
Link state agreement
Link state agreement
Mick Seaman1

Earlier notes2 proposed an agreement protocol (documented in P802.1aq clause 133) that
ensures loop-free active topology(ies) without requiring that bridges cease forwarding
frames after every topology change. This note proves that the forwarding rules guarantee
loop-free link state operation for (a) simple shortest path destination-based unicast (b) hop-
by-hop multipath unicast (c) spanning tree (unicast with possible flooding, and multicast)
(d) multicast forwarding with source-specific multicast addresses. The analysis can be
extended to additional forwarding rules (for E-TREE, for example).

The agreement protocol was originally modelled on RSTP/MSTP’s Proposal/Agreement
mechanism4 with per tree explicit priority vector communication. This note generalizes the
analysis and facilitates use of an Agreement Digest to support large numbers of shortest
path trees5. It chooses forwarding rules that allow a common approach to details for SPBM
and SPBV, and for explicit priority vectors (for the CIST) and the agreement digest (for all
other trees) — minimizing the record keeping required for a full set of rules.

Appendix A summarizes significant changes from the prior version(s).

1. Overview

A goal of this note is to increase the rigour used in the
loop-free arguments, and to provide tools for their
extension and refinement. The arguments developed
are thus more complex than needed just to prove the
principal results. Mathematical notation is used (2) in
an effort to be concise and exact, though the argument
is spelled out in plain English6.

Agreement protocol exchanges occur between link
state neighbours7, who use the agreements sent and
received to ensure that a network’s active topology at
any instant is loop-free—even if delays in information
propagation and processing mean that network nodes
have arbitrarily different ideas of the physical
topology as it changes.

The agreements and agreement protocols considered
are restricted in two ways. First, the information
extracted from a participating node’s link state
database should always be that for the currently
calculated topology, and not extend beyond that for the
node and its immediate neighbours on each port. Any

additional record of past topologies is to be at worst
proportional to the number of immediate neighbours.
This restriction limits the ways in which we examine
the topology—the agreement algorithms themselves
cannot be allowed to become a significant contributor
to the delays that necessitate their use. Second, the
agreements have to be compact—easily carried by a
simple protocol within a single frame, even in the
largest networks we aim to support—again to limit the
associated complexity and delay with agreements.
This second restriction points to the use of a summary
(digest) for all but a few destinations or trees, with an
agreement convention that uses the link state database
identified by a given digest value8.

The agreements considered, whether explicit or digest
based, use comparisons between per tree (per
destination or source) priority vectors9 for a bridge
and each of its neighbours.

A number of different forwarding rules are defined
(3.1– 3.5) with the choice of rule for any particular

1With thanks to Nigel Bragg and Panos for comment and encouragement.
2Link state bridging, 24th March 2008. Link state bridging part 2, July 12th 2008.
3And in Agreement Protocol, September 7th 2010.
4Those familiar with IP fast reroute will also find some parallels or similarities here, though the objectives are somewhat different and the development of the
agreement protocol has proceeded independently. I have not had the time to revisit IP FRR and translate terminology or add specific references.
5Distance vector and link state pose different challenges. In the former distance information flows down the tree, so a child never ‘jumps above’ its parent and
agreements only have to be checked when new connectivity is made. One of link states’ key advantages would be negated by requiring agreement information
to propagate along a tree, even if that were possible. Connectivity has to be broken whenever existing agreements in place are insufficient to justify it.
6I have read too many published papers in which a perfectly simple argument is dressed up in mathematics, apparently to add ‘weight’ or merit and to establish
that the author belongs to the same club as the reviewers (a club excluding most implementers). Translating into English is often tedious (virtus dormitiva).
7The link state neighbours of immediate interest are bridges attached to the same LAN, but the technique could obviously be applied to routing at any level.
8In principle a very small amount of additional information, just a few bits, could also be carried per destination/tree/network node. I have not yet seriously
studied the potential benefit/opportunity, as the digest alone appears to yield satisfactory results.
9A priority vector is equivalent to the routing concept of distance, generalized to allow for (a) the construction of a tree whose root (to or from which distance
is measured) can change; (b) multiple regions, within which any distance is less significant than distance between regions. A priority vector with components
{Root Identifier, Root Path Cost} is equivalent to the distance from the best possible Root with priority vector {0, 0}.
Revision 2.0 September 6th 2010 Mick Seaman 1

http://www.ieee802.org/1/files/public/docs2008/aq-seaman-link-state-bridging-part2-0708.pdf
http://www.ieee802.org/1/files/public/docs2008/aq-seaman-link-state-bridging-0508.pdf
http://www.ieee802.org/1/files/public/docs2010/aq-seaman-agreement-protocol-0910-v2.pdf

Link state agreement
frame depending on the frame’s VID and whether that
frame is multicast or unicast. VID based rule selection
allows SPBV, SPBM, and other forwarding methods
(e.g. PBB-TE, E-TREE) to coexist. To minimize total
state, each rule is described as specifying a tree,
though that may confuse readers who focus on just one
rule: for shortest path unicast forwarding the tree is
rooted at the destination; for shortest path multicast
the tree is source rooted; and in general spanning tree
forwarding the root can be at any node, with frames
travelling both up and down the tree.

The chosen forwarding rules (and supporting
agreement conventions) focus on maintaining
connectivity when links or LANs fail, rather than (for
example) the earliest possible use of links that are
added to the network. If a node’s distance for a path1

to the root (a bridge’s priority vector) decreases (gets
better) that node has to either (a) delay sending
agreements with the new distance or (b) stop
forwarding frames on that path, until (c) the agreement
messages from the node’s neighbours signal their
awareness of the new distance. On the other hand if a
node’s distance gets worse, the node can begin or
continue forwarding from (and/or to, as specified by
the particular rule) any given neighbour—up to the
point where that neighbour is forwarding to the node
in the belief that the node is closer to the root but that
is no longer guaranteed. Figure 1 shows a fragment of
a network using spanning tree forwarding (bridges A,
B, C, and D, connected by point-to-point LANs) to
illustrate this ‘failure friendly’ approach.

In Figure 1 the relative distance of bridges from the
root is indicated by their height on the page. The initial
network topology, for which each bridge has
transmitted and received agreements, is on the left (a).
The path from D to the root lies through C and then A.
If the link C-A were to fail (b), C can start forwarding
to B, provided C is still above D’s minimal agreed
distance for forwarding through C. An additional
failure in the network might increase B’s distance (c)
but provided B remains above (closer to the root than)
C’s minimal forwarding distance as shown in (b), B
can continue to forward frames. Note that this distance
can be greater than C’s previous best distance to the
root through A (in (a)).

