

1

March 15, 2010

EVB Proposal for:

Virtual Ethernet Port Aggregator,
Edge Virtual Bridging TLV,

Edge TLV Transport Protocol,
Multichannel, and

VSI Discovery Protocol

Version 0, Rev 0.1

Abstract: This document is a proposal for the development of IEEE Edge Virtual Bridging
(EVB) technologies. These proposals cover a suite of mechanisms that may be used to
construct an EVB-based solution including architectural overview, discovery,
management objects, and state machines.

Keywords: VEPA, VEB, Multi-Channel, ETTP, VDP

2

This document is a proposal for Virtual Ethernet Port Aggregator, Edge Virtual Bridging
TLV, Edge TLV Transport Protocol, Multichannel, and VSI Discovery Protocol.

Editors: Hewlett-Packard Corp., IBM

Contributing Authors
Company Contacts

BNT Daya Kamath
BNT Jay Kidambi
BNT Vijoy Pandey

Broadcom Uri Elzur

Brocade Anoop Ghanwani

Chelsio Asgeir Eiriksson

Emulex Chait Tumuluri

HP Paul Bottroff
HP Paul Congdon
HP Chuck Hudson
HP Michael Krause

IBM Vivek Kashyap
IBM Renato Recio
IBM Rakesh Sharma

Juniper Srikanth Kilaru

QLogic Manoj Wadekar

TABLE OF CONTENTS
Contributing Authors...2

TABLE OF CONTENTS..3

LIST OF TABLES..4

LIST OF FIGURES ...4

Related Documents..5

Change History ...5

1. Document Scope...6
1.1 Purpose ...6

2. Introduction ..7

3. Architecture and Operational Overview ..16
3.1 VEPA Address Table Management..16
3.2 Egress Processing...17
3.3 Ingress Processing ...18
3.4 Multi-Channel Operation..20
3.5 Edge TLV Transport Operation ..23
3.6 VSI Discovery and Configuration Protocol (VDP) Operation24

3.6.1 VDP Type Configuration and Automation _______________________________26
3.6.2 VSI Type Definition and Management ___________________________________27
3.6.3 VSI Manager ID __28

4. Ethernet Virtual Bridging TLV Semantics ..30

5. Multi-Channel TLV Semantics and State Machine33

5.1 MultiChannel Bridge Components and Operation......................................33
5.1.1 Introduction ___33
5.1.2 S-Component ___34

5.2 MDP Discovery and Configuration...35
5.2.1 MDP TLV___35
5.2.2 MDP Configuration Procedures ___36
5.2.3 MDP Configuration Variables ___37
5.2.4 MDP Configuration Procedures ___39
5.2.5 MDP Configuration State Machines _____________________________________40

6. Edge TLV Transport Protocol (ETTP) TLV and State Machine.................42

6.1 Requirements ...42
6.2 Edge TLV Transport Protocol Data Unit...43

 EVB, VEPA, ETTP, VDP, MC Proposal

 4

6.3 ETTP Procedures ...43
6.4 ETTP State Machines ..44

6.4.1 ETTP Transmit State Machine __44
6.4.2 ETTP Receive State Machine__45

7. Virtual Station Interface (VSI) TLV and State Machine47
7.1.1 VSI Discovery and Configuration TLV ____________________________________47
7.1.2 VDP Requirements and Assumptions ____________________________________52
7.1.3 VDP – Local Variables and Procedures __________________________________53
7.1.4 Station VSI State Machine __54
7.1.5 Edge Bridge VSI State Machine ___54

8. Glossary ..56
8.1 VSI PreAssociate, Associate and DeAssociate ..59
8.2 VSI Transport Error Case ..59
8.3 VSI PreAssociate Resource Lease Refresh Exchange..................................60
8.4 VSI Associate Resource Lease Exchange...61

LIST OF TABLES
Error! No table of figures entries found.

LIST OF FIGURES
Figure 1. Example Physical End Station with Multiple VM and Two Software VEB 7
Figure 2. Example Physical End Station with Multiple Hardware VEB.. 8
Figure 3. VEB Frame Relay Support .. 9
Figure 4. Example Physical End Station with Multiple VM Communicating through a VEPA.............. 10
Figure 5. Example Physical End Station with Multiple Hardware VEPA ... 11
Figure 6. VEPA Frame Relay Support.. 12
Figure 7. Mutichannel Ethernet Components .. 14
Figure 8. Multiple channels with on vPort at each end .. 15
Figure 9. Example VEPA with associated conceptual VEPA Address Table.. 16
Figure 10. VEPA Egress Processing.. 17
Figure 11. VEPA Unicast Ingress Processing from Source A to Destination C 18
Figure 12. VEPA Multicast Ingress Processing from Source A to Mulicate Group C 19
Figure 13. Frame fowarding from a directly accessible VSI over a multi-channel link......................... 20
Figure 14. Frame fowarding when multi-channel is configured underneath a VEB............................. 21
Figure 15. Frame fowarding when multi-channel is configured underneath a VEPA 22
Figure 16. Frame fowarding over multi-channel between a VEPA and adirectly attached VSI 23
Figure 17. Example ETTP Exchange... 24
Figure 18. VSI Type Architectural and Operational Overview ... 27
Figure 19. VSI Manager ID ... 28
Figure 20. VSI Type or Instance ID... 29
Figure 21. VSI Manager Database Lookup.. 29
Figure 22. EVB TLV Format ... 30
Figure 23. Example EVB TLV Exchange.. 32

 EVB, VEPA, ETTP, VDP, MC Proposal

 5

Figure 24. Example Multi-channel Block Diagram ... 33
Figure 25. Station and Bridge V-Component and E-Component Block Diagram 34
Figure 26. MDP TLV... 35
Figure 27. Example MDP TLV Exchange ... 37
Figure 28. MDP State Machine.. 40
Figure 29. ETTP Data Unit .. 43
Figure 30. ETTP Transmit State Machine ... 45
Figure 31. ETTP Receive State Machine... 46
Figure 32. VDP TLV ... 47
Figure 33. VDP Format = 1 Schema.. 48
Figure 34. MAC-VLAN Information Format 1 ... 51
Figure 35. Station’s VSI State Machine... 54
Figure 36. Edge Bridge’s VSI State Machine .. 55
Figure 37. VSI PreAssociate, Associate and DeAssociate Exchange .. 59
Figure 38. VSI Transport Error.. 60
Figure 39. PreAssociate Resource Lease Exchance... 61
Figure 40. Associate Resource Lease Exchange.. 62

Related Documents
Specifications Company

Change History
By Date Details

 EVB, VEPA, ETTP, VDP, MC Proposal

 6

1. Document Scope

This document details Virtual Ethernet Port Aggregator (VEPA) theory of operation and
the discovery and capability exchange protocol used to support a VEPA solution. VEPA
relies upon LLDP to provide discovery and capability exchange. These exchanges
occur between a physical end station and an adjacent bridge.

1.1 Purpose

The purpose of this proposal is to define a proposal for Discovery and Configuration of
Ethernet Virtual Bridging (EVB) capabilities, using: Multi-Channel, Edge TLV Transport
Protocol (ETTP) and Virtual Station Interface (VSI) Discovery and Configuration Protocol
(VDP). These protocols are used to determine EVB, Multichannel, ETTP and VDP
capability presence within a physical end station and an adjacent bridge.

 EVB, VEPA, ETTP, VDP, MC Proposal

 7

2. Introduction

Evolving standards combined with the growing size of enterprise and cloud-based
networking deployments has led to a significant increase in the complexity of Ethernet
networking in the data center. The advent of virtualization technology has
compounded this complexity due to the significant increase in the number of Ethernet
switches and the change in the solution deployment scenario. Hypervisors have
incorporated Virtual Ethernet Bridges (VEB) into the physical end station effectively
adding one or more Ethernet switches per end node. A VEB is a frame relay service that
supports local bridging between multiple virtual end stations (an internal private virtual
network) and (optionally) the external bridging environment. A VEB may be
implemented in software as a virtual switch (vSwitch) as illustrated in Figure 1 or as
embedded hardware within a Network Interface Controller (NIC) as illustrated in Figure 2.

Figure 1. Example Physical End Station with Multiple VM and Two Software VEB

Figure 1 illustrates the following:

• Each VM may support one or more Virtual NICs.
o Typically, a VM will support a virtual NIC (vNIC) that emulates a physical

NIC. Each vNIC will contain a Virtual Station Interface (VSI) which is
connected to a VEB.

• A VEB supports a single logical uplink to the external adjacent bridge. Multiple
uplinks can be teamed via 802.3ad or other techniques.

• A software VEB (vSwitch) is typically implemented within a hypervisor requiring
each VM I/O operation to trap to the hypervisor for processing.

o Hypervisor traps consume system resources and can lead to varying
performance loss depending upon the number of I/O operations per
second and the amount of rich network functionality performed per
operation.

Software VEB (vSwitch)

Physical End Station

Adjacent Bridge

VM

Apps

VM

Apps

VM

Apps

VM

Apps

Switch Port

Physical NIC

VEB Uplink

Ingress Egress

NIC Team

*

VM

Apps

VM

Apps

Software VEB

Software VEB (vSwitch)

Physical End Station

Adjacent Bridge

VM

Apps

VM

Apps

VM

Apps

VM

AppsVirtual Station
Interface

Switch Port

Physical NIC

VEB Uplink

Ingress Egress

NIC Team

*

VM

Apps

VM

Apps

Software VEB

Software VEB (vSwitch)

Physical End Station

Adjacent Bridge

VM

Apps

VM

Apps

VM

Apps

VM

Apps

Switch Port

Physical NIC

VEB Uplink

Ingress Egress

NIC Team

*

VM

Apps

VM

Apps

Software VEB

Software VEB (vSwitch)

Physical End Station

Adjacent Bridge

VM

Apps

VM

Apps

VM

Apps

VM

AppsVirtual Station
Interface

Switch Port

Physical NIC

VEB Uplink

Ingress Egress

NIC Team

*

VM

Apps

VM

Apps

Software VEB

 EVB, VEPA, ETTP, VDP, MC Proposal

 8

o Being in the hypervisor allows a software VEB to support one or more
physical NICs.

• VEB may be cascaded to provide modularity or additional fan-out.
• Not shown but important to note is a VEB does not require any modifications to

the Ethernet frame to operate.

Figure 2. Example Physical End Station with Multiple Hardware VEB

Figure 2 illustrates the following:
• Each physical NIC supports

o One (or more) physical ports attached to an adjacent bridge
 Each physical port represents a single VEB uplink.

o One or more hardware-embedded VEB. An embedded VEB cannot span
multiple physical NIC.

o Direct I/O support via SR-IOV Virtual Functions (VF).
 Direct I/O allows a VM to bypass the hypervisor and directly

access the NIC to send / receive packets. Bypassing the
hypervisor reduces system resource consumption allowing higher
performance solutions than traditional software VEB.

• Each VM may support one or more Virtual NICs.
o In this example, each VM supports two vNIC – one per physical NIC.
o Each vNIC contains a VSI which is associated with a SR-IOV VF to provide

Direct I/O support.

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

IngressEgress

MAC /
PHY

Tx/ Rx
Queues

PF0 VF1 VFN

VEB

NIC MAC /
PHY

Tx/ Rx
Queues

PF0 VF1 VFN

VEB

NIC

Virtual Station
Interface

Physical NIC

VEB Uplink

VM Direct I/ O via
SR-IOV Virtual

Function
VF2

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

IngressEgress

MAC /
PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues

PF0 VF1 VFN

VEB

NIC MAC /
PHY

Tx/ Rx
Queues

PF0 VF1 VFN

VEB

NIC MAC /
PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues

PF0 VF1 VFN

VEB
PF0 VF1 VFN

VEB

NIC
Physical NIC

VEB Uplink

VM Direct I/ O via
SR-IOV Virtual

Function
VF2

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

IngressEgress

MAC /
PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues

PF0 VF1 VFN

VEB

NIC MAC /
PHY

Tx/ Rx
Queues

PF0 VF1 VFN

VEB

NIC MAC /
PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues

PF0 VF1 VFN

VEB
PF0 VF1 VFN

VEB

NIC

Virtual Station
Interface

Physical NIC

VEB Uplink

VM Direct I/ O via
SR-IOV Virtual

Function
VF2

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

IngressEgress

MAC /
PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues

PF0 VF1 VFN

VEB

NIC MAC /
PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues

PF0 VF1 VFN

VEB
PF0 VF1 VFN

VEB

NIC MAC /
PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues

PF0 VF1 VFN

VEB
PF0 VF1 VFN

VEB

NIC
Physical NIC

VEB Uplink

VM Direct I/ O via
SR-IOV Virtual

Function
VF2

 EVB, VEPA, ETTP, VDP, MC Proposal

 9

Figure 3. VEB Frame Relay Support

VEB packet forwarding supports both traditional end station-to-adjacent bridge as well
as local VSI-to-VSI packet forwarding. As illustrated in Figure 3, a VEB forwards packets as
follows:

• VEB forwards packets based on the MAC address and optionally via a port group
or VLAN identifier.

• VEB forwards packets from a VSI to the uplink from an adjacent bridge (path 1) or
between co-located VSI (path 2)

o A NIC-embedded VEB can only forward packets between VSI attached
to a common NIC. As shown in Figure 2, only VM that share the blue VEB
can forward packets via the blue VEB. Similarly, only VM that share the
green VEB can forward packets via the green VEB. A VM on the blue VEB
cannot forward packets to a VM on the green VEB directly; a software
VEB would be required to bridge the two NIC-embedded VEB.

