802.1Qbg Bridge management Clause 12

V2 September 28, 2010

IEEE 802.1Qbg Management

- Need to complete 802.1Qbg clause 12, 17 and K.10
 - Clause 12 information model objects
 - Clause 17 Bridge SNMP MIB
 - Clause K.10 IEEE 802.1 AB SNMP MIB 802.1 TLV extensions
- Clause 12 object extensions required
 - A root object for each EVB station/bridge
 - Objects for each CDCP state machine (could be multiple physical LANs)
 - Objects for the S-Channel database
 - •Objects for the ECP state machines
 - Objects for the VDP state machines
 - Objects for the VSI database

Relationships among EVB objects (Bridge Port Number Model, from PB)

How can this model work for the Station?

Relationships among EVB objects (ComponentID Model, from PBB)

- Per Bridge/Station contains component lists (by external port or componentID)
- If no port-mapping S-VLAN component then default S-channel in list
- VEB/VEPA are C-comp component types

4 10/5/2010

Component table vs. external port table Station/Bridge system managed object

- External port lists are used to manage multi-component provider bridges. The current 802.1Qbc uses external port number to locate components.
- PB system model may references components by external port
 - each C-comp has a single CEP
 - only a single S-comp exists and therefore is attached to any PNP or CNP
 - each port-mapping component has a single RSAP
- PBB BEB system model references components by componentID
 - CNPs and PIPs do not uniquely identify an I-comp (each BEB may have many I-comps with multiple external ports per I-comp)
- EVB components Station requires componentID
 - Station can have multiple C-comps and multiple port-mapping S-comp when using multiple uplinks
- EVB Bridge Could use the port model provider we have a single C-Comp in the EVBCB
 - Bridge has multiple port-mapping S-comps however only a single C-comp
 - Bridge could be managed using either the port based or componentID model

EVB Bridge managed object

- Here each port of the Bridge is referenced by a bridge port number
- Internally, we use doubles of <BP#,SVID> to identify internal CAPs, internal LANs, and internal BPs of C-Comp.
- All external C-Comp BPs have a bridge port number, however internal BPs have not BP#
- Currently we don't have a way to extend this to the Station case since the station may have multiple C-comps and S-comps with generalized cross connects

EVB Station managed object

- All components have a componentID (compID)
- All component ports have a bpID
- Therefore all internal and external ports can be referenced by the double <compID,bpID>
- If we need linear external port numbers then a mapping table from BP# to <compID,pbID> can be added to the system.
- This strategy could be used for both Bridge and Station.

802.1Qbg CDCP Machine objects

- AdminRole: The role may take the value 'S' or 'B'.
- AdminVersion: May take the value 0x00 = disable S-channels or 0x10 = enable S-channels
- AdminChnCap: May take a value from 0 to xxx
- schState: May take the state RUNNING or NOTRUNNING
- S-Channel table: <SCID, VID, cap-port#, c-comp#, c-port#> pairs
 AdminSVIDWants is derived from this table. The table size is AdminChnCap.
 Entries with SCID = 0 are not requested. Entries with VID non-zero are active channels.
- Subclause 12.1.1 add after g)
 - The ability to create and delete the functional elements of CDCP and to control their operation.
- Subclause 12.2 add after j)
 - Additional objects to support CDCP protocols (12.23 and 42)
 - Additional objects to support EVB functions and the ECP and VDP protocols (12.24 and 41)

802.1Qbg VDP Machine objects

- Subclause 12.23? Need a number assigned
- VDP objects: One set per station
 - Station Objects (one set) New annex for station MIB? Let DMTF do station MIB? Bridge MIB in vSwitch?
 - Command response timeout
 - Keep Alive interval
 - Keep Alive response timeout
 - Bridge Objects (one set per station)
 - Resource timeout
 - Keep Alive command timeout
- ECP objects: One set per ECP instance (per S-channel)
 - ackTimer
 - TxFrame Count Successful Read Only 64 bits
 - TxRetry Count Total Read Only 64 bits
 - TxFailures Total Read Only 64 bits
 - RxFrame Count Successful Read Only 64 bits
- CDCP objects: once set per CDCP instance
 - CID table
 - S-channel state
 - S-channel VID
 - Reserve Pool of VIDs

9

VSI managed object

- Table of all VSIs keyed by VSI-ID (one table for station and for Bridge)
 - -VSI-ID (may have multiple instance of VSI-ID active in the DC for motion)
 - Current VDP state
 - -S-Channel / Port association
 - Operating Command

BACKUP SLIDES