March 15, 2010

EVB Proposal for:

Virtual Ethernet Port Aggregator,
Edge Virtual Bridging TLV,
Edge TLV Transport Protocol,
Multichannel, and
VSI Discovery Protocol

Version 0, Rev 0.1

Abstract: This document is a proposal for the development of IEEE Edge Virtual Bridging
(EVB) technologies. These proposals cover a suite of mechanisms that may be used to
construct an EVB-based solution including architectural overview, discovery,
management objects, and state machines.

Keywords: VEPA, VEB, Multi-Channel, ETTP, VDP

This document is a proposal for Virtual Ethernet Port Aggregator, Edge Virtual Bridging
TLV, Edge TLV Transport Protocol, Multichannel, and VSI Discovery Protocol.

Editors: Hewlett-Packard Corp., IBM
Contributing Authors

Company Contacts

BNT Daya Kamath
BNT Jay Kidambi
BNT Vijoy Pandey
Broadcom Uri Elzur
Brocade Anoop Ghanwani
Chelsio Asgeir Eiriksson
Emulex Chait Tumuluri
HP Paul Bottroff

HP Paul Congdon
HP Chuck Hudson
HP Michael Krause
IBM Vivek Kashyap
IBM Renato Recio
IBM Rakesh Sharma
Juniper Srikanth Kilaru
QLogic Manoj Wadekar

TABLE OF CONTENTS

ContribUtiNG AULNOIS. e e e e e e eeaans 2
TABLE OF CONTENTS . ..o e e e e e e e e e a e eanns 3
LIST OF TABLES e e e e e ean 4
LIST OF FIGURES ...ttt et e e e et e e et e et e e e eneean 4
Related DOCUMENTSt e e e e et e e e e e e e e e e eaaaaa e e e eeeeeeenes 5
Change HISTOTY ...ttt e e e e e e e e eeraa e e e e e eeeeeaes 5
1. DOCUMENT SCOPE.....uiiieiiiiiiitt ettt ettt e e e e e e 6
1.1 PUIPOSE ettt e ettt e e e 6
2. TaY e o U e 10] o IS UREPPPPPPPRR 7
3. Architecture and Operational OVerVIeWccccceeviveeiiiiiiinieneeeeeeeenns 16
3.1 VEPA Address Table Management....... ... 16
3.2 EQreSS PrOCESSING . c.ciiiiiiiiiiiiieiie e e e ettt e e e e e e r e e e e e e 17
3.3 INGreSS PrOCESSING ..ot 18
3.4 Multi-Channel Operation.........ccccovi e e e 20
3.5 Edge TLV Transport OPErationccouuuuiiiiiiieeeeieeiiies e ee et e e e e eeaaennnn 23
3.6 VSI Discovery and Configuration Protocol (VDP) Operation 24
3.6.1 VDP Type Configuration and Automation 26
3.6.2 VSl Type Definition and Management 27
3.6.3 VSIManager ID 28

4. Ethernet Virtual Bridging TLV SemMantiCscccooeeeiiiiiiiiiiiiiiieeeeeeeeeanns 30
5. Multi-Channel TLV Semantics and State Machine 33
5.1 MultiChannel Bridge Components and Operation.........cccceeeveeeeiiiniieeeeenenn. 33
5.1.1 Infroduction 33
512 S-Component 34

5.2 MDP Discovery and Configuration...........ccoooeeiiieiiiii i, 35
5.2.1 MDP TLV 35
5.2.2 MDP Configuration Procedures 36
5.2.3 MDP Configuration Variables 37
5.2.4 MDP Configuration Procedures 39
5.2.5 MDP Configuration State Machines 40

6. Edge TLV Transport Protocol (ETTP) TLV and State Machine................. 42
6.1 REQUITEIMENTS ..o 42
6.2 Edge TLV Transport Protocol Data Unit...........ccoooeoeeiiiii e, 43

EVB, VEPA, ETTP, VDP, MC Proposal

0.3 ETTP PrOCERAUIES ...ttt ettt et e e et e e e e e et e r e raanns 43
0.4 ETTP StAIE MACKINGS .. oo e 44
6.4.1 ETTP Transmit State Machine 44
6.4.2 ETTP Receive State Machine 45

7. Virtual Station Interface (VSI) TLV and State Machine 47
7.1.1 VS| Discovery and Configuration TLV 47
7.1.2 VDP Requirements and Assumptions 52
7.1.3 VDP - Local Variables and Procedures 53
7.1.4 Station VSI State Machine 54
7.1.5 Edge Bridge VSl State Machine 54

S T €1 11 = V2SRRI 56
8.1 VSI PreAssociate, Associate and DEASSOCIALEccvuvveveeiivieiiieeiieeeee e 59
8.2 VSITranSPOrt EMMOr CaASE ..c.uuiiieiiii e e et e e et e e e et e e e e aa s 59
8.3 VSI PreAssociate Resource Lease Refresh Exchange.........cccooooeeeiiiiiiennnnn. 60
8.4 VSI Associate Resource Lease EXchange..........cccccocevviiiiiiiiiiiiee i 61

LIST OF TABLES

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.

Error! No table of figures entries found.

LIST OF FIGURES

Example Physical End Station with Multiple VM and Two Software VEBccccoceeeeveenne 7
Example Physical End Station with Multiple Hardware VEB............cccocooieiecececieveecece e, 8
VEB Frame ReE@y SUPPOIcoiiiiiiieiictisiecieeesees e st e e te e e et e se e tesaestesaeenesseeneessesaessessesneas 9
Example Physical End Station with Multiple VM Communicating through aVEPA............... 10
Example Physical End Station with Multiple Hardware VEPA ... ieeeeceecererese s 11
VEPA Frame RE@y SUPPOIT......cccoivieieeiereeeeeesies ettt sre e neeneesnesresneens 12
Mutichannel Ethernet COMPONENEScc.ciirieieeierire e et ee e seeseeseeneens 14
Multiple channels with on VPort a €ach end...........ccvireiiiincine e 15
Example VEPA with associated conceptual VEPA Address Table.........coeeveneeninccneiennens 16
VEPA EQresS PrOCESSING ... c.ceterueuerrereeierteseetesteseeiesteseesesteseesesseseesessessesessesessessesessessensssessenens 17
VEPA Unicast Ingress Processing from Source A to Destination C.........cccveeeeeieeierieneenn. 18
VEPA Multicast Ingress Processing from Source A to Mulicate Group Ccccceeeeeuenee. 19
Frame fowarding from a directly accessible VS| over amulti-channel link...........c.cc........ 20
Frame fowarding when multi-channel is configured underneath aVEB...........c.cccccueunnneee. 21
Frame fowarding when multi-channel is configured underneath aVEPAcccoeeueneee. 22
Frame fowarding over multi-channel between a VEPA and adirectly attached VS 23
EXample ETTP EXCNANQE......ccov ettt st st e e e e nns 24
VS| Type Architectural and Operational OVEINVIEWc.ceeveeerevenie e 27
VSI MBNAGET ID ..ottt st st s s et e st e seebesaeseebesaeseeteseenenre e 28
VS| TYPEOr INSLANCE ID ...ttt e 29
VSl Manager Datalase LOOKUD.......cceiuierierieinterieirieseeesie st 29
EVB TLV FOME...c.eciiiiieiiiiiieisiieestesie sttt st sbe s e bensenesbensesessesaens 30
Example EVB TLV EXChaNGE........coeriiiiieiie ettt s 32

EVB, VEPA, ETTP, VDP, MC Proposal

Figure 24. Example Multi-channel BIOCK Diagram........ccocorerieeninieeseneee e 33
Figure 25. Station and Bridge V-Component and E-Component Block Diagramccceeeevereeennen. 34
Figure 26. IMIDP TLV .ttt bbbt b bt bbbkt b bt b et et b e b 35
Figure 27. Example MDP TLV EXChaNge.......cccooiiiiiiie ettt s e 37
Figure 28. MDP SEAEE IMBCNINE. ... ettt ettt et b e sbe bt et e e e be e e nnas 40
Figure 29. L I T = L T S 43
Figure 30. ETTP Transmit Stat€ MaChinecccooiiiiiiiceccere ettt s 45
Figure 31. ETTP Recaive State MaChiNe..........cooieiiiiie et 46
Figure 32. Y0 I S 47
Figure 33. VDT o 7= A S 1 7= VS 48
Figure 34. MAC-VLAN Information FOrMat Lcccceeiveeeeieerene s seeeesees e sre s e es 51
Figure 35. Station'SV S| State MAChINE.........ooeiiie e e 54
Figure 36. Edge Bridge' s VS| State Machine..........cocooiiiiiiiiee e 55
Figure 37. VS| PreAssociate, Associate and DeAssociate EXChange.......cccoveveverenerieeieee e 59
Figure 38. VS| TIANSPOIT EFTOT ...ttt st e e b e s e et sae bt et e e et e seennas 60
Figure 39. PreAssociate Resource Lease EXCRANCE. ..ot 61
Figure 40. Associate Resource Lease EXChaNQE.........ciuveuerieieie et 62
Related Documents
Specifications Company
Change History
By Date Details

EVB, VEPA, ETTP, VDP, MC Proposal

1. Document Scope

This document details Virtual Ethernet Port Aggregator (VEPA) theory of operation and
the discovery and capability exchange protocol used to support a VEPA solution. VEPA
relies upon LLDP to provide discovery and capability exchange. These exchanges
occur between a physical end station and an adjacent bridge.

1.1 Purpose

The purpose of this proposal is to define a proposal for Discovery and Configuration of
Ethernet Virtual Bridging (EVB) capabilities, using: Multi-Channel, Edge TLV Transport
Protocol (ETTP) and Virtual Station Interface (VSI) Discovery and Configuration Protocol
(VDP). These protocols are used to determine EVB, Multichannel, ETTP and VDP
capability presence within a physical end station and an adjacent bridge.

EVB, VEPA, ETTP, VDP, MC Proposal

2. Introduction

Evolving standards combined with the growing size of enterprise and cloud-based
networking deployments has led to a significant increase in the complexity of Ethernet
networking in the data center. The advent of virtualization technology has
compounded this complexity due to the significant increase in the number of Ethernet
switches and the change in the solution deployment scenario. Hypervisors have
incorporated Virtual Ethernet Bridges (VEB) info the physical end station effectively
adding one or more Ethernet switches per end node. A VEB is a frame relay service that
supports local bridging between multiple virfual end statfions (an internal private virtual
network) and (optionally) the external bridging environment. A VEB may be
implemented in soffware as a virtual switch (vSwitch) as illustrated in Figure 1 or as
embedded hardware within a Network Interface Controller (NIC) as illustrated in Figure 2.

Physical End Station Apps Apps
VM VM
Virtual Station Apps || Apps || Apps || Apps [
Interface Wi vy Software VEB Ingress Egress
| s |
|| A
Software VEB (vSwitch)
Physical NIC
VEB Uplink
_ \4
Switch Port =" Adjacent Bridge
Figure 1. Example Physical End Station with Multiple VM and Two Software VEB

Figure 1 illustrates the following:
e Each VM may support one or more Virtual NICs.

o Typically, a VM will support a virtual NIC (vNIC) that emulates a physical
NIC. Each vNIC will contain a Virtual Station Interface (VSI) which is
connected to a VEB.

e A VEB supports a single logical uplink to the external adjacent bridge. Multiple
uplinks can be teamed via 802.3ad or other techniques.

¢ Asoftware VEB (vSwitch) is typically implemented within a hypervisor requiring
each VM I/O operation to trap to the hypervisor for processing.

o Hypervisor fraps consume system resources and can lead to varying
performance loss depending upon the number of I/O operations per
second and the amount of rich network functionality performed per
operation.

EVB, VEPA, ETTP, VDP, MC Proposal

o Beingin the hypervisor allows a software VEB to support one or more

physical NICs.

e VEB may be cascaded to provide modularity or additional fan-out.
e Not shown but important to note is a VEB does not require any modifications to

the Ethernet frame to operate.

Virtual Station

Physical End Station

Interface | Apps || Apps

Apps Apps

VM Direct I/ O via
SRIOV Virtual
Function

Physical NIC

VM VM

IngressEgress
A

VEB Uplink

Adjacent Bridge

Figure 2. Example Physical End Station with Multiple Hardware VEB

Figure 2 illustrates the following:
e Each physical NIC supports

o One (or more) physical ports attached to an adjacent bridge
= Each physical port represents a single VEB uplink.
o One or more hardware-embedded VEB. An embedded VEB cannot span

multiple physical NIC.

o Direct /O support via SR-IOV Virtual Functions (VF).
= Directl/O allows a VM to bypass the hypervisor and direcftly
access the NIC to send / receive packets. Bypassing the
hypervisor reduces system resource consumption allowing higher
performance solutions than traditional software VEB.
e Each VM may support one or more Virtual NICs.
o Inthis example, each VM supports two vNIC — one per physical NIC.
o Each vNIC contains a VSI which is associated with a SR-IOV VF to provide

Direct I/O support.

EVB, VEPA, ETTP, VDP, MC Proposal

Physical End Station Apps || Apps
VM VM

VM VM VM WM || Software VEB | | Ingress Egress

ralnrnwlen -
! H.&Z
3

il

Adjacent Bridge

Figure 3. VEB Frame Relay Support

VEB packet forwarding supports both traditional end station-to-adjacent bridge as well

as loca
follows:
[]

| VSI-to-VSI packet forwarding. As illustrated in Figure 3, a VEB forwards packets as

VEB forwards packets based on the MAC address and opftionally via a port group
or VLAN identifier.

VEB forwards packets from a VSI to the uplink from an adjacent bridge (path 1) or
between co-located VSI (path 2)

o A NIC-embedded VEB can only forward packets between VS| attached
to a common NIC. As shown in Figure 2, only VM that share the blue VEB
can forward packefts via the blue VEB. Similarly, only VM that share the
green VEB can forward packets via the green VEB. A VM on the blue VEB
cannoft forward packets to a VM on the green VEB directly; a software
VEB would be required to bridge the two NIC-embedded VEB.

VEB supports only a single active logical uplink
o Multiple uplinks can be tfeamed via 802.3ad or other techniques
o Uplink-to-uplink packet forwarding is not allowed (path 3)

VEB does not parficipate in or affect spanning tree operation.