So forwarding can be maintained, even in the face of
(some) multiple failures which cause the network
nodes to have temporarily different views of the
topology. Eventually their views will converge, their
agreement digests will become intelligible to one
another once more, and fresh agreements will be made
(and superseded agreements discarded). However it
has to be said that some network failures will result in
a loss of connectivity that cannot be repaired until
fresh agreements have been exchanged.

In simple shortest path forwarding to known unicast
destinations (for point-to-point LANs, as used by
SPBM, 3.1) each frame is forwarded (or not) through
the one port that provides the shortest path to the
destination, no matter what port the frame is received
on. Each bridge ensures that it has an agreement from
every neighbour, that that neighbour is either closer to
the destination (and so will not forward a frame for
that destination to the bridge) or is further away and
will not forward the frame unless the minimum
forwarding distance criteria is met. To put this another
way, each agreement comprises two elements:

a) A statement as to the relative distance of the two
bridges—is the neighbour ‘above’ (closer to the
root) or ‘below’ (further away).

b) The minimum distance, “I guarantee to remain
below”, at which the lower bridge will forward
frames to the upper.

Item (a) is equivalent to the neighbour’s Port Role (as
defined in 802.1Q2) with each bridge’s Root Port

1Each path considered comprises the port/next hop node to/from which forwarding is in question and the best path from that first hop node on.

Figure 1—Connectivity restoration and continued
forwarding after multiple failures

A

B

C

D

A

B

C

D

(a)

B’s B-C
forwarding

range

C’s
range

A

B

C

D

(b) (c)
Revision 2.0 September 6th 2010 Mick Seaman 2

Link state agreement
providing connectivity towards the root, while
Designated Ports provide connectivity toward the
leaves of the tree. The role names ‘Up Port’ (towards
the root) and ‘Down Port’ can be also used to avoid
accidentally invoking the additional characteristics
associated with spanning tree port role names (bi-
directional forwarding, applying port state on egress
and ingress for every port). The ‘Up Port’ role can be
considered to cover both Root and Alternate Ports.

Since an agreement protocol participant may not
receive all frames sent by his neighbour, and not all
values of the agreement digest may be intelligible to a
bridge that has chanced to process a succession of
changes in a different order or in different
combinations, it is the greatest value of the minimum
distances agreed that is of interest. A bridge that
transmits an agreement digest (for a given topology)
through an ‘Up Port’ is making a promise not to
forward a frame through that port unless its distance is
greater than or equal to the sum of its neighbour’s
distance (in that topology) plus the link cost1. If the
neighbour uses that agreement in a forwarding rule he
is promising not to forward the frame unless his
distance to the root is less than that sum. Consistent
application of the forwarding rule in successive
bridges ensures that any forwarded frame gets
successively closer to the destination.

This simple rule does not require additional logic to
ensure that a frame is not forwarded through the same
port on which it was received, and in fact the frame
can be forwarded through any ‘Up Port’ with an
agreed ‘Down Port’ neighbour (subject to the
forwarding bridge abiding by the terms of any
agreement transmitted). Loop-free hop-by-hop multi-
path forwarding (3.2) is completely covered.

Spanning tree forwarding uses both ingress and egress
controls. Frames are relayed from a bridge’s Root
Port2 (provided that port’s outstanding agreements
allow it to forward at its current distance from the
root) to Designated Ports (that have received
agreements that commit their neighbours to forward
only if they are at a greater distance), while frames
received on an agreed Designated Port can be
transmitted on the Root Port and other agreed
Designated Ports. Thus an upward going frame
(proceeding towards the Root, through bridges with
successively better priority vectors3) can be turned

into a downward going frame. However this change of
direction can happen at most once: since each bridge
has just one Root Port a downward going frame
(heading away from the Root) cannot be turned into an
upward going frame. Further, since each LAN has a
single agreed Designated Port (and Designated
Bridge), the turned around frame will not revisit any
LAN. The proof that the spanning tree forwarding
rules guarantee loop-free operation thus comprises two
parts: (a) frames (proceeding successively from the
Root Port of one bridge to the next Designated Port of
the next) pass through bridges that are successively
closer to the root (successively further away for a
frame proceeding in the other direction) so those ports
cannot be arranged in a loop; and (b) there is at most
one forwarding Designated Port (and thus one
Designated Bridge with a single Root Port) for each
LAN in the network.

The forwarding rules specify which ports can relay
frames given the agreements held (received, and not
explicitly discarded by the protocol) and outstanding
(transmitted, without receipt of a subsequent discard).
Equally they determine what agreements can be sent,
and which discarded, given the forwarding ports.
Since the agreements for different trees are associated
with the same digest, and cannot be separated one
from another except by filtering through the current
state of the link state database, there is little scope for
strategically delaying agreement transmission once a
new topology (and its corresponding digest) has been
calculated—the forwarding pattern is reduced as
required and fresh agreements sent as soon as possible.

An important aspect of the agreement algorithm and
protocol is that a number of messages can be ‘in flight’
between the participants, even if that only means
sitting in a transmit or receive queue. Agreements are
not necessarily delivered faster than new link state
topologies are computed. One bridge can never be sure
of the state of another except as circumscribed by
agreements received (and not yet discarded) and by
those sent and still outstanding. The fact that a port
attached to a point-to-point link is an agreed
Designated Port does not directly mean that the
neigbouring bridge’s port is a Root or Alternate Port,
but that it is not also an agreed Designated Port and is
thus only forwarding if it is a Root Port (for simple
spanning tree, for example). The protocol’s use of

2In exactly the same way as originally defined for IEEE Std 802.1D.
1EISS-SPB includes mechanisms to ensure that link costs are symmetric.
2The port currently providing the shortest path to the root.
3As is conventional in computer science and graph theory, and despite the confusion this causes (unicast ‘upstream’ being ‘downward’, and ‘downstream’
being ‘upward’) trees are considered to have their roots at the top. with trunk and branches proceeding downward. Equivalently better priority vectors
(numerically lesser) are depicted higher on a page, with worse priority vectors (numerically greater) below.
Revision 2.0 September 6th 2010 Mick Seaman 3

Link state agreement
sequence numbers, and the precise conditions under
which new agreements are sent, old agreements
discarded, and protocol state variables updated are
detailed in a companion note, Agreement Protocol1.
While absolute protection against misordering of
agreement protocol messages is difficult, moderate
misordering is handled. That note maps the
mathematical description of the agreements and
forwarding rules of most interest to SPB (4.2) to the
real state variables and conditions used in the
P802.1aq state machine description.