• VEB supports only a single active logical uplink
o Multiple uplinks can be teamed via 802.3ad or other techniques
o Uplink-to-uplink packet forwarding is not allowed (path 3)

• VEB does not participate in or affect spanning tree operation.

VEB solutions have been shipping for a number of years and are available from multiple
suppliers. Though the functional robustness of solutions will vary, local bridging via a VEB
provides a number of common benefits and allows hypervisors to:

• Operate without external bridges attached
• Operate with a broad range of Ethernet environments
• Maximize local bandwidth – bandwidth is limited by end station memory and

local I/O bandwidth and not by the Ethernet link bandwidth
• Minimize local latency – no incremental latency due to interaction with the

external network
• Minimize packet loss, i.e. no packet loss due to external network events – external

bridge or link failure, CRC error detection, congestion-based packet loss, etc.

By definition traffic between VMs connected to a VEB stay within the server. Some clients
prefer the traffic to be sent through an external switch, so the external network’s access

VEB

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Ingress Egress
*

expander

VM
Apps

VM
Apps

Software VEB

1 2

3

VEB

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Ingress Egress
*

expander

VM
Apps

VM
Apps

Software VEB

1 2

3

 EVB, VEPA, ETTP, VDP, MC Proposal

 10

and security policies can be applied to the traffic. To address this type of requirement a
a Virtual Ethernet Port Aggregator (VEPA) is documented.

A Virtual Ethernet Port Aggregator (VEPA) is a capability within a physical end-station
that collaborates with an adjacent bridge to provide frame relay services between
multiple co-located virtual machines (VMs) and the external network. A VEPA
collaborates by:

• Forwarding all station-originated frames to the adjacent bridge for frame
processing and frame relay.

• Steering and replicating frames received from the adjacent bridge to the
appropriate VM destinations.

• A VEPA takes advantage of a special reflective relay forwarding mode (i.e. allow
forwarding back out the port a frame was received) on the adjacent bridge to
support inter-VM communication within the same physical host.

o Clause 8.6.1 of Standard IEEE 802.1Q-2005 [11] states that when a switch
reception port is in the forwarding state, each switch port in the
forwarding state, other than the reception port itself, is a potential
transmission port. A VEPA requires an exception to this rule in order to
allow inter-VM traffic on the adjacent host over the single uplink. This
exception distinguishes the port attached to a VEPA uplink as a VEPA-
enabled port which supports forwarding in reflective relay mode.

• Similar to a VEB, a VEPA may be implemented in software or in conjunction with
embedded hardware within a NIC.

The VEPA is connected to the adjacent bridge only by a single uplink connection. The
connection is attached to a VEPA-enabled port on the adjacent bridge. A conceptual
VEPA is shown in Figure 4.

Figure 4. Example Physical End Station with Multiple VM Communicating through a VEPA

NIC Team

VEPA

Physical End Station

Adjacent Bridge

VM

Apps

VM

Apps

VM

Apps

VM

Apps

Ingress EgressVEPA
*

VM

Apps

VM

Apps

Switch Port

Physical NIC

VEPA Uplink

VEPA

Physical End Station

Adjacent Bridge

VM

Apps

VM

Apps

VM

Apps

VM

Apps

Ingress EgressVEPA
*

VM

Apps

VM

Apps

Virtual Station
Interface

Switch Port

Physical NIC NIC TeamNIC Team

VEPA

Physical End Station

Adjacent Bridge

VM

Apps

VM

Apps

VM

Apps

VM

Apps

Ingress EgressVEPA
*

VM

Apps

VM

Apps

Switch Port

Physical NIC

VEPA Uplink

VEPA

Physical End Station

Adjacent Bridge

VM

Apps

VM

Apps

VM

Apps

VM

Apps

Ingress EgressVEPA
*

VM

Apps

VM

Apps

Switch Port

Physical NIC NIC TeamNIC Team

VEPA

Physical End Station

Adjacent Bridge

VM

Apps

VM

Apps

VM

Apps

VM

Apps

Ingress EgressVEPA
*

VM

Apps

VM

Apps

Switch Port

Physical NIC

VEPA Uplink

VEPA

Physical End Station

Adjacent Bridge

VM

Apps

VM

Apps

VM

Apps

VM

Apps

Ingress EgressVEPA
*

VM

Apps

VM

Apps

Virtual Station
Interface

Switch Port

Physical NIC NIC TeamNIC Team

VEPA

Physical End Station

Adjacent Bridge

VM

Apps

VM

Apps

VM

Apps

VM

Apps

Ingress EgressVEPA
*

VM

Apps

VM

Apps

Switch Port

Physical NIC

VEPA Uplink

VEPA

Physical End Station

Adjacent Bridge

VM

Apps

VM

Apps

VM

Apps

VM

Apps

Ingress EgressVEPA
*

VM

Apps

VM

Apps

Switch Port

Physical NIC NIC Team

 EVB, VEPA, ETTP, VDP, MC Proposal

 11

Figure 4 illustrates the following:

• Each VM may support one or more Virtual End Stations.
o A VM supports a virtual NIC (vNIC) which emulates a physical NIC. A

vNIC is attached to a VEPA via a Virtual Station Interface (VSI). A VSI is a
physical or software emulated end station connected to a VEB or a VEPA.

• A VEPA supports a single logical uplink.
• Software VEPA (vSwitch) may support one or more physical NICs.
• The total number of VSI made available may be scaled by cascading VEPA in a

tree as shown in Fig. 4. A VSI on a root VEPA connected to a leaf VEPA higher in
the topology is known as an expander port. A root VEPA will forward all frames
with an unknown destination address to the expander port. This eliminates the
need for the root VEPA to comprehend all of the MAC addresses of every VM in
the physical end station.

• Not shown but important to note is VEPA does not require any modifications to
the Ethernet frame to operate.

Figure 5. Example Physical End Station with Multiple Hardware VEPA

Figure 5 illustrates the following:
• The end station contains two independent physical NICs. Each NIC supports

o One or more hardware-embedded VEPA. While this figure illustrates only
one VEPA (blue or green) per NIC, an implementation may support
multiple VEPA.

 In this example, the blue and the green VEPA are completely
separate, independent entities, i.e. they do not share any
resources and cannot directly communicate with one another.

o One or more physical ports attached to an adjacent bridge. A VEPA has
only one logical uplink.

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

IngressEgress

MAC /
PHY

Tx/ Rx
Queues

PF0 VF1 VFN

VEPA

NIC MAC /
PHY

Tx/ Rx
Queues

PF0 VF1 VFN

VEPA

NIC

Virtual Station
Interface

Physical NIC

VEPA Uplink

VM Direct I/ O via
SR-IOV Virtual

Function
VF2

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

IngressEgress

MAC /
PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues

PF0 VF1 VFN

VEPA

NIC MAC /
PHY

Tx/ Rx
Queues

PF0 VF1 VFN

VEPA

NIC MAC /
PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues

PF0 VF1 VFN

VEPA
PF0 VF1 VFN

VEPA

NIC
Physical NIC

VEPA Uplink

VM Direct I/ O via
SR-IOV Virtual

Function
VF2

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

IngressEgress

MAC /
PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues

PF0 VF1 VFN

VEPA

NIC MAC /
PHY

Tx/ Rx
Queues

PF0 VF1 VFN

VEPA

NIC MAC /
PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues

PF0 VF1 VFN

VEPA
PF0 VF1 VFN

VEPA

NIC

Virtual Station
Interface

Physical NIC

VEPA Uplink

VM Direct I/ O via
SR-IOV Virtual

Function
VF2

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

IngressEgress

MAC /
PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues

PF0 VF1 VFN

VEPA

NIC MAC /
PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues

PF0 VF1 VFN

VEPA
PF0 VF1 VFN

VEPA

NIC MAC /
PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues
MAC /

PHY

Tx/ Rx
Queues

PF0 VF1 VFN

VEPA
PF0 VF1 VFN

VEPA

NIC
Physical NIC

VEPA Uplink

VM Direct I/ O via
SR-IOV Virtual

Function
VF2

 EVB, VEPA, ETTP, VDP, MC Proposal

 12

o In this example, each NIC supports direct I/O via PCI SR-IOV technology.
 Direct I/O allows a VM to bypass the hypervisor and directly

access the NIC to send / receive packets. Direct I/O is achieved
by using a light-weight PCI Function called a Virtual Function (VF)
to act as a conduit between the VM and the NIC hardware. This
is analogous to a NIC supporting multiple traditional PCI Functions
but is less hardware-intensive. Each VF is associated with a
Physical Function (PF) which can be used by the hypervisor as a
management conduit to provide overall control of the device or
the port depending upon the implementation.

• Each VM may support one or more Virtual NICs.
o In this example, each VM supports two vNIC – one per physical NIC.
o Each vNIC contains a VSI which is associated with a SR-IOV VF to provide

the direct I/O conduit.

Figure 6. VEPA Frame Relay Support

As illustrated in Figure 6, a VEPA forwards packets as follows:
• VEPA forwards packets based on the MAC address and optionally via a port

group or VLAN identifier.
• All VEPA traffic must be forwarded from the VSI to the uplink of an adjacent

bridge (path 1).
o VSI-to-VSI packet forwarding is not allowed (path 2).

• A VEPA supports only a single active logical uplink
o Uplink-to-uplink packet forwarding is not allowed (path 3)
o A VEPA may be partitioned into multiple logical VEPA each associated

with its own independent uplink.
• A VEPA does not participate in or affect spanning tree operation, i.e. VEPA

internal topology is not visible to the adjacent bridge, except for management
associated TLVs (e.g. EVB TLV in this document).

VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Ingress Egress
*

expander

VM
Apps

VM
Apps

Software VEPA

1 2

3

VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Ingress Egress
*

expander

VM
Apps

VM
Apps

Software VEPA

1 2

3

 EVB, VEPA, ETTP, VDP, MC Proposal

 13

Based on the prior materials, the reader should note the significant overlap in
functionality and potential implementation between a VEB and a VEPA with the primary
difference occurring in frame relay support. Further, this difference determines where
and how network features are surfaced and their associated impact on system
functional robustness and performance. This difference allows VEPA solutions to provide
the following benefits:

1. Reduces complexity and potentially enables higher performance by off-loading
advanced network functions from the VM or hypervisor to the adjacent bridge.

2. Allows NICs to maintain low cost circuitry by leveraging advanced functions on
the adjacent bridge.

3. Enables a consistent level of network policy enforcement by routing all network
traffic through the adjacent bridge with its more complete policy-enforcement
capabilities.

4. Provides visibility of inter-VM traffic to network management tools designed for
adjacent bridge.

5. Reduces the amount of network configuration required by server administrators,
and as a consequence, reduces the complexity for the network administrator.

6. Can increase solution performance by off-loading advanced network
functionality that may be computationally intensive to implement within a
hypervisor or VM to the adjacent bridge.

As it can be seen, a VEPA provides a number of benefits but it too has limitations:

• Promiscuous support – To support a promiscuous VSI, a VEPA address table must
be configured with all VM source MAC addresses. This requires either adding MAC
address learning support or provisioning large address tables. Either option adds
implementation cost and complexity.

• Support for simultaneous VEB, VEPA, and directly accessible ports on the same
physical link – The adjacent bridge can only process a frame based on its contents
and therefore lacks sufficient information to delineate between these three
operating modes.

• Hierarchy of unrestricted physical ports – Normal bridge learning and flooding is
not possible due to the lack of information within a frame.

To address these limitations, IEEE Std. 802.1ad-2005 is applied. This standard enables
multiple virtual channels to be multiplexed on a single physical link – referred to as multi-
channel functionality. Individual channels are delineated by a tag which is added to
the frame and processed by S-VLAN Components (a bridge component) which are
logically inserted into the adjacent bridge and the physical end station below the virtual
bridge layer as illustrated in the following figure.

 EVB, VEPA, ETTP, VDP, MC Proposal

 14

Figure 7. Mutichannel Ethernet Components

The S-VLAN component recognizes, inserts and removes service VLAN tags (S-Tag) to
enable multiple channels in the bridged network. Adding an S-VLAN component to an
end-station allows VEPA, VEB, and individual VSI to operate independently and
simultaneously. Each VEPA, VEB, or individual VSI operates over its own virtual uplink
instantiated by a pair of S-VLAN components - one in the adjacent bridge and one on
the end-station.

The virtual uplinks created by the end-station’s S-VLAN component are effectively
connected over a multi-channel uplink to virtual ports (vPort) created by the S-VLAN
component on the adjacent bridge as illustrated in the following figure.

VM
Apps

VM
Apps

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Physical End Station

S-VLAN Component

S-VLAN Component

A B C D E F

A B C D E F

Adjacent Bridge
S-Component

VSI

Physical End Station
S-Component

Virtual Bridge Layer
(VEB, VEPA, directly

accessible VSI)

Virtual Bridge Port
(may be VEPA-enabled)

Virtual Uplink

VEB VEPA

VM
Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps

Physical End Station

S-VLAN Component

S-VLAN Component

A B C D E F

A B C D E F

Adjacent Bridge
S-Component

VSI

Physical End Station
S-Component

Virtual Bridge Layer
(VEB, VEPA, directly

accessible VSI)

Virtual Bridge Port
(may be VEPA-enabled)

Virtual Uplink

VEB VEPA

Virtual Port (vPort)
Physical End Station

Adjacent Bridge

S-VLAN Component

S-VLAN Component
A B C D E F

A B C D E F

Virtual Port (vPort)

Physical Port

Physical Link

Virtual Channels

Virtual Port (vPort)
Physical End Station

Adjacent Bridge

S-VLAN Component

S-VLAN Component
A B C D E F

A B C D E F

A B C D E F

A B C D E F

Virtual Port (vPort)

Physical Port

Physical Link

Virtual Channels

 EVB, VEPA, ETTP, VDP, MC Proposal

 15

Figure 8. Multiple channels with on vPort at each end

Each frame traversing the physical multi-channel uplink will all have an S-Tag inserted by
the first S-VLAN component it encounters and removed by the second S-VLAN
component as it reaches the far side of the multi-channel link. The S-Tag inserted by the
end-station identifies the particular source virtual uplink and the S-Tag inserted by the
adjacent bridge identifies the destination virtual uplink. Any frames that must be
broadcast or flooded to more than one VSI are replicated by the adjacent bridge and
delivered across the multi-channel uplink as many times as needed, each with the
proper S-Tag inserted.