VEB solutions have been shipping for a number of years and are available from multiple
suppliers. Though the functional robustness of solutions will vary, local bridging via a VEB
provides a number of common benefits and allows hypervisors to:

Operate without external bridges attached

Operate with a broad range of Ethernet environments

Maximize local bandwidth — bandwidth is limited by end station memory and
local I/0O bandwidth and not by the Ethernet link bandwidth

Minimize local latency — no incremental latency due to interaction with the
external network

Minimize packet loss, i.e. no packet loss due to external network events — external
bridge or link failure, CRC error detection, congestion-based packet loss, etc.

By definition traffic between VMs connected to a VEB stay within the server. Some clients
prefer the traffic to be sent through an external switch, so the external network’s access

EVB, VEPA, ETTP, VDP, MC Proposal

and security policies can be applied to the traffic. To address this type of requirement a
a Virtual Ethernet Port Aggregator (VEPA) is documented.

A Virtual Ethernet Port Aggregator (VEPA) is a capability within a physical end-station
that collaborates with an adjacent bridge to provide frame relay services between
multiple co-located virtual machines (VMs) and the external network. A VEPA
collaborates by:

e Forwarding all station-originated frames to the adjacent bridge for frame
processing and frame relay.

e Steering and replicating frames received from the adjacent bridge to the
appropriate VM destinations.

e A VEPA takes advantage of a special reflective relay forwarding mode (i.e. allow
forwarding back out the port a frame was received) on the adjacent bridge to
support inter-VM communication within the same physical host.

o Clause 8.6.1 of Standard IEEE 802.1Q-2005 [11] states that when a switch
reception port is in the forwarding state, each switch port in the
forwarding state, other than the reception port itself, is a potential
fransmission port. A VEPA requires an exception to this rule in order to
allow inter-VM ftraffic on the adjacent host over the single uplink. This
exception distinguishes the port atfached to a VEPA uplink as a VEPA-
enabled port which supports forwarding in reflective relay mode.

e Similar to a VEB, a VEPA may be implemented in software or in conjunction with
embedded hardware within a NIC.

The VEPA is connected to the adjacent bridge only by a single uplink connection. The
connection is attached to a VEPA-enabled port on the adjacent bridge. A conceptual
VEPA is shown in Figure 4.

Physical End Station Apps (| Apps
Virtual Station VM VM
Interface Apps (| Apps || Apps || Apps =M= ENSE
M VEPA Ingress Egress

Physical NIC ' NIC Team

VEPA Uplink
Adjacent Bridge

Switch Port

Figure 4. Example Physical End Station with Multiple VM Communicating through a VEPA

EVB, VEPA, ETTP, VDP, MC Proposal

Figure 4 illustrates the following:

e Each VM may support one or more Virtual End Stations.
o A VM supports a virtual NIC (vNIC) which emulates a physical NIC. A
vNIC is attached to a VEPA via a Virtual Station Interface (VSI). A VSlis a
physical or software emulated end station connected to a VEB or a VEPA.
e A VEPA supports a single logical uplink.
e Software VEPA (vSwitch) may support one or more physical NICs.
¢ The fotal number of VSI made available may be scaled by cascading VEPA in a
free as shown in Fig. 4. A VS| on aroot VEPA connected to a leaf VEPA higherin
the topology is known as an expander port. A root VEPA will forward all frames
with an unknown desfination address to the expander port. This eliminates the
need for the root VEPA to comprehend all of the MAC addresses of every VM in
the physical end station.
e Nof shown but important to note is VEPA does not require any modifications to
the Ethernet frame to operate.

_ _ Physical End Station
Virtual Station

Interface |Apps Apps || Apps || Apps
™ VM Uil Ingress Egress

VM Direct I/ O via
SRIOV Virtual
Function

Physical NIC
VEPA Uplink) _
Adjacent Bridge
Figure 5. Example Physical End Station with Multiple Hardware VEPA

Figure 5 illustrates the following:
¢ The end station contains two independent physical NICs. Each NIC supports
o One or more hardware-embedded VEPA. While this figure illustrates only
one VEPA (blue or green) per NIC, an implementation may support
multiple VEPA.
= In this example, the blue and the green VEPA are completely
separate, independent entities, i.e. they do not share any
resources and cannot directly communicate with one another.
o One or more physical ports attached to an adjacent bridge. A VEPA has
only one logical uplink.

EVB, VEPA, ETTP, VDP, MC Proposal

o Inthis example, each NIC supports direct I/O via PCI SR-IOV technology.
= Direct I/O allows a VM to bypass the hypervisor and directly
access the NIC to send / receive packets. Direct /O is achieved
by using a light-weight PCI Function called a Virtual Function (VF)
to act as a conduit between the VM and the NIC hardware. This
is analogous to a NIC supporting multiple fraditional PCI Functions
but is less hardware-intensive. Each VF is associated with a
Physical Function (PF) which can be used by the hypervisor as a
management conduit to provide overall control of the device or
the port depending upon the implementation.
Each VM may support one or more Virtual NICs.
o Inthis example, each VM supports two vNIC — one per physical NIC.
o Each vNIC contains a VS| which is associated with a SR-IOV VF to provide
the direct I/O conduit.

Physical End Station Apps || Apps
VM VM

Apps Apps Apps Apps l:._—-.:l

VM Software VEPA Ingress Egress

ralarnne v =
1 Q-2
3

VEPA

Adjacent Bridge

Figure6. VEPA Frame Relay Support

As illustrated in Figure 6, a VEPA forwards packets as follows:

VEPA forwards packets based on the MAC address and optionally via a port
group or VLAN identifier.
All VEPA traffic must be forwarded from the VSI to the uplink of an adjacent
bridge (path 1).

o VSI-to-VSI packet forwarding is not allowed (path 2).
A VEPA supports only a single active logical uplink

o Uplink-to-uplink packet forwarding is not allowed (path 3)

o A VEPA may be partitioned into multiple logical VEPA each associated

with its own independent uplink.

A VEPA does not participate in or affect spanning tree operation, i.e. VEPA
internal topology is not visible to the adjacent bridge, except for management
associated TLVs (e.g. EVB TLV in this document).

EVB, VEPA, ETTP, VDP, MC Proposal

Based on the prior materials, the reader should note the significant overlap in
functionality and potential implementation between a VEB and a VEPA with the primary
difference occurring in frame relay support. Further, this difference determines where
and how network features are surfaced and their associated impact on system
functional robustness and performance. This difference allows VEPA solutions to provide
the following benefits:

1. Reduces complexity and potentially enables higher performance by off-loading
advanced network functions from the VM or hypervisor to the adjacent bridge.

2. Allows NICs to maintain low cost circuitry by leveraging advanced functions on
the adjacent bridge.

3. Enables a consistent level of network policy enforcement by routing all network
traffic through the adjacent bridge with its more complete policy-enforcement
capabilities.

4. Provides visibility of inter-VM traffic to network management tools designed for
adjacent bridge.

5. Reduces the amount of network configuration required by server administrators,
and as a consequence, reduces the complexity for the network administrator.

6. Canincrease solution performance by off-loading advanced network
functionality that may be computationally intensive to implement within a
hypervisor or VM to the adjacent bridge.

As it can be seen, a VEPA provides a number of benefits but it too has limitations:

e Promiscuous support — To support a promiscuous VSI, a VEPA address table must
be configured with all VM source MAC addresses. This requires either adding MAC
address learning support or provisioning large address tables. Either opfion adds
implementation cost and complexity.

e Support for simultaneous VEB, VEPA, and directly accessible ports on the same
physical link — The adjacent bridge can only process a frame based on its contents
and therefore lacks sufficient information to delineate between these three
operating modes.

e Hierarchy of unrestricted physical ports — Normal bridge learning and flooding is
not possible due to the lack of information within a frame.

To address these limitations, IEEE Std. 802.1ad-2005 is applied. This standard enables
multiple virtual channels to be multiplexed on a single physical link — referred to as multi-
channel functionality. Individual channels are delineated by a tag which is added to
the frame and processed by S-VLAN Components (a bridge component) which are
logically inserted into the adjacent bridge and the physical end station below the virtual
bridge layer as illustrated in the following figure.

EVB, VEPA, ETTP, VDP, MC Proposal

Physical End Station

Apps Apps Apps Apps Apps Apps

VM VM VM VM H VS

Virtual Bridge Layer
(VEB, VEPA, directly
accessible VSl)

Virtual Uplink

SVLIAN Component

|

SVIAN Component

Physical End Station
SComponent

Adjacent Bridge
SComponent

Virtual Bridge Port
(may be VEPA-enabled)

Figure7. Mutichannel Ethernet Components

The S-VLAN component recognizes, inserts and removes service VLAN tags (S-Tag) to
enable multiple channels in the bridged network. Adding an S-VLAN component to an
end-station allows VEPA, VEB, and individual VSI to operate independently and
simultaneously. Each VEPA, VEB, or individual VS| operates over its own virfual uplink
instantiated by a pair of S-VLAN components - one in the adjacent bridge and one on
the end-station.

The virtual uplinks created by the end-station’s S-VLAN component are effectively
connected over a multi-channel uplink to virtual ports (vPort) created by the S-VLAN
component on the adjacent bridge as illustrated in the following figure.

Physical End Station

Virtual Port (vPort) SVLAN Component

Physical Port

Physical Link N

Virtual Channels

Virtual Port (vPort) SVIAN Component

Adjacent Bridge

EVB, VEPA, ETTP, VDP, MC Proposal

Figure 8. Multiple channels with on vPort at each end

Each frame fraversing the physical multi-channel uplink will all have an S-Tag inserted by
the first S-VLAN component it encounters and removed by the second S-VLAN
component as it reaches the far side of the multi-channel link. The S-Tag inserted by the
end-station identifies the particular source virtual uplink and the S-Tag inserted by the
adjacent bridge identifies the destination virtual uplink. Any frames that must be
broadcast or flooded to more than one VSI are replicated by the adjacent bridge and
delivered across the multi-channel uplink as many times as needed, each with the
proper S-Tag inserted.

Adding the mulfi-channel capability to the end-station solves the problem of supporting
virtual machines needing promiscuous ports by isolating such VSl in a separate channel.
By doing so, normal learning and forwarding behavior is pushed to the adjacent bridge,
isolating it from the simple forwarding of the VEPA. It also allows the end station
administrator to choose how virtual VM are connected to the network. A group of VM
that require direct connectivity between each other for high performance and low
latency can be attached to a VEB. Another group that requires traffic visibility, firewall
inspection or other services on the adjacent bridge can be attached to a VEPA. Finally
any individual VM that requires an isolated promiscuous VSI can be attached directly to
a virtual uplink.

The subsequent chapters within this proposal provide additional details on VEPA and
multi-channel operation, discovery, and configuration.

EVB, VEPA, ETTP, VDP, MC Proposal

3. Architecture and Operational Overview

This chapter will describe VEPA and Mulfi-Channel architectural components and
illustrate how these components are used via example operations.

3.1 VEPA Address Table Management

As a network edge end station, a VEPA is not required to support address learning.
Instead, the VEPA address table is populated through a registration process. As an
address, filter, or VLAN identifier is registered, the server virtualization infrastructure (e.g.
the Hypervisor) updates the corresponding VEPA address table entry. This applies to:

e VS| default MAC address

e Locally Administered Address (LAA)

e Multicast addresses

e Promiscuous address mode support

The following figure illustrates an example physical end station, VEPA, and the associated

VEPA address table.
Destination VLAN Copy To
MAC (ABCDEF)

A 1 100000
B 2 010000
C 1 001000
Physical End Station D 2 000100
E 000010
Apps Apps Apps Apps Apps Apps
VM VM VM VM VM VM F 2 OOOOO]_
:u E u > E E Broadcast 1 101010
VEPA
Broadcast 2 010101
Multicast 1 101010
C
Adjacent Bridge
Unknown 1 100010
Multicast
Unknown 2 010101
Multicast
Unknown 1 000000
Unicast
Unknown 2 000000
Unicast

Figure9. Example VEPA with associated conceptual VEPA Address Table

EVB, VEPA, ETTP, VDP, MC Proposal

In this example, the VEPA address table holds the following:
e A unicast MAC address (and VSI Instance Identifier) per VSI

e Per VLAN broadcast address — frames are forwarded to the VSl indicated by the
corresponding bit mask

e Specified multicast addresses — VSI A, C, and E are the only participants in the
specified multicast group.

e Per VLAN unknown unicast address — unknown frames are discarded on ingress,
they are sent to the adjacent bridge on egress (i.e. from VSI Instance to bridge).

e Per VLAN unknown multicast address — unknown frames are forwarded to the VSI
indicated by the corresponding bit mask

The address table is configured by the server virtualization infrastructure (e.g. the
Hypervisor) simplifying the VEPA implementation by eliminating the need to support
dynamic address learning. Further, the hypervisor can configure additional address
table fields (not shown in the figure examples) such as QoS settings, VLAN configuration,
promiscuous listening support, and so forth to provide additional functional capabilities.

3.2 Egress Processing

VEPA egress is defined as the set of operations required to transfer a frame from a VS| to
the VEPA uplink. Since all frames are required to be forwarded to the uplink, the frame is
moved from the VSI to the physical uplink for fransmission and the S-VLAN-Tag is added.

Physical End Station

Apps Apps Apps Apps Apps Apps
VM VM VM VM VM VM
VEPA

Adjacent Bridge

Figure 10. VEPA Egress Processing

While the main objective of VEPA is to forward frames to the adjacent bridge for
advanced processing, VEPA implementations may provide additional processing on the
frame since the VEPA comprehends the source VSI Instance. For example, source VS|
MAC address validation to prevent spoofing, application of QoS and bandwidth
management policies, VLAN formatting validation (fagged or untagged), and so forth.
The adjacent bridge can only operate on the frame’s contents (MAC address, VLAN ID,
etc.) and is unaware of the source VSl Instance therefore eliminating such functional
possibilities.