Since the complete absence of agreement means that
loop-free forwarding is impossible, an agreement
protocol participant never simply discards all past
agreements. However this restriction does not require
an excessive number of message exchanges when
fresh agreements are required for forwarding.
Consider the case where two participants A and B, say

(attached to the same LAN, and agreed on a stable
topology) process a new link state database change.
Assume A completes the link state calculation first,
reduces its forwarding to the intersection of that
permitted by past agreements and the new topology,
and sends the new agreement digest to B, implicitly
discarding any prior agreements that conflict with that
digest. At this point B has not yet finished its
calculation, but when it does it will recognize and use
the fresh agreements from A, put all the forwarding for
the new topology in place, discard all previous
received agreements and transmit to A. On receipt of
this message A can also put all the forwarding for the
new topology in place, and discard all agreements it
has from prior topologies. To achieve full forwarding
on the new topology required A and B to each transmit
(and receive) just one message. The same is true if
they complete their link state calculations at much the
same time and the messages ‘cross’.

1Check the IEEE 802.1 docs directory for any latter revision.
Revision 2.0 September 6th 2010 Mick Seaman 4

http://www.ieee802.org/1/files/public/docs2010/aq-seaman-agreement-protocol-0910-v2.pdf

Link state agreement
2. Basic terminology and notation

The following terminology and notation is used to facilitate discussion:

{A, B,... H} — bridges in a network.

{W, X,Y, Z} — free variables identifying any neighbouring bridges W, X, Y, Z ∈ {A, B,... H}.

nY — the immediate neighbours of any given bridge Y.

pY–Z — the port of bridge Y that connects to bridge Z ∈ nY.

cost — a priority vector (distance) increment.

distance — a priority vector (distance from the root of a tree).

up, upward — connectivity, potential connectivity, or forwarding a frame, towards the root of a tree.

down, downward— connectivity, potential connectivity, or forwarding a frame away from the root of a tree.

downstream — used only in the context of unicast forwarding without learning. Denotes actual or
potential connectivity or forwarding towards the destination. An inevitably confusing
term as the known unicast communication is modelled as forwarding on a tree rooted at
the destination: ‘downstream’ and ‘up’ (or ‘upward’) refer to the same direction.

upstream — used only for known (not learned) unicast forwarding, ‘upstream’ and ‘down’ (or
‘downward’) refer to the same direction (see ‘downstream’).

cY–Z — the cost (priority vector increment) associated with pY–Z. Note that mechanisms are
used to ensure that costs are symmetric: cY–Z = cZ–Y.

ti — a network topology (and all the information that can be extracted from that topology),
ti ∈ {any possible active topology}.

gi — the agreement digest for ti. With acceptable probability, ∀ ti ≠ tj (gi ≠ gj) in any given
network, so gi identifies ti when received (or subsequently processed) by a bridge
whose link state database reflects ti, and thus can convey all agreements possible for
any topology based convention, bridge and port identifiers, costs, distances on shortest
or constrained paths etc.

ai — an agreement that can be expressed by reference to ti.

aY→ Z — the set of agreements transmitted (advertised) by Y to Z ∈ nY, and considered
outstanding by Y.

aY← Z — the set of agreements received from Z, and held (i.e. not discarded) by Y, that matched
an agreement calculated by Y (either on receipt or subsequently). Note aY← Z ⊆ aY→ Z.

Yi — the shortest path distance for bridge Y in topology i, similarly Xi, Zi for bridges X, Z.

Yi.Y– Z — the distance for bridge Y (in ti) for the path constrained to visit Z as the first hop that is
the shortest path thereafter: Yi.Y–Z = cY–Z + Zi. Similarly Xi.X– Y.

Zi.Y– Z — the distance for bridge Z (in ti) for the shortest path constrained to visit Y as the first
hop: Zi.Y–Z = cY–Z + Yi. Similarly Xi.X– Y.

YY — the shortest path distance for bridge Y in the latest topology computed by bridge Y.

Zi < Yi — ‘Zi less than Yi’, meaning that Z is closer to the root than Y in ti, also (since trees are
conventionally shown with their roots uppermost, with better priority values higher on
the page) ‘Zi is above Yi’, ‘Yi is below Zi’. Entirely equivalent to Yi > Zi .

YY– Z — the distance for bridge Y (for the latest topology computed by Y) for the path that is
constrained to visit Z as the first hop and is the shortest path thereafter.

XY→ X = the least outstanding distance advertised by Y for paths from X constrained to Y as the
first hop with Y < X, infinite if there is no such outstanding agreement. Similarly for
YZ→ Y (distance for Y, constrained to Z as first hop and advertised by Z).See eqn. 4b.1.
Revision 2.0 September 6th 2010 Mick Seaman 5

Link state agreement
YY←Z = the least distance for Y, for paths constrained to Z as the first hop, in agreements
received from Z with (Z < Y), infinite if there is no such received agreement.
See eqn. 4a.2. Note (aY← Z ⊆ aZ→ Y) ⇒ (YZ→ Y ≤ YY← Z)

Y'Y→ Z = the greatest outstanding distance advertised by Y for paths from Y constrained to Z as
the first hop with Z < Y, infinite if any of the outstanding agreements have (Y < Z).
See eqn. 5a.2. Usage: (Y'Y→Z ≤YY) ≡ (∀ai ∈ aY→ Z ((Zi < Yi) ∧ (Yi.Y–Z ≤YY)))

X'Y←X = the greatest distance for X (for paths constrained to Y as the first hop) in agreements
received from X with (Y < X), infinite if any of the agreements received from X has
(X < Y), zero if no agreement has been received.
See eqn. 5b.1. Usage: (YY < X'Y← X) ≡ (∃ ai ∈ aY← X : ((Xi < Yi) ∨ (YY < Xi.X–Y)))
Note (aY← Z ⊆ aZ→ Y) ⇒ (Y'Z→ Y ≥ Y'Y← Z)

YY→ Z = the greatest outstanding distance advertised by Y for paths from Y constrained to Z as
the first hop with Z < Y. Zero if no such agreement is outstanding. Similarly YY→ X.
See eqn. 6a.2, eqn. 9, eqn. 10, eqn. 13a.
Usage: (YY→ Z ≤YY) ≡ (∀aj ∈ aY→ Z : (Zj < Yj)(Yj.Y–Z ≤YY))

ZY←Z = the greatest distance for Z (for paths constrained to Y as the first hop) in agreements
received from Z with (Y < Z), zero if no such agreement has been received. Similarly
XY←X. See eqn. 6b.1, eqn. 9b, eqn. 10b, eqn. 13b.
Usage: (YY < ZY←Z) ≡ (∃ aj ∈ aY← Z : ((Yj < Zj) ∧ (YY < Zj.Z-Y)))
Note (aY← Z ⊆ aZ→ Y) ⇒ (YZ→ Y ≥ YY← Z)

βY→ Z = a boolean, True iff all Y’s outstanding agreements have (Z<Y).∀ai ∈ aY→ Z (Zi < Yi)

αY←Z = a boolean, True if any of Y’s received agreements have (Z<Y). ∃ ai ∈ aY← Z : (Zi < Yi)
Note (aY← Z ⊆ aZ→ Y) ⇒ (αY←Z ⇒ ¬ βZ→ Y)

A single port on bridge Y (say) can provided connectivity to more than one neighbouring bridge. The following
notation covers shared media, without complicating the presentation of the simpler point-to-point only case to the
extent that it would be desirable to present the latter separately (increasing the chance of mistakes):

{X, Y, Z} — sets of bridges X, Y, Z ⊂ {A, B,... H} attached to the same LAN.

pY–Z — a port of bridge Y that connects to bridge Z ∈ Z, Z ∈ nY. Z ∈ Z ⇒ pY–Z ≡ pY– Z

aY→ Z — the set of Agreements transmitted by bridge Y to each bridge Z ∈ Z, Z ∈ nY, (Y ∉ Z)
and considered outstanding by Y.

aY← Z — the set of Agreements received from all bridges in Z, and held by Y.