Adding the multi-channel capability to the end-station solves the problem of supporting
virtual machines needing promiscuous ports by isolating such VSI in a separate channel.
By doing so, normal learning and forwarding behavior is pushed to the adjacent bridge,
isolating it from the simple forwarding of the VEPA. It also allows the end station
administrator to choose how virtual VM are connected to the network. A group of VM
that require direct connectivity between each other for high performance and low
latency can be attached to a VEB. Another group that requires traffic visibility, firewall
inspection or other services on the adjacent bridge can be attached to a VEPA. Finally
any individual VM that requires an isolated promiscuous VSI can be attached directly to
a virtual uplink.

The subsequent chapters within this proposal provide additional details on VEPA and
multi-channel operation, discovery, and configuration.

 EVB, VEPA, ETTP, VDP, MC Proposal

 16

3. Architecture and Operational Overview
This chapter will describe VEPA and Multi-Channel architectural components and
illustrate how these components are used via example operations.

3.1 VEPA Address Table Management
As a network edge end station, a VEPA is not required to support address learning.
Instead, the VEPA address table is populated through a registration process. As an
address, filter, or VLAN identifier is registered, the server virtualization infrastructure (e.g.
the Hypervisor) updates the corresponding VEPA address table entry. This applies to:

• VSI default MAC address
• Locally Administered Address (LAA)
• Multicast addresses
• Promiscuous address mode support

The following figure illustrates an example physical end station, VEPA, and the associated
VEPA address table.

Figure 9. Example VEPA with associated conceptual VEPA Address Table

Destina tion
M AC

VLAN Copy To
(ABCDEF)

A 1 100000

B 2 010000

C 1 001000

D 2 000100

E 1 000010

F 2 000001

Broadcast 1 101010

Broadcast 2 010101

Multicast
C

1 101010

Unknown
Multicast

1 100010

Unknown
Multicast

2 010101

Unknown
Unicast

1 000000

Unknown
Unicast

2 000000

Destina tion
M AC

VLAN Copy To
(ABCDEF)

A 1 100000

B 2 010000

C 1 001000

D 2 000100

E 1 000010

F 2 000001

Broadcast 1 101010

Broadcast 2 010101

Multicast
C

1 101010

Unknown
Multicast

1 100010

Unknown
Multicast

2 010101

Unknown
Unicast

1 000000

Unknown
Unicast

2 000000

VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps Apps

VM
Apps

VM
Apps

A B C E F

VM

D
VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps Apps

VM
Apps

VM
Apps

A B C E F

VM

D

 EVB, VEPA, ETTP, VDP, MC Proposal

 17

In this example, the VEPA address table holds the following:
• A unicast MAC address (and VSI Instance Identifier) per VSI

• Per VLAN broadcast address – frames are forwarded to the VSI indicated by the
corresponding bit mask

• Specified multicast addresses – VSI A, C, and E are the only participants in the
specified multicast group.

• Per VLAN unknown unicast address – unknown frames are discarded on ingress,
they are sent to the adjacent bridge on egress (i.e. from VSI Instance to bridge).

• Per VLAN unknown multicast address – unknown frames are forwarded to the VSI
indicated by the corresponding bit mask

The address table is configured by the server virtualization infrastructure (e.g. the
Hypervisor) simplifying the VEPA implementation by eliminating the need to support
dynamic address learning. Further, the hypervisor can configure additional address
table fields (not shown in the figure examples) such as QoS settings, VLAN configuration,
promiscuous listening support, and so forth to provide additional functional capabilities.

3.2 Egress Processing

VEPA egress is defined as the set of operations required to transfer a frame from a VSI to
the VEPA uplink. Since all frames are required to be forwarded to the uplink, the frame is
moved from the VSI to the physical uplink for transmission and the S-VLAN-Tag is added.

Figure 10. VEPA Egress Processing

While the main objective of VEPA is to forward frames to the adjacent bridge for
advanced processing, VEPA implementations may provide additional processing on the
frame since the VEPA comprehends the source VSI Instance. For example, source VSI
MAC address validation to prevent spoofing, application of QoS and bandwidth
management policies, VLAN formatting validation (tagged or untagged), and so forth.
The adjacent bridge can only operate on the frame’s contents (MAC address, VLAN ID,
etc.) and is unaware of the source VSI Instance therefore eliminating such functional
possibilities.

VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps Apps

VM
Apps

VM
Apps

A B C E F

VM

D
VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps Apps

VM
Apps

VM
Apps

A B C E F

VM

D
VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps Apps

VM
Apps

VM
Apps

A B C E F

VM

D

 EVB, VEPA, ETTP, VDP, MC Proposal

 18

3.3 Ingress Processing
VEPA ingress is defined as the set of operations required to steer and transfer a frame
received on the uplink to the appropriate VSI or set of VSIs. The VEPA must make use of
the address table to perform this operation correctly. Address table access is illustrated
in the following figure as VSI A transmits a unicast frame to VSI C.

Figure 11. VEPA Unicast Ingress Processing from Source A to Destination C

In this example, the transmission and reception processing is:

1. VSI A performs egress processing and performs any additional functionality prior
to the frame being transmitted out the egress port (step 1)

2. The adjacent bridge has enabled VEPA communication. The bridge applies the
appropriate network processing to the frame and reflects the frame to the VEPA
uplink (step 2).

3. Upon frame receipt and validation, the VEPA searches the address table to
locate the destination VSI Instance based on the contents of the unicast frame
(minimally the Destination MAC address and the VLAN Identifier). In this example,
the “Copy to” mask indicates VSI C is the destination and the VEPA delivers the
frame (step 3).

a. If the unicast address is unknown, then the “Unknown Unicast” for the
associated VLAN identifier would determine the appropriate “Copy to”
mask, which is x000000 and the frame is discarded.

The address table access and associated processing is similar for multicast and
broadcast with one exception. The originator of a multicast or broadcast frame may
have been one of the VSI before the adjacent bridge reflected the frame back. In this
case, the VEPA must perform additional filtering to avoid delivering the frame to its
originator. This is illustrated in the following figure.

Destina tion
M AC

VLAN Copy To
(ABCDEF)

A 1 100000

B 2 010000

C 1 001000

D 2 000100

E 1 000010

F 2 000001

Broadcast 1 101010

Broadcast 2 010101

Multicast
C

1 101010

Unknown
Multicast

1 100010

Unknown
Multicast

2 010101

Unknown
Unicast

1 000000

Unknown
Unicast

2 000000

Destina tion
M AC

VLAN Copy To
(ABCDEF)

A 1 100000

B 2 010000

C 1 001000

D 2 000100

E 1 000010

F 2 000001

Broadcast 1 101010

Broadcast 2 010101

Multicast
C

1 101010

Unknown
Multicast

1 100010

Unknown
Multicast

2 010101

Unknown
Unicast

1 000000

Unknown
Unicast

2 000000

VEPA Address Table

VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps Apps

VM
Apps

VM
Apps

A B C E F

VM

D

1

2

3

VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps Apps

VM
Apps

VM
Apps

A B C E F

VM

D
VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps Apps

VM
Apps

VM
Apps

A B C E F

VM

D

1

2

3

 EVB, VEPA, ETTP, VDP, MC Proposal

 19

Figure 12. VEPA Multicast Ingress Processing from Source A to Mulicate Group C

In this example, the transmission and receive processing is:

1. VSI A performs egress processing and performs any additional functionality prior
to the frame being transmitted out the egress port (step 1)

2. The adjacent bridge has enabled VEPA communication. The bridge applies the
appropriate network processing to the frame and reflects the frame to the VEPA
uplink (step 2).

3. Upon frame receipt and validation, the VEPA searches the address table to
locate the destination VSI based on the contents of the multicast frame (step 3).
To prevent the frame from being delivered to its originator, the VEPA performs a
source address lookup and filters out the VSI associated with the source address
from the original “Copy To” mask associated with the destination address (step 3).
The delivery mask is constructed via (Copy To = (Destination Copy To) AND
!(Source Copy To). In this example,

Destination Copy To = 101010
Source Copy To = 100000
Delivery Mask = 001010

4. The frame is replicated using the delivery mask (step 4).
a. If the unicast address is unknown, then the “Unknown Unicast” for the

associated VLAN identifier would determine the appropriate “Copy to”
mask, which is x000000 and the frame is discarded.

Destina tion
M AC

VLAN Copy To
(ABCDEF)

A 1 100000

B 2 010000

C 1 001000

D 2 000100

E 1 000010

F 2 000001

Broadcast 1 101010

Broadcast 2 010101

Multicast
C

1 101010

Unknown
Multicast

1 100010

Unknown
Multicast

2 010101

Unknown
Unicast

1 000000

Unknown
Unicast

2 000000

Destina tion
M AC

VLAN Copy To
(ABCDEF)

A 1 100000

B 2 010000

C 1 001000

D 2 000100

E 1 000010

F 2 000001

Broadcast 1 101010

Broadcast 2 010101

Multicast
C

1 101010

Unknown
Multicast

1 100010

Unknown
Multicast

2 010101

Unknown
Unicast

1 000000

Unknown
Unicast

2 000000

VEPA Address Table

VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps Apps

VM
Apps

VM
Apps

A B C E F

VM

D

1

2

3

4VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps Apps

VM
Apps

VM
Apps

A B C E F

VM

D
VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps Apps

VM
Apps

VM
Apps

A B C E F

VM

D

1

2

3

4

 EVB, VEPA, ETTP, VDP, MC Proposal

 20

3.4 Multi-Channel Operation

This section illustrates multi-channel operation through several example configurations.
In these examples, an S-VLAN component is logically inserted into the adjacent bridge
and the physical end station. Further, between these S-VLAN Components, six channels
(A-F) have been established and associated with a directly accessible VSI, a VEB, or a
VEPA.

The first example illustrates how a directly accessible VSI operates over a multi-channel
configuration when communicating to a VSI accessible through the adjacent bridge.

Figure 13. Frame fowarding from a directly accessible VSI over a multi-channel link

1. VSI A performs egress processing and performs any additional functionality prior

to the frame being forwarded to the S-VLAN Component within the physical end
station. (step 1)

2. The S-VLAN Component inserts an S-Tag associated with channel A into the frame
and forwards the frame to the adjacent bridge. (step 2)

3. Within the adjacent bridge, the S-VLAN Component removes the S-Tag and
forwards the frame. (step 3)

VM
Apps

VM
Apps

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Physical End Station

S-VLAN Component

S-VLAN Component

A B C D E F

A B C D E F

VEB VEPA

1

2

3

VM
Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps

Physical End Station

S-VLAN Component

S-VLAN Component

A B C D E F

A B C D E F

VEB VEPA

1

2

3

 EVB, VEPA, ETTP, VDP, MC Proposal

 21

This example illustrates how a VEB operates.

Figure 14. Frame fowarding when multi-channel is configured underneath a VEB

1. VM-to-VM communication across a shared VEB does not involve the multi-
channel link.

2. The frame forwarding steps to communicate to a VSI not attached to the VEB are
identical to the communication used for a directly accessible VSI running over a
channel.

a. VSI A performs egress processing and performs any additional
functionality prior to the frame being forwarded to the S-VLAN
Component within the physical end station. (step 1)

b. The S-VLAN Component inserts an S-Tag associated with channel A into
the frame and forwards the frame to the adjacent bridge. (step 2)

c. Within the adjacent bridge, the S-VLAN Component removes the S-Tag
and forwards the frame. (step 3)

This example illustrates VM-to-VM communication through a VEPA when multi-channel is
configured.

VM
Apps

VM
Apps

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Physical End Station

S-VLAN Component

S-VLAN Component

A B C D E F

A B C D E F

VEB VEPA

1

2

3

VM
Apps

VM
Apps

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Physical End Station

S-VLAN Component

S-VLAN Component

A B C D E F

A B C D E F

VEB VEPA

VM
Apps

VM
Apps

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Physical End Station

S-VLAN Component

S-VLAN Component

A B C D E F

A B C D E F

VEB VEPA

VM
Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps

Physical End Station

S-VLAN Component

S-VLAN Component

A B C D E F

A B C D E F

VEB VEPA

1

2

3

 EVB, VEPA, ETTP, VDP, MC Proposal

 22

Figure 15. Frame fowarding when multi-channel is configured underneath a VEPA

1. VSI performs egress processing and performs any additional functionality prior to
the frame being forwarded to the S-VLAN Component within the physical end
station. (step 1)

2. The S-VLAN Component inserts an S-Tag associated with channel F into the frame
and forwards the frame to the adjacent bridge. (step 2)

3. Within the adjacent bridge, the S-VLAN Component removes the S-Tag and
forwards the frame (step 3).

4. The adjacent bridge determines that the vPort is configured for VEPA mode so it
forwards the frame based on the bridge forwarding table (step 4).

5. Within the adjacent bridge, the S-VLAN Component adds the S-Tag associated
with channel F and forwards the frame to the S-VLAN Component within the
physical end station (step 5).