EVB, VEPA, ETTP, VDP, MC Proposal

3.3 Ingress Processing

VEPA ingress is defined as the set of operations required to steer and fransfer a frame
received on the uplink to the appropriate VSI or set of VSIs. The VEPA must make use of
the address table to perform this operation correctly. Address table access is illustrated
in the following figure as VSI A transmits a unicast frame to VSI C.

VEPA Address Table

Destination | VLAN Copy To
MAC (ABCDEF)

A 1 100000
Physical End Station B 2 010000
(03 1 001000
Apps Apps Apps Apps Apps Apps D > e
VM VM VM WM VM VM
—E— —E— D —E— —H: E 1 000010
F 2 000001
Broadcast 1 101010
Broadcast 2 010101
Adjacght Bridge z\:/lultlcast 1 101010
Unknown 1 100010
@ Multicast
Unknown 2 010101
Multicast
Unknown 1 000000
Unicast
Unknown 2 000000

Unicast

Figure 11. VEPA Unicast Ingress Processing from Source A to Destination C

In this example, the fransmission and recepftion processing is:

1. VSI A performs egress processing and performs any additional functionality prior
to the frame being transmitted out the egress port (step 1)

2. The adjacent bridge has enabled VEPA communication. The bridge applies the
appropriate network processing to the frame and reflects the frame to the VEPA
uplink (step 2).

3. Upon frame receipt and validation, the VEPA searches the address table to
locate the destination VSI Instance based on the contents of the unicast frame
(minimally the Destination MAC address and the VLAN Identifier). In this example,
the “Copy to” mask indicates VSI C is the destination and the VEPA delivers the
frame (step 3).

a. If the unicast address is unknown, then the “Unknown Unicast” for the
associated VLAN identifier would determine the appropriate “Copy to”
mask, which is x000000 and the frame is discarded.

The address table access and associated processing is similar for multicast and
broadcast with one exception. The originator of a multicast or broadcast frame may
have been one of the VSI before the adjacent bridge reflected the frame back. In this
case, the VEPA must perform additional filtering to avoid delivering the frame tfo its
originator. This is illustrated in the following figure.

EVB, VEPA, ETTP, VDP, MC Proposal

VEPA Address Table

Destination VLAN Copy To
MAC (ABCDEF)

100000

Physical End Station 010000

001000

Apps Apps Apps Apps Apps Apps
VM VM VM M VM VM

000100

000010

m m o O W >

000001

B N RPN RN e

Broadcast 101010

Broadcast 2 010101

Adjacdht Bridge gultlcast 1 101010
Unknown 1 100010
@ Multicast
Unknown 2 010101
Multicast
Unknown 1 000000
Unicast
Unknown 2 000000
Unicast

Figure 12. VEPA Multicast Ingress Processing from Source A to Mulicate Group C

In this example, the fransmission and receive processing is:

1. VSI A performs egress processing and performs any additional functionality prior
to the frame being transmitted out the egress port (step 1)

2. The adjacent bridge has enabled VEPA communication. The bridge applies the
appropriate network processing to the frame and reflects the frame to the VEPA
uplink (step 2).

3. Upon frame receipt and validation, the VEPA searches the address table to
locate the destination VSI based on the contents of the multicast frame (step 3).
To prevent the frame from being delivered to its originator, the VEPA performs a
source address lookup and filters out the VSI associated with the source address
from the original “Copy To” mask associated with the destination address (step 3).
The delivery mask is constructed via (Copy To = (Destination Copy To) AND
I(Source Copy To). In this example,

Destination Copy To =101010
Source Copy To = 100000
Delivery Mask =001010

4. The frame is replicated using the delivery mask (step 4).

a. If the unicast address is unknown, then the “Unknown Unicast” for the
associated VLAN identifier would determine the appropriate “Copy to”
mask, which is x000000 and the frame is discarded.

EVB, VEPA, ETTP, VDP, MC Proposal

3.4 Multi-Channel Operation

This section illustrates multi-channel operation through several example configurations.
In these examples, an S-VLAN component is logically inserted into the adjacent bridge
and the physical end station. Further, between these S-VLAN Components, six channels
(A-F) have been established and associated with a directly accessible VSI, a VEB, or a
VEPA.

The first example illustrates how a directly accessible VSI operates over a multi-channel
configuration when communicating to a VSl accessible through the adjacent bridge.

Physical End Station

Apps Apps Apps Apps Apps Apps

Figure 13. Frame fowarding from adirectly accessible VS| over a multi-channel link

1. VSI A performs egress processing and performs any additional functionality prior
to the frame being forwarded to the S-VLAN Component within the physical end
station. (step 1)

2. The S-VLAN Component inserts an S-Tag associated with channel A into the frame
and forwards the frame to the adjacent bridge. (step 2)

3. Within the adjacent bridge, the S-VLAN Component removes the S-Tag and
forwards the frame. (step 3)

20

EVB, VEPA, ETTP, VDP, MC Proposal

This example illustrates how a VEB operates.

Physical End Station

Apps Apps Apps Apps Apps Apps
VM VM VM VM VM VM
: i | | ¥
-
HHEE =
L ‘.tl
A B |

[@ D P < F
abonent

2

omponent
= =

2\

Figure 14. Frame fowarding when multi-channel is configured underneath a VEB

1. VM-to-VM communication across a shared VEB does not involve the multi-
channel link.

2. The frame forwarding steps to communicate to a VSI not attached to the VEB are
identical to the communication used for a directly accessible VS| running over a
channel.

a. VSI A performs egress processing and performs any additional
functionality prior to the frame being forwarded to the S-VLAN
Component within the physical end station. (step 1)

b. The S-VLAN Componentinserts an S-Tag associated with channel A into
the frame and forwards the frame to the adjacent bridge. (step 2)

c. Within the adjacent bridge, the S-VLAN Component removes the S-Tag
and forwards the frame. (step 3)

This example illustrates VM-to-VM communication through a VEPA when multi-channel is
configured.

21

EVB, VEPA, ETTP, VDP, MC Proposal

Physical End Station

Apps Apps Apps Apps Apps Apps
VM VM VM VM VM VM

Figure 15. Frame fowarding when multi-channel is configured underneath aVEPA

VSI performs egress processing and performs any additional functionality prior to
the frame being forwarded to the S-VLAN Component within the physical end
station. (step 1)

The S-VLAN Component inserts an S-Tag associated with channel F into the frame
and forwards the frame to the adjacent bridge. (step 2)

Within the adjacent bridge, the S-VLAN Component removes the S-Tag and
forwards the frame (step 3).

The adjacent bridge determines that the vPort is configured for VEPA mode so it
forwards the frame based on the bridge forwarding table (step 4).

Within the adjacent bridge, the S-VLAN Component adds the S-Tag associated
with channel F and forwards the frame to the S-VLAN Component within the
physical end station (step 5).

The S-VLAN Component within the physical end station removes the S-Tag and
forwards the frame to the associated VEPA (step 6).

The VEPA forwards the frame based on its VEPA address table to the associated
VSl (step 7).

22

EVB, VEPA, ETTP, VDP, MC Proposal

The following example illustrates how a VEPA-attached VM communicates to a directly
attached VSI through a common physical end station.

Physical End Station

Apps Apps Apps Apps Apps Apps

Figure 16. Frame fowarding over multi-channel between a VEPA and adirectly attached VS|

1. VSl performs egress processing and performs any additional functionality prior to
the frame being forwarded to the S-VLAN Component within the physical end
station. (step 1)

2. The S-VLAN Component inserts an S-Tag associated with channel F into the frame
and forwards the frame fo the adjacent bridge. (step 2)

3. Within the adjacent bridge, the S-VLAN Component removes the S-Tag and
forwards the frame (step 3).

4. The adjacent bridge determines that frame's next hop is associated with channel
D and forwards the frame to the S-VLAN component.

5. Within the adjacent bridge, the S-VLAN Component adds the S-Tag associated
with channel D and forwards the frame to the S-VLAN Component within the
physical end station (step 5).

6. The S-VLAN Component within the physical end station removes the S-Tag and
forwards the frame to the directly attached VSI.

3.5 Edge TLV Transport Operation

Today, IEEE control plane discovery operations are performed over unacknowledged
protocols, such as LLDP and DCBX. The Edge TLV Transport (ETTP) provides

23

EVB, VEPA, ETTP, VDP, MC Proposal

acknowledgements, which signal to the sender that the receiver is able to receive an
additional ETTP Data Unit. ETTP enables the sender to transmit discovery operations more
frequently than would be the case with fimer based approaches. The intent is fo have
the server’s virtualization infrastructure (e.g. Hypervisor) implement ETTP, versus having the
NIC implement ETTP.

The following diagram depicts, at a high level, ETTP semantics. In step 1, the ULP passes
an outgoing ULP Data Unit to ETTP by invoking a transmit request procedure. In step 2,
the ULP Data Unit, which for some ULPs (e.g. VSI) may contain a set of ULP TLVs, is
fransmitted and a ETTP low level Acknowledgement (L-ACK in the diagram) timer is seft,
but the frame is not yet deleted from the transmit buffer until a ETTP is received for that
ETTPDU. In step 3, the arriving ETTP frame is received into a receive ‘buffer’, where it is
held until it is removed by a T3 indication procedure that passes the ULP Data Unit to the
associated upper level protocol. In step 4, when the receive buffer is emptied, a low-
level acknowledge (L-ACK) is sent to the sender. In step 5, if the L-ACK is received before
the L-ACK timer expires, then the fransmit buffer is cleared and ETTP can process another
ULP PDU through the ETTP procedure. However, if the L-ACK timer expires before the L-
ACK is received, then the frame in the transmit buffer is resent (some preset number of
fimes).

Station Link or Channel Bridge
\'I;SP
Upper Procedure
Level e
Protocol TLV oppel
bt ILDJIISIlDJ TLV Protocol
TLV P A_(ULP)
— | . @ &7
buffer— I~ puffer | ULP
buffer 1 buffer " [Ty
————— ' PDU
TLV
Flow/Ack | «&— - m PF|0W/A(?k
ocessin g rocessing

Figure17. Example ETTP Exchange

3.6 VSI Discovery and Configuration Protocol (VDP)
Operation

Enterprise and cloud-based networking deployments have been rapidly growing in size
leading to a significant increase in the complexity of Ethernet networking in data centers.
The advent of virtualization technology brings unprecedented network configuration
complexity due to the significant increase in the number of Ethernet switches and very
large number of Virtual Station Interfaces (VSIs). Problem is made more complex by
advent of Virtual Machines (VM) mobility and solutions requiring external network state to
move with the VM, when the VM moves.

Virtual Ethernet Bridges (VEBs) embedded in Virtualized Systems have been around for
decades. VEBs provide efficient VM to VM communications. However, foday'’s virtual

24

EVB, VEPA, ETTP, VDP, MC Proposal

switch management is too manual and x86 scale-out server sprawl and virtualization
magnifies this complexity. Two of the major challenges associated with today’s
virtualization approaches is the ability to automate the association of a VSI Instance with
it's network state and automate VM migration, including all the network state associated
with the VM.

Today, when a VM moves from one server to another, VEBs embedded in Virtualized
Systems migrate the internal VEB's VSI Type that is associated with the VM. The VSI Type
consists of the network state associated with the VM and may include Access and QoS
Controls. In today’s implementations, the external switch's port profiles do not move with
the VM. Client have three options for dealing with this issue. Option 1 is to use the same
VS| Type for all VMs, the problem with this approach is that it limits virtualization’s value,
because all VMs in the network must be doing the same type of work (e.g. all must be e-
mail VMs). As aresult, if a group of servers doing the same type of work gets over utilized,
the VMs from those servers cannot be moved to a group of servers doing another type of
work (e.qg. file/print).

Option 2 is to move the VSI Type after the VM moves. This can be done by having the
external switch look up the VSI Type when the VM starts sending messages on the new
server. For example, when the VM starts sending messages, the external switch uses the
VM's MAC Address to look-up the port profile. This approach suffers from two problems:
The external switch cannot tell if the MAC Address used by the VM is a migrated MAC
address (i.e. from a migrated VM) or a re-incarnated MAC address (i.e. from a new VM
that is using a previously destroyed VM's MAC address). The second problem is that
there is a VSI Type exposure window between the VM's first message and the time it
takes the external switch to obtain the VSI Type from the switch's fabric manager.

Option 3 is to simply configure the link between the server and the edge switch as a trunk
port. The issue with this approach is all physical servers must be in the same security
domain, which has the similar VM movement limitations as option 1. For example, a
physical server cannot be managed by tenant A in the same fabric as a physical server
that is managed by tenant B.

The VDP Protocol specified in this document enables the association of a VSI Type with a
VSl instance (e.g. a VM virtual port) and the de-association of a VSI Type with a VS|
instance (e.g. a VM virtual port). VDP simplifies and automate Virtual Server (VS) network
configuration by enabling the movement of the VSI Type when the VSI Instance moves.

25

EVB, VEPA, ETTP, VDP, MC Proposal

3.6.1 VDP Type Configuration and Automation

A virtualized server hosts a set of VMs. Each VM may support one or more Virtual Station
Interface (VSI) Instances. Typically, a VM will support a virfual NIC (vNIC) that emulates a
physical NIC. Each vNIC will contain a VSI which is connected to a VEB or VEPA. The
server's virtualization infrastructure (e.g. a Hypervisor) assigns one or more VSIs to a VM to
access the network. The VM is able to communicate with other VMs on the same
physical server through the VSI Instance. Similarly, the VM is able to communicate to
external stations through the VSl Instance.

Each VSl Instance is assigned VS| Type ID (VTID). VSI Type definition is outside the scope
of this proposal. Forinformation context purposes only, a VSI Type definition may include
port access or rate limiting controls. Prior to the activation of a VM, VDP exchanges are
used to associate a VS| Instance with a VLAN Identifier, a MAC Address and a VTID in the
adjacent bridge and, if VEB is used, VEB. Similarly, a VDP exchange is used to de-
associate a VSl Instance with a VLAN Identifier, a MAC Address and a VTID in the
adjacent bridge and, if VEB is used, VEB, when a VM is either destroyed or moved.

The following sections provide an operational overview of how VDP can be used o
automate the configuration of network state (e.g. VSI Type) and the association of
network state to a VSI Instance. It will then describe the management elements required
to support such an example.