Conventional logic and set notation is used with the above.For those for whom this is a distant memory, and to save
myself embarrassment lest I have stretched this in unapproved ways, here is a quick refresher:

∈ — is a member of.
∧ — logical and.
∨ — logical or.
¬ — logical not (higher precedence than ∧ and ∨).
∀ — for all, as in ∀ x(p(x)) — for all x, proposition or condition p(x) is true.
: — such that, as in ∀x:(q(x))(p(x)) — for all x such that q(x) is true, p(x) is true.
∃ — there exists, as in ∃ x:(p(x)) — there exists an x such that p(x) is true.
≡ — is equivalent to, for example (x < y) ≡ (y > x).
⇒ — implies, for example (x < 2) ∧ (y > 3) ⇒ (y > x).

There are, of course, many ways of saying the same thing, and I have often picked what seems (to me) to be the
clearest exposition in a local context without attempting overall consistency or minimal use of variants. In
particular note that ∀x:(q(x))(p(x)) ≡ ∀x(¬q(x) ∨ (p(x)) — saying ‘for all x such that q(x), p(x) is true’ is
equivalent to saying ‘for all x, either q(x) is false or p(x) is true’.
Revision 2.0 September 6th 2010 Mick Seaman 6

Link state agreement
3. Loop-free forwarding conditions

This section (3) considers a number of sets of forwarding rules (3.1– 3.5).

3.1 Destination-based unicast forwarding

In simple destination-based unicast forwarding, each frame destined for a destination D (say) is forwarded through
the one port that provides the shortest path to D, no matter what port the frame is received on. A bridge’s
forwarding logic usually discards a received frame rather than forwarding it back through the receiving port, but
this forwarding rule does not rely on that ‘split-horizon’ check’ (see also 3.2). The only forwarding plane control
available to each bridge is to remove the entry for D from its forwarding database, thus causing the frame to be
dropped. For the tree rooted at D:

1 spUnicastY– Z ≡ (YY–Z = YY) ∧ (1a.1)
(∃ ai ∈ aY← Z : ((Zi < Yi) ∧ (Yi.Y–Z ≤YY))) (1a.2)

∧ (∀X ∈nY (1b)

(∀ai ∈ aY→ X : (Yi < Xi) (YY < Xi.X–Y))) (1b.1)

Equation 1 considers forwarding of any given data frame through port pY–Z of bridge Y. spUnicastY–Z is true iff the
frame can be forwarded, and depends on the agreements received and sent on pY–Z and sent on Y’s other ports. It
can be summarized as allowing Y to forward frames to Z only if: (a.1) Y’s shortest path to the destination lies
through Z; and (a.2) an agreement has been received from the ‘up’ port neighbour Z, agreeing that the port provides
upward connectivity, and Y’s distance is now no better than it was for connectivity through Z in that agreement
(thus guaranteeing that Z, if still forwarding, remains above Y); and (b, b.1) none of the agreements that Y may
have sent to any neighbour (of those indicating that Y provides a possible ‘upward’ path) claim that Y will remain
closer to the root than it is currently (the claimed distance is less than the best that the neighbour could have and
satisfy its own (a.2) condition to forward frames to Y).

The benefit of using the agreement protocol and the rule specified by eqn. 1 for known unicast destination
forwarding can be summarized as follows. Each bridge can forward frames while ensuring that there are no loops,
even after a topology change, provided that each bridge is not (a) closer to the destination than required for the path
through its downstream neighbour (using that downstream neighbour’s advertised distance) to be the shortest path
(b) further from the destination than any of its upstream neighbours that can take advantage of its own advertised
distance to forward frames to it. Equation 1 assumes (in a.1) that there is a unique shortest path (through a single
port pY–Z) to any destination, so each frame is forwarded through only one port, and that is the same port.

More formally, for bridges interconnected by point-to-point links there are two ways in which loops can arise.
First, bridges might be connected in a circle with each bridge’s ‘up’ port (satisfying constraints (a.1) and (a.2) in
eqn. 1 as well as (b.1)), connected to another bridge’s port that merely satisfies (b.1). Second, two connected
bridges might each transmit a given received frame back to the other, either on the receiving port or on another port
connecting the two bridges. This second case can thus be considered a sub-case of the first—the smallest possible
loop.

Consider bridges D, C, B, A, each believing itself to be forwarding a frame (successively) on a path to a given
destination. Instantiating eqn. 1 for the relevant two ports on each of the bridges B and C we have:

2 spUnicastB– A ≡ (BB–A = BB) ∧ (2a) from (1a.1)

(∃ ai ∈ aB← A : ((Ai < Bi) ∧ (Bi.B–A ≤BB)) ∧ (2b) from (1a.2)

(∀ai ∈ aB→ A : (Bi < Ai) (BB < Ai.A–B)) ∧ (2c) from (1b.1)

(∀ai ∈ aB→ C : (Bi < Ci) (BB < Ci.C–B)) (2d) from (1b.1)
Revision 2.0 September 6th 2010 Mick Seaman 7

Link state agreement
spUnicastC– B ≡ (CC–B = CC) ∧ (2e) from (1a.1)

(∃ ai ∈ aC← B : ((B i < C i) ∧ (Ci.C–B ≤CC)) ∧ (2f) from (1a.2)

(∀ai ∈ aC→ B : (C i < B i) (CC < Bi.C–B)) ∧ (2g) from (1b.1)

(∀ai ∈ aC→ D : (C i < D i) (CC < Di.D–C)) (2h) from (1b.1)

Since aC←B ⊆ aB→C:

spUnicastC– B ∧ spUnicastB– A

⇒ (∀ai ∈ aB→ C : (B i < C i) (BB < Ci.C–B) from (B–A:2d), (1b.1)

∧
(∃ ai ∈ aC← B : ((B i < C i) ∧ (Ci.C–B ≤CC) from (C–B:2f), (1a.2)

⇒ BB < CC

So B and C will only forward a frame if BB < CC ; and C, B, and A will only forward the frame if AA < BB < CC.
This rules out any possibility of a loop through A and C, or A and any subsequent bridge on the path being one and
the same, or A and C being one and the same.