6. The S-VLAN Component within the physical end station removes the S-Tag and
forwards the frame to the associated VEPA (step 6).

7. The VEPA forwards the frame based on its VEPA address table to the associated
VSI (step 7).

VM
Apps

VM
Apps

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Physical End Station

S-VLAN Component

S-VLAN Component

A B C D E F

A B C D E F

VEB VEPA1
2

3

4

5

6

7

VM
Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps

Physical End Station

S-VLAN Component

S-VLAN Component

A B C D E F

A B C D E F

VEB VEPA1
2

3

4

5

6

7

 EVB, VEPA, ETTP, VDP, MC Proposal

 23

The following example illustrates how a VEPA-attached VM communicates to a directly
attached VSI through a common physical end station.

Figure 16. Frame fowarding over multi-channel between a VEPA and adirectly attached VSI

1. VSI performs egress processing and performs any additional functionality prior to
the frame being forwarded to the S-VLAN Component within the physical end
station. (step 1)

2. The S-VLAN Component inserts an S-Tag associated with channel F into the frame
and forwards the frame to the adjacent bridge. (step 2)

3. Within the adjacent bridge, the S-VLAN Component removes the S-Tag and
forwards the frame (step 3).

4. The adjacent bridge determines that frame’s next hop is associated with channel
D and forwards the frame to the S-VLAN component.

5. Within the adjacent bridge, the S-VLAN Component adds the S-Tag associated
with channel D and forwards the frame to the S-VLAN Component within the
physical end station (step 5).

6. The S-VLAN Component within the physical end station removes the S-Tag and
forwards the frame to the directly attached VSI.

3.5 Edge TLV Transport Operation

Today, IEEE control plane discovery operations are performed over unacknowledged
protocols, such as LLDP and DCBX. The Edge TLV Transport (ETTP) provides

VM
Apps

VM
Apps

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Physical End Station

S-VLAN Component

S-VLAN Component

A B C D E F

A B C D E F

VEB VEPA

1

2

3

4

5

6

VM
Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps

Physical End Station

S-VLAN Component

S-VLAN Component

A B C D E F

A B C D E F

VEB VEPA

1

2

3

4

5

6

 EVB, VEPA, ETTP, VDP, MC Proposal

 24

acknowledgements, which signal to the sender that the receiver is able to receive an
additional ETTP Data Unit. ETTP enables the sender to transmit discovery operations more
frequently than would be the case with timer based approaches. The intent is to have
the server’s virtualization infrastructure (e.g. Hypervisor) implement ETTP, versus having the
NIC implement ETTP.

The following diagram depicts, at a high level, ETTP semantics. In step 1, the ULP passes
an outgoing ULP Data Unit to ETTP by invoking a transmit request procedure. In step 2,
the ULP Data Unit, which for some ULPs (e.g. VSI) may contain a set of ULP TLVs, is
transmitted and a ETTP low level Acknowledgement (L-ACK in the diagram) timer is set,
but the frame is not yet deleted from the transmit buffer until a ETTP is received for that
ETTPDU. In step 3, the arriving ETTP frame is received into a receive ‘buffer’, where it is
held until it is removed by a T3 indication procedure that passes the ULP Data Unit to the
associated upper level protocol. In step 4, when the receive buffer is emptied, a low-
level acknowledge (L-ACK) is sent to the sender. In step 5, if the L-ACK is received before
the L-ACK timer expires, then the transmit buffer is cleared and ETTP can process another
ULP PDU through the ETTP procedure. However, if the L-ACK timer expires before the L-
ACK is received, then the frame in the transmit buffer is resent (some preset number of
times).

Figure 17. Example ETTP Exchange

3.6 VSI Discovery and Configuration Protocol (VDP)
Operation

Enterprise and cloud-based networking deployments have been rapidly growing in size
leading to a significant increase in the complexity of Ethernet networking in data centers.
The advent of virtualization technology brings unprecedented network configuration
complexity due to the significant increase in the number of Ethernet switches and very
large number of Virtual Station Interfaces (VSIs). Problem is made more complex by
advent of Virtual Machines (VM) mobility and solutions requiring external network state to
move with the VM, when the VM moves.

Virtual Ethernet Bridges (VEBs) embedded in Virtualized Systems have been around for
decades. VEBs provide efficient VM to VM communications. However, today’s virtual

Station BridgeLink or Channel

TLV TLV T3PRTLV

Upper
Level

Protocol
(ULP)

Upper
Level

Protocol
(ULP)

11

buffer

Flow/Ack
Processing

buffer
L-ACK Flow/Ack

Processing

22
33

44
55

T3P
Procedure

TLV
TLV
TLV

ULP
PDU

TLV
TLV
TLV

ULP
PDU

TLV
TLV
TLV

ULP
PDU

TLV
TLV
TLV

ULP
PDU

 EVB, VEPA, ETTP, VDP, MC Proposal

 25

switch management is too manual and x86 scale-out server sprawl and virtualization
magnifies this complexity. Two of the major challenges associated with today’s
virtualization approaches is the ability to automate the association of a VSI Instance with
it’s network state and automate VM migration, including all the network state associated
with the VM.

Today, when a VM moves from one server to another, VEBs embedded in Virtualized
Systems migrate the internal VEB’s VSI Type that is associated with the VM. The VSI Type
consists of the network state associated with the VM and may include Access and QoS
Controls. In today’s implementations, the external switch’s port profiles do not move with
the VM. Client have three options for dealing with this issue. Option 1 is to use the same
VSI Type for all VMs, the problem with this approach is that it limits virtualization’s value,
because all VMs in the network must be doing the same type of work (e.g. all must be e-
mail VMs). As a result, if a group of servers doing the same type of work gets over utilized,
the VMs from those servers cannot be moved to a group of servers doing another type of
work (e.g. file/print).

Option 2 is to move the VSI Type after the VM moves. This can be done by having the
external switch look up the VSI Type when the VM starts sending messages on the new
server. For example, when the VM starts sending messages, the external switch uses the
VM’s MAC Address to look-up the port profile. This approach suffers from two problems:
The external switch cannot tell if the MAC Address used by the VM is a migrated MAC
address (i.e. from a migrated VM) or a re-incarnated MAC address (i.e. from a new VM
that is using a previously destroyed VM’s MAC address). The second problem is that
there is a VSI Type exposure window between the VM’s first message and the time it
takes the external switch to obtain the VSI Type from the switch’s fabric manager.

Option 3 is to simply configure the link between the server and the edge switch as a trunk
port. The issue with this approach is all physical servers must be in the same security
domain, which has the similar VM movement limitations as option 1. For example, a
physical server cannot be managed by tenant A in the same fabric as a physical server
that is managed by tenant B.

The VDP Protocol specified in this document enables the association of a VSI Type with a
VSI instance (e.g. a VM virtual port) and the de-association of a VSI Type with a VSI
instance (e.g. a VM virtual port). VDP simplifies and automate Virtual Server (VS) network
configuration by enabling the movement of the VSI Type when the VSI Instance moves.

 EVB, VEPA, ETTP, VDP, MC Proposal

 26

3.6.1 VDP Type Configuration and Automation

A virtualized server hosts a set of VMs. Each VM may support one or more Virtual Station
Interface (VSI) Instances. Typically, a VM will support a virtual NIC (vNIC) that emulates a
physical NIC. Each vNIC will contain a VSI which is connected to a VEB or VEPA. The
server’s virtualization infrastructure (e.g. a Hypervisor) assigns one or more VSIs to a VM to
access the network. The VM is able to communicate with other VMs on the same
physical server through the VSI Instance. Similarly, the VM is able to communicate to
external stations through the VSI Instance.

Each VSI Instance is assigned VSI Type ID (VTID). VSI Type definition is outside the scope
of this proposal. For information context purposes only, a VSI Type definition may include
port access or rate limiting controls. Prior to the activation of a VM, VDP exchanges are
used to associate a VSI Instance with a VLAN Identifier, a MAC Address and a VTID in the
adjacent bridge and, if VEB is used, VEB. Similarly, a VDP exchange is used to de-
associate a VSI Instance with a VLAN Identifier, a MAC Address and a VTID in the
adjacent bridge and, if VEB is used, VEB, when a VM is either destroyed or moved.

The following sections provide an operational overview of how VDP can be used to
automate the configuration of network state (e.g. VSI Type) and the association of
network state to a VSI Instance. It will then describe the management elements required
to support such an example.

3.6.1.1 VDP – Operational Example
An example of the steps associated with VDP is depicted in the following figure.

VM

VM

VM

VM

vSwitch L2 net(s)

VM Edge Bridge Edge

Server Edge

VSI Type
Database

VM
Manager

System
Admin

Network Admin

Query available VSI types
Obtain a VSI instance

1

Query available VSI types
Obtain a VSI instance

11

2Push VM & VSI
Info to
VM Host

22Push VM & VSI
Info to
VM Host

3
VSI
Discovery

33
VSI
Discovery

4
Retrieve VSI
Configuration44
Retrieve VSI
Configuration

 EVB, VEPA, ETTP, VDP, MC Proposal

 27

Figure 18. VSI Type Architectural and Operational Overview

Following are the steps depicted in the figure above:

Step 1: VM Manager queries available VTIDs and creates a VSI Instance consisting of VSI
Instance ID and the chosen VTID. The VTDB server may create and track VSI Instance.

Step 2: VM Manager configures VSI with VTID and VSI Instance ID obtained from VTDB.

Step 3: Before VSI Instance (VM) activation, the VDP Module performs VSI Discovery and
Configuration protocol exchanges to associate the VSI instance with a VTID, MAC
Address and VLAN Identifier. In this example approach, the VDP Module is implemented
as part of the server’s virtualization infrastructure (e.g. in the Hypervisor or a service VM
guest running on top of the Hypervisor). The VDP Module is also implemented in the
adjacent bridge.

Step 4: As part of the VDP exchange the adjacent Bridge retrieves the VSI Type from the
VTDB by using the VTID and possibly the VSI Type Version and VSI Instance. The adjacent
Bridge stores the association of VLAN ID, VSI Type, VSI Type Version and MAC Address in
its local memory. This association is then applied to the traffic flow from/to the VSI
Instance. Note the VTDB access protocol is not part of this document.

3.6.1.2 VSI Type Database (VTDB)
The VSI Type Database described above is used to store detailed definition of VSI types.
Again these definitions are outside the scope of this document. For information purposes
only, a VSI Type may contain access and traffic controls. Also for information purposes
only, a VSI Type Database is expected to be part of the database used by the edge
switch’s Network Change and Configuration Manager.

VSI Type Definitions within a VTDB are identified by VSI Type ID (VTID) and VTID version.
Optionally, VSI instance specific definitions are possible.

The mechanisms used to create VSI Types in a VTDB are outside the scope of this
document. For information purposes only, each VSI Type may refer to different use
models, such as a server type, where each server type (e.g. web, file/print, e-mail) has a
unique VSI Type. Many other use models are possible.

3.6.2 VSI Type Definition and Management

VSI Type Definition and Management is outside the scope of this document. In other
words, the content of a VSI Type entry in the VTDB and how that content is managed are
outside the scope of this document.

Similarly, VSI Type management and access protocols are outside the scope this
proposal. This is not a hindrance to deployment of VDP because current Data Center
Network (DCN) infrastructure includes mature tools for management and configuration
and can be easily deployed to manage VSI Types. Further, VSI Type Management

 EVB, VEPA, ETTP, VDP, MC Proposal

 28

approach proposed in this document matches well with currently deployed DCN
management practices. It is achieved by aligning management and configuration
responsibility with current organization structure e.g. VSI Types can be managed by
Network Administrator and deployed on servers by server administrators.

3.6.3 VSI Manager ID

Figure 19. VSI Manager ID

VSI Manager ID tells the edge bridge which VSI Type Manager should be contacted to
obtain the VSI configuration information. The VSI Manager ID is part of VDP exchange
between Station and the Edge Bridge.

Note, the VSI Type ID or VSI Instance ID can also be used as index to look up VSI Type
configuration in VSI Type Database, see the following figure:

VM

VM

VM

VM

vSwitch L2 net(s)

VM Edge Bridge Edge

Server Edge

VM

VM

VM

VM

vSwitch L2 net(s)

VM Edge Bridge Edge

Server Edge

VSI Profile
Mgr A

VM Edge

VSI Manager ID tells the edge
bridge which VSI Profile
Manager should be contacted
to obtain the VSI configuration
information

VSI Manager ID tells the edge
bridge which VSI Profile
Manager should be contacted
to obtain the VSI configuration
information

VM
Manager

VSI Profile
Mgr B

VSI Profile
Mgr C

 EVB, VEPA, ETTP, VDP, MC Proposal

 29

Figure 20. VSI Type or Instance ID

3.6.3.1 VSI Manager ID Usage Example
The VSI Manager ID Identifies the VSI Manager with the Database that holds the detailed
VSI Type and/or VSI Instance Identifier definitions. The contents of the VSI Manager
Database are outside the scope of this proposal. The VSI Manager Database may use a
combination of the following fields to index into the VSI Manager Database:

• VSI Type Identifier
• VSI Type Version
• VSI Instance Identifier

Figure 21. VSI Manager Database Lookup

Port Type
Database

Vendor
Switch

VSI Manager
Identifier

Port Type

Port Type

f (VTID,
VSI Type Version,
VSI Instance)

VM

VM

VM

VM

vSwitch L2 net(s)

VM Edge Bridge Edge

Server Edge

VM

VM

VM

VM

vSwitch L2 net(s)

VM Edge Bridge Edge

Server Edge

VSI Profile
Mgr A

VM Edge
VSI Type or
VSI Instance ID
can be used as an index
into the selected VSI
Profile Database.

