been received from the ‘up’ port neighbour Z, agreeing that the port provides
upward connectivity, and Y’s distance is now no better than it was for connectivity through Z in that agreement
(thus guaranteeing that Z, if still forwarding, remains above Y); and (b, b.1) none of the agreements that Y may
have sent to any neighbour (of those indicating that Y provides a possible ‘upward’ path) claim that Y will remain
closer to the root than it is currently (the claimed distance is less than the best that the neighbour could have and
satisfy its own (a.2) condition to forward frames to Y).

The benefit of using the agreement protocol and the rule specified by eqn. 1 for known unicast destination
forwarding can be summarized as follows. Each bridge can forward frames while ensuring that there are no loops,
even after a topology change, provided that each bridge is not (a) closer to the destination than required for the path
through its downstream neighbour (using that downstream neighbour’s advertised distance) to be the shortest path
(b) further from the destination than any of its upstream neighbours that can take advantage of its own advertised
distance to forward frames to it. Equation 1 assumes (in a.1) that there is a unique shortest path (through a single
port pY–Z) to any destination, so each frame is forwarded through only one port, and that is the same port.

More formally, for bridges interconnected by point-to-point links there are two ways in which loops can arise.
First, bridges might be connected in a circle with each bridge’s ‘up’ port (satisfying constraints (a.1) and (a.2) in
eqn. 1 as well as (b.1)), connected to another bridge’s port that merely satisfies (b.1). Second, two connected
bridges might each transmit a given received frame back to the other, either on the receiving port or on another port
connecting the two bridges. This second case can thus be considered a sub-case of the first—the smallest possible
loop.

Consider bridges D, C, B, A, each believing itself to be forwarding a frame (successively) on a path to a given
destination. Instantiating eqn. 1 for the relevant two ports on each of the bridges B and C we have:

2 spUnicastB– A ≡ (BB–A = BB) ∧ (2a) from (1a.1)

(∃ai ∈ aB← A : ((Ai < Bi) ∧ (Bi.B–A ≤ BB)) ∧ (2b) from (1a.2)

(∀ ai ∈ aB→ A : (Bi < Ai) (BB < Ai.A–B)) ∧ (2c) from (1b.1)

(∀ ai ∈ aB→ C : (Bi < Ci) (BB < Ci.C–B)) (2d) from (1b.1)
Revision 0.9 March 12th 2010 Mick Seaman 7

Link state agreement
spUnicastC– B ≡ (CC–B = CC) ∧ (2e) from (1a.1)

(∃ai ∈ aC← B : ((B i < C i) ∧ (Ci.C–B ≤ CC)) ∧ (2f) from (1a.2)

(∀ ai ∈ aC→ B : (C i < B i) (CC < Bi.C–B)) ∧ (2g) from (1b.1)

(∀ ai ∈ aC→ D : (C i < D i) (CC < Di.D–C)) (2h) from (1b.1)

Since aC← B ⊆ aB→ C:

spUnicastC– B ∧ spUnicastB– A

⇒ (∀ ai ∈ aB→ C : (B i < C i) (BB < Ci.C–B) from (B–A:2d), (1b.1)

∧

(∃ai ∈ aC← B : ((B i < C i) ∧ (Ci.C–B ≤ CC) from (C–B:2f), (1a.2)

⇒ BB ≤ CC

So B and C will only forward a frame if BB ≤ CC ; and C, B, and A will only forward the frame if AA ≤ BB ≤ CC.
This rules out any possibility of a loop through A and C, or A and any subsequent bridge on the path being one and
the same, or A and C being one and the same.

Clearly eqn. 1 has a closely related alternative (eqn. 3): each bridge is (a) not closer to the destination than it has
advertised to its downstream neighbour as the minimum distance from which it would forward to that neighbour
(b) not further from the destination than those distances as advertised to it by each of its upstream neighbours.

3 spUnicastY– Z ≡ (YY–Z = YY) ∧ (3a.1)

(∀ Yi ∈ aY→ Z ((Zi < Yi) ∧ (Yi.Y–Z ≤ YY))) (3a.2)
∧ (∀ X ∈nY (3b)

(∃ai ∈ aY← X : ((Xi < Yi) ∨ (YY < Xi.X–Y))) (3b.1)

Although the eqn. 1 rule may appear to require less agreement, I believe there is no practical performance
difference: messages to discard prior agreements are needed when the change in the distance would be significant
enough to require fresh agreements in eqn. 3.