Clearly eqn. 1 has a closely related alternative (eqn. 3): each bridge is (a) not closer to the destination than it has
advertised to its downstream neighbour as the minimum distance from which it would forward to that neighbour
(b) not further from the destination than those distances as advertised to it by each of its upstream neighbours.

3 spUnicastY– Z ≡ (YY–Z = YY) ∧ (3a.1)
(∀ai ∈ aY→ Z ((Zi < Yi) ∧ (Yi.Y–Z ≤YY))) (3a.2)

∧ (∀X ∈nY (3b)

(∃ ai ∈ aY← X : ((Xi < Yi) ∨ (YY < Xi.X–Y))) (3b.1)

Although the eqn. 1 rule may appear to require less agreement, I believe there is no practical performance
difference: messages to discard prior agreements are needed when the change in the distance would be significant
enough to require fresh agreements in eqn. 3.

Equations 1 and 3 leave open the possibility of each bridge keeping a separate record of every agreement sent or
received, so that each can be individually discarded. Practical agreement protocols are not so selective: it is only
necessary to remember the most constraining agreement sent and the most permissive one received. With this
change eqn. 1 can be rewritten as eqn. 4, (below):

4 spUnicastY– Z ≡ (YY–Z = YY) ∧ (4a.1)

(YY←Z ≤YY) ∧ (4a.2)

(∀ X ∈nY (4b)

(YY < XY→ X)) (4b.1)

and eqn. 3 can be rewritten as eqn. 5:

5 spUnicastY– Z ≡ (YY–Z = YY) ∧ (5a.1)

(Y'Y→Z ≤YY) ∧ (5a.2)

(∀ X ∈nY (5b)

(YY < X'Y← X)) (5b.1)

Note that (4b.1) does not say that Y has to be closer to the destination than any of its neighbours, merely that it has
to be closer than any of its neighbours to which Y has advertised itself as a possible next hop to the destination.
Revision 2.0 September 6th 2010 Mick Seaman 8

Link state agreement
Similarly (5b.1) requires Y to be closer to the destination than any neighbour that has told Y that it considers Y a
possible next hop to the destination can be when that neighbour’s distance allows it to forward frames to Y.

It is easy to see that equations 1 and 4 guarantee loop-free forwarding. Consider bridges C, B, A lying
(successively) on a path to a destination and recall that (aC←B ⊆ aB→C) ⇒ (CB→C ≤ CC←B). C, and subsequently
B, will only forward a frame if:

spUnicastC– B ∧ spUnicastB– A

⇒ (BB < CB→ C) (B–A:4b.1)

∧
(CC←B ≤CC) (C–B:4a.2)

⇒ BB < CC

And C, B, and A will only forward the frame if AA < BB < CC ruling out any possibility of a loop through A and
C, or A and any subsequent bridge on the path being one and the same.

Similarly using eqn. 5 and (aC←B ⊆ aB→C) ⇒ (CB←C ≤ CC→B):

spUnicastC– B ∧ spUnicastB– A

⇒ (BB < C'B←C) (B–A:5b.1)

∧
(C'C→B ≤CC) (C–B:5a.2)

⇒ BB < CC

Equation 5 can be rewritten (eqn. 6) to make use of YY→ Z and ZY←Z as do other forwarding rules (see below) at
the cost of adding a flag for outstanding agreement and one for received agreements:

6 spUnicastY– Z ≡ (YY–Z = YY) ∧ (6a.1)

((YY→Z ≤YY) ∧ βY→ Z) ∧ (6a.2)

(∀ X ∈nY (6b)

((YY < XY← X) ∨ αY←Z)) (6b.1)

3.2 Multipath destination-based unicast forwarding

Equations 4 and 6 do not explicitly restrict forwarding to a single ‘up’ port, except in as much as the distance
metric is specified as providing a total ordering (to ensure that tie-breaking is always supported) so only one port
can meet the criterion (4a.1, 6a.1). Such a restriction would be unnecessary if the prevention of loops were the only
concern. Although any given frame should only be transmitted through a single ‘up’ port to avoid duplicate
delivery of frames, the choice of best port can be made on a frame by frame basis, as several ports could satisfy
(4a.2, 6a.2). The agreement protocol and rules of the previous section thus allow frames for different flows to be
distributed, per hop, on multiple paths to a single destination. The multiple paths can be “equal cost” or “near equal
cost” within the constraints of eqn. 4 and eqn. 6.
Revision 2.0 September 6th 2010 Mick Seaman 9

Link state agreement
3.3 Spanning tree forwarding

Equation 7 (below) specifies an stForwardingX–Y– Z forwarding rule that can be consider as defining both a truth
value for any pair of bridge Y’s ports and a set of port tuples for bridge Y. For example:

stForwardingX–Y–Z = True for any given X, Y, Z iff frames can be forwarded from pY–X to pY–Z.

[pY–X, pY–Z] ∈ stForwardingX–Y–Z iff frames can be forwarded from pY–X to pY–Z.

7 stForwardingX–Y–Z ≡ (X ≠ Z) ∧ (. (7a)

((∃ Z ∈ Z : ((YY–Z = YY) ∧ (7b.1)

(∀aj ∈ aY→ Z : (Zj < Yj) (Yj.Y–Z ≤YY)) ∧ (7b.2)

(∀ X ∈ X ((∃ aj ∈ aY← X : ((Yj < Xj) ∧ (YY < Xj.X-Y))) ∧ (7b.3i)

(∀ ai ∈ aY→ X Yi < Xi))) . . . (7b.3ii)

) ∨
((∃ X ∈ X : ((YY–X = YY) ∧ (7c.1)

(∀aj ∈ aY→ X : (Xj < Yj)(Yj.Y–X ≤YY)) ∧ (7c.2)

(∀ Z ∈Ζ ((∃ aj ∈ aY← Z : ((Yj < Zj) ∧ (YY < Zj.Z-Y))) ∧ (7c.3i)

(∀ ai ∈ aY→ Z Yi < Zi))) . . . (7c.3ii)

) ∨
((∀ X ∈ X ((∃ aj ∈ aY← X : ((Yj < Xj) ∧ (YY < Xj.X-Y))) ∧ (7d.1i)

(∀ ai ∈ aY→ X Yi < Xi))) ∧ . . . (7d.1ii)

 (∀ Z ∈ Z ((∃ aj ∈ aY← Z : ((Yj < Zj) ∧ (YY < Zj.Z-Y))) ∧ (7d.2i)

(∀ ai ∈ aY→ Z Yi < Zi))) . . . (7d.2ii)

))