VSI Type or
VSI Instance ID
can be used as an index
into the selected VSI
Profile Database.

VM
Manager

VSI Profile
Mgr B

VSI Profile
Mgr C

 EVB, VEPA, ETTP, VDP, MC Proposal

 30

4. Ethernet Virtual Bridging TLV Semantics
The EVB TLV is used to:

• Advertise a station or bridge’s EVB functional and resource capabilities
• Activate common functional capabilities
• Reduce resource capabilities to a maximum common value

The EVB TLV is exchanged via LLDP and conforms to the LLDP TLV specification. The EVB
TLV is illustrated in the following figure:

Figure 22. EVB TLV Format

The EVB TLV fields are:

EVB Capabilities - The TLV describes EVB capabilities that are supported by the sender.
The capabilities are:

• Forwarding Mode:
o Standard 802.1Q forwarding
o Reflective Relay – enables frames to be reflected back through the

ingress port. For example, in a VEPA solution, frames exchanged
between co-located VM must flow through the adjacent bridge.
Reflective relay allows these exchanges to flow through a common
uplink between the station and the adjacent bridge.

 From the station, RR = TRUE indicates the station requests
reflective relay support.

 From the adjacent bridge, RR = TRUE indicates the bridge
supports reflective relay support.

 If the station and the adjacent bridge set RR = TRUE, then
reflective relay can be enabled. The EVB TLV Current
Configuration RR bit is set to TRUE.

 If either side does not set RR = TRUE, the reflective relay cannot
be enabled. The EVB TLV Current Configuration RR bit is set to
FALSE.

• Retransmission Timer Exponent (RTE) – Indicates the current RTE value is

present

• Edge TLV Transport Protocol (ETTP) – Indicates the sender supports ETTP

TLV header

TLV type =
127

(7 bits)

TLV information
string length

(9 bits)

OUI
(3 octets)

Subtype
(1 octet)

EVB
Capabilities

(2 octets)

EVB
Current Config.

(2 octets)

VSI
(4 octets) RTE

Octets:

Bits:

1 2 3 6 7 9 11 15

8 2 1 8 1

8 7 8 31 2 1
Forwarding

Mode Capabilities

Re
se

rv
ed

ET
TP

RT
E

RR

Re
se

rv
ed

4

ST
D

A
ut

h
VD

P

8 7 8 31 2 1
Forwarding

Mode Capabilities

Re
se

rv
ed

ET
TP

RT
E

RR

Re
se

rv
ed

4

ST
D

A
ut

h
VD

P

14

VSI
Supported

(2 octets)

VSI

Configured

(2 octets)

TLV information string = 13 octets

R

5 18 6

TLV header

TLV type =
127

(7 bits)

TLV information
string length

(9 bits)

OUI
(3 octets)

Subtype
(1 octet)

EVB
Capabilities

(2 octets)

EVB
Current Config.

(2 octets)

VSI
(4 octets) RTE

Octets:

Bits:

1 2 3 6 7 9 11 15

8 2 1 8 1

8 7 8 31 2 1
Forwarding

Mode Capabilities

Re
se

rv
ed

ET
TP

RT
E

RR

Re
se

rv
ed

4

ST
D

A
ut

h
VD

P

8 7 8 31 2 1
Forwarding

Mode Capabilities

Re
se

rv
ed

ET
TP

RT
E

RR

Re
se

rv
ed

4

ST
D

A
ut

h
VD

P

14

VSI
Supported

(2 octets)

VSI

Configured

(2 octets)

TLV information string = 13 octetsTLV information string = 13 octets

RR

5 18 6

 EVB, VEPA, ETTP, VDP, MC Proposal

 31

o From the station, ETTP = TRUE indicates the station supports VDP.
o From the adjacent bridge, ETTP = TRUE indicates the bridge supports

VDP.
o If the station and the adjacent bridge set ETTP = TRUE, then ETTP can

be enabled. The EVB TLV Current Configuration ETTP bit is set to TRUE.
• If either side does not set ETTP = TRUE, then ETTP cannot be enabled. The EVB

TLV Current Configuration ETTP bit is set to FALSE.

• 802.1X Authentication Required – Indicates the sender’s software requires

802.1X authentication before applications can be network enabled

• VSI Discovery Protocol (VDP) – Indicates the sender supports VDP. VDP is
dependent upon ETTP being enabled.

o From the station, VDP = TRUE indicates the station supports VDP.
o From the adjacent bridge, VDP = TRUE indicates the bridge supports

VDP.
o If the station and the adjacent bridge set VDP = TRUE and ETTP ==

TRUE, then VDP can be enabled. The EVB TLV Current Configuration
VDP bit is set to TRUE.

o If either side sets VDP = FALSE or ETTP == FALSE, then VDP cannot be
enabled. The EVB TLV Current Configuration VDP bit is set to FALSE.

EVB Current Configuration – The TLV describes the EVB capabilities that are currently
configured at the sender. Current configuration represents the intersection of the
capabilities and resources between the two senders on a link.

• Number of VSI Supported – The maximum number of VSI that can be supported
by the sender.

• Number of VSI configured – The maximum number of VSI that has been

configured by the sender.
• From the station, it indicates the number of resources that should be reserved

by the adjacent bridge.
• From the adjacent bridge, it indicates the number of active VSI discovered

and configured.

• Retransmission Exponent (RTE) – RTE is an EVB link or channel attribute used to
calculate the minimum ULP PDU retransmission time. The ULP PDU retransmission
time is calculated as follows:
• The Retransmission Granularity (RTG) is set to 10 micro-seconds.
• The Retransmission Multiplier (RTM) is set to 2RTE
• The sender’s ULP transmission timer is set to RTM * RTG
• Both sides agree to the largest common value

The following illustrates an example EVB TLV exchange between a station (e.g. a
hypervisor) and the adjacent bridge. This exchange is accomplished using LLDP. In this
example, both the station and the bridge support Reflective Relay, VDP, and a set of VSI
resources.

 EVB, VEPA, ETTP, VDP, MC Proposal

 32

Figure 23. Example EVB TLV Exchange

Station (e.g.,
Hypervisor)

1
Bridge

EVB TLV – OFFER CAPABILTIES

Capabilities
Forwarding: Std, RR
Other: VSI, Auth, etc.

Current Config.(Std, None)
VSIs Supported = J
VSIs Configured = 0

RTE = 15

EVB TLV - CON FIGURE

Capabilities & Current Config.
Forwarding: RR
Other: VSI, Auth, etc.

VSIs Supported = J
VSIs Configured = K

RTE = 10

EVB TLV – CON FIRM ATION

Capabilities
Forwarding: Std, RR
Other: VSI, Auth, etc.

Current Config.
Forwarding: RR
Other: VSI, Auth, etc.

VSIs Supported = J
VSIs Configured = K

RTE 10

Bridge advertises
what modes it can
support and the
max number of VSIs
it can handle.

Server configures
itself from the

available
capabilities

according to
local policy.

But still advertises its
full set of
capabilities.

2

3

Bridge matches
its configuration
to the limited
capabilities
advertised by the
station.

Station (e.g.,
Hypervisor)

11
Bridge

EVB TLV – OFFER CAPABILTIES

Capabilities
Forwarding: Std, RR
Other: VSI, Auth, etc.

Current Config.(Std, None)
VSIs Supported = J
VSIs Configured = 0

RTE = 15

EVB TLV - CON FIGURE

Capabilities & Current Config.
Forwarding: RR
Other: VSI, Auth, etc.

VSIs Supported = J
VSIs Configured = K

RTE = 10

EVB TLV – CON FIRM ATION

Capabilities
Forwarding: Std, RR
Other: VSI, Auth, etc.

Current Config.
Forwarding: RR
Other: VSI, Auth, etc.

VSIs Supported = J
VSIs Configured = K

RTE 10

Bridge advertises
what modes it can
support and the
max number of VSIs
it can handle.

Server configures
itself from the

available
capabilities

according to
local policy.

But still advertises its
full set of
capabilities.

22

33

Bridge matches
its configuration
to the limited
capabilities
advertised by the
station.

 EVB, VEPA, ETTP, VDP, MC Proposal

 33

5. Multi-Channel TLV Semantics and State
Machine
This chapter provides an overview, detailed semantics, and state machines for the Mulit-
Channel Discovery and Configuration Protocol (MDP).

5.1 MultiChannel Bridge Components and Operation

5.1.1 Introduction
The purpose of MDP is to configure S-VLANs (channels) used by a station to simplify the
internal configuration and operation of Virtual Station Interfaces (VSIs), Virtual Ethernet
Bridges(VEBs) and Virtual Ethernet Port Aggregators (VEPAs). S-VLANs are implemented in
stations and bridges using a specialized S-VLAN aware bridge component. This
component conforms to the Port-mapping S-VLAN Component specified in 802.1Qbc.

Figure 24. Example Multi-channel Block Diagram

The C-VLANs carried and the reflective relay operative mode associated with each S-
VLAN is determined by the configuration of the Bridge. The configuration of the Bridge is
determined by its capabilities and by requests made MDP described here and using the
EVB TLV described in clause 4. The station’s and Bridge’s configurations are exchanged
using LLDP TLVs. The configuration of S-VLANs is determined by an exchange of an LLDP
TLV at the LAN level of operation. One LLDP databases exists for each LAN connecting
between the station and Bridge. The reflective relay operation is then determined by a
separate LLDP TLV exchange which occurs on top of the S-VLAN (see EVB TLV).

 EVB, VEPA, ETTP, VDP, MC Proposal

 34

5.1.2 S-Component
The figure below is a “baggy pants” Bridge relay architecture model for the station and
Bridge. The S-Component in this relay conforms to the Port-mapping S-VLAN component
specified in 802.1Qbc. The S-Component is used to create S-VLANs (channels). The C-
Component of the Bridge is a standard Bridge C-Component relay with the exception of
additions for the reflective relay feature and support for EVB and VSI discovery,
configuration and control.

Not all the represented components need to be present in an implementation. If MDP is
present then the E-Components depicted will be present and are the operative parts for
forming E-VLANs. If no MDP is present then the E-Components may be present, however
disabled or may not be present at all. It is also possible that one or both of the E-
Components will be absent. If no VEB or VEPA is present (no V-Comp) then the E-
Component will couple directly to the end station LLC at the far left of the figure. It is
possible to have the E-Component without at V-Component or a V-Component without
an E-Component.

Figure 25. Station and Bridge V-Component and E-Component Block Diagram

MultiChannel is implemented using the S-Components, which form S-VLAN, along with
configuration of the Bridge side C-Component. The C-VLANs carried by each S-VLAN are
determined by configuration of the C-Component within the Bridge. Each S-VLAN is
connected from a single internal S-Comp Bridge Port on the station to a single internal S-
Comp Bridge Port facing an internal LAN within the Bridge. The internal LANs within the
Bridge each span between one S-Comp internal Bridge Port and one C-Comp internal
Bridge port.

The C-VLAN configuration and reflective relay configuration of the Bridge is determined
by the configuration of the C-VLAN aware component of the Bridge.

IS
S
IS
S
IS
S

IS
S
IS
S
IS
S

IS
S
IS
S
IS
S

IS
S
IS
S
IS
S

IS
S
IS
S
IS
S

IS
S
IS
S
IS
S

EISS
EISS

MAC
Relay

MAC
Relay

MAC
Relay

MAC
Relay EI

SS
EI

SS

EISS
EISS

EISS
EISS

EISS
EISS EI

SS
EI

SS

EI
SS

EI
SS

IS
S
IS
S
IS
S

IS
S
IS
S

IS
S
IS
S

IS
S
IS
S
IS
S

MSMS

LL
C

LLCLLCLLC

LLCLLC LLCLLC

LLCLLC

LL
C
LL
C

LLC

LL
C

HV

LLCSSLLCSS
C-Comp Ctrl, LLDP, ETTP, EDP, VDP C-Comp Ctrl, LLDP, ETTP, EDP, VDP

Station Bridge

S-Comp S-CompVEB/VEPA C-Comp

S-Comp Control
LLDP & MDP

S-Comp Control
LLDP & MDP

MultiChannel

 EVB, VEPA, ETTP, VDP, MC Proposal

 35

5.2 MDP Discovery and Configuration
Multichannel is configured by the exchange of LLDP TLV at the LAN level. The exchange
begins when the system is initialized. The configuration protocol begins with the station,
which makes a request for channel resources from the Bridge. In response the Bridge
provides the best matching set of S-VLANs it is capable of providing. It is possible the
Bridge does not have all the resources requested in which case the Bridge response will
provide a subset of the requested S-VLANs.

After initialization it is possible for the station to change it’s multichannel configuration.
The Bridge seeing a change in the stations request will alter it’s configuration to match
the needs of the station.

5.2.1 MDP TLV
The station and Bridge both use the same LLDP TLV to configure multichannel. This TLV is
in LLDP OUI format (802.1AB sub-clause 8.6). The MultiChannel capabilities, requests and
running configuration is encoded in the info field of this TLV as follows:

Figure 26. MDP TLV

• Role Bits (see note 3 regarding ties)

• S(01b) – Indicates the sender assigns channels numbers and a default
SVID for the default channel 1 and requests SVID assignments from the
neighboring ‘B’.

• B(10b) – Indicates the sender accepts multichannel configuration requests
from its neighboring ‘S’ and that the sender will do the best it can to fill the
SVID assignment requests from the neighboring ‘S’.

• Version– Describes multichannel capabilities that can be supported by the
sender.