Equations 1 and 3 leave open the possibility of each bridge keeping a separate record of every agreement sent or
received, so that each can be individually discarded. Practical agreement protocols are not so selective: it is only
necessary to remember the most constraining agreement sent and the most permissive one received. With this
change eqn. 1 can be rewritten as eqn. 4, (below):

4 spUnicastY– Z ≡ (YY–Z = YY) ∧ (4a.1)
(YY← Z ≤ YY) ∧ (4a.2)

(∀ X ∈nY (4b)
(YY < XY→ X)) (4b.1)

and eqn. 3 can be rewritten as eqn. 5:

5 spUnicastY– Z ≡ (YY–Z = YY) ∧ (5a.1)
(YY→ Z ≤ YY) ∧ (5a.2)

(∀ X ∈nY (5b)
(YY < XY← X)) (5b.1)

Note that (4b.1) does not say that Y has to be closer to the destination than any of its neighbours, merely that it has
to be closer than any of its neighbours to which Y has advertised itself as a possible next hop to the destination.
Revision 0.9 March 12th 2010 Mick Seaman 8

Link state agreement
Similarly (5b.1) requires Y to be closer to the destination than any neighbour that has told Y that it considers Y a
possible next hop to the destination can be when that neighbour’s distance allows it to forward frames to Y.

It is easy to see that equations 1 and 4 guarantee loop-free forwarding. Consider bridges C, B, A lying
(successively) on a path to a destination and recall that (aC← B ⊆ aB→ C) ⇒ (CB→ C ≤ CC← B). C, and
subsequently B, will only forward a frame if:

spUnicastC– B ∧ spUnicastB– A

⇒ (BB < CB→ C) (B–A:4b.1)

∧

(CC← B ≤ CC) (C–B:4a.2)

⇒ BB ≤ CC

And C, B, and A will only forward the frame if AA ≤ BB ≤ CC ruling out any possibility of a loop through A and
C, or A and any subsequent bridge on the path being one and the same.

Similarly using eqn. 5 and (aC← B ⊆ aB→ C) ⇒ (CB← C ≤ CC→ B):

spUnicastC– B ∧ spUnicastB– A

⇒ (BB < CB← C) (B–A:5b.1)

∧

(CC→ B ≤ CC) (C–B:5a.2)

⇒ BB ≤ CC

3.2 Destination-based unicast forwarding with split-horizon

If a bridge’s forwarding logic never forwards a frame back through the reception port, eqn. 4 can be simplified to
give eqn. 6 below.

6 spUnicastY– Z ≡ (YY–Z = YY) ∧ (6a.1)

(YY← Z ≤ YY) ∧ (6a.2)

(∀ X ∈nY (6b)

(YY < XY→ X)) (6b.1)

3.3 Multipath destination-based unicast forwarding

Equation 4 does not explicitly restrict forwarding to a single ‘up’ port, except in as much as the distance metric is
specified as providing a total ordering (to ensure that tie-breaking is always supported) so only one port can meet
the criterion (4a.1). Such a restriction would be unnecessary if the prevention of loops were the only concern.
Although any given frame should only be transmitted through a single ‘up’ port to avoid duplicate delivery of
frames, the choice of best port can be made on a frame by frame basis, as several ports could satisfy (4a.2). The
agreement protocol and rules of the previous section thus allow frames for different flows to be distributed, per
hop, on multiple paths to a single destination. The multiple paths can be “equal cost” or “near equal cost” within
the constraints of eqn. 4.
Revision 0.9 March 12th 2010 Mick Seaman 9

Link state agreement
3.4 Spanning tree forwarding
Equation 7 (below) specifies an stForwardingX–Y– Z forwarding rule that can be consider as defining both a truth
value for any pair of bridge Y’s ports and a set of port tuples for bridge Y. For example:

stForwardingX–Y–Z = True for any given X, Y, Z iff frames can be forwarded from pY–X to pY–Z.
[pY–X, pY–Z] ∈ stForwardingX–Y–Z iff frames can be forwarded from pY–X to pY–Z.

7 stForwardingX–Y–Z ≡ (X ≠ Z) ∧ (. (7a)
((∃Z ∈ Z : ((YY–Z = YY) ∧ (7b.1)

(∀ aj ∈ aY→ Z : (Zj < Yj) (Yj.Y–Z ≤ YY)) ∧ (7b.2)
(∀ X ∈ X ((∃aj ∈ aY← X : ((Yj < Xj) ∧ (YY < Xj.X-Y))) ∧ (7b.3i)

(∀ ai ∈ aY→ X Yi < Xi))) . . . (7b.3ii)
) ∨

((∃X ∈ X : ((YY–X = YY) ∧ (7c.1)
(∀ aj ∈ aY→ X : (Xj < Yj)(Yj.Y–X ≤ YY)) ∧ (7c.2)