3.6.1.1 VDP - Operational Example

An example of the steps associated with VDP is depicted in the following figure.

[4 . Query available VSI types
Obtain a VSI instance

N N~
W
\r\ﬁy(‘)ﬁ\éﬁ‘\ VM SEEmBEE ﬁl EEna ag Vo TYPE
—I= Manager Dgt‘abase
&
System N g
Admin : "
=
Push VM & VSI 9: Bridge ®dog Retrieve VSI
Info to 9 Configuration
VM Host :
&
"y
"y

R

VSI
Discovery

26

EVB, VEPA, ETTP, VDP, MC Proposal

Figure18. VSl Type Architectural and Operational Overview

Following are the steps depicted in the figure above:

Step 1: VM Manager queries available VTIDs and creates a VSI Instance consisting of VSI
Instance ID and the chosen VTID. The VIDB server may create and track VSI Instance.

Step 2: VM Manager configures VSI with VTID and VSl Instance ID obtained from VTDB.

Step 3: Before VSI Instance (VM) activation, the VDP Module performs VSI Discovery and
Configuration protocol exchanges to associate the VSl instance with a VTID, MAC
Address and VLAN Identifier. In this example approach, the VDP Module is implemented
as part of the server’s virtualization infrastructure (e.g. in the Hypervisor or a service VM
guest running on top of the Hypervisor). The VDP Module is also implemented in the
adjacent bridge.

Step 4: As part of the VDP exchange the adjacent Bridge retfrieves the VSI Type from the
VTDB by using the VTID and possibly the VSI Type Version and VSI Instance. The adjacent
Bridge stores the association of VLAN ID, VSI Type, VSI Type Version and MAC Address in
its local memory. This association is then applied to the fraffic flow from/to the VS|
Instance. Note the VTDB access protocol is not part of this document.

3.6.1.2 VSI Type Database (VTDB)

The VSI Type Database described above is used to store detailed definition of VSI types.
Again these definitions are outside the scope of this document. For information purposes
only, a VSI Type may contain access and traffic controls. Also for information purposes
only, a VS| Type Database is expected to be part of the database used by the edge
switch's Network Change and Configuration Manager.

VSl Type Definitions within a VIDB are identified by VSI Type ID (VTID) and VTID version.
Optionally, VSl instance specific definitions are possible.

The mechanisms used to create VSI Types in a VIDB are outside the scope of this
document. For information purposes only, each VSI Type may refer to different use
models, such as a server type, where each server type (e.g. web, file/print, e-mail) has a
unique VSI Type. Many other use models are possible.

3.6.2 VSI Type Definition and Management

V3l Type Definition and Management is outside the scope of this document. In other
words, the content of a VSI Type enfry in the VIDB and how that content is managed are
outside the scope of this document.

Similarly, VSI Type management and access protocols are outside the scope this
proposal. This is not a hindrance to deployment of VDP because current Data Center
Network (DCN) infrastructure includes mature tools for management and configuration
and can be easily deployed to manage VSI Types. Further, VSI Type Management

27

EVB, VEPA, ETTP, VDP, MC Proposal

approach proposed in this document matches well with currently deployed DCN
management practices. It is achieved by aligning management and configuration
responsibility with current organization structure e.g. VSI Types can be managed by
Network Administrator and deployed on servers by server administrators.

3.6.3 VSI Manager ID

VSI Profile VSI Profile VSI Profile

VM Magr A Magr B Mgr C
Manager

VM Edge Bridge Edge
VM] .

[.‘} /
VM *
vitgh b5 ﬁ —— L2 net(s)

VM] T
VM]

Figure 19. VS| Manager ID

VS| Manager ID tells the edge bridge which VSI Type Manager should be contacted to
obtain the VSI configuration information. The VSI Manager ID is part of VDP exchange
between Station and the Edge Bridge.

Note, the VSI Type ID or VSI Instance ID can also be used as index to look up VSI Type
configuration in VSl Type Database, see the following figure:

28

EVB, VEPA, ETTP, VDP, MC Proposal

VM

Manager - -
VM Edge Bridge Edge

v \ 4 I
M ¥ N e
Yo @ . ——

vRnitgh %.—-—O—L- = E: —— L2 net(s)

VM]

Figure 20. VS| Typeor Instance ID

3.6.3.1 VSI Manager ID Usage Example

The VSI Manager ID Identifies the VSI Manager with the Database that holds the detailed
VSI Type and/or VSl Instance Identifier definitions. The contents of the VSI Manager
Database are outside the scope of this proposal. The VSI Manager Database may use a
combination of the following fields to index into the VSI Manager Database:

o VS| Type Identifier

e VS| Type Version

e VSl Instance Identifier

f (VTID,
VS| Manager VSI Type Version,
. . ldentifier = » . VSI Instance)
a Ny I} .. all) ol | |
Vendor ..."'
Switch

Figure21. VS| Manager Database L ookup

29

EVB, VEPA, ETTP, VDP, MC Proposal

4. Ethernet Virtual Bridging TLV Semantics
The EVB TLV is used to:

e Adbvertise a station or bridge’s EVB functional and resource capabilities
e Activate common functional capabilities

e Reduce resource capabilities fo a maximum common value

The EVB TLV is exchanged via LLDP and conforms to the LLDP TLV specification. The EVB
TLV is illustrated in the following figure:

Octets: |1 |2 3 6 7 9 11 14 |15
TLV type = TLV information EVB EVB
127 string length @ f))th”ets) (SJ'-JE%F;; Capabilities | Current Config. @ \;fltets) 24 RTE
(7 bits) (9 bits) (2 octets) (2 octets)
Bits: |8 2l1]s 1 g ! 8. 65 1

<— TV header ——» <—— S —% TLV information string = 13 octets >
.- L .

T T K] T # VS # VSl
g :2 % ; E E g é E 2 5 5 E E § é Supported Configured
& £ :4 & (2 octets) (2 octets)
817 118 431211 g7 1|8 431211
Forwarding Forwarding

Mode —® % Capabilies # <a— "\, , ~—»<& Capabilities

Figure 22. EVB TLV Format

The EVB TLV fields are:

EVB Capabilities - The TLV describes EVB capabilities that are supported by the sender.
The capabilities are:

¢ Forwarding Mode:
o Standard 802.1Q forwarding
o Reflective Relay — enables frames to be reflected back through the
ingress port. For example, in a VEPA solution, frames exchanged
between co-located VM must flow through the adjacent bridge.
Reflective relay allows these exchanges o flow through a common
uplink between the station and the adjacent bridge.
= From the station, RR = TRUE indicates the station requests
reflective relay support.
= From the adjacent bridge, RR = TRUE indicates the bridge
supports reflective relay support.
= |f the station and the adjacent bridge set RR = TRUE, then
reflective relay can be enabled. The EVB TLV Current
Configuration RR bit is set to TRUE.
= |f either side does not set RR = TRUE, the reflective relay cannot

be enabled. The EVB TLV Current Configuration RR bit is set fo
FALSE.

e Retransmission Timer Exponent (RTE) — Indicates the current RTE value is
present

e Edge TLV Transport Protocol (ETTP) — Indicates the sender supports ETTP

30

EVB, VEPA, ETTP, VDP, MC Proposal

(0]
(0]

(o]

From the station, ETTP = TRUE indicates the station supports VDP.

From the adjacent bridge, ETTP = TRUE indicates the bridge supports
VDP.

If the station and the adjacent bridge set ETTP = TRUE, then ETTP can
be enabled. The EVB TLV Current Configuration ETTP bit is set fo TRUE.

If either side does not set ETTP = TRUE, then ETTP cannot be enabled. The EVB
TLV Current Configuration ETTP bit is set to FALSE.

802.1X Authentication Required — Indicates the sender’s software requires
802.1X authentication before applications can be network enabled

VSI Discovery Protocol (VDP) — Indicates the sender supports VDP. VDP is
dependent upon ETTP being enabled.

(0]
0

(o]

From the station, VDP = TRUE indicates the station supports VDP.
From the adjacent bridge, VDP = TRUE indicates the bridge supports
VDP.

If the station and the adjacent bridge set VDP = TRUE and ETTP ==
TRUE, then VDP can be enabled. The EVB TLV Current Configuration
VDP bit is set to TRUE.

If either side sets VDP = FALSE or ETTP == FALSE, then VDP cannot be
enabled. The EVB TLV Current Configuration VDP bit is set to FALSE.

EVB Current Configuration — The TLV describes the EVB capabilities that are currently
configured at the sender. Current configuration represents the intersection of the
capabilities and resources between the two senders on a link.

o Number of VSI Supported — The maximum number of VSI that can be supported
by the sender.

¢ Number of VSI configured — The maximum number of VSI that has been
configured by the sender.

From the station, it indicates the number of resources that should be reserved

by the adjacent bridge.

From the adjacent bridge, it indicates the number of active VSI discovered

and configured.

e Refransmission Exponent (RTE) — RTE is an EVB link or channel attribute used o
calculate the minimum ULP PDU refransmission tfime. The ULP PDU retransmission
time is calculated as follows:

The Retransmission Granularity (RTG) is set fo 10 micro-seconds.

The Retfransmission Multiplier (RTM) is set to 2RTE

The sender’s ULP fransmission timer is set fo RTM * RTG

Both sides agree to the largest common value

The following illustrates an example EVB TLV exchange between a station (e.g. a
hypervisor) and the adjacent bridge. This exchange is accomplished using LLDP. In this
example, both the station and the bridge support Reflective Relay, VDP, and a set of VSI

resources.

31

EVB, VEPA, ETTP, VDP, MC Proposal

Station (e.g.,
Hypérvisor)

Bridge

Bridge advertises

Server configures
itself from the
available
capabilities
according to
local policy.

<

EVB TLV — OFFER CAPABILTIES

Capabilities
Forwarding: Std, RR
Other: VS|, Auth, etc.
Current Config.(Std, None)
VSlIs Supported = J
VSIs Configured = 0

RIE= 15

what modes it can
support and the
max number of VSIs
it can handle.

RIE=10

@ EVB TLV - CONFIGURE

Capabilities & Current Config.
Forwarding: RR
Other: VS|, Auth, etc.

VSls Supported = J

VSIs Configured = K

Bridge matches
its configuration
to the limited

advertised by the
station.

EVB TLV — CONFIRMATION

Capabilities
Forwarding: Std, RR
Other: VS|, Auth, etc.
Current Config.
Forwarding: RR
Other: VS, Auth, etc.
VSIs Supported = J
VSIs Configured = K

RTE 10

Figure 23. Example EVB TLV Exchange

32

capabilities

But still advertises its
full set of
capabilities.

EVB, VEPA, ETTP, VDP, MC Proposal

5. Multi-Channel TLV Semantics and State
Machine

This chapter provides an overview, detailed semantics, and state machines for the Mulit-
Channel Discovery and Configuration Protocol (MDP).

5.1 MultiChannel Bridge Components and Operation

5.1.1 Introduction

The purpose of MDP is to configure S-VLANs (channels) used by a station to simplify the
internal configuration and operation of Virtual Station Interfaces (VSIs), Virtual Ethernet
Bridges(VEBs) and Virtual Ethernet Port Aggregators (VEPAS). S-VLANs are implemented in
stations and bridges using a specialized S-VLAN aware bridge component. This
component conforms to the Port-mapping S-VLAN Component specified in 802.1Qbc.

Bridge Edqge Intenal
Bricdlge Ports
Provides 1l -_i\ B 7] Extemal
1ovides the \ ,
o+ Bricdge Port
ability 1o VEB-4IR2 I
suppot VEBs, i g
VEPAs, and o |
T VM O— 3
individual links |V = |& .
on a single VM 01 E = I
hysical link [w —p—t_ A -
physical ink.
Hypervisor

STags used to
isolate SVLANSs

Figure 24. Example Multi-channel Block Diagram

The C-VLANSs carried and the reflective relay operative mode associated with each S-
VLAN is determined by the configuration of the Bridge. The configuration of the Bridge is
determined by its capabilities and by requests made MDP described here and using the
EVB TLV described in clause 4. The station’s and Bridge's configurations are exchanged
using LLDP TLVs. The configuration of S-VLANs is determined by an exchange of an LLDP
TLV at the LAN level of operation. One LLDP databases exists for each LAN connecting
between the station and Bridge. The reflective relay operation is then determined by a
separate LLDP TLV exchange which occurs on top of the S-VLAN (see EVB TLV).

33

EVB, VEPA, ETTP, VDP, MC Proposal

5.1.2 S-Component

The figure below is a “baggy pants” Bridge relay architecture model for the station and
Bridge. The S-Component in this relay conforms to the Port-mapping S-VLAN component
specified in 802.1Qbc. The S-Component is used to create S-VLANs (channels). The C-
Component of the Bridge is a standard Bridge C-Component relay with the exception of
additions for the reflective relay feature and support for EVB and VSI discovery,
configuration and control.

Not all the represented components need to be present in an implementation. If MDP is
present then the E-Components depicted will be present and are the operative parts for
forming E-VLANs. If no MDP is present then the E-Components may be present, however
disabled or may not be present at all. It is also possible that one or both of the E-
Components will be absent. If no VEB or VEPA is present (no V-Comp) then the E-
Component will couple directly to the end station LLC at the far left of the figure. It is
possible to have the E-Component without at V-Component or a V-Component without
an E-=Component.

MultiChannel
Station Bridge
HV
C-Comp Ctrl, LLDP, ETTP, EDP, VDP C-Comp Ctrl, LLDP, ETTP, EDP, VDP
=LLCSS
LL W w LLQ Lc| €-=->
C c c
= MS— S-Comp Control . S-Comp Control ve
Sy & LLDP & MDP <2 LLDP & MDP S o
—{ LLC Lq LL LL u
S TS T < MAC &2 j MAC 2 TS TrY T
S S 6\\9 ele @c’: 6%%\ ela éa S S
<-- <1---> A <---- > — <---> <--->
— 15 — s — IS A L s 4F s A s —
s S S s S S
I I
VEB/VEPA S-Comp S-Comp C-Comp

Figure 25. Station and Bridge V-Component and E-Component Block Diagram

MultiChannel is implemented using the S-Components, which form S-VLAN, along with
configuration of the Bridge side C-Component. The C-VLANs carried by each S-VLAN are
determined by configuration of the C-Component within the Bridge. Each S-VLAN is
connected from a single internal S-Comp Bridge Port on the station to a single internal S-
Comp Bridge Port facing an internal LAN within the Bridge. The internal LANs within the
Bridge each span between one S-Comp internal Bridge Port and one C-Comp internal
Bridge port.