• Vers: 10b identifies this version, 00b disables MCh
• Res1: must be set to zero, ignored on receipt

• # Channels Supported – Identifies the number of SVID channels that are
supportable by the sender.

• Default SVID – Reserved for future use.

TLV header TLV information string =10 + 3N octets

TLV type =
127

(7 bits)

TLV information
string length

(9 bits)

OUI
(3 octets)

Subtype
(1 octet)

#Channels
(12 bits)

Ch. Index/SVID
(N x 3 octets)

Channel Index
(12 bits)

SVID
(12 bits)

Octets:

Bits:

1 2 3 6 7 12 12+3N

8 2 1 8 1

Capabilities

Version

(6 bits)

8 17 6

10

45

8

Res1
(4 bits)

Res2

(8 bits)

1

Vers

(2 bits)

TLV header TLV information string =10 + 3N octets

TLV type =
127

(7 bits)

TLV information
string length

(9 bits)

OUI
(3 octets)

Subtype
(1 octet)

#Channels
(12 bits)

Ch. Index/SVID
(N x 3 octets)

Channel Index
(12 bits)

SVID
(12 bits)

Octets:

Bits:

1 2 3 6 7 12 12+3N

8 2 1 8 1

Capabilities

Version

(6 bits)

8 17 6

10

45

8

Res1
(4 bits)

Res2

(8 bits)

1

Vers

(2 bits)

Default SVID
(12 bits)

9 11

 EVB, VEPA, ETTP, VDP, MC Proposal

 36

• Res2 – must be set to zero, don’t run if non-zero

• Ch#/SVID Pairs
− Channel # -- indicates the index number of the channel. The ‘S’ assigns

channel numbers in the range 0-167. Zero is reserved. Channel number 1 is
the default channel and is always the first channel in the list of pairs. The
channel index should be between 1 and the maximum number of
channels supported by the port which is indicated by the # channel field
of the TLV.

− SVID – The S-Tag VLAN ID assigned to the channel. The ‘B’ assigns SVIDs to
channels in the range 1-0xffe. A ‘S’ uses the 0 SVID to request an SVID
assignment from the ‘B’.

Note1: A maximum of 167 channels can be supported. Other formats (assuming
sequential SVIDs) could be defined to allow support for 2K+ channels.

Note2: This listing could be sparse (in order to indicate arrival and removal of channels).
The channel going away is recognized by that channel index/SVID pair is removed.

Note3: If we have a tie, two ‘B’s or two ‘S’s MultiChannel the MDP protocol will not run. In
the case of two Bridges, then one must take the S role while the other takes the B role.

Note4: The order of the list will determine the priority of SVID assignments. If the Bridge
does not have resources for all channels it will assign the first channels in the list.

5.2.2 MDP Configuration Procedures
The MDP protocol used to discover and configure S-VLANs begins by announcing the
presence of MDP along with the station and Bridge capabilities (1). After the initial
announcement the Bridge will look for a request from the station (1). Once the Bridge
sees a station request it will configure itself with and provide the best matching
configuration to the station (2). The station seeing that the Bridge is now configured goes
operative using the Bridge’s configuration (3).

 EVB, VEPA, ETTP, VDP, MC Proposal

 37

Figure 27. Example MDP TLV Exchange

5.2.3 MDP Configuration Variables
The following variables are used by the MDP Configuration state machine to perform
multichannel configuration. The MDP requires each side of the configuration be assigned
a role as a Bridge or a Station. This is done by setting the AdminRole variable. In most
pieces of equipment the station or bridge role will not be settable, though the protocol
allows for equipment which can take either role. For MDP to configure multichannel one
side must take the station role and one side must take the Bridge role. If both sides of the
LAN have equipment configured as stations or as bridges the protocol will not configure
multichannel.

• AdminRole: Is the administratively configured value for the local port’s role
parameter. The value of AdminRole is not reflected in the MCh TLV. The
AdminRole may take the value S or B. S indicates the sender is unwilling to accept
multichannel configuration (mode, # channels supported, channel index) from its
neighbor and that the sender is willing to accept SVID assignments from the
neighbor. Stations usually take the S role. B indicates the sender is willing to
accept multichannel configuration (mode, # channels supported, channel
index) from its neighbor and that the sender is willing do the best it can to fill the
SVID assignments from the neighbor. Bridges usually take the B role.

• OperRole: The current operational value of the Role parameter in the local port.
This value is included as the Role parameter in the MCh TLV and may take values
S or B as described for AdminRole.

Station

1
Bridge

S:init

Multichannel TLV (Blind Propose)
Multichannel is {enabled, disabled}
Channels Supported = 6
Role = {S, B}

Channel/SVID assignments; {(1,0),(2,0),(3,0),(4,0)}

1 S:init

Multichannel TLV (Announce)
Multichannel is {enabled, disabled}
Channels Supported = 8
Role = {S,B}

Channel / SVID assignments: {}

S:TxSVIDs

Multichannel TLV (Match Config, Assign SVIDs)
Multichannel is {enabled, disabled}
Channels Supported = 8
Role = {S,B}

Channel / SVID assignments: {(1,29), (2,7), (3,345), (4,10)}

2

3
S:RxSVIDs

Multichannel TLV (Accept SVID assignments)
Multichannel is {enabled, disabled}
Channels Supported = 6
Role = {S, B}

Channel / SVID assignments: {(1,29), (2,7), (3,345), (4,10)}

Station

11
Bridge

S:init

Multichannel TLV (Blind Propose)
Multichannel is {enabled, disabled}
Channels Supported = 6
Role = {S, B}

Channel/SVID assignments; {(1,0),(2,0),(3,0),(4,0)}

11 S:init

Multichannel TLV (Announce)
Multichannel is {enabled, disabled}
Channels Supported = 8
Role = {S,B}

Channel / SVID assignments: {}

S:TxSVIDs

Multichannel TLV (Match Config, Assign SVIDs)
Multichannel is {enabled, disabled}
Channels Supported = 8
Role = {S,B}

Channel / SVID assignments: {(1,29), (2,7), (3,345), (4,10)}

22

33
S:RxSVIDs

Multichannel TLV (Accept SVID assignments)
Multichannel is {enabled, disabled}
Channels Supported = 6
Role = {S, B}

Channel / SVID assignments: {(1,29), (2,7), (3,345), (4,10)}

 EVB, VEPA, ETTP, VDP, MC Proposal

 38

• RemoteRole: Indicates the value in the remote MCh TLV role field. rwNull indicates
either the TLV was not present in the last LLDP PDU or that no LLDP PDUs have
been received. rwS and rwB indicate that the Role field was set in the MCh TLV
received and that it had a value of S or B respectively as described for the
AdminRole variable.

• mchState: The current running state of MultiChannel. The values for this variable
are NOTRUNNING or RUNNING.

• AdminVersion: The administratively configured value for the MCh capabilities
parameters. This value is included as the MCh Cap parameter in the MCh TLV. If
the value is DISABLE = 000b it means MCh is disbled. If the value is VER0 = 100b it
means this version.

• AdminChnCap: The administratively configured value for the Number of
Channels supported parameter. This value is included as the # Channels
supported parameter in the MCh TLV.

• AdminSVIDWants: The administratively configured value for (channel,SVID) pairs
wanted by a S. Not used by a B. The value NONE means no channels are
wanted. The channel numbers may be any valid number from 1-0xffe. A 0
channel number may be used to reserve space in a TLV. The SVID values are 0
indicating the S is requesting an SVID assignment from the ‘B’. This value is used to
form the (channel,SVID) pairs in the MCh TLV.

• LastSVIDWants: A local temporary copy of the AdminSVIDWants.
• LocalSVIDPool: The set of SVIDs and bridge ports available for MCh assignment.

These are determined by both administrative resource assignments and by
resource availability. The OperSVIDList for a B role must be drawn from the
LocalSVIDPool.

• LastLocalSVIDPool: A temporary copy of the LocalSVIDPool.

• OperVersion: The current value for the MCh version parameter. This value is
included as the MCh version parameter in the local MCh TLV. The value VER0 =
100b means this version. The value DISABLE = 000b mean don’t run MultiChannel.

• OperChnCap: The current value for the Number of Channels supported
parameter. This value is included as the number of channels supported
parameter in the local MCh TLV. The range for this variable is 1-0xffe.

• OperSVIDList: The current value for (channel,SVID) assignments. This is the list of
(Channel,SVID) pairs included as the (Channel,SVID) pairs in the local MCh TLV.
The total size of the list may not exceed 167 pairs. If the list is empty its value is
NONE. The valid range for each channel of this list is from 1-0xffe. The valid range
for each SVID in the list is from 1 to 0xfff. When the SVID is value is 0xfff the SVID is
unconfigured. For the S role a SVID of 0xfff indicates a request for a channel. For
the B role an SVID of 0xfff indicates an unconfigured channel.

• RemoteVersion: The current value for the remote MCh version parameter. This
value is included as the Version parameter in the remote MCh TLV. NULL means
no remote MCh TLV exists in the local LLDP database. The value for this variable
may be VER0=100b setting any other value will result in stopping MultiChannel
operation.

• RemoteChnCap: The current value for the Number of Channels supported
parameter. This value is included as the number of channels supported
parameter in the remote MCh TLV. NULL means no remote MCh TLV exists in the
local LLDP database. The range for this variable is 1-0xffe.

 EVB, VEPA, ETTP, VDP, MC Proposal

 39

• RemoteSVIDList: The current value for (channel,SVID) assignments. This is the list of
(Channel,SVID) pairs included as the (Channel,SVID) pairs in the remote MCh TLV.
NULL means no remote MCh TLV exists in the local LLDP database. If the list is
empty but the MCh TLV is present its value is NONE. The total size of the list may
not exceed 167 pairs. The valid range for each channel of this list is from 1-0xffe.
The valid range for each SVID in the list is from 1 to 0xfff. When the SVID is value is
0xfff the SVID is unconfigured. For the S role a SVID of 0xfff indicates a request for
a channel. For the B role an SVID of 0xfff indicates an unconfigured channel.

5.2.4 MDP Configuration Procedures
The MDP state machine uses three procedures. These are the SetSVIDRequest()
procedure which is used place a new request from the station or set the initial TLV for a
Bridge. The RxSVIDConfig() procedure is used by the station to configures a new set of S-
VLANs and SVID assignments. The TxSVIDConfig() is used by the Bridge to respond to the
station’s request for S-VLANs.

• SetSVIDRequest(OperRole, AdminSVIDWants, OperSVIDList)
− This function creates the OperSVIDList placed in the Local TLV database.
− If the OperRole for the equipment is R then the OperSVIDList remains

unchanged.
− If the OperRole for the equipement is S two possible cases exist. In the first

case we don’t have any configured channels, indicated by OperSVIDList
being equal to NONE. In this case the function places the
AdminSVIDWants in OperSVIDList. In the second case we already have a
running configuration indicated by the OperSVIDList not equal to NONE. In
this case the function compares the AdminSVIDWants with the
OperSVIDList. All active channels in the OperSVIDList which are in the
AdminSVIDWants are kept active and in addition any channels not
currently in the OperSVIDList are requested by including them in the
OperSVIDList along with a 0xfff SVID number.

• RxSVIDConfig (OperSVIDs, LastRemoteVIDList)
− This function creates the OperSVIDList placed in the Local TLV database

for an S role equipment
− The function compares the AdminSVIDWants with the LastRemoteSVIDList.

For each AdminSVIDWants channel with an SVID assignment in the
LastRemoteSVIDList a (Channel,SVID) pair is generated in the OperSVIDList.
For each AdminSVIDWants channel without an SVID assignment in the
LastRemoteSVIDList a (Channel,0xfff) pair is generated in the OperSVIDList.

• TxSVIDConfigB(OperChnCap, RemoteChnCap, LastLocalSVIDPool,
RemoteSVIDList, OperSVIDList)

− This function creates the OperSVIDList placed in the Local TLV database
for an S role equipment

− First the function takes the smaller of the OperChnCap and
RemoteChnCap and truncates the RemoteSVIDList to the smaller of the
two.

− A new OperSVIDList is created as follows:
• For each channel in the RemoteSVIDList with a (channel,SVID) pair

in the OperSVIDList the (channel,SVID) remains unchanged unless
the SVID is no longer part of the LastLocalSVIDPool. If the SVID is no
long in the pool a new one is selected if available. If no SVID is

 EVB, VEPA, ETTP, VDP, MC Proposal

 40

available the (channel,SVID) pair will be deleted from the
OperSVIDList.

• For each channel in the RemoteSVIDList without a (channel,SVID)
pair in the OperSVIDList an SVID is obtained from the
LastLocalSVIDPool (the pool for Bridge resources) if available. If no
SVID is available the (channel,SVID) pair will be deleted from the
OperSVIDList.

5.2.5 MDP Configuration State Machines
The MDP state machine operates on TLV exchanged using LLDP operating at the LAN
level (figure 28).

Figure 28. MDP State Machine

This LLDP instance is one per physical LAN associated with the Provider Network Port of
the S-Component, which faces the LAN connecting the station to the bridge. If either the
station or Bridge is not capable of multichannel operation no MCh-TLV will be inserted in
the LLDP database. The absence of a MCh-TLV therefore indicates that the station or
Bridge is not capable of multichannel. For MDP to progress both sides must indicate they
are capable of MultiChannel operation, have the same version number and one side
must have the ‘B’ role while the other side must have the ‘S’ role as indicated by the role
bits of the MCh-TLV.