(∀ Z ∈Ζ ((∃aj ∈ aY← Z : ((Yj < Zj) ∧ (YY < Zj.Z-Y))) ∧ (7c.3i)
(∀ ai ∈ aY→ Z Yi < Zi))) . . . (7c.3ii)

) ∨

((∀ X ∈ X ((∃aj ∈ aY← X : ((Yj < Xj) ∧ (YY < Xj.X-Y))) ∧ (7d.1i)
(∀ ai ∈ aY→ X Yi < Xi))) ∧ . . . (7d.1ii)

 (∀ Z ∈ Z ((∃aj ∈ aY← Z : ((Yj < Zj) ∧ (YY < Zj.Z-Y))) ∧ (7d.2i)
(∀ ai ∈ aY→ Z Yi < Zi))) . . . (7d.2ii)

))

Equation 7 has four principal components: (a) requires pY–X and port pY–Z to be attached to different LANs, a
condition that applies to alternatives (b), (c), and (d) following; (b) permits forwarding from a Designated Port to
the bridge’s Root Port; (c) forwarding from the Root Port to a Designated Port; and (d) forwarding between two
Designated Ports. Criteria (b.1) and (c.1) require that there be a single Root Port, at least for any given frame (see
also 3.3 and footnote1), while (b.2) and (c.2) require that any agreement sent by that Root Port that could be used
by a Designated Port (in c.3i, b.3i) not overstate the distance that Y requires to become forwarding through the
Root Port. In mathematical English (b.2) and (c.2) can be rendered: “for all agreements sent such that Y is not
claiming to be a Designated Port, Y’s quoted distance for use of that port as the shortest path is less than Y’s current
distance”. Criteria (b.3i), (c.3i), (d.1i), (d.2i) require that Y hold suitable agreements for each Designated Port that
is forwarding: “for all (other) bridges attached to the LAN there exists an agreement such that that bridge
recognizes that I have a better right to be the Designated Port for the LAN and that bridge is quoting a distance at
which it can forward frames to the LAN that is greater than my current distance”. Criteria (b.3ii), (c.3ii), (d.2ii)
require that Y has no outstanding agreement that another bridge could interpret as granting that bridge a better right
to be the Designated Port for the LAN.

While stForwardingX–Y– Z specifies forwarding for all pairs of Y’s ports (pY–X to pY–Z) it is clearly symmetric—
stForwardingX–Y– Z ⇒ stForwardingZ–Y– X—so the rule can be rewritten (eqn. 8) to express the forwarding
condition (both ingress and egress permitted) for any port pY–Z, provided that it is understood that a frame is never
forwarded back through the receiving port. Port pY–Z is clearly either a Root Port (8a) meeting the criteria of (7b.1
and 7b.2) or a Designated Port (8b) meeting the criteria common to (7b.3), (7c.3), (7d.1), and (7d.2).

1Spanning Vines, 5th March 2002, discusses the use of the Alternate Ports of a single tree to provide multi-tree connectivity on a frame-by-frame basis.
Revision 0.9 March 12th 2010 Mick Seaman 10

http://www.ieee802.org/1/files/public/docs2002/Spanning%20Vines005.pdf

Link state agreement
8 stForwardingY–Z ≡

(∃Z ∈ Z : ((YY–Z = YY) (8a.1)
∧ (∀ aj ∈ aY→ Z : (Zj < Yj)(Yj.Y–Z ≤ YY)) ∨ (8a.2)

(∀ Z ∈Ζ ((∃aj ∈ aY← Z : ((Yj < Zj) ∧ (YY < Zj.Z-Y))) (8b.1)
∧ (∀ ai ∈ aY→ Z : (Zi < Yi)(Yj.Y–Z ≤ YY))) (8b.2)

Since practical agreement protocols do not select agreements that are to be discarded from arbitrary positions in the
protocol history, but only need to remember the most constraining agreement sent and the most permissive
agreement received, eqn. 8 can be simplified to yield eqn. 9 just as eqn. 4 was derived from eqn. 1.

9 stForwardingY–Z ≡ (∃Z ∈ Z : ((YY–Z = YY) ∧ (YY→ Z ≤ YY))) ∨ (9a)
(∀ Z ∈ Z ((YY < ZY← Z) ∧ (YY→ Z ≤ YY))) (9b)

While stForwardingX–Y– Z and stForwardingY– Z naturally cover both shared media and point-to-point
connectivity, a slight simplification is possible in the latter case (eqn. 10):

10stForwardingY–Z ≡ ((YY–Z = YY) ∧ (YY→ Z ≤ YY)) ∨ (10a)
((YY < ZY← Z) ∧ (YY→ Z ≤ YY))) (10b)