Equation 7 has four principal components: (a) requires pY–X and port pY–Z to be attached to different LANs, a
condition that applies to alternatives (b), (c), and (d) following; (b) permits forwarding from a Designated Port to
the bridge’s Root Port; (c) forwarding from the Root Port to a Designated Port; and (d) forwarding between two
Designated Ports. Criteria (b.1) and (c.1) require that there be a single Root Port, at least for any given frame (see
also 3.2 and footnote1), while (b.2) and (c.2) require that any agreement sent by that Root Port that could be used
by a Designated Port (in c.3i, b.3i) not overstate the distance that Y requires to become forwarding through the
Root Port. In mathematical English (b.2) and (c.2) can be rendered: “for all agreements sent such that Y is not
claiming to be a Designated Port, Y’s quoted distance for use of that port as the shortest path is less than Y’s current
distance”. Criteria (b.3i), (c.3i), (d.1i), (d.2i) require that Y hold suitable agreements for each Designated Port that
is forwarding: “for all (other) bridges attached to the LAN there exists an agreement such that that bridge
recognizes that I have a better right to be the Designated Port for the LAN and that bridge is quoting a distance at
which it can forward frames to the LAN that is greater than my current distance”. Criteria (b.3ii), (c.3ii), (d.2ii)
require that Y has no outstanding agreement that another bridge could interpret as granting that bridge a better right
to be the Designated Port for the LAN.

While stForwardingX–Y– Z specifies forwarding for all pairs of Y’s ports (pY–X to pY–Z) it is clearly symmetric—
stForwardingX–Y– Z ⇒ stForwardingZ–Y– X—so the rule can be rewritten (eqn. 8) to express the forwarding
condition (both ingress and egress permitted) for any port pY–Z, provided that it is understood that a frame is never
forwarded back through the receiving port. Port pY–Z is clearly either a Root Port (8a) meeting the criteria of (7b.1
and 7b.2) or a Designated Port (8b) meeting the criteria common to (7b.3), (7c.3), (7d.1), and (7d.2).

1Spanning Vines, 5th March 2002, discusses the use of the Alternate Ports of a single tree to provide multi-tree connectivity on a frame-by-frame basis.
Revision 2.0 September 6th 2010 Mick Seaman 10

http://www.ieee802.org/1/files/public/docs2002/Spanning%20Vines005.pdf

Link state agreement
8 stForwardingY–Z ≡
(∃ Z ∈ Z : ((YY–Z = YY) (8a.1)

∧ (∀aj ∈ aY→ Z : (Zj < Yj)(Yj.Y–Z ≤YY)) ∨ (8a.2)

(∀ Z ∈Ζ ((∃ aj ∈ aY← Z : ((Yj < Zj) ∧ (YY < Zj.Z-Y))) (8b.1)

∧ (∀ ai ∈ aY→ Z : (Zi < Yi)(Yj.Y–Z ≤YY))) (8b.2)

Since practical agreement protocols do not select agreements that are to be discarded from arbitrary positions in the
protocol history, but only need to remember the most constraining agreement sent and the most permissive
agreement received, eqn. 8 can be simplified to yield eqn. 9 just as eqn. 4 was derived from eqn. 1.

9 stForwardingY–Z ≡ (∃ Z ∈ Z : ((YY–Z = YY) ∧ (YY→ Z ≤YY))) ∨ (9a)

(∀ Z ∈ Z ((YY < ZY←Z) ∧ (YY→Z ≤YY))) (9b)

While stForwardingX–Y– Z and stForwardingY– Z naturally cover both shared media and point-to-point
connectivity, a slight simplification is possible in the latter case (eqn. 10):

10stForwardingY–Z ≡ ((YY–Z = YY) ∧ (YY→ Z ≤YY)) ∨ (10a)

((YY < ZY←Z) ∧ (YY→Z ≤YY))) (10b)

If bridge B (say) is forwarding frames to and from a LAN through a Designated Port, while bridge C is forwarding
to and from the same LAN using its Designated Port, and using (aC←B ⊆ aB→C) ⇒ (CB←C ≤ CC→B) we have:

((BB < CB←C) ∧(BB→C ≤BB))) ∧ (B–C:10b)

((CC–B = CC) ∧ (CC→ B ≤CC)) (C–B:10a)

⇒ BB < CB←C ≤CC→ B ≤CC

⇒ BB < CC

so, just as with eqn. 5, there can be no loop of bridges connected Root Port to Designated Port to Root Port etc. To
prove that loops do not occur we also need to show that there can be at most one forwarding Designated Port for
any given LAN. If B and C were both forwarding Designated Ports we would have:

((BB < CB←C) ∧(BB→C ≤BB))) ∧ (B–C:10b)

((CC < BC←B) ∧(CC→B ≤CC))) (C–B:10b)

⇒ BB < CB←C ≤CC→ B ≤CC ⇒ BB < CC

and

CC < BC←B ≤BB→ C ≤BB ⇒ CC < BB

a contradiction, so there can be at most one forwarding Designated Port per LAN.

The question naturally arises as to whether there are complementary alternate versions of these rules using Y rather
than Y, in the same way that eqn. 4 is an alternative to eqn. 5, with positive agreements being received on Root
Ports (‘up’ ports) while Designated Ports (‘down’ ports) are only constrained by the agreements they send rather
than those they received. However, unlike the known unicast destination case, frames are transmitted through
‘down’ ports as well as through ‘up’ ports and it is essential that there be at most one forwarding Designated Port
per LAN. If we wish to minimize the recorded state by using the same limit (Y or Y) for both spanning tree and
known unicast forwarding I believe we have to use rules for Y (and their derivatives).
Revision 2.0 September 6th 2010 Mick Seaman 11

Link state agreement
3.4 Spanning tree forwarding with explicit priority vector signaling

Among its other uses, the CIST (strictly speaking the IST) is intended to provide remedial connectivity within
MST and SPT Regions. While link state procedures can often compute the IST more rapidly than is possible with
distance vector, the CIST’s dependencies on anything that might possibly go wrong (continuous churn in some part
of the network, for example) or be misconfigured should be kept to a minimum. Since interoperability with SST
and MST bridges at the boundary of an SPT Region requires the use of RST/MST BPDUs, the agreements for the
CIST are carried as explicit priority vectors exactly as they are with RSTP/MSTP. Carrying CIST agreements in
this way has two consequences. First, the loop-free guarantee does not depend on the bridges connected to a LAN
agreeing on the port path cost of that LAN. Second, since the port path cost is not communicated in the BPDU, the
forwarding rules cannot depend on it either: a bridge cannot calculate the minimum distance at which its neighbour
may forward frames towards it but has to depend simply on the agreement information sent by that neighbour. In
short ZZ (as explicitly communicated in the agreement) is used in place of ZY←Z (as calculated from an agreement
digest) in the forwarding rules of eqn. 9 and eqn. 10.