ChannelRequest

OperChnCap = AdminChnCap
LastSVIDWants = AdminSVIDWants
SetSVIDRequest (OperRole, AdminSVIDWants,
OperSVIDList)

TxSVIDs

LastRemoteSVIDList = RemoteSVIDList
LastLocalSVIDPool = LocalSVIDPool
TxSVIDConfigB(

OperChnCap,
RemoteChnCap,
LastLocalSVIDPool,
RemoteSVIDList,
OperSVIDList)

mchState = RUNNING

OperRole == S &&
RemoteRole == rwB

AdminVersion != OperVersion||
AdminRole != OperRole ||
OperRole != S ||
RemoteRole != rwB

OperRole == B &&
RemoteRole == rwS

AsminVersion != OperVersion||
AdminRole != OperRole ||
OperRole != B ||
RemoteRole != rwS

BEGIN

AdminEnable != OperEnable
AdminRole != OperRole

LastRemoteSVIDList != RemoteSVIDList

1

1

1

1

Init

OperVersion = AdminVersion
OperRole = AdminRole
OperChnCap = 0
OperSVIDList = NONE
mchState = NOTRUNNING

OperVersion== VER0 &&
RemoteVersion == VER0AdminChnCap != OperChnCap

AdminSVIDWant s != LastSVIDWants

LastRemoteSVIDList != RemoteSVIDList
|| LastLocalSVIDPool != LocalSVIDPool

AdminChnCap != OperChnCap
ChannelRequest

OperChnCap = AdminChnCap
LastSVIDWants = AdminSVIDWants
SetSVIDRequest (OperRole, AdminSVIDWants,
OperSVIDList)

ChannelRequest

OperChnCap = AdminChnCap
LastSVIDWants = AdminSVIDWants
SetSVIDRequest (OperRole, AdminSVIDWants,
OperSVIDList)

TxSVIDs

LastRemoteSVIDList = RemoteSVIDList
LastLocalSVIDPool = LocalSVIDPool
TxSVIDConfigB(

OperChnCap,
RemoteChnCap,
LastLocalSVIDPool,
RemoteSVIDList,
OperSVIDList)

mchState = RUNNING

TxSVIDs

LastRemoteSVIDList = RemoteSVIDList
LastLocalSVIDPool = LocalSVIDPool
TxSVIDConfigB(

OperChnCap,
RemoteChnCap,
LastLocalSVIDPool,
RemoteSVIDList,
OperSVIDList)

mchState = RUNNING

OperRole == S &&
RemoteRole == rwB

AdminVersion != OperVersion||
AdminRole != OperRole ||
OperRole != S ||
RemoteRole != rwB

OperRole == B &&
RemoteRole == rwS

AsminVersion != OperVersion||
AdminRole != OperRole ||
OperRole != B ||
RemoteRole != rwS

BEGIN

AdminEnable != OperEnable
AdminRole != OperRole

LastRemoteSVIDList != RemoteSVIDList

11

11

11

11

Init

OperVersion = AdminVersion
OperRole = AdminRole
OperChnCap = 0
OperSVIDList = NONE
mchState = NOTRUNNING

Init

OperVersion = AdminVersion
OperRole = AdminRole
OperChnCap = 0
OperSVIDList = NONE
mchState = NOTRUNNING

OperVersion== VER0 &&
RemoteVersion == VER0AdminChnCap != OperChnCap

AdminSVIDWant s != LastSVIDWants

LastRemoteSVIDList != RemoteSVIDList
|| LastLocalSVIDPool != LocalSVIDPool

AdminChnCap != OperChnCap

 EVB, VEPA, ETTP, VDP, MC Proposal

 41

If both sides are MultiChannel capable, exactly one side has the ‘S’ role and one side
has the ‘B’ role, and the ‘B’ has at least some of the resources requested by the ‘S’ side,
the state machine will configure MultiChannel. The configuration proceeds by the ‘B’
providing the best match it can to the ‘S’s requested channels and configuration. The ‘S’
makes the resource request, the ‘B’ responds with its best matching resources, the ‘S’
then goes operational and reports its running configuration to the ‘B’, and finally the ‘B’
goes operational with the running configuration of the ‘S’.

In the event the ‘S’ wishes to change its configuration it alters the request in its MCh-TLV
and then follows the same process as above. If the ‘B’ losses its ability to support the
current configuration it can alter the current configuration in its MCh-TLV at which time
the ‘S’ must drop down to the resources supplied by the ‘B’.

In the event of a change of the administered parameters the current operating S-VLANs
must be terminated the configuration machine re-initialized.

 EVB, VEPA, ETTP, VDP, MC Proposal

 42

6. Edge TLV Transport Protocol (ETTP) TLV and
State Machine

This chapter will describe an architectural overview of the Edge TLV Transport Protocol
(ETTP) protocol, followed by the ETTP TLV semantics and associated state machines.

6.1 Requirements

ETTP was designed with the following protocol requirements:

• Semantics associated with the <ULP, ETTP> interface:

• A single link operating in "multi-channel" mode has one ETTP per channel.
• For VSI, there is one VSI agent per channel ETTP and that agent may have

multiple VSI instances sharing a single channel.
• The <ULP, ETTP> interface is based on a complete ULPDU (i.e. the group of TLVs

that are handed to ETTP for transmission).
• The number of octets in the ULPDU may be less than the maximum number of

octets that can fit into a ETTP frame.
• The number of ULP TLVs may be less than the maximum number

that can fit into a ETTP frame.
• Procedures are used to describe how the ULP hands off ULP PDUs

to ETTP and how ETTP hands off ULP PDUs to the ULP.
• Given the <ULP, ETTP> interface is based on full ULPDUs, no immediate

processing is needed at the ETTP level.
• Outside the scope of this proposal are the semantics for handling: link down;

and how multiple ULPs arbitrate when sharing the same ETTP.

• ETTP acknowledgement and sequencing semantics.

• A ETTP acknowledge means the ETTPDU was received and there is a free buffer
available to enable another send.
• It doesn’t mean the ETTPDU were delivered to the ULP.

• At the transmit side, if a ETTP Acknowledge is not received within an Ack timer
period, ETTP will retry the ETTPDU up to an EVB negotiated Retry Count is reached.
• The value of the EVB negotiated Retry Count is on a per link basis not channel.

• Once the receive side ETTP delivers the ULP PDU to the ULP through the receive
side hand-off procedure, the ETTP buffer becomes available for another send.
• The Acknowledgement must be sent in a separate ETTPDU

(vs piggy backing onto a Transmit message in the opposite direction).
• The receive side will issue a ETTP Acknowledgement after the completing the

receive side hand-off procedure.
• If the receive side hand-off procedure takes too long, the receive side ETTP

may toss the ULP PDU and send back an ACK to indicate the ETTP buffer is
free on the receive side.
• Note: The length of time the send side waits, before tossing the ULPDU

should not be less than the retransmission period times the maximum
number of retries.

• Semantics associated with slow ULP Data Unit reception (e.g. raising a
flag) are outside the scope of this proposal.

 EVB, VEPA, ETTP, VDP, MC Proposal

 43

• Sequence numbering must be used to detect duplicate vs new ETTPDUs.
• ETTP will not provide a keep-alive mechanism. Instead each ULP must do so.
• ETTP will not provide a digest at the ETTP level and any ULP Data Unit (or TLV)

database synchronization is left up to the ULP.

Note, the intent is to have the server’s virtualization infrastructure (e.g. Hypervisor)
implement ETTP, versus having the NIC implement ETTP.

6.2 Edge TLV Transport Protocol Data Unit

This section specifies the format of a ETTP Data Unit, along with the header that is added
to and removed from ETTP frames by the ETTP function. The ETTP header allows each ETTP
Data Unit from the sender to be identified through a sequence number, which the
receiver acknowledges by sending a ETTP Acknowledgement frame.

Ethertype = TBD Sub-type Mode Sequence Number ULPDU

 2 Octets 2 Octets 1 Octet 2 Octets Optional

Figure 29. ETTP Data Unit

The destination address of the Ethernet frame that contains a ETTPDU has the following
semantics:

• Nearest bridge (01-80-C2-00-00-0E) for ETTP running at the link layer.
• Nearest Customer Bridge (01-80-C2-00-00-00) for ETTP running over a channel.
• Note, ETTP should also be allowed using a Uni-cast address.

The source address shall be the sending station or port individual MAC address.

A new Ethertype will be needed for ETTP. A ETTP exchange will run at the link if the link is
not configured for multichannel. If ETTP is performed over Multi-channel,
then the STAG for the channel shall precede the ETTPDU.

The ETTPDU contains:
• Sub-type - a 2 octet field that defines the ULP type included in the PDU. Note for

Ack’s the sub-type is ignored at the station.
• Mode – Identifies whether the operation is a:

• ETTP request (0x00)
• ETTP acknowledgement (0x01).

• Sequence number – identifies the sequential order of the PDU, with respect to other
ETTPDUs. The starting sequence number may start anywhere for the first ETTPDU, but
the sequence number for each subsequent new ETTPDU is incremented by 1.

6.3 ETTP Procedures

Two procedures are used to hand-off Data Units between the ULP and ETTP:
ETTP_UNITDATA.request and ETTP_UNITDATA.indication. The implementation of these two
procedures is outside the scope of this proposal. These <ULP, ETTP> interface procedures

 EVB, VEPA, ETTP, VDP, MC Proposal

 44

may be implemented in many ways, including a queue. Also, the system must have a
way of associating the ulptype with a specific ULP.

The ETTP_UNITDATA.request is invoked by the ULP at the sender to notify ETTP that a ULPDU
is ready to be transmitted. The ulpdu parameter is a unit of work from the ULP. For
example, for VSI it consists of a set of VSI TLVs passed from the VSI ULP to ETTP for
transmission, where the set of TLVs must be less than or equal to the maximum allowed
ETTPDU. Following is the format for the ETTP_UNITDATA.request procedure:

ETTP_UNITDATA.request (ulptype, ulpdu)

The ETTP_UNITDATA.indication is invoked by ETTP at the receiver to indicate a ULPDU has
been successfully received and is available ULP processing. The ulpdu parameter is unit
of work from the ULP. For example, for VSI it consists of a set of VSI TLVs passed from the
ULP to ETTP for transmission, where the set of TLVs must be less than or equal to the
maximum allowed ETTPDU. Following is the format for the ETTP_UNITDATA.indication
procedure:

ETTP_UNITDATA.indication (ulptype, ulpdu)

6.4 ETTP State Machines

There are two state machines used by each ETTP instance: transmit and receive. The
transmit state machine is invoked through the ETTP_UNITDATA.request procedure. The
receive state machine is invoked upon reception of a ETTP Data Unit and it invokes the
ETTP_UNITDATA.indication procedure.

6.4.1 ETTP Transmit State Machine

 EVB, VEPA, ETTP, VDP, MC Proposal

 45

Figure 30. ETTP Transmit State Machine

The first entrance into transmitETTPDU is used to initiate the sequence counting on the
receive side. That is, an ETTP Frame that simply contains the ETTP header is sent and an
ackTimer is started. The waitForAck state waits for the L-ACK to be received that
matches the last transmitted ETTP sequence number. If an L-ACK is received that
matches the last transmitted ETTP sequence number or the number of retries exceeds the
maximum number of retries, the sender will stop transmitting the ETTP Frame and proceed
to requestPDU. If an L-ACK is not received within an ackTimer period and the number of
retries is less than the maximum number of retries, the sender will retransmit the ETTP
Frame. The requestPDU state increments the sequence count and waits for the
ETTP_UNITDATA.request procedure to be invoked.

Note, the starting sequence number may start anywhere for the first ETTPDU. Also a Link
Down event may restart the sequence number at the same point every time or not.

6.4.2 ETTP Receive State Machine

initTransmitinitTransmit

ETTP_UNITDATA.request

Transmit ETTPDU;
Start ackTimer

transmitETTPDU
Transmit ETTPDU;
Start ackTimer

transmitETTPDU

Retries ++
waitForAck

Retries ++
waitForAck

ackTimer done &&
(Retries <
maxRetries)

Retries = 0;
Sequence++

requestPDU
Retries = 0;
Sequence++

requestPDU
Retries == maxRetries ||

[ackReceived && (Sequence
== ackSequence)]

BEGIN

 EVB, VEPA, ETTP, VDP, MC Proposal

 46

Figure 31. ETTP Receive State Machine

The first entrance into InitReceive is used to set the sequence counting to NULL and then
proceed to receiveWait, which waits for an ETTP Data Unit to be received. The
receiveETTPDU validates the ETTPDU and sets the current sequence number to the
sequence number of the transmitted ETTPDU. If the current sequence number doesn’t
match the last transmitted ETTP sequence number, then in sendACK the ETTP Data Unit is
delivered to the ULP and the lastSequence number is set to the current sequence
number. If the current sequence number doesn’t match the last transmitted ETTP
sequence number, then in resendACK an L-ACK is sent.

seqETTPDU == lastSequence

If (validate(ETTPDU))
seqETTPDU = sequenceOf(ETTPDU);

receiveETTPDU
If (validate(ETTPDU))

seqETTPDU = sequenceOf(ETTPDU);

receiveETTPDU

sendAcknowledgement(seqETTPDU)
resendACK

sendAcknowledgement(seqETTPDU)
resendACK

Invoke ETTP_UNITDATA.indication procedure

lastSequence = seqETTPDU;

sendACK
Invoke ETTP_UNITDATA.indication procedure

lastSequence = seqETTPDU;

sendACK

seqETTPDU != lastSequence

receiveWaitreceiveWait

ETTPDU received

lastSequence = NULL
initReceive

lastSequence = NULL
initReceive

 EVB, VEPA, ETTP, VDP, MC Proposal

 47

7. Virtual Station Interface (VSI) TLV and State
Machine

This section covers the Virtual Station Interface (VSI) Discovery and Configuration
Protocol (VDP) and State Machine. VDP uses ETTP (Enhanced TLV Transport Protocol) for
VDP exchanges.