If bridge B (say) is forwarding frames to and from a LAN through a Designated Port, while bridge C is forwarding
to and from the same LAN using its Designated Port, and using (aC← B ⊆ aB→ C) ⇒ (CB← C ≤ CC→ B) we have:

((BB < CB← C) ∧(BB→ C ≤ BB))) ∧ (B–C:10b)
((CC–B = CC) ∧ (CC→ B ≤ CC)) (C–B:10a)

⇒ BB < CB← C ≤ CC→ B ≤ CC
⇒ BB ≤ CC

so, just as with eqn. 5, there can be no loop of bridges connected Root Port to Designated Port to Root Port etc. To
prove that loops do not occur we also need to show that there can be at most one forwarding Designated Port for
any given LAN. If B and C were both forwarding Designated Ports we would have:

((BB < CB← C) ∧(BB→ C ≤ BB))) ∧ (B–C:10b)
((CC < BC← B) ∧(CC→ B ≤ CC))) (C–B:10b)

⇒ BB < CB← C ≤ CC→ B ≤ CC ⇒ BB < CC

and

CC < BC← B ≤ BB→ C ≤ BB ⇒ CC < BB

a contradiction, so there can be at most one forwarding Designated Port per LAN.

The question naturally arises as to whether there are complementary alternate versions of these rules using Y rather
than Y, in the same way that eqn. 4 is an alternative to eqn. 5, with positive agreements being received on Root
Ports (‘up’ ports) while Designated Ports (‘down’ ports) are only constrained by the agreements they send rather
than those they received. However, unlike the known unicast destination case, frames are transmitted through
‘down’ ports as well as through ‘up’ ports and it is essential that there be at most one forwarding Designated Port
per LAN. If we wish to minimize the recorded state by using the same limit (Y or Y) for both spanning tree and
known unicast forwarding I believe we have to use rules for Y (and their derivatives).
Revision 0.9 March 12th 2010 Mick Seaman 11

Link state agreement
3.5 Spanning tree forwarding with explicit priority vector signaling

Among its other uses, the CIST (strictly speaking the IST) is intended to provide remedial connectivity within
MST and SPT Regions. While link state procedures can be used to compute the IST more rapidly than is often
possible with distance vector, the CIST’s dependencies on anything that might possibly go wrong (continuous
churn in some part of the network, for example) or be misconfigured should be kept to a minimum. Since
interoperability with SST and MST bridges at the boundary of an SPT Region requires the use of RST/MST
BPDUs, the agreements for the CIST are carried as explicit priority vectors exactly as they are with RSTP/MSTP.
Carrying CIST agreements in this way has two consequences. First, the loop-free guarantee does not depend on the
bridges connected to a LAN agreeing on the port path cost of that LAN. Second, since the port path cost is not
communicated in the BPDU, the forwarding rules cannot depend on it either: a bridge cannot calculate the
minimum distance at which its neighbour may forward frames towards it but has to depend simply on the
agreement information sent by that neighbour. In short ZZ (as explicitly communicated in the agreement) is used in
place of ZY← Z (as calculated from an agreement digest) in the forwarding rules of eqn. 9 and eqn. 10.

This chance has no effect on the permitted connectivity when an agreement is sent on a Root Port, but does mean
that temporary discarding will more often occur (following some LAN failure) on Designated Ports that connect to
Alternate Ports. This unwanted effect can be avoided by changing the priority vector sent through Alternate Ports
so it actually reflects ZY← Z, i.e. Z’s own stated view of the distance at which it can become forwarding on the port
with first hop Y) rather than Z’s current distance. However the possible confusion arising from making such a
change in the standard specification makes it probably not worthwhile. A network that contains (some or all)
bridges that do send ZY← Z will work perfectly well since ZY← Z can never be less than (better than) ZZ.

3.6 Multicast forwarding with source specific multicast addresses

Shortest path multicast forwarding requires some identification of the source, and in SPBM this is provided by
using a source-specific multicast destination address. In networks of point-to-point LANs it is possible to use
egress filtering for such a destination address to provide loop-free multicast connectivity, without the need to check
the source address of the frame on ingress. Considering distances for the tree rooted at the source:

11ssMulticastY–Z ≡ (ZY = ZY–Z) ∧ (11a)
(∃aj ∈ aY← Z : ((Zj = Zj.Y–Z) ∧ (YY < Zj.Y–Z))) ∧ (11b)

(∀ X ∈ nY : (YY ≠ YY–X) (∀ aj ∈ aY→X (Yj ≠ Yj.Y–X)))) (11c)

Equation 11 says that Y will forward the source specific multicast through any port pY– Z to bridge Z, provided
that: (a) Y believes that the shortest path from Z to the source lies through Y itself; and (b) Y holds at least one
agreement to that effect from Z; and (c) Y itself has such agreements (for the tree in question) outstanding at only
one of Y’s neighbours, which provides Y’s own next hop towards the source. In summary, Y ensures that it will not
forward more than one copy of a sourced multicast by removing all forwarding database entries permitting egress
for that multicast if Y has told more than one parent that that parent is Y’s shortest path to the source.

While it is easy to detect (and record) when condition (11c.1) first inhibits forwarding, restarting forwarding is not
so easy unless the strategy is to wait until all ports have synchronized (see protocol) with their neighbours.
Furthermore condition (11b) makes determining the neighbour’s Root Port an essential part of the loop prevention
process, while it might be more convenient not to require that the link state computation share that information, or
treat it as an optimization. Equation 12 uses source address ingress filtering to address both these issues, allowing
the multicast to be forwarded on some LANs only to be discarded by the neighboring bridge:

12ssMulticastX–Y–Z ≡ (YY–X = YY) ∧ . . . (12a.1)

(∀ ai ∈ aY→ X :(Xi < Yi)(Yi.Y–X ≤ YY)) ∧ . . . (12a.2)
(∃aj ∈ aY← Z : ((Yj < Zj) ∧ (YY < Zj.Z–Y)) ∧ (12b)
(ZY = ZY–Z) (12c)
Revision 0.9 March 12th 2010 Mick Seaman 12

Link state agreement
Equation 12 specifies forwarding from pY–X through one or more ports pY–Z : (a.1) pY–X provides the shortest path
to the source (and is the only one of Y’s ports that does so); (a.2) Y is no closer to X than its minimum forwarding
distance as specified in all agreements outstanding on pY–X with X<Y; (b) Y holds such an agreement from Z, with
Z’s minimum forwarding distance greater than Y’s current distance; (c) an optimization not required to prevent
loops or frame duplication, do not forward to Z unless (in the current topology calculated by Y) the frame is being
forwarded to Z’s Root Port.
Equation 13 is eqn. 12 simplified (as with previous equations) to record only the most constraining agreement sent
and the most permissive received.

13ssMulticastX–Y–Z ≡ (YY–X = YY) ∧ (YY→ X ≤ YY)) ∧ (13a)
(YY < ZY← Z) ∧ (13b)
(ZY = ZY–Z) (13c)

Consider bridges B and C connected to the same LAN. Neither can be forwarding frames received from that LAN
back to the same LAN (X and Z the same) as (13a) requires (YY→ X ≤ YY) while (13b) requires (YY < ZY← Z).
Consider B forwarding frames to the LAN, and C receiving the frames and forwarding to a further LAN.
Instantiating (13b) for B’s port B–C and (13a) for C’s port C–B ⇒ BB < CC, so no forwarding loop is possible.
Revision 0.9 March 12th 2010 Mick Seaman 13

Link state agreement
4. Protocol

While it is not my intent to depart from the agreement
protocol previously described and documented in
P802.1aq/D2.5, this note does provide additional
detail and the protocol description in this note may
differ (particularly in its use of local variable names).
I have felt free to question and possibly improve on the
latter as a part of a diligent search for the best
description and have devoted little if any time to
mechanically aligning terminology. On the other hand
this note’s attempt at an economical description may
not be the easiest to integrate with existing
specifications and implementations (or might over
constrain the latter). Questions as to if or how
P802.1aq should be changed should be considered
separately.

4.1 General terminology

participant — a participant in the agreement protocol.

actor — the participant under discussion

partner — a participant other than the actor, but
exchanging messages with the actor and potentially
with other participants attached to the same LAN.

4.2 Messages and rules

The forwarding rules specify what ports (or pairs of
ports) can forward (transmit and/or receive) data
frames given a set of agreements received (and not
discarded) and a set of agreements transmitted (and
not yet explicitly discarded by their recipient). The
rules can equally well be read as specifying what fresh
agreements can be transmitted, and what received
agreements discarded, given the forwarding ports. The
protocol places the control of whether an agreement is
to be discarded in the hands of the participant that has
received that agreement. The mere calculation of a
new active topology does not force a crisis so far as a
participants is concerned, the current forwarding

pattern can proceed uninterrupted. Once the
forwarding pattern has been reduced to one that
accords with that required if fresh agreements were to
be sent, or held agreements discarded, then those
agreements can be sent and discarded as desired.

