AVB for low latency networks:

part 2 – requirements for media redundancy

Oliver Kleineberg, Hirschmann Automation & Control IEEE 802.1 Interim Meeting, May 2010, Geneva

AVB for Low Latency Networks

- Aims of this Presentation:
- Define requirements for low latency networks
- Show possible solutions
- Trigger discussions
- => Define new work items for AVB TG which includes requirements for industrial/low latency communication

Deterministic* stream reconfiguration (with media redundancy)

- T_grace: Max. time an application can sustain a loss in network connectivity
- T_rec: Time a redundancy control protocol (e.g. RSTP) needs to reconfigure network paths
 - => Usually T_rec !< T_grace for the application not to notice network failure

Deterministic stream reconfiguration (with media redundancy)

- If in case of network path switchover and a stream has to be "rerouted", the stream switchover time T_stream must be factored in:
- T_rec + T_stream !< T_grace
- Therefore, T_stream needs to be calculable / determinable

Deterministic stream reconfiguration: possible solutions

- To reduce the time for stream switchover, precalculate additional paths:
- Solution one: In case of a failure in path A, the stream is switched over to path B (within a defined short timeframe)

 Solution two: Both paths are active, streams are sent over both paths simultaneously.

 Requirement: MSRP must be able to do an additional reservation on an alternate path

Requirements for MSRP to support media redundancy

Stream reconfiguration time must be deterministic

- To engineer media redundant networks with deterministic failover times, the reconfiguration time for streams must be deterministic and pre-determinable
- Ability to do reservations of alternate path(s) not dependant on RSTP active topology
- In case of failure on the active path, switch over to pre-calculated alternate path or
- Send data over redundant paths simultaneously

FIN

Thank you!