The C-VLAN configuration and reflective relay configuration of the Bridge is determined
by the configuration of the C-VLAN aware component of the Bridge.

34

EVB, VEPA, ETTP, VDP, MC Proposal

5.2 MDP Discovery and Configuration

Multichannel is configured by the exchange of LLDP TLV at the LAN level. The exchange
begins when the system is initialized. The configuration protocol begins with the station,
which makes a request for channel resources from the Bridge. In response the Bridge
provides the best matching set of S-VLANs it is capable of providing. It is possible the
Bridge does not have all the resources requested in which case the Bridge response will
provide a subset of the requested S-VLANSs.

After initialization it is possible for the station to change it's multichannel configuration.
The Bridge seeing a change in the stations request will alter it's configuration to match
the needs of the station.

5.2.1 MDP TLV

The station and Bridge both use the same LLDP TLV to configure multichannel. This TLV is
in LLDP OUI format (802.1AB sub-clause 8.6). The MultiChannel capabilities, requests and
running configuration is encoded in the info field of this TLV as follows:

Capabilities

Vers Res1
(2 bits) (4 bits)

Octets: | 1 | 2 3 6 7 8 E | 10 11 12 12+3N
LV e = Tfs\t’”'r:‘;"é";;'r?” oul | subtype | 2 Version | #Channels [Default SVID| Res2 | ch. index/svip
(7 bits) (9 bits) (3 octets) | (1 octet) o (6 bits) (12 bits) (12 bits) (8 bits) (N x 3 octets)
Bits: 8 2 1| 8 1 8 716 1 54 1

<— TLV header -

A

TLV information string =10 + 3N octets >

Channel Index SVID
(12 bits) (12 bits)

Figure26. MDPTLV

¢ Role Bits (see note 3 regarding fies)
¢ $S(01b) - Indicates the sender assigns channels numbers and a default
SVID for the default channel 1 and requests SVID assignments from the
neighboring ‘B’.
» B(10b) - Indicates the sender accepts multichannel configuration requests
from its neighboring ‘S’ and that the sender will do the best it can to fill the
SVID assignment requests from the neighboring ‘S’.

» Version- Describes multichannel capabilities that can be supported by the
sender.
« Vers: 10b identifies this version, 00b disables MCh
e Resl: must be set to zero, ignored on receipt
e # Channels Supported - Identifies the number of SVID channels that are
supportable by the sender.

« Default SVID — Reserved for future use.

35

EVB, VEPA, ETTP, VDP, MC Proposal

» Res2 - must be set to zero, don't run if non-zero

e Ch#/SVID Pairs

— Channel # -- indicates the index number of the channel. The 'S’ assigns
channel numbers in the range 0-167. Zero is reserved. Channel number 1 is
the default channel and is always the first channel in the list of pairs. The
channel index should be between 1 and the maximum number of
channels supported by the port which is indicated by the # channel field
of the TLV.

— SVID -The S-Tag VLAN ID assigned to the channel. The ‘B’ assigns SVIDs to
channels in the range 1-0xffe. A 'S’ uses the 0 SVID to request an SVID
assignment from the ‘B’.

Notel: A maximum of 167 channels can be supported. Other formats (assuming
sequential SVIDs) could be defined to allow support for 2K+ channels.

Note2: This listing could be sparse (in order to indicate arrival and removal of channels).
The channel going away is recognized by that channel index/SVID pair is removed.

Noted: If we have a tie, two ‘B’s or two 'S's MultiChannel the MDP protocol will not run. In
the case of two Bridges, then one must take the S role while the other takes the B role.

Note4: The order of the list will determine the priority of SVID assignments. If the Bridge
does not have resources for all channels it will assign the first channels in the list.

5.2.2 MDP Configuration Procedures

The MDP protocol used to discover and configure S-VLANs begins by announcing the
presence of MDP along with the station and Bridge capabilities (1). After the initial
announcement the Bridge will look for a request from the station (1). Once the Bridge
sees a station request it will configure itself with and provide the best matching
configuration to the stafion (2). The statfion seeing that the Bridge is now configured goes
operative using the Bridge's configuration (3).

36

EVB, VEPA, ETTP, VDP, MC Proposal

Station Bridge

5.2.3

E S:RxSVIDs

< o

> Stinit
Stinit Multichannel TLV (Announce)
Multichannel is {enabled, disabled}
Multichannel TLV (Blind Propose) # Channels Supported = 8
Multichannel is {enabled, disabled} Role = {S,B}
Channels Supported = 6
Role ={S, B}

Channel / SVID assignments: {}
Channel/SVID assignments; {(1,0),(2,0),(3,0),(4,0)}

A

S:TxSVIDs
Multichannel TLV (Match Config, Assign SVIDs)
Multichannel is {enabled, disabled}

Channels Supported = 8
Role = {S,B}

v

Channel / SVID assignments: {(1,29), (2,7), (3,345), (4,10)}

Multichannel TLV (Accept SVID assignments)
Multichannel is {enabled, disabled}

Channels Supported = 6

Role = {S, B}

Channel / SVID assignments: {(1,29), (2,7), (3,345), (4,10)}

Figure 27. Example MDP TLV Exchange

MDP Configuration Variables

The following variables are used by the MDP Configuration state machine to perform

multich

annel configuration. The MDP requires each side of the configuration be assigned

arole as a Bridge or a Stafion. This is done by setfting the AdminRole variable. In most

pieces

of equipment the station or bridge role will not be settable, though the protocol

allows for equipment which can take either role. For MDP to configure multichannel one
side must take the station role and one side must take the Bridge role. If both sides of the

LAN ha
multich

ve equipment configured as stations or as bridges the protocol will not configure
annel.

AdminRole: Is the administratively configured value for the local port’s role
parameter. The value of AdminRole is not reflected in the MCh TLV. The
AdminRole may take the value S or B. S indicates the sender is unwilling to accept
multichannel configuration (mode, # channels supported, channel index) from its
neighbor and that the sender is willing to accept SVID assignments from the
neighbor. Stations usually take the S role. B indicates the sender is willing to
accept multichannel configuration (mode, # channels supported, channel
index) from its neighbor and that the sender is willing do the best it can to fill the
SVID assignments from the neighbor. Bridges usually take the B role.

OperRole: The current operational value of the Role parameter in the local port.
This value is included as the Role parameter in the MCh TLV and may take values
S or B as described for AdminRole.

37

EVB, VEPA, ETTP, VDP, MC Proposal

RemoteRole: Indicates the value in the remote MCh TLV role field. rwNull indicates
either the TLV was not present in the last LLDP PDU or that no LLDP PDUs have
been received. rwS and rwB indicate that the Role field was set in the MCh TLV
received and that it had a value of S or B respectively as described for the
AdminRole variable.

mchState: The current running state of MultiChannel. The values for this variable
are NOTRUNNING or RUNNING.

AdminVersion: The administratively configured value for the MCh capabilities
parameters. This value is included as the MCh Cap parameter in the MCh TLV. If
the value is DISABLE = 000b it means MCh is disbled. If the value is VERO = 100b it
means this version.

AdminChnCap: The administratively configured value for the Number of
Channels supported parameter. This value is included as the # Channels
supported parameter in the MCh TLV.

AdminSVIDWants: The administratively configured value for (channel,SVID) pairs
wanted by a S. Not used by a B. The value NONE means no channels are
wanted. The channel numbers may be any valid number from 1-Oxffe. A 0
channel number may be used o reserve space in a TLV. The SVID values are 0
indicating the S is requesting an SVID assignment from the ‘B’. This value is used o
form the (channel,SVID) pairs in the MCh TLV.

LastSVIDWants: A local temporary copy of the AdminSVIDWants.

LocalSVIDPool: The set of SVIDs and bridge ports available for MCh assignment.
These are determined by both administrative resource assignments and by
resource availability. The OperSVIDList for a B role must be drawn from the
LocalSVIDPool.

LastLocalSVIDPool: A temporary copy of the LocalSVIDPool.

OperVersion: The current value for the MCh version parameter. This value is
included as the MCh version parameter in the local MCh TLV. The value VERQO =
100b means this version. The value DISABLE = 000b mean don't run MultiChannel.
OperChnCap: The current value for the Number of Channels supported
parameter. This value is included as the number of channels supported
parameter in the local MCh TLV. The range for this variable is 1-0xffe.
OperSVIDList: The current value for (channel,SVID) assignments. This is the list of
(Channel,SVID) pairs included as the (Channel,SVID) pairs in the local MCh TLV.
The total size of the list may not exceed 167 pairs. If the list is empty its value is
NONE. The valid range for each channel of this list is from 1-Oxffe. The valid range
for each SVID in the list is from 1 to Oxfff. When the SVID is value is Oxfff the SVID is
unconfigured. For the S role a SVID of Oxfff indicates a request for a channel. For
the B role an SVID of Oxfff indicates an unconfigured channel.

RemoteVersion: The current value for the remote MCh version parameter. This
value is included as the Version parameter in the remote MCh TLV. NULL means
no remote MCh TLV exists in the local LLDP database. The value for this variable
may be VERO=100b setting any other value will result in stopping MultiChannel
operation.

RemoteChnCap: The current value for the Number of Channels supported
parameter. This value is included as the number of channels supported
parameter in the remote MCh TLV. NULL means no remote MCh TLV exists in the
local LLDP database. The range for this variable is 1-Oxffe.

38

EVB, VEPA, ETTP, VDP, MC Proposal

RemoteSVIDList: The current value for (channel,SVID) assignments. This is the list of
(Channel,SVID) pairs included as the (Channel,SVID) pairs in the remote MCh TLV.
NULL means no remote MCh TLV exists in the local LLDP database. If the list is
empty but the MCh TLV is present its value is NONE. The total size of the list may
not exceed 167 pairs. The valid range for each channel of this list is from 1-Oxffe.
The valid range for each SVID in the list is from 1 to Oxfff. When the SVID is value is
Oxfff the SVID is unconfigured. For the S role a SVID of Oxfff indicates a request for
a channel. For the B role an SVID of Oxfff indicates an unconfigured channel.

5.2.4 MDP Configuration Procedures

The MDP state machine uses three procedures. These are the SetSVIDRequest ()
procedure which is used place a new request from the station or set the initial TLV for a
Bridge. The RxSVIDConfig() procedure is used by the station to configures a new set of S-
VLANs and SVID assignments. The TxSVIDConfig() is used by the Bridge to respond to the
station’s request for S-VLANSs.

SetSVIDRequest(OperRole, AdminSVIDWants, OperSVIDList)

— This function creates the OperSVIDList placed in the Local TLV database.

— If the OperRole for the equipment is R then the OperSVIDList remains
unchanged.

- If the OperRole for the equipement is S two possible cases exist. In the first
case we don’'t have any configured channels, indicated by OperSVIDList
being equal o NONE. In this case the function places the
AdminSVIDWants in OperSVIDList. In the second case we already have a
running configuration indicated by the OperSVIDList not equal to NONE. In
this case the function compares the AdminSVIDWants with the
OperSVIDList. All active channels in the OperSVIDList which are in the
AdminSVIDWants are kept active and in addition any channels not
currently in the OperSVIDList are requested by including them in the
OperSVIDList along with a Oxfff SVID number.

RxSVIDConfig (OperSVIDs, LastRemoteVIDList)

— This function creates the OperSVIDList placed in the Local TLV database
for an S role equipment

— The function compares the AdminSVIDWants with the LastRemoteSVIDList.
For each AdminSVIDWants channel with an SVID assignment in the
LastRemoteSVIDList a (Channel,SVID) pair is generated in the OperSVIDList.
For each AdminSVIDWants channel without an SVID assignment in the
LastRemoteSVIDList a (Channel 0xfff) pair is generated in the OperSVIDList.

TXSVIDConfigB(OperChnCap, RemoteChnCap, LastLocalSVIDPool,
RemoteSVIDList, OperSVIDList)

— This function creates the OperSVIDList placed in the Local TLV database
for an S role equipment

— First the function takes the smaller of the OperChnCap and
RemoteChnCap and fruncates the RemoteSVIDList fo the smaller of the
two.

- A new OperSVIDList is created as follows:

e For each channel in the RemoteSVIDList with a (channel,SVID) pair
in the OperSVIDList the (channel,SVID) remains unchanged unless
the SVID is no longer part of the LastLocalSVIDPool. If the SVID is no
long in the pool a new one is selected if available. If no SVID is

39

EVB, VEPA, ETTP, VDP, MC Proposal

available the (channel,SVID) pair will be deleted from the
OperSVIDList.

* For each channel in the RemoteSVIDList without a (channel,SVID)
pair in the OperSVIDList an SVID is obtained from the
LastLocalSVIDPool (the pool for Bridge resources) if available. If no
SVID is available the (channel,SVID) pair will be deleted from the
OperSVIDList.

5.2.5 MDP Configuration State Machines

The MDP state machine operates on TLV exchanged using LLDP operating at the LAN
level (figure 28).

BEGIN

2

OperVersion = AdminVersion
OperRole = AdminRole
OperChnCap =0
OperSVIDList = NONE
mchState = NOTRUNNING
AdminChnCa 1= OperChnG OperVersion== VERO &&
minChnCap != OperChnCap ion ==

AdminSVIDWant s != LastSVIDWants RemoteVersion VERO AdminChnCap != OperChnCap
ChannelRequest

OperChnCap = AdminChnCap
LastSVIDWants = AdminSVIDWants
SetSVIDRequest (OperRole, AdminSVIDWants,

OpersSVIDLIST
OperRole == S && OperRole == B &&
RemoteRole == wB RemoteRole == rwS
AdminEnable != OperEnable
AdminRole != OperRole > TxSVIDs
RxSVIDs LastRemoteSVIDList = RemoteSVIDList
lastRemoteSVIDList = RemoteSVIDList LastocaISVIDRool = LocalSVIDPool
RxSVIDConfig (XSvIDConfioB(
OpersviD OperChnCap,
per S, . RemoteChnCap,
LastRemoteVIDList) LastLocalSVIDPool,
mchState = RUNNING RemoteSVIDList,
OperSVIDList)

Q \L mchState = RUNNING
@ LastRemoteSVIDList != RemoteSVIDList \L

LastRemoteSVIDList = RemoteSVIDList
|| LastLocalSVIDPool != LocalSVIDPool

AdminVersion != OperVersion||
AdminRole != OperRole ||

OperRole =S || AsminVersion != OperVersion||
RemoteRole = rwB AdminRole != OperRole ||
OperRole =B ||

RemoteRole |= rwS

Figure28. MDP State Machine

This LLDP instance is one per physical LAN associated with the Provider Network Port of
the S-Component, which faces the LAN connecting the station to the bridge. If either the
station or Bridge is not capable of multichannel operation no MCh-TLV will be inserted in
the LLDP database. The absence of a MCh-TLV therefore indicates that the station or
Bridge is not capable of multichannel. For MDP to progress both sides must indicate they
are capable of MultiChannel operation, have the same version number and one side
must have the ‘B’ role while the other side must have the 'S’ role as indicated by the role
bits of the MCh-TLV.

40

EVB, VEPA, ETTP, VDP, MC Proposal

If both sides are MultiChannel capable, exactly one side has the 'S’ role and one side
has the ‘B’ role, and the ‘B’ has at least some of the resources requested by the 'S’ side,
the state machine will configure MultiChannel. The configuration proceeds by the ‘B’
providing the best match it can to the ‘S’'s requested channels and configuration. The ‘S’
makes the resource request, the ‘B’ responds with its best matching resources, the 'S’
then goes operational and reports its running configuration to the ‘B’, and finally the ‘B’
goes operational with the running configuration of the 'S’.

In the event the 'S’ wishes to change its configuration it alters the request in its MCh-TLV
and then follows the same process as above. If the ‘B’ losses its ability to support the
current configuration it can alter the current configuration in its MCh-TLV at which time
the 'S" must drop down to the resources supplied by the ‘B’.

In the event of a change of the administered parameters the current operating S-VLANs
must be terminated the configuration machine re-initialized.

41

EVB, VEPA, ETTP, VDP, MC Proposal

6. Edge TLV Transport Protocol (ETTP) TLV and
State Machine

This chapter will describe an architectural overview of the Edge TLV Transport Protocol
(ETTP) protocol, followed by the ETTP TLV semantics and associated state machines.

6.1 Requirements

ETTP was designed with the following protocol requirements:

¢ Semantics associated with the <ULP, ETTP> interface:

A single link operating in "multi-channel" mode has one ETTP per channel.

For VSI, there is one VSI agent per channel ETTP and that agent may have

multiple VSI instances sharing a single channel.

The <ULP, ETTP> interface is based on a complete ULPDU (i.e. the group of TLVs

that are handed to ETTP for transmission).

e The number of octets in the ULPDU may be less than the maximum number of
octets that can fit into a ETTP frame.

e The number of ULP TLVs may be less than the maximum number
that can fit into a ETTP frame.

e Procedures are used to describe how the ULP hands off ULP PDUs
to ETTP and how ETTP hands off ULP PDUs to the ULP.

e Given the <ULP, ETTP> interface is based on full ULPDUs, no immediate
processing is needed at the ETTP level.

¢ Outside the scope of this proposal are the semantics for handling: link down;
and how multiple ULPs arbitrate when sharing the same ETTP.

e ETTP acknowledgement and sequencing semantics.

A ETTP acknowledge means the ETTPDU was received and there is a free buffer

available to enable another send.

e |t doesn't mean the ETTPDU were delivered to the ULP.

At the transmit side, if a ETTP Acknowledge is not received within an Ack timer

period, ETTP will retry the ETTPDU up to an EVB negotiated Retry Count is reached.

e The value of the EVB negotiated Retry Count is on a per link basis not channel.

Once the receive side ETIP delivers the ULP PDU to the ULP through the receive

side hand-off procedure, the ETTP buffer becomes available for another send.

¢ The Acknowledgement must be sent in a separate ETTPDU
(vs piggy backing onto a Transmit message in the opposite direction).

¢ The receive side will issue a ETTP Acknowledgement after the completing the
receive side hand-off procedure.

e If the receive side hand-off procedure takes too long, the receive side ETTP
may foss the ULP PDU and send back an ACK to indicate the ETTP buffer is
free on the receive side.

e Note: The length of time the send side waits, before tossing the ULPDU
should not be less than the retransmission period times the maximum
number of retries.

¢ Semantics associated with slow ULP Data Unit reception (e.g. raising a
flag) are outside the scope of this proposal.

42

EVB, VEPA, ETTP, VDP, MC Proposal

e Sequence numbering must be used to detect duplicate vs new ETTPDUs.

e ETTP will not provide a keep-alive mechanism. Instead each ULP must do so.

e ETTP will not provide a digest at the ETTP level and any ULP Data Unit (or TLV)
database synchronization is left up to the ULP.

Note, the intent is fo have the server's virtualization infrastructure (e.g. Hypervisor)
implement ETTP, versus having the NIC implement ETTP.

6.2 Edge TLV Transport Protocol Data Unit

This section specifies the format of a ETTP Data Unit, along with the header that is added
to and removed from ETTP frames by the ETTP function. The ETTP header allows each ETTP
Data Unit from the sender to be identified through a sequence number, which the
receiver acknowledges by sending a ETTP Acknowledgement frame.

Ethertype = TBD Sub-type Mode Sequence Number |ULPDU
&< 20ctets > [€2O0ctets > |[& 1 Octet > [& 2 Octets 2> Optional

Figure 29. ETTP Data Unit

The destination address of the Ethernet frame that contains a ETTPDU has the following
semantics:
e Nearest bridge (01-80-C2-00-00-0E) for ETTP running at the link layer.
e Nearest Customer Bridge (01-80-C2-00-00-00) for ETTP running over a channel.
e Nofte, ETTP should also be allowed using a Uni-cast address.

The source address shall be the sending station or port individual MAC address.

A new Ethertype will be needed for ETTP. A ETTP exchange will run at the link if the link is
not configured for multichannel. If ETTP is performed over Multi-channel,
then the STAG for the channel shall precede the ETTPDU.

The ETTPDU contains:

e Sub-type - a 2 octet field that defines the ULP type included in the PDU. Note for
Ack’s the sub-type is ignored at the station.

¢ Mode - Identifies whether the operation is a:
e ETTP request (0x00)
e ETTP acknowledgement (0x01).

e Seqguence number - identifies the sequential order of the PDU, with respect to other
ETTPDUs. The starting sequence number may start anywhere for the first ETTPDU, but
the sequence number for each subsequent new ETTPDU is incremented by 1.

6.3 ETTP Procedures

Two procedures are used to hand-off Data Units between the ULP and ETTP:
ETTP_UNITDATA.request and ETTP_UNITDATA.indication. The implementation of these two
procedures is outside the scope of this proposal. These <ULP, ETTP> interface procedures

43

EVB, VEPA, ETTP, VDP, MC Proposal

may be implemented in many ways, including a queue. Also, the system must have a
way of associating the ulptype with a specific ULP.

The ETTP_UNITDATA.request is invoked by the ULP at the sender to nofify ETTP that a ULPDU

is ready to be fransmitted. The ulpdu parameter is a unit of work from the ULP. For

example, for VSI it consists of a set of VSI TLVs passed from the VSI ULP to ETTP for

fransmission, where the set of TLVs must be less than or equal to the maximum allowed

ETTPDU. Following is the format for the ETTP_UNITDATA.request procedure:
ETTP_UNITDATA.request (ulptype, ulpdu)

The ETTP_UNITDATA.indication is invoked by ETTP at the receiver to indicate a ULPDU has
been successfully received and is available ULP processing. The ulpdu parameter is unit
of work from the ULP. For example, for VS| it consists of a set of VSI TLVs passed from the
ULP to ETTP for fransmission, where the set of TLVs must be less than or equal to the
maximum allowed ETTPDU. Following is the format for the ETTP_UNITDATA.indication
procedure:

ETTP_UNITDATA.indication (ulptype, ulpdu)

6.4 ETTP State Machines

There are two state machines used by each ETTP instance: fransmit and receive. The
fransmit state machine is invoked through the ETTP_UNITDATA.request procedure. The
receive state machine is invoked upon reception of a ETTP Data Unit and it invokes the
ETTP_UNITDATA.indication procedure.

6.4.1 ETTP Transmit State Machine

44

EVB, VEPA, ETTP, VDP, MC Proposal

BEGIN

l

initTransmit

Ll

— transmitETTPDU <
ackTimer done && Transmit ETTPDU;
(Retries < Start ackTimer
maxRetries) l

waitForAck
— Retries ++

Retries == maxRetries ||
[ackReceived && (Sequence
== ackSequence)]

requestPDU
Retries = 0;
Sequence++

ETTP_UNITDATA.request

Figure30. ETTP Transmit State Machine

The first entrance into tfransmitETTPDU is used to initiate the sequence counting on the
receive side. Thatis, an ETTP Frame that simply contains the ETTP header is sent and an
ackTimer is started. The waitForAck state waits for the L-ACK to be received that
matches the last fransmitted ETTP sequence number. If an L-ACK is received that
matches the last fransmitted ETTP sequence number or the number of retries exceeds the
maximum number of retries, the sender will stop transmitting the ETTP Frame and proceed
to requestPDU. If an L-ACK is not received within an ackTimer period and the number of
retries is less than the maximum number of retries, the sender will retransmit the ETTP
Frame. The requestPDU state increments the sequence count and waits for the
ETTP_UNITDATA.request procedure to be invoked.

Note, the starting sequence number may start anywhere for the first ETTPDU. Also a Link
Down event may restart the sequence number at the same point every time or not.

6.4.2 ETTP Receive State Machine

45

EVB, VEPA, ETTP, VDP, MC Proposal

|

initReceive
lastSequence = NULL

receiveWait

ETTPDU received

A
receiveETTPDU
If (validate(ETTPDU))
seqETTPDU = sequenceOf(ETTPDU);

[1

seqETTPDU !=lastSequence
y

sendACK
Invoke ETTP_UNITDATA.indication procedure

lastSequence = seqETTPDU;

seqETTPDU == lastSequence

resendACK
sendAcknowledgement(seqETTPDU)

Figure 31. ETTP Receive State Machine

The first entrance into InitReceive is used to set the sequence counting fo NULL and then
proceed to receiveWait, which waits for an ETTP Data Unit to be received. The
receiveETTPDU validates the ETTPDU and sets the current sequence number to the
sequence number of the transmitted ETTPDU. If the current sequence number doesn’t
match the last fransmitted ETTP sequence number, then in sendACK the ETTP Data Unit is
delivered to the ULP and the lastSequence number is set to the current sequence
number. If the current sequence number doesn’t match the last transmitted ETTP
sequence number, then in resendACK an L-ACK is sent.

46

EVB, VEPA, ETTP, VDP, MC Proposal

7. Virtual Station Interface (VSI) TLV and State
Machine

This section covers the Virtual Statfion Interface (VSI) Discovery and Configuration
Protocol (VDP) and State Machine. VDP uses ETTP (Enhanced TLV Transport Protocol) for
VDP exchanges.

7.1.1 VSI Discovery and Configuration TLV

VSITLV is used for discovery and configuration and is exchanged between the Station
and Bridge. One or more VSI TLVs are transported in an ETTP Data Unit. Following is the
format and semantics for a VSI TLV:

Octets: |1 |2 3 6 9 11 12 15 16 32 33 32+M
TLV type = | TLV information vs vs Ve Type vs MAC/ VLAN
127 string length @ ;)cttJ'lsts) (Slj k;t;gte) (ZM(?cdtzt) (er;ite.;s) Mgr ID | Type ID | Version |Instance ID Format N(I,"\-\AC(I);:/[ASI\)IS
(7 bits) (9 bits) (1 octet) | (3 octets) | (1 octets) | (16 octets)| (1 octets)
Bits: | 8 21118 1

| 4— VS Typeand Instance —P4— MAC&VLAN Info —P

4——— vg Attributes 14

»

44— TLV header >4 TLV information string = 11+ 3N octets 4

Figure 32. VDPTLV
Index — VSl index — Offset in bit-arrays containing state and configuration status of VSIs.
Mode - Indicates VSI TLV Mode

® First octet identifies a pre-associate, associate, de-associate, or the
corresponding confirmation or rejection for each.

® Second octet is used during a rejection to indicate the reason for the pre-assoc
or assoc rejection.

VS| Manager ID - Identifies the VSI Manager with the Database that holds the detailed
VS| type and or instance definitions. VSI Manager ID can be used to obtain IP address
and/or other connectivity and access information for the manager.

VS| Type ID (VTID) — The integer identifier of the VSI Type.

VS| Type ID Version — The integer identifier designating the expected/desired version of
the VTID

VSl Instance ID — A globally unique ID for the connection instance. The ID shall be done
consistent with IETF RFC 4122.

Format - identifies the format of the MAC and VLAN information that follows in the TLV.
Note, the VSI TLV allows multiple formats, which makes possible extensions in the future.

MAC/VLANs - Listing of the MAC/VLANSs associated with the Virtual Station Instance (VSI).
Following is the format for Format = 1

47

EVB, VEPA, ETTP, VDP, MC Proposal

Entries MAC VLAN ID
(2 octets) | (6 octets) | (2 octets)

Y
X # Entries

Figure 33. VDP Format = 1 Schema

Note, the station and switch environments and their common understanding of the VTID
meaning is outside the scope of this TLV. Also, the contents of a VSI Type are outside the
scope of this proposal.

7.1.1.1 VSITLV — Mode and Mode Response
The purpose of the Mode field is to identify the type of VSI TLV. It is defined as follows.

VSITLV Request field: 1st octet

Pre-Associate: 0x00
Pre-Associate with resource reservation: 0x01
Associate: 0x02
De-Associate: 0x03

VSI TLV Response field: 2nd octet
For all the responses, the bridge reflects the same VSITLV fields as the Requester had
sent. On requests, response field is inifialized to 0x00 (Success). Following are the possible
values of the response field.
Success: 0x00
The VSI Request was successfully completed by the switch

Invalid Format: 0x01
The VSI Format is not supported by the switch

Insufficient Resources: 0x02
The switch does not have enough resources to complete the VSI operation
successfully.

Unused VTID: 0x03
The VSl referenced by the VSIID does not exist in the VSI Manager database
referenced by the V3| Manager Identifier

VTID Violation: 0x04
The VSl referenced by the VSIID is not allowed to be associated with the VTID.

VTID Version Violation: 0x05
The VSl referenced by the VSIID is not allowed to be associated with the VTID
Version.

Out of Sync: 0x06

The VTID or one of the VSI List fields used in the Associate is not the same as
the corresponding field used in the Pre-Associate.

48

EVB, VEPA, ETTP, VDP, MC Proposal

Reserved 0x08 — OxFF
These Responses are reserved for future use.

Mode and Mode Response fields are used under the control of VDP state machines.

7.1.1.2 VSI TLV Mode and Responses Semantics

Following are the semantics association with each V3I TLV Request.

7.1.1.2.1 Pre-Associate

The Pre-Associate is used to pre-associate a VSl Instance Identifier to a VSI Type ID. If
required, the bridge should obtain VSI Type Definition from the VSI Manager Database.
The bridge must validate the request (see below) and fail it in case of errors (see below
for responses). Successful Pre-Association does not enable any traffic from VSI. Note that
VSI may still be associated at another station. The Pre-Associate enables faster response
to an Associate, by allowing the bridge to obtain VSI Type state, prior fo an association.

The second Mode octet is used by the bridge to communicate the results of the Pre-
Associate requested for the VS| Instance ID (VSIID).

Following are the mode and responses with their semantics:

o Success - Pre-Associate was successful. The switch shall permit a subsequent
Associate or De-Associate by the VS| referenced by the VSI Instance Identifier.

¢ The following are all unsuccessful Pre-Associate Completions. For each of these, the
switch shall not permit a subsequent Associate or De-Associate by the VSl referenced
by the VSIID.
e Invalid Format.

Insufficient PT Resources.

Unused VTID

VTID Violation

VTID Version Violation

Pre-Associate requires resource lease timer mechanism to conserve Bridge resources.
Pre-Associate does not allow any fraffic from VSI which is enabled when the VSl is
Associated.

7.1.1.2.2 Pre-Associate with Resource Reservation

Pre-Associate with Resource Reservation has same steps as Pre-Associate but also
reserves resources.

Bridge should validate required resources and place reservation to ensure resources for
subsequent Associate step. Pre-Associate requires resource lease timer mechanism to
conserve Bridge resources. Pre-Associate does not allow any traffic from VSI which is
enabled when the VSl is Associated.

Second Mode octet contains the results of the Pre-Associate requested for the VSI
Instance ID (VSIID). Following are the mode and responses with their semantics.

49

EVB, VEPA, ETTP, VDP, MC Proposal

e Success - Pre-Associate with Resource Reservation was successful. The switch shall
permit a subsequent Associate or De-Associate by the VS| referenced by the VSI
Instance Identifier.

e The following are all unsuccessful Pre-Associate with Resource Reservation
Completions. For each of these, the switch shall not permit a subsequent Associate or
De-Associate by the VSl referenced by the VSIID.
¢ Invalid Format.

Insufficient PT Resources.

Unused VTID

VTID Violation

VTID Version Violation

7.1.1.2.3 Associate

Associates the VSl Instance ID with the VSI Type ID (VTID). If VSI Type definition is not
already cached in the bridge, the bridge fetches the VSI Type definition from the VS|
Type definition Database. Bridge allocates required bridge resources for the referenced
VSI. The Bridge binds specific MAC/VLAN pairs with the VSI Type ID which allows
classification of L2 traffic to the VSI and enforcing of VSI Type controls. Bridge activates
the configuration for the VSI Type ID. This association is then applied to the fraffic flow
from/to the V3l Instance.

For a given VSI Instance ID, a Station may issue an Associate without having previously
issued a Pre-Associate or Pre-Associate with Resource Reservation. Same VSI Instance
may not be successfully Associated more than once on two different bridges or ports.

In VSITLV, second octet in the mode field contains the results of the Associate request
performed for the VSI Instance Identifier. These are described below.

e Success - Associate was successful. Prior to issuing this response, for a format 1 VS|
TLV, the bridge shall associate the VSI Type referenced by the VSI Type Identifier and
VSl Type Version with the MAC Address, VLAN and VSIID.

¢ The following are all unsuccessful Associate Completions.
¢ Invalid Format
e Insufficient Resources - If the Associate was preceded by a successful Pre-

Associate with Resource Reservation, then the bridge shall not issue this response.

e VTID Violation
e VTID Version Violation
e Outof Sync

7.1.1.2.4 De-Associate

De-associate a VSI Instance Identifier from the associated VTID. Pre-Associated and
Associated VSlIs can be De-Associated. De-Associate releases resources and de-
activates the configuration associated with the VSl instance. A VSI Instance may get De-
Associated by bridge due to bridge error situation or management action.

In VSITLV, second octet in the mode field contains the results of the De-Associate request
performed for the VSl Instance Identifier. These are described below.

50

EVB, VEPA, ETTP, VDP, MC Proposal

e Success - De-Associate was successful. Prior to issuing this response, for a format 1 VSI
TLV, the bridge shall de-associate the VSI Type referenced by the VSI Type Identifier
from the the MAC Address, VLAN and VS| Instance ID.

e The following are all unsuccessful De-Associate Completions.

e Invalid Format
e VTID Violation
e VTID Version Violation

Note: The result of the above semantics is that De-Associate can be issued at any tfime.

7.1.1.2.5 VSI Type ID (VTID) Semantics

VS| Type ID (VTID) is an integer value field used to identify a pre-configured set of
controls/afttributes that are to be associated with a set of VSlIs.

VTID contents and meaning and the database used to contain the VSI Type are outside
the scope of this effort. One VTID may describe the VSI Type configuration of multiple
VSlIs. The VSI Type content referenced by the same VTID may differ between switches
and VEBs. For example: same VTID is used by switches from two different vendors; or
same VTID is used by a VEB and vendor switches.

7.1.1.3 VSI Type ID Version Semantics

VTID Version is integer identifier designating the expected/desired VTID version.
The VTID Version enables a VS| Manager Database to contain multiple VSI Type versions.
It allows smooth migration to newer VS| types.

7.1.1.4 VSI Instance ID

VSl Instance ID is a globally unique ID for the VSl instance. The ID shall be done consistent
with IETF RFC 4122. VSI ID is gets generated when VSl instance is created by VSI Instance
Manager at request of VM Manager. VS| Instance creation mechanism is outside scope
of this proposal but expected to be created by VM Manager or VS| Manager.

7.1.1.5 MAC - VLAN Information Format

#Enftries MAC VLAN ID
(2 octets) (6 octets) (2 octets)

|

X# of entries

Figure 34. MAC-VLAN Information Format 1

51

EVB, VEPA, ETTP, VDP, MC Proposal

MAC-VLAN Format-1 contains the set of MAC Addresses and VLANs to be associated
with the VS| Instance ID. Note the bridge uses MAC+VID to identify traffic from VSI and to
steer the frames.

Field:
#MAC-VLAN pairs: 2 octets

Per MAC-VLAN Pair Content:
MAC address: 48 bits

VID: 12 bits

7.1.2 VDP Requirements and Assumptions

Following are VDP requirements associated met by VDP state machines described in this
section:
1. VDP must support a VSI Pre-Associate (with and without resource reservations),
Associate and De-Associate.
2. Associate, Pre-Associate and De-Associate are Idempotent i.e. can be repeated.
3. The bridge must allow for an Associate to be issued without the need for a
previous Pre-Associate.
VDP may be used in conjunction with both a VEPA and VEB.
5. VDP utilize ETTP as the fransport for a VDP Data Unit that contains one or more
VDP TLVs. VDP utilizes the following capabilities of ETTP:
Transport will be fransmitting TLVs in-order and are received in-order.
Flow control
Transport error from ETTP and LLDP are indicated to VDP
ETTP provides best effort delivery of TLV. At the Station, if a VDP
Acknowledgement is not received, within an Acknowledgement timeout
period, VSI exits the state machine. The Acknowledgement timeout
period is defined as 2*ETTP retransmission period * Maximum number of
refries, plus a locally administered wait that is outside the scope of this
document.
6. Health TLV mechanism to ensure:

1. Bridge resources are not reserved for too long a time period for inactive
VSls (lease semantics)

2. Allow removing resources from inactive VSIs with the goal of

1. Conserving bridges resources (Number VSIs being handled by
bridge can be large).
2. Prevent inactive or VMs in error state to continue to hold resources.

3. For multichannel, timeout out values to be negotiated on a per channel
basis between station and bridge. One timeout used for all ULPs on the
channel negotiated using EVB TLV.

4. If multichannel is not enabled, timeout out values to be negotiated per
link basis between station and bridge. One tfimeout used for all ULPs on
the link negotiated using EVB TLV.

7. Ensure VSl state and configuration between the Station and the Bridge remains
consistent.

8. Hard errors at the Bridge or the Hypervisor that can impact individual VSI or
Hypervisor/Bridge as a whole are handled by removing all VSI configuration.

>

rOWOdN =

52

EVB, VEPA, ETTP, VDP, MC Proposal

9. Bridge and Station Errors are detected through one or more of the following
mechanisms.
1. VSIKEEP-ALIVE (periodic transmission of VSI TLV from station and response
from Bridge)
2. ACK Timer
10. Supports for switch/hypervisor administrator actions that force VSI De-Associate.
11. Should enable statistics and logging capability.

7.1.3 VDP - Local Variables and Procedures

vsiState: Local variable for current state.

localTLV: Current local (active) TLV (configuration)

AdminTLV: TLV from local administration. In addition appropriate
localChange variable is set. It allows mode change

RemoteTlLV: TLV received from remote.

TXTLV (vsiTLV): Transmits AdminTLV using TLV fransport/DBA service interfaces

ProcRxAndSetCfg(vsiRemoteTLV,vsiLocalTLV,vsiState):
Processes receive TLV and Sets local TLV variable based on
received Remote TLV and vsiState. In case of error, returns error.
This function handles PreAssociate with and without resource
reservation case as well as accessing VSI Type definition fetch, if

required.
StartACKtimer(): Resets ACKTimeout local variable to FALSE and Starts ACK fimer.
Response (ACK or NACK is expected before timer expires.
ACKTimeout: This local variable is setf to true, if ACK timer expires

vsiErrorPerm(vsiRemoteTLV):
processes the vsiRemoteTLV and returns TRUE is response code is
unrecoverable (permanent) error.

The next sections contain the VSI State Machine. Following are notes regarding those
state machines:

1. The purpose of the ACKtimer is to catch the unusual case of a TLV getting
lost. The following architectural minimum shall be used: The
Acknowledgement timeout period is defined as 2*ETTP retransmission
period * Maximum number of retries, plus a locally administered wait that
is outside the scope of this document.

2. For any VSI ACK received for a non-active VSI the station shall drop the

packet.

VS| State is set to NULL on exit.

The VSI State Machine does will not implement retry mechanism on NACK.
Instead the ULP can process the NACK reasons and retry the VSI
operation.

5. VDP state machine will exit on receiving NACK.

> w

53

EVB, VEPA, ETTP, VDP, MC Proposal

7.1.4 Station VSI State Machine

Following is the VSI State Machine for the Station.

[Local VSI-START]

INIT

vsiLocalTLV = NULL
vsiState = UNASSOCIATED

(Assoc_NAK_Rx && VsiState == |Assoc)
) Il ACKTimeout || DeAssocAck Rx
——————————————————— b[EXIT J: —--------

X
]
:ACKTimeout || DeAssoc Rx

localChange-PreAssoc

PreAssoc_NAK_Rx Il
ACKTimeout || DeAssocAck Rx

1
1
'
1
1
1
1
1
1
localChange-Assoc :
1
1
1
1
1
1
1
1
1
1

A 4
PREASSOC_PROCESSING Y

] - _,[DEASSOC_PROCESSING ASSOC_PROCESSING 1, | _______. .
1 n

TXTLV(PreASSOC) "
samackTimery |77 oo TXTLV(DeASSOC) | | | TXTLV(ASSOC) | "
T ' : StartACKTimer() StartACKTimer() ::
! " '
. h Assoc_ACK_Rx || ::
- - 1 1
2 . (Assoc_NAK_Rx && N
localChange-PreAssoc || ' 1" vsiError I i Qtate —— Ac !
PreAssoc_ACK_Rx ' VsiState == Assoc) localChange - Assoc || 11
ACIVITY_TIMER Event - - 1| localChange-DeAssoc v ACIIVITY_TIMER_Event ||
PREASSOCIATED N ASSOCIATED "
" 1
VsiError =) , " vsiError = n
\}j‘sriosctlz;g\lndSethg(VSIRemoteTLV,VSILocaITLV, : : localChange - Assoc ProcRxAndSetCfg(vsiRemoteTLV,vsiLocalTLV,vsiState);} ::
If ('vsiErryor) T SsEnory T T I CvsiErron !

; vsierror . _
vsiState = PREASSOCIATED localChange-DeAssoc vsiState = ASSOCIATED

T
1
: localChange - PreAssoc
1

Figure 35. Station's VS| State Machine

7.1.5 Edge Bridge VSI State Machine

Following is the VSI State Machine for the Bridge.