4.3 Forwarding rules

The algorithms and protocol discussed in this section
(4) are designed to cover loop-free forwarding
requirements for the use of SPBV with point-to-point
links and shared media, and the use of both SPBV and
SPBM with point-to-point links. Spanning tree
forwarding is supported both by digests and explicit
information to allow the use of the latter to support the
IST, maximizing the chance of providing remedial
connectivity should some complex convergence
problem occur. SPBM’s source specific multicast
forwarding is supported without relying on a source
ingress check to avoid any dependence on unicast
FDB entries, thus not constraining the use of SPBM
unicast loop mitigation as an alternative to loop-free
guarantees. Specifically this section covers:

a) Simple shortest path destination-based unicast
forwarding and (hop-by-hop) multipath unicast (3.1
and 3.3) over point-to-point links, using the
spUnicastY– Z rule of eqn. 5 and agreement digests.

b) Spanning tree forwarding using both point-to-point
and shared media (3.4, 3.5) using the
stForwardingY–Z rule of eqn. 9 with both agreement
digests and explicit priority vectors.

c) Multicast with a source-specific multicast address
(3.6) using the ssMulticastY– Z rule of eqn. 13 and
agreement digests.

Note, at present the details are only shown for point-
to-point links to avoid the clutter that comes with
keeping track of multiple partners.

The relevant rules are repeated below:

14spUnicastY– Z ≡ (YY–Z = YY) ∧ (5a.1)
(YY→ Z ≤ YY) ∧ (5a.2)

(∀ X ∈nY (5b)
(YY < XY← X)) (5b.1)

15stForwardingY–Z ≡ ((YY–Z = YY) ∧ (YY→ Z ≤ YY)) ∨ (10a)
((YY < ZY← Z) ∧(YY→ Z ≤ YY))) (10b)
Revision 0.9 March 12th 2010 Mick Seaman 14

Link state agreement
16ssMulticastX–Y–Z ≡ (YY–X = YY) ∧ (YY→ X ≤ YY)) ∧ (13a)
(YY < ZY← Z) ∧ (13b)
(ZY = ZY–Z) (13c)

4.4 Participant state
The link state procedures for any given protocol participant, Y, provides that participant with the following per tree
information when each link state calculation completes:

• designatedPriority — YY, see definition.
• calculatedDigest — gY, see definition.

and the following per tree for each port (identified as, or as one of, pY–Z or pY-X in the forwarding rules:

• selectedRole — RootPort iff (
• neighbourPriority — ZY or XY see definition, calculated (for port from the neighbour Priority provided.

The agreement protocol also calculates the following per tree per port from the information provided.

• rootPriority — YY–Z, see definition, calculated (for port from the neighbour Priority provided.1

The following per tree per port information records the agreements received (and held) and those transmitted (and
still outstanding).

• agreedPriority — XY← X, see definition, in (5b.1), and ZY← Z in (9b), (10b), (13b), also see 3.5.
• outstandingPriority — YY→ Z, see definition, in (5a.2), (9a), (10a).

The transmission and reception of agreements is recorded per port. Those inherent in the transmission and
reception of digests are simply recorded by noting the digests involved:

• txDigest — the digest currently being transmitted.
• rxDigest — the last digest received.

The following boolean variables2 can be used to summarize the agreement state per tree per port:

• agreedU = (designatedPriority < agreedPriority) // i.e. iff (5b.1), (10b), (13b)
• agreed = (agreedU && (outstandingPriority < designatedPriority)) // i.e. iff (10b),
• agreedM = (agreedU && (neighbourPriority == (designatedPriority + portCost)) // i.e. iff (13b and 13c).
• syncedU = (agreedU && (the FDB does not permit egress for frames with the unicast address))

|| (agreed && ((neighbourPriority + portCost) == designatedPriority))
// the port is a Root Port or a multi-path forwarding Alternate Port

• synced = agreed || (the Port State is discarding for frames subject to spanning tree forwarding).
• syncedM = agreedM || (the FDB has no egress for frames with the source-specific multicast address).
• allSyncedU = syncedU is True for all ports.
• allSynced = syncedU is True for all ports (other than the Root Port if this is the Root Port3).
• allSyncedM = syncedM is True for all ports.
• agree = allSyncedU && allSynced && allSyncedM

Once agree is True for all trees txDigest can be updated to calculatedDigest.

1P802.1aq/D2.5 currently defines rootPriority only for the Root Port, thus making it a per tree variable.
2The variables agreed, synced, allSynced, and agree were originally specified for RSTP, then used in MSTP, and are specified for SPB in 802.1aq /D2.5.
3I have been around this aspect of defining allSynced several times and need to check back with 802.1Q and its revision history.
Revision 0.9 March 12th 2010 Mick Seaman 15

Link state agreement
4.5 Agreement messages

For the time being I have left out the explicit priority
vector agreements, and just described the digest
handling.