7.1.1 VSI Discovery and Configuration TLV
VSI TLV is used for discovery and configuration and is exchanged between the Station
and Bridge. One or more VSI TLVs are transported in an ETTP Data Unit. Following is the
format and semantics for a VSI TLV:

TLV header TLV information string = 11+ 3N octets

TLV type =
127

(7 bits)

TLV information
string length

(9 bits)

OUI
(3 octets)

Subtype
(1 octet)

Octets:

Bits:

1 2 3 6

8 2 1 8 1

Index
(2 octets)

VSI
Mgr ID

(1 octet)

VSI
Type ID

(3 octets)

VSI Type
Version

(1 octets)

VSI
Instance ID
(16 octets)

MAC/ VLAN
Format

(1 octets)

MAC/ VLANs
(M octets)

9 11 12 15 16 32 33 32+ M

MAC & VLAN InfoVSI Type and Instance

VSI Attributes

Mode
(2 octet)

Figure 32. VDP TLV

Index – VSI index – Offset in bit-arrays containing state and configuration status of VSIs.
Mode – Indicates VSI TLV Mode

• First octet identifies a pre-associate, associate, de-associate, or the
corresponding confirmation or rejection for each.

• Second octet is used during a rejection to indicate the reason for the pre-assoc
or assoc rejection.

VSI Manager ID – Identifies the VSI Manager with the Database that holds the detailed
VSI type and or instance definitions. VSI Manager ID can be used to obtain IP address
and/or other connectivity and access information for the manager.

VSI Type ID (VTID) – The integer identifier of the VSI Type.
VSI Type ID Version – The integer identifier designating the expected/desired version of

the VTID
VSI Instance ID – A globally unique ID for the connection instance. The ID shall be done

consistent with IETF RFC 4122.
Format – identifies the format of the MAC and VLAN information that follows in the TLV.
Note, the VSI TLV allows multiple formats, which makes possible extensions in the future.
MAC/VLANs – Listing of the MAC/VLANs associated with the Virtual Station Instance (VSI).
Following is the format for Format = 1

 EVB, VEPA, ETTP, VDP, MC Proposal

 48

Entries
(2 octets)

MAC
(6 octets)

VLAN ID
(2 octets)

 x # Entries

Figure 33. VDP Format = 1 Schema

Note, the station and switch environments and their common understanding of the VTID
meaning is outside the scope of this TLV. Also, the contents of a VSI Type are outside the
scope of this proposal.

7.1.1.1 VSI TLV – Mode and Mode Response
The purpose of the Mode field is to identify the type of VSI TLV. It is defined as follows.

VSI TLV Request field: 1st octet

Pre-Associate: 0x00
Pre-Associate with resource reservation: 0x01
Associate: 0x02
De-Associate: 0x03

VSI TLV Response field: 2nd octet
For all the responses, the bridge reflects the same VSI TLV fields as the Requester had
sent. On requests, response field is initialized to 0x00 (Success). Following are the possible
values of the response field.

Success: 0x00
The VSI Request was successfully completed by the switch

Invalid Format: 0x01
The VSI Format is not supported by the switch

Insufficient Resources: 0x02
The switch does not have enough resources to complete the VSI operation
successfully.

Unused VTID: 0x03
The VSI referenced by the VSIID does not exist in the VSI Manager database
referenced by the VSI Manager Identifier

VTID Violation: 0x04
The VSI referenced by the VSIID is not allowed to be associated with the VTID.

VTID Version Violation: 0x05

The VSI referenced by the VSIID is not allowed to be associated with the VTID
Version.

Out of Sync: 0x06
The VTID or one of the VSI List fields used in the Associate is not the same as
the corresponding field used in the Pre-Associate.

 EVB, VEPA, ETTP, VDP, MC Proposal

 49

Reserved 0x08 – 0xFF
These Responses are reserved for future use.

Mode and Mode Response fields are used under the control of VDP state machines.

7.1.1.2 VSI TLV Mode and Responses Semantics
Following are the semantics association with each VSI TLV Request.

7.1.1.2.1 Pre-Associate
The Pre-Associate is used to pre-associate a VSI Instance Identifier to a VSI Type ID. If
required, the bridge should obtain VSI Type Definition from the VSI Manager Database.
The bridge must validate the request (see below) and fail it in case of errors (see below
for responses). Successful Pre-Association does not enable any traffic from VSI. Note that
VSI may still be associated at another station. The Pre-Associate enables faster response
to an Associate, by allowing the bridge to obtain VSI Type state, prior to an association.

The second Mode octet is used by the bridge to communicate the results of the Pre-
Associate requested for the VSI Instance ID (VSIID).

Following are the mode and responses with their semantics:

• Success - Pre-Associate was successful. The switch shall permit a subsequent

Associate or De-Associate by the VSI referenced by the VSI Instance Identifier.
• The following are all unsuccessful Pre-Associate Completions. For each of these, the

switch shall not permit a subsequent Associate or De-Associate by the VSI referenced
by the VSIID.
• Invalid Format.
• Insufficient PT Resources.
• Unused VTID
• VTID Violation
• VTID Version Violation

Pre-Associate requires resource lease timer mechanism to conserve Bridge resources.
Pre-Associate does not allow any traffic from VSI which is enabled when the VSI is
Associated.

7.1.1.2.2 Pre-Associate with Resource Reservation
Pre-Associate with Resource Reservation has same steps as Pre-Associate but also
reserves resources.

Bridge should validate required resources and place reservation to ensure resources for
subsequent Associate step. Pre-Associate requires resource lease timer mechanism to
conserve Bridge resources. Pre-Associate does not allow any traffic from VSI which is
enabled when the VSI is Associated.

Second Mode octet contains the results of the Pre-Associate requested for the VSI
Instance ID (VSIID). Following are the mode and responses with their semantics.

 EVB, VEPA, ETTP, VDP, MC Proposal

 50

• Success - Pre-Associate with Resource Reservation was successful. The switch shall
permit a subsequent Associate or De-Associate by the VSI referenced by the VSI
Instance Identifier.

• The following are all unsuccessful Pre-Associate with Resource Reservation
Completions. For each of these, the switch shall not permit a subsequent Associate or
De-Associate by the VSI referenced by the VSIID.
• Invalid Format.
• Insufficient PT Resources.
• Unused VTID
• VTID Violation
• VTID Version Violation

7.1.1.2.3 Associate
Associates the VSI Instance ID with the VSI Type ID (VTID). If VSI Type definition is not
already cached in the bridge, the bridge fetches the VSI Type definition from the VSI
Type definition Database. Bridge allocates required bridge resources for the referenced
VSI. The Bridge binds specific MAC/VLAN pairs with the VSI Type ID which allows
classification of L2 traffic to the VSI and enforcing of VSI Type controls. Bridge activates
the configuration for the VSI Type ID. This association is then applied to the traffic flow
from/to the VSI Instance.

For a given VSI Instance ID, a Station may issue an Associate without having previously
issued a Pre-Associate or Pre-Associate with Resource Reservation. Same VSI Instance
may not be successfully Associated more than once on two different bridges or ports.

In VSI TLV, second octet in the mode field contains the results of the Associate request
performed for the VSI Instance Identifier. These are described below.

• Success - Associate was successful. Prior to issuing this response, for a format 1 VSI

TLV, the bridge shall associate the VSI Type referenced by the VSI Type Identifier and
VSI Type Version with the MAC Address, VLAN and VSIID.

• The following are all unsuccessful Associate Completions.
• Invalid Format
• Insufficient Resources - If the Associate was preceded by a successful Pre-

Associate with Resource Reservation, then the bridge shall not issue this response.
• VTID Violation
• VTID Version Violation
• Out of Sync

7.1.1.2.4 De-Associate
De-associate a VSI Instance Identifier from the associated VTID. Pre-Associated and
Associated VSIs can be De-Associated. De-Associate releases resources and de-
activates the configuration associated with the VSI instance. A VSI Instance may get De-
Associated by bridge due to bridge error situation or management action.

In VSI TLV, second octet in the mode field contains the results of the De-Associate request
performed for the VSI Instance Identifier. These are described below.

 EVB, VEPA, ETTP, VDP, MC Proposal

 51

• Success - De-Associate was successful. Prior to issuing this response, for a format 1 VSI
TLV, the bridge shall de-associate the VSI Type referenced by the VSI Type Identifier
from the the MAC Address, VLAN and VSI Instance ID.

• The following are all unsuccessful De-Associate Completions.

• Invalid Format
• VTID Violation
• VTID Version Violation

Note: The result of the above semantics is that De-Associate can be issued at any time.

7.1.1.2.5 VSI Type ID (VTID) Semantics
VSI Type ID (VTID) is an integer value field used to identify a pre-configured set of
controls/attributes that are to be associated with a set of VSIs.

VTID contents and meaning and the database used to contain the VSI Type are outside
the scope of this effort. One VTID may describe the VSI Type configuration of multiple
VSIs. The VSI Type content referenced by the same VTID may differ between switches
and VEBs. For example: same VTID is used by switches from two different vendors; or
same VTID is used by a VEB and vendor switches.

7.1.1.3 VSI Type ID Version Semantics
VTID Version is integer identifier designating the expected/desired VTID version.
The VTID Version enables a VSI Manager Database to contain multiple VSI Type versions.
It allows smooth migration to newer VSI types.

7.1.1.4 VSI Instance ID
VSI Instance ID is a globally unique ID for the VSI instance. The ID shall be done consistent
with IETF RFC 4122. VSI ID is gets generated when VSI instance is created by VSI Instance
Manager at request of VM Manager. VSI Instance creation mechanism is outside scope
of this proposal but expected to be created by VM Manager or VSI Manager.

7.1.1.5 MAC – VLAN Information Format

Figure 34. MAC-VLAN Information Format 1

#Entries
(2 octets)

MAC
(6 octets)

VLAN ID
(2 octets)

X# of entries

 EVB, VEPA, ETTP, VDP, MC Proposal

 52

MAC-VLAN Format-1 contains the set of MAC Addresses and VLANs to be associated
with the VSI Instance ID. Note the bridge uses MAC+VID to identify traffic from VSI and to
steer the frames.

Field:

#MAC-VLAN pairs: 2 octets

Per MAC-VLAN Pair Content:

MAC address: 48 bits

VID: 12 bits

7.1.2 VDP Requirements and Assumptions
Following are VDP requirements associated met by VDP state machines described in this
section:

1. VDP must support a VSI Pre-Associate (with and without resource reservations),
Associate and De-Associate.

2. Associate, Pre-Associate and De-Associate are Idempotent i.e. can be repeated.
3. The bridge must allow for an Associate to be issued without the need for a

previous Pre-Associate.
4. VDP may be used in conjunction with both a VEPA and VEB.
5. VDP utilize ETTP as the transport for a VDP Data Unit that contains one or more

VDP TLVs. VDP utilizes the following capabilities of ETTP:
1. Transport will be transmitting TLVs in-order and are received in-order.
2. Flow control
3. Transport error from ETTP and LLDP are indicated to VDP
4. ETTP provides best effort delivery of TLV. At the Station, if a VDP

Acknowledgement is not received, within an Acknowledgement timeout
period, VSI exits the state machine. The Acknowledgement timeout
period is defined as 2*ETTP retransmission period * Maximum number of
retries, plus a locally administered wait that is outside the scope of this
document.

6. Health TLV mechanism to ensure:
1. Bridge resources are not reserved for too long a time period for inactive

VSIs (lease semantics)
2. Allow removing resources from inactive VSIs with the goal of

1. Conserving bridges resources (Number VSIs being handled by
bridge can be large).

2. Prevent inactive or VMs in error state to continue to hold resources.
3. For multichannel, timeout out values to be negotiated on a per channel

basis between station and bridge. One timeout used for all ULPs on the
channel negotiated using EVB TLV.

4. If multichannel is not enabled, timeout out values to be negotiated per
link basis between station and bridge. One timeout used for all ULPs on
the link negotiated using EVB TLV.

7. Ensure VSI state and configuration between the Station and the Bridge remains
consistent.

8. Hard errors at the Bridge or the Hypervisor that can impact individual VSI or
Hypervisor/Bridge as a whole are handled by removing all VSI configuration.

 EVB, VEPA, ETTP, VDP, MC Proposal

 53

9. Bridge and Station Errors are detected through one or more of the following
mechanisms.

1. VSI KEEP-ALIVE (periodic transmission of VSI TLV from station and response
from Bridge)

2. ACK Timer
10. Supports for switch/hypervisor administrator actions that force VSI De-Associate.
11. Should enable statistics and logging capability.

7.1.3 VDP – Local Variables and Procedures

vsiState: Local variable for current state.

localTLV: Current local (active) TLV (configuration)

AdminTLV: TLV from local administration. In addition appropriate

localChange variable is set. It allows mode change
RemoteTLV: TLV received from remote.

TxTLV(vsiTLV): Transmits AdminTLV using TLV transport/DBA service interfaces

ProcRxAndSetCfg(vsiRemoteTLV,vsiLocalTLV,vsiState):

Processes receive TLV and Sets local TLV variable based on
 received Remote TLV and vsiState. In case of error, returns error.
This function handles PreAssociate with and without resource
 reservation case as well as accessing VSI Type definition fetch, if
 required.

StartACKtimer(): Resets ACKTimeout local variable to FALSE and Starts ACK timer.
Response (ACK or NACK is expected before timer expires.

ACKTimeout: This local variable is set to true, if ACK timer expires
vsiErrorPerm(vsiRemoteTLV):

processes the vsiRemoteