Ingress and egress delay impact on 802.1AS clause 13 (preso-V.3)

Frank Effenberger Huawei Technologies

Special thanks to Geoff for correcting my mistakes!

Background of problem

- The previous draft used the message transmission times as the reference points
- When we changed to use the MPCP counter, we needed to add the ingress and egress latencies
- The formulas we generated in San Diego are not quite right
- Here, we calculate the right values

MPCP and reference planes

- Eq(13-1) in 802.1AS 7.0:
 - ToDx,i = ToDx,o + RTT* K / RateRatio
 - Assume K = IndexFactor = Nup / (Ndown + Nup)
- As noted in another comment, we should multiply by the RateRatio, not divide. So, the repaired eq. is:
 - ToDx,i = ToDx,o + RTT* K * RateRatio
- RTT measured in EPON
 - RTT = OLTegress + downchannel + ONUingress + ONUegress + upchannel + OLTingress
 - I.e, RTT = (OLTegress + OLTingress) + (downchannel + upchannel) + (ONUingress + ONUegress)
- Note: the egress and ingress latencies are measured in the local clock timebase

The way we have it now:

- The ideal calculation of ToDx,i
 - If ToDx,i* is the time when the ONU MPCP counter equals X, and
 - ToDx,o* is the time when the OLT MPCP counter equals X,
 - Then: ToDx,i* = ToDx,o* + [OLTegress + (downchannel + upchannel)•K + ONUingress] * RateRatio
 Eq. (1)
- The calculation in Eq.(13-1)
 - ToDx,i = ToDx,o + [(OLTegress + OLTingress) + (downchannel + upchannel) + (ONUingress + ONUegress)]
 - K
- These two don't match quite right...

- Starting from our Equation 1:
 - ToDx,i* = ToDx,o* + [OLTegress + (downchannel + upchannel)•K + ONUingress]*RR
- Move the RateRatio to get it out of the way
 - ToDx,i*/RR = ToDx,o*/RR + OLTegress + (downchannel + upchannel)•K + ONUingress
- Add the appropriate terms to both sides

```
ToDx,i*/RR-ONUingress +K•(ONUingress+ONUegress)=
-ONUingress +K•(ONUingress+ONUegress) +ToDx,o*/RR
-OLTegress +K•(OLTingress+OLTegress) +OLTegress -
K•(OLTingress+OLTegress) +OLTegress + (downchannel +
upchannel)•K +ONUingress
```

Simplifying

```
ToDx,i*/RR-ONUingress +K•(ONUingress+ONUegress) =
ToDx,o*/RR +OLTegress -K•(OLTingress+OLTegress)
+K•(OLTingress+OLTegress) +K•(ONUingress+ONUegress)
+(downchannel+upchannel)•K
```

To yield the RTT form of Eq. 13-1

```
ToDx,i*/RR-ONUingress +K•(ONUingress+ONUegress) = ToDx,o*/RR +OLTegress -K•(OLTingress+OLTegress) + RTT •K
```

The right way

- If we define:
 - ToDx,i = ToDx,i*-[ONUingress -K•(ONUingress+ONUegress)]*RR
 - ToDx,o = ToDx,o* +[OLTegress -K•(OLTingress+OLTegress)]*RR
- Then we can say
- ToDx,i = ToDx,o +RTT •K •RateRatio
 - This is what we want for equation 13-1
- The key definitions:
- ToDx,i is the time when the MPCP counter at clock slave i equals X minus the ONUlatencyfactor.