54

EVB, VEPA, ETTP, VDP, MC Proposal

[New-VSI-Instance ID TLV Rx]

e e e L e LR et L ettt EXIT
vsiError

localChange-DeAssoc

IXTLV == DeAssoc

1
1
1
1
i
1
' || INACTIVE DEASSOC
H Y »> le—
Ll
' INIT TXTLV(DeAssoc- n -
1 - ACK) 1T
: vsiLocalTLV = NULL '
: vsiState = UNASSOCIATED :rxTLV == Assoc
' |
' |
. (IXTLV == DeAssoc) I
! I INACTIVE !
| IXTLV == PreAssoc '
1
! \ :
' A4 IXTLV == Assoc
1
(N PREASSOC_PROCESSING P R . R ASSOC_PROCESSING .
o 1
v5|Error:ProcRxandSethg(IocaITLV, : : vsiError=ProcRxandSetCfg(localTLV, !
remoteTLV, vsiState) ' | remoteTLV, vsiState) |
- If (vsiError) : vsiError && - - If (vsiError) :
tXTLV(PreAssoc NACK) ! VsiState == !
' tXTLV(Assoc NACK) |
Else thLV(PreA_'s_soc-ACK) : IAssoc Else tXTLV(Assoc-ACK) :
A T
IXTLV == ' | IvsiError || (vsiError | H
PreAssoc ‘- ! && VsiState ! H
e . | Assoc) 1= '
lvsiError | | (rXTLV == DeAssoc) ! .
A 4]

PREASSOCIATED ! Il INACTIVE v \
| ASSOCIATED :
|

— vsiState = PREASSOCIATED ['
ITLVEPreAssac) | ™ VsiState = ASSOCIATED b--e-

IXTLV == Assoc

Figure 36. Edge Bridge's VS| State Machine

55

EVB, VEPA, ETTP, VDP, MC Proposal

8. Glossary
Term Description
Channel An S'VLAN used to associate a set of VS| Instances with a physical Ethernet link.

Chassis
Chassis identifier

CVID
DA
DS

Edge Virtua
Bridging (EVB)

EUI

Hypervisor

ID
|EEE 802 LAN

|EEE 802 LAN
Station

LLC

Link Layer
Discovery Protocol
(LLDP)

LLDP agent

LLDPDU
LSAP
MAC

MAC service
access point
(MSAP)

MSAP Identifier

Traffic within one channel isisolated from traffic in another channel on the same
link through the use of aS-Tag.

A physical component incorporating one or more |EEE 802 LAN stations and
their associated application functionality.

An administratively assigned name that identifies the particular chassis within the
context of an administrative domain that comprise one or more networks.

Customer VLAN Identifier
Destination Address
Distribution System

The environment where physical end stations, containing multiple VS| Instances,
all require the services of adjacent bridgesforming aLAN. EVB environments
are unique in that virtual NIC configuration information is available to the EVB
devicethat is not normally available to an 802.1Q bridge.

Extended Unique Identifier

Computer software and / or hardware platform virtualization software that enables
multiple operating systems to operate on top of common, shared hardware.

Identifier

Local area network (LAN) technologies that provide a media access control
(MAC) Service equivalent to the MAC Service defined in 1ISO/IED 158001-1.
|EEE 802 LANs include |EEE Sd. 802.3, |IEEE Std 802.11, |IEEE Std 802.186,
|EEE Std 802.17, and 1SO 9314-2 LANS.

An |EEE 802-compatible entity that incorporates all the necessary mechanismsto
participate in media access control of an IEEE 802 LAN, and that is at least
capable of providing the MAC service plus the mandatory capabilities of the LLC.

Logical Link Control (sub-layer)

A media-independent protocol capable of running on all IEEE 802 LAN stations
and to allow an LLDP agent to learn the connectivity and management
information from adjacent stations.

The protocol enttity that implements LLDP for a particular MSAP associated with
a Port.

Link Layer Discovery Protocol Data Unit
Link Service Access Point
Media Access Control

The access point for MAC services provided to the LL C sub-layer.

Theidentifier of aMAC service access point.

56

EVB, VEPA, ETTP, VDP, MC Proposal

Term

Description

Management entity

Management
Information Base
(MIB)

Management
Information Base
module (MIB
module)

Multi-Channel
Network

Network Interface
Controller (NIC)

Network
Management
System (NMS)

Object identifier
(OID)

oul

Physical network
topology

PCI

PD

Port identifier

PVID
Reflective Relay
SA
Service VLAN

Service VLAN ID
(SVID)

Service VLAN
Tag (STag)

The protocol entity that implements a particular network management protocol
and that provides access support to a MIB associated with the protocol and
implemented in a host chassis.

Theinstantiation of all MIB modules in amanaged entity (e.g. system or device)

The specification or schema for a data base that can be populated with information
required to support a network management information system.

The capability to multiplex multiple virtual channels over asingle physical
Ethernet link.

An interconnected group of systems, each comprising one or more |EEE 802 LAN
stations.

A device that includes a non-forwarding IEEE 802 LAN station.

A management system that is capable of utilizing the informationinaMIB.

An identifier used to name an objective. Structurally, an OID consists of anodein
a hierarchically-assigned namespace, formally defined in | SO/IEC 8824-1.
Abstract Syntax Notation 1 (ASN.1). OIDsare used in this standard to identify
MIB modules and the objects they contain.

Organizationally Unique Identifier

Theidentification of systems, of IEEE 802 LAN stations that compose each
system, and of the IEEE 802 LAN stations that attach to the same |EEE 802 LAN.

Peripheral Component Interface as defined by the PCI-SIG.
http:wwwi/pcisig.com. PCI Express (PCle) represents the latest incarnation of PCI
technology within the industry.

Powered Device

The entity in a chassig/system to support an MSAP. A port incorporates one and
only one MSAP and identifies the collection of manageable entities that provide
the MAC Service at the MSAP.

An administratively assigned name that identifies the particular port within the
context of a system, where the identification is convenient, local to the system,
and persistent for the system’ s use and management (whereas the MAC address
that globally identifies the MSAP can not be).

Port VLAN ID

Frame relay where the destination port is also the source port
Source Address

A VLAN identified by aS-VID

A VLAN identifier conveyedinan STAG

A VLAN tag with a Tag Protocol Identification value allocated for “802.1Q
Service Tag Type”

57

EVB, VEPA, ETTP, VDP, MC Proposal

Term

Description

Single-Root 1/0
Virtualization (SR-
I0V)

SVLAN
component

SVID
System

Type, length, value
(TLV)

VID
VDP

Virtual Ethernet
Bridge (VEB)

Virtual Ethernet
Port Aggregator
(VEPA)

Virtua Machine
(VM)

Virtual Port
(vPort)

Virtual Station
Interface (VSI)

Virtual Switch
(vSwitch)

PCI-SIG specification that enables a PCle Device to be simultaneously shared by
multiple operating systems. A SR-IOV Device supports multiple PCI physical
functions (PF) and virtual functions (VF). A PForaVFismadevisibleto an
operating system by a hypervisor asthough it is a single, non-shared PCI
Function.

A VLAN-aware bridge component with each Port supported by an instance of the
IESS that can recognize, insert, and remove Service VLAN tags.

Service VLAN Identifier

A managed collection of hardware and software components incorporating one or
more chassis, stations, and ports.

A short, variable length encoding of an information element consisting of
sequential type, length, and value fields where the type field identifies the type of
information, the length field indicates the length of the information field in octets,
and the value field contains the information itself.

VLAN ID

Virtual Station Interface Discovery and Configuration Protocol. The protocol used
to discover and configure a Virtual Station Interface Instance.

A VEB isaframerelay service that supportslocal bridging between multiple VS|
Instances and (optionally) the external bridging environment. A VEB may be
implemented in software as a vSwitch or as embedded hardware within a NIC.

A Virtual Ethernet Port Aggregator (VEPA) is a capability within a physical end
station that collaborates with an adjacent, external bridge to provide bridging
support between multiple virtual end stations and external networks. The VEPA
collaborates by forwarding all station-originated frames to the adjacent bridge for
frame processing and frame relay (including reflective relay forwarding) and by
steering and replicating frames received from the VEPA uplink to the appropriate
destinations.

May be implemented in software or in conjunction with embedded hardware.

Note: As with the case of VEBs, VEPASs have access to vNIC configuration
information that normally is not available to an 802.1Q bridge.

An operating system running on top of a hypervisor.

A vPort isalogical Port associated with one end of a channel.

Within a physical end station, one or more VS| may be multiplexed on top of a
vPort.

Within an adjacent bridge, a vPort represents a virtual bridge port.

A physical or software emulated end station connected to a VEB (vSwitch or
embedded hardware within aNIC), aVEPA or directly to an SVLAN
Component.

A software emulated bridge typically implemented within the server virtualization
infrastructure (e.g. aHypervisor). A vSwitch switches network packets between
multiple operating systems executing on common, shared hardware. See also
VEB.

58

EVB, VEPA, ETTP, VDP, MC Proposal

Appendix - VDP Exchange Examples

8.1 VSI PreAssociate, Associate and DeAssociate

The following example depicts the VDP exchanges used to Pre-Associate, Associate and
De-Associate a VSI Instance with a VSI Type, VSI Type Version and set of MAC Address
and VLAN pairs.

Station (Hypervisor)/

VS| Bridge
~ Switch fetches
This exchange VSI TLV — PRE-ASSOC (with /without resource reservation) - :EE i;?lpgsefmm
is usually done Mode = Pre-Associate phncil e
by Station using Vsl Anributes = X1 from = local cache
the TB_P_R TL_V < TSTTLV=PREASSUC TUSE
transport Mode = Pre-Associate Acknowledge

V51 Attributes = X1

@ VSITLV - ASS0C g
VSl connection

Activates the new
Mode = Associate

V51 Attributes = X1
- VSITLV - ASSOC CONF

Mode = Associate Acknowledge
VSl Attributes = X1

v

Server
announces [
change t \ VSITLV - ASS0C
configuration Mode = Associate
V51 Attributes = X2 (for example, new MAC address)

v

f . Adjusts for the new
< VSITIV - ASSOC CONE k configuration
Mode = Associate Acknowledge

VS1 Attributes = X2
VSITLV - DE-ASS50C

=~
>
Mode = De-Associate Tears down VSI
VSl Attributes = X2 configuration
B VSITLV - DE-ASS0C CONF
Mode = De-Assodiate Acknowledge
VSI Attributes = X2
Figure 37. VS| PreAssociate, Associate and DeAssociate Exchange

8.2 VSI Transport Error Case

The following example depicts the VDP exchange associated with a lost EETP
transmission of a VSI Associate Request Acknowledgement, showing ETTP retrying the
transmission.

59

EVB, VEPA, ETTP, VDP, MC Proposal

VS| Exchange Example - Direct Associate with Error Situations

Station (Hypervisor)/ Bridge

-
Immediate Assoc @ VSITLV —ASS0C -

Mode = Associate

VSl Terminates due to VSl Attributes = X1
ASSOCIATE error r @
VSITLV -ASS0C DENY
Mode = Associate NACK Switch fetches
VSl Attributes = X1 the sertings from
: " : R the VSl Profile
SI,?;?”J;:E;;;}?EE@ VSITLV - AS50C g database server or
= Mode = Associate from a local cache.

VSl Attributes = X2
- - B — Activates the new
NSLTLV=ASS0C CORE VS| connection

Mode = Associate ACK
V51 Attributes = X2

v

Server '\

VSITLV — AS50C »QCU;JSIS for the new
ar;nounces Mode = Associate configuration
change to VSl Attributes = X3 (for example, new MAC address)
configuration
X< ¢
VSITLV - Lost ASS0C CONF
Mode = Associate Acknowledge
V51 Attributes = X3
ETTFP Retries
N VSITLV - ASS0C CONF
Mode = De-Assodiate Acknowledge
VS1 Attributes = X3
Figure 38. VS| Transport Error

8.3 VSI PreAssociate Resource Lease Refresh Exchange

The following example depicts the VDP exchange associated with an inactive VSI
Instance in the Pre-Associated state, where the bridge’s VS| State Machine forces a De-
Association.

60

EVB, VEPA, ETTP, VDP, MC Proposal

VSI Exchange Example - PreAssoc Resource Lease

Station (Hypervisor)/

Bridge

ACTIMITY_TIMER
Expires &&

local TLV mode ==
FreAssoc

Figure 39.

-
é VSITLV — PRE-ASS0C (resource resenation) -

Mode = Pre-Associate
VSl Attributes = X1

VSTTICV — PRI-XS5SUC CUNE
Mode = Pre-Associate Acknowledge
V51 Attributes = X1

Mode = PreAssociate
V51 Attributes = X1

VSITLYV - PRE-ASS0C CONF
Mode = PreAssociate Acknowledge
VSl Attributes = X1

Incr
Res|

NO ACTIVITY

INACTIVE

Switch fetches

the sertings from
the VSl Profile
database server or

@ from a local cache.

>
VSITLV - PRE-AS30C

Resets INACTIVE
count and send
CONF

ment INACTIVE _Count on
Lease_Timer expiration.

ount >

MAX_INACTIVE. Sends DeAssoc

A

VSITLV - DE-ASSOC and

Mode = De-Associate
VSl Attributes = X1
confirm or

PreAssociate Resource L ease Exchance

8.4 VSI Associate Resource Lease Exchange

The following example depicts the VDP exchange used with an inactive VSl Instance in
the Associated state, where the bridge’s VS| State Machine forces a De-Association.

61

Tears dow] VSI config and
releases rgsources on Defssoc

etries exhausting.

EVB, VEPA, ETTP, VDP, MC Proposal

VS| Exchange Example - Assoc Resource Lease Refresh

Station (Hypervisor)/ Bridge
~ Switch fetches
VSITLV - A550C - ‘:E i‘;?';g? lfm'“
Mode = Associate ;E b e ‘E_
Vsl Atributes = X1 QIADASE ST of
from a local cache.
a VSTTCV —A550UC CUSE
Mode = Associate Acknowledge
ACTIVITY. TIVER V51 Attributes = X1
Expires && p————— > Resets INACTIVE
. i VSITLV - ASS0C
local TLV mode is Sl count and send
s Mode = Associate CONE
£es0c VSl Attributes = X1
- VSITLV - ASSOC CONF
Mode = Associate Acknowledge
VSl Attributes = X1
Incrgment INACTIVE_Count on
Res| Lease_Timer expiration.
INACTIVE fount =
” MAX_INACTIVE. Sends DeAssoc
< . N S —— and
VSITLV - DE-ASSOC - ACK
Mode = De-Associate Tears dow] VSI config and
VSl Attributes = X1 releases rgsources on Defssoc
confirm or fetries exhausting
which is bdsed on local policy
Figure 40. Associate Resource Lease Exchange

62