The protocol has to deal with the fact that there may be
a number of messages ‘in flight’ or at least languishing
in transmission or reception buffers awaiting
processing. The topology (and the accompanying
digest) can change and change back again, so the
reception of a matching digest in an agreement
message is not sufficient to indicate that a protocol
partner is not holding additional agreements.

Each agreement message, however it is carried in
protocol frames, comprises the following parameters:

— digest — the agreement digest.
— an — the agreement number, drawn from a small

circular sequence number space, for subsequent use
by the receiver of the message in the dan field.

— dan — the discarded agreement number.

The ‘discarded agreement number’ identifies the last
agreement digest processed by the prior to discarding
agreements that contradict or are not a subset of those
expressed by the digest. Specifically the transmitted
and received digest, an, and dan, together with the last
calculatedDigest identify the following conditions.

• txDigest != calculatedDigest
The forwarding carried out by the bridge (node) has not
yet been reduced to a pattern that is a subset of of that in
the topology identified by the calculatedDigest and
permitted by outstanding and held agreements.

• tx.dan == rx.an
The agreements currently held by the actor are those
required by (or a subset of those required by) txDigest
and the received message defined by rx.an. In other
words txDigest was calculated (and the agreements held
filtered by the corresponding topology) after the received
message with rx.an was received

• tx.dan == rx.an - 1
The link state calculation identified by txDigest was
completed, and conflicting received agreements
discarded, prior to receipt of the rxDigest identified by
rx.an. In other words the actor may be holding received
agreements that conflict with txDigest, though these will
be a subset of the union of those permitted by txDigest
and those permitted rxDisgest.

• tx.dan == rx.an - 2
The actor may be still holding received agreements that
conflict with txDigest since it has not recognized (or
completed processing for) any recent digest. If the actor
receives additional digests (with incerementing rx.an)
that do not match its calculatedDigest it will increment
tx.dan so it continues to lag tx.dan at rx.an - 2, thus
rotating the sequence number so that its partener can
send further agreement messages.

5. Misordering
<<Extend sequence numbering beyond the bare
minimum, discussion and definition of ‘modest
misordering’, impossibility of full misordering
protection in any circular sequence number space
protocol (why not mentioned elsewhere, e.g. for
TCP?).>>

6. To be done
A list of outstanding issues and remaining/known
work:
1) Special case ‘next hop is the destination’ and possibly

‘last hop was directly from the source’.
Revision 0.9 March 12th 2010 Mick Seaman 16

Link state agreement
A. Mathematical symbols
To write this note I had to spend some time finding out how to enter various symbols in Framemaker. This is by no
means as easy as it should be, and web searches turned up material that was partially correct at best1. As a memo to
myself, possibly useful to others, this Annex lists some of the symbols and how to enter them (in Framemaker 8/
Windows XP). Unless otherwise specified the Symbol font is used. In the following description ‘Shift+q” means
(for example) hold down the Shift key and type ‘q’ (the character ‘+’ is not actually typed). This notation follows
that used in Framemaker documentation. I have included Unicode (UTF-16) code points and character descriptions
in case the characters appear differently in some future version of Framemaker, or are rendered differently under
some circumstances (display, version of Acrobat, printer driver, printer, etc.).

… — Control+q Shift+i. Unicode 2026, character ‘ellipsis’.

← — Control+q Shift+b. Unicode 2190, ‘arrowleft’, ‘LEFTWARDS ARROW’.

→ — Control+q (. Unicode 2192, ‘arrowright’, ‘RIGHTWARDS ARROW’.

↔ — Control+q Shift+g. Unicode 2194, ‘arrowboth’, ‘LEFT RIGHT ARROW’.

∀ — Turn smart quotes off (Format > Document > Text Options), type a double quote �, use
Symbol font. Smart quotes can be turned back on. Unicode symbol 2200, ‘universal’,
‘FOR ALL’.

⇒ — Control+q Shift+w. Symbol font. Unicode 21D2, ‘arrowdblright’, IMPLIES.

∃ — $. Symbol font. Unicode 2203, ‘existential’, ‘THERE EXISTS’.

∅ — Control+q full-stop (period). Symbol font. Unicode 2205, ‘empty set’.

∈ — Esc ^ Shift+i. Symbol font. Unicode 2208, ‘element’, ‘ELEMENT OF’.

∉ — Esc % Shift+i. Symbol font. Unicode 2209, ‘notelement’, ‘NOT AN ELEMENT OF’.

∞ — Control+q 4. Symbol font. Unicode 221E, ‘infinity’.

∧ — Esc grave-accent Shift+u. Symbol font. Unicode 2227, ‘logicaland’.

∨ — Esc single-quote Shift+u. Symbol font. Unicode 2228, ‘logicalor’.