This chance has no effect on the permitted connectivity when an agreement is sent on a Root Port, but does mean
that temporary discarding will more often occur (following some LAN failure) on Designated Ports that connect to
Alternate Ports. This unwanted effect can be avoided by changing the priority vector sent through Alternate Ports
so it actually reflects ZY←Z, i.e. Z’s own stated view of the distance at which it can become forwarding on the port
with first hop Y) rather than Z’s current distance. However the possible confusion arising from making such a
change in the standard specification makes it probably not worthwhile. A network that contains (some or all)
bridges that do send ZY←Z will work perfectly well since ZY←Z can never be less than (better than) ZZ.

3.5 Multicast forwarding with source specific multicast addresses

Shortest path multicast forwarding requires some identification of the source, and in SPBM this is provided by
using a source-specific multicast destination address. In networks of point-to-point LANs it is possible to use
egress filtering for such a destination address to provide loop-free multicast connectivity, without the need to check
the source address of the frame on ingress. Considering distances for the tree rooted at the source:

11ssMulticastY–Z ≡ (ZY = ZY–Z) ∧ (11a)

(∃ aj ∈ aY← Z : ((Zj = Zj.Y–Z) ∧ (YY < Zj.Y–Z))) ∧ (11b)

(∀X ∈ nY : (YY ≠ YY–X) (∀aj ∈ aY→X (Yj ≠ Yj.Y–X)))) (11c)

Equation 11 says that Y will forward the source specific multicast through any port pY– Z to bridge Z, provided
that: (a) Y believes that the shortest path from Z to the source lies through Y itself; and (b) Y holds at least one
agreement to that effect from Z; and (c) Y itself has such agreements (for the tree in question) outstanding at only
one of Y’s neighbours, which provides Y’s own next hop towards the source. In summary, Y ensures that it will not
forward more than one copy of a sourced multicast by removing all forwarding database entries permitting egress
for that multicast if Y has told more than one parent that that parent is Y’s shortest path to the source.

While it is easy to detect (and record) when condition (11c.1) first inhibits forwarding, restarting forwarding is not
so easy unless the strategy is to wait until all ports have synchronized (see protocol) with their neighbours.
Furthermore condition (11b) makes determining the neighbour’s Root Port an essential part of the loop prevention
process, while it might be more convenient not to require that the link state computation share that information, or
treat it as an optimization. Equation 12 uses source address ingress filtering to address both these issues, allowing
the multicast to be forwarded on some LANs only to be discarded by the neighboring bridge:

12ssMulticastX–Y–Z ≡ (YY–X = YY) ∧ . . . (12a.1)
(∀ai ∈ aY→ X :(Xi < Yi)(Yi.Y–X ≤YY)) ∧ . . . (12a.2)

(∃ aj ∈ aY← Z : ((Yj < Zj) ∧ (YY < Zj.Z–Y)) ∧ (12b)

(ZY = ZY–Z) (12c)
Revision 2.0 September 6th 2010 Mick Seaman 12

Link state agreement
Equation 12 specifies forwarding from pY–X through one or more ports pY–Z : (a.1) pY–X provides the shortest path
to the source (and is the only one of Y’s ports that does so); (a.2) Y is no closer to X than its minimum forwarding
distance as specified in all agreements outstanding on pY–X with X<Y; (b) Y holds such an agreement from Z, with
Z’s minimum forwarding distance greater than Y’s current distance; (c) an optimization not required to prevent
loops or frame duplication, do not forward to Z unless (in the current topology calculated by Y) the frame is being
forwarded to Z’s Root Port.

Equation 13 is eqn. 12 simplified (as with previous equations) to record only the most constraining agreement sent
and the most permissive received.

13ssMulticastX–Y–Z ≡ (YY–X = YY) ∧ (YY→ X ≤YY)) ∧ (13a)

(YY < ZY← Z) ∧ (13b)

(ZY = ZY–Z) (13c)

Consider bridges B and C connected to the same LAN. Neither can be forwarding frames received from that LAN
back to the same LAN (X and Z the same) as (13a) requires (YY→ X ≤YY) while (13b) requires (YY < ZY← Z).
Consider B forwarding frames to the LAN, and C receiving the frames and forwarding to a further LAN.
Instantiating (13b) for B’s port B–C and (13a) for C’s port C–B ⇒BB < CC, so no forwarding loop is possible.
Revision 2.0 September 6th 2010 Mick Seaman 13

Link state agreement
4. SPB forwarding rules

This section (4) recommends loop-free forwarding
rules for SPBV with point-to-point links and shared
media, and the use of both SPBV and SPBM with
point-to-point links. Spanning tree forwarding is
supported both by digests and explicit information to
allow the use of the latter to support the IST,
maximizing the chance of providing remedial
connectivity should some complex convergence
problem occur. Specifically this section covers:

a) Simple shortest path destination-based unicast
forwarding and (hop-by-hop) multipath unicast (3.1
and 3.2) over point-to-point links, using the
spUnicastY– Z rule of eqn. 6 and agreement digests.

b) Spanning tree forwarding using both point-to-point
and shared media (3.3, 3.4) using the
stForwardingY–Z rule of eqn. 9 with both agreement
digests and explicit priority vectors.

c) Multicast with a source-specific multicast address
(3.5) using the ssMulticastY– Z rule of eqn. 13 and
agreement digests.

Note, at present the details are only shown for point-
to-point links to avoid the clutter that comes with

keeping track of multiple partners. The explicit
priority vector discussion is also incomplete.

The forwarding rules specify what ports (or pairs of
ports) can forward (transmit and/or receive) data
frames given a set of agreements received (and not
discarded) and a set of agreements transmitted (and
not yet explicitly discarded by their recipient). The
rules can equally well be read as specifying what fresh
agreements can be transmitted, and what received
agreements discarded, given the forwarding ports.
Control over discard rests in the hands of the receiving
participant, so the mere calculation of a new active
topology does not force a crisis so far as a participants
is concerned: the current forwarding pattern can
proceed uninterrupted.

To allow agreement messages always to carry the
latest calculated Agreement Digest, each message
includes an explicit Agreement flag — set only if the
state variables and FDB fully reflect the conventions
associated with the digest and the discard of any
agreements implicit in reporting that the partner’s
agreement messages have been processed.1

The relevant rules are repeated below:

14spUnicastY– Z ≡ (YY–Z = YY) ∧ (6a.1)

((YY→Z ≤YY) ∧ βY→ Z) ∧ (6a.2)

(∀ X ∈nY (6b)

((YY < XY← X) ∨ αY←Z)) (6b.1)

15stForwardingY–Z ≡ ((YY–Z = YY) ∧ (YY→ Z ≤YY)) ∨ (10a)

((YY < ZY←Z) ∧(YY→Z ≤YY))) (10b)

16ssMulticastX–Y–Z ≡ (YY–X = YY) ∧ (YY→ X ≤YY)) ∧ (13a)

(YY < ZY← Z) ∧ (13b)

(ZY = ZY–Z) (13c)

1Earlier version of the protocol did not use an Agreement flag, but continued to transmit the prior digest until state variable and FDB changes were complete.
Using the flag makes it much easier (possible) for one partner to use a topology match without having to reduce his or her forwarding to satisfy the forwarding
rules imposed by prior topologies as well as the current matched topology. See Agreement Protocol, September 7th 2010.
Revision 2.0 September 6th 2010 Mick Seaman 14

http://www.ieee802.org/1/files/public/docs2010/aq-seaman-agreement-protocol-0910-v2.pdf

Link state agreement
A. Significant changes

Early versions of this note did not distinguish between
Y'Y→ Z and YY→ Z, and between Z'Y←Z and ZY←Z,
but attempted to define the two sets as equivalent in
order to minimize the number of variables maintained.
This is not possible, so βY→ Z and αY←Z have been
added, though for the intended use of the agreement
digest only one of the latter is required (i.e. this
revision of this note requires one extra boolean per
tree per port). Equation 6 now represents the preferred
rule for SPBM unicast.

Earlier versions (1.0 March 18th) suggested in one
section (4.3) that the rule for SPBM source-specific
multicast would not use a source ingress check
(allowing the multicast to be completely decoupled
from unicast FDB entries), while another section (3.6)
pointed out how difficult that would be. Use of the
source ingress check for multicast is now advocated in
both cases, though that means that additional care has
to be taken when moving unicast entries (particularly
when unicast loop mitigation is being used rather than
loop prevention) to ensure that multicast entries are
not incorrectly positioned. Some additional discussion
of and advice on this subject is probably needed.
Revision 2.0 September 6th 2010 Mick Seaman 15

Link state agreement
B. Mathematical symbols

To write this note I had to spend some time finding out how to enter various symbols in Framemaker1. This is by no
means as easy as it should be, and web searches turned up material that was partially correct at best2. As a memo to
myself, possibly useful to others, this Annex lists some of the symbols and how to enter them (in Framemaker 8/
Windows XP). Unless otherwise specified the Symbol font is used. In the following description ‘Shift+q” means
(for example) hold down the Shift key and type ‘q’ (the character ‘+’ is not actually typed). This notation follows
that used in Framemaker documentation. I have included Unicode (UTF-16) code points and character descriptions
in case the characters appear differently in some future version of Framemaker, or are rendered differently under
some circumstances (display, version of Acrobat, printer driver, printer, etc.).

… — Control+q Shift+i. Unicode 2026, character ‘ellipsis’.

← — Control+q Shift+b. Unicode 2190, ‘arrowleft’, ‘LEFTWARDS ARROW’.

→ — Control+q (. Unicode 2192, ‘arrowright’, ‘RIGHTWARDS ARROW’.

↔ — Control+q Shift+g. Unicode 2194, ‘arrowboth’, ‘LEFT RIGHT ARROW’.

∀ — Turn smart quotes off (Format > Document > Text Options), type a double quote , use
Symbol font. Smart quotes can be turned back on. Unicode symbol 2200, ‘universal’,
‘FOR ALL’.

⇒ — Control+q Shift+w. Symbol font. Unicode 21D2, ‘arrowdblright’, IMPLIES.

∃ — $. Symbol font. Unicode 2203, ‘existential’, ‘THERE EXISTS’.

∅ — Control+q full-stop (period). Symbol font. Unicode 2205, ‘empty set’.

∈ — Esc ^ Shift+i. Symbol font. Unicode 2208, ‘element’, ‘ELEMENT OF’.

∉ — Esc % Shift+i. Symbol font. Unicode 2209, ‘notelement’, ‘NOT AN ELEMENT OF’.

∞ — Control+q 4. Symbol font. Unicode 221E, ‘infinity’.

∧ — Esc grave-accent Shift+u. Symbol font. Unicode 2227, ‘logicaland’.

∨ — Esc single-quote Shift+u. Symbol font. Unicode 2228, ‘logicalor’.

∩ — Esc comma Shift+c. Symbol font. Unicode 2229, ‘intersection’.

∪ — Esc grave-accent Shift+e. The grave-accent character is indistinguishable (in the Times
Roman font used in most of this note) from an opening single quote, but on the
keyboard is on the same key as ~. Symbol font. Symbol font. Unicode 222A, ‘union’.

∴ — \. Symbol font. Unicode 2234, ‘therefore’, ‘THEREFORE’.

≈ — Control+q Shift+h. Symbol. Unicode 2248, ‘approxequal’, ‘ALMOST EQUAL TO’.

≠ — Control+q 6. Unicode 2260, ‘notequal’, ‘NOT EQUAL TO’.

≡ — Control+q <. Unicode 2261, ‘equivalence’, ‘IDENTICAL TO’.

≤ — Control+q #. Unicode 2263, ‘lessequal’, ‘LESS THAN OR EQUAL TO’.

≥ — Control+q 8. Unicode 2264, ‘greaterequal’, ‘GREATER THAN OR EQUAL TO’.

⊂ — Esc grave-accent Shift+i. Unicode 2282, ‘propersubset’, ‘SUBSET OF’.

⊃ — Esc single-quote Shift+e. Unicode 2283, ‘propersuperset’, ‘SUPERSET OF’.

⊆ — Esc single-quote Shift+i. The single-quote ‘character is on the same key as “. Symbol
font. Unicode 2286, ‘reflexsubset’.

¬ — Control+q /. Symbol font. Unicode 2310, ‘logicalnot’.

1These symbols are available in equation mode in Framemaker, but it is not always convenient to use it.
2The most useful (though error ridden) reference I found was http://www.adobe.com/devnet/framemaker/pdfs/Character_Sets.pdf now archived in my Notes
folder. This describes Framemaker 7.0 character sets. The Framemaker 8 distribution includes file:///C:/Program%20Files/Adobe/FrameMaker8/Documents/
Character_Sets.pdf which has many additional errors. Other useful references are http://en.wikipedia.org/wiki/Unicode_Mathematical_Operators and http://
en.wikipedia.org/wiki/Table_of_mathematical_symbols.
Revision 2.0 September 6th 2010 Mick Seaman 16

	Link state agreement
	1. Overview
	Figure 1— Connectivity restoration and continued forwarding after multiple failures

	2. Basic terminology and notation
	3. Loop-free forwarding conditions
	3.1 Destination-based unicast forwarding
	3.2 Multipath destination-based unicast forwarding
	3.3 Spanning tree forwarding
	3.4 Spanning tree forwarding with explicit priority vector signaling
	3.5 Multicast forwarding with source specific multicast addresses

	4. SPB forwarding rules
	A. Significant changes
	B. Mathematical symbols