∩ — Esc comma Shift+c. Symbol font. Unicode 2229, ‘intersection’.

∪ — Esc grave-accent Shift+e. The grave-accent character is indistinguishable (in the Times
Roman font used in most of this note) from an opening single quote, but on the
keyboard is on the same key as ~. Symbol font. Symbol font. Unicode 222A, ‘union’.

∴ — \. Symbol font. Unicode 2234, ‘therefore’, ‘THEREFORE’.

≈ — Control+q Shift+h. Symbol. Unicode 2248, ‘approxequal’, ‘ALMOST EQUAL TO’.

≠ — Control+q 6. Unicode 2260, ‘notequal’, ‘NOT EQUAL TO’.

≡ — Control+q <. Unicode 2261, ‘equivalence’, ‘IDENTICAL TO’.

≤ — Control+q #. Unicode 2263, ‘lessequal’, ‘LESS THAN OR EQUAL TO’.

≥ — Control+q 8. Unicode 2264, ‘greaterequal’, ‘GREATER THAN OR EQUAL TO’.

⊂ — Esc grave-accent Shift+i. Unicode 2282, ‘propersubset’, ‘SUBSET OF’.

⊃ — Esc single-quote Shift+e. Unicode 2283, ‘propersuperset’, ‘SUPERSET OF’.

⊆ — Esc single-quote Shift+i. The single-quote ‘character is on the same key as “. Symbol
font. Unicode 2286, ‘reflexsubset’.

¬ — Control+q /. Symbol font. Unicode 2310, ‘logicalnot’.

1The most useful (though error ridden) reference I found was http://www.adobe.com/devnet/framemaker/pdfs/Character_Sets.pdf now archived in my Notes
folder. This describes Framemaker 7.0 character sets. The Framemaker 8 distribution includes file:///C:/Program%20Files/Adobe/FrameMaker8/Documents/
Character_Sets.pdf which has many additional errors. Other useful references are http://en.wikipedia.org/wiki/Unicode_Mathematical_Operators and http://
en.wikipedia.org/wiki/Table_of_mathematical_symbols.
Revision 0.9 March 12th 2010 Mick Seaman 17

Link state agreement
B. Alternative rules and formulations
There is a fair amount of fine detail, with accompanying choices and considerations, in the forwarding rules. It has
not always been obvious to me which choices should be made. In particular the initially ‘obvious’ rules proved to
be more constraining than necessary. This annex provides a place to record some of these choices and decisions, to
lessen the chance of revisiting them in the future, as well as recording other changes as an audit trail in case I have
made a mistake.

C. Distances, vectors etc.
While working on this note I noticed that there was a fair amount of scope for proliferation of various types of
distances and limits on distances: YY→ Z — the greatest value outstanding out of the distances that Y has
communicated for itself to Z — being one example. This annex helps me to keep track of these, principally so that
the examples used for the purpose of definition in 2 remain relevant, but also to spot possibly unnecessary variants.

YY — defined, used in eqn. and many (all) others
YY–Z — defined, used in eqn. a.1

Xi — defined by Yi, used throughout
Yi — defined, used throughout
Zi — defined by Yi, used throughout

Xi.X–Y — defined by Yi.Y–Z, used in eqn. b.1, eqn. 1b.1, eqn. 3b.1
Yi.Y–Z — defined, used in eqn. a.2
Zj.Y–Z — defined, used in eqn. 11b.1

YY← Z — defined, used in eqn. 4a.2
XY→ X — defined, used in eqn. 4a.2

YY→ Z — defined, used in eqn. 5
YY→ X — defined by YY→ Z, not currently used

XY← X — defined by ZY← Z, used in eqn. 5b.1
ZY← Z — defined, used in eqn. 9b, eqn. 10b, eqn. 12c
Revision 0.9 March 12th 2010 Mick Seaman 18

	Link state agreement
	1. Overview
	Figure 1— Connectivity restoration and continued forwarding after multiple failures

	2. Basic terminology and notation
	3. Loop-free forwarding conditions
	3.1 Destination-based unicast forwarding
	3.2 Destination-based unicast forwarding with split-horizon
	3.3 Multipath destination-based unicast forwarding
	3.4 Spanning tree forwarding
	3.5 Spanning tree forwarding with explicit priority vector signaling
	3.6 Multicast forwarding with source specific multicast addresses

	4. Protocol
	4.1 General terminology
	4.2 Messages and rules
	4.3 Forwarding rules
	4.4 Participant state
	4.5 Agreement messages

	5. Misordering
	6. To be done
	A. Mathematical symbols
	B. Alternative rules and formulations
	C. Distances, vectors etc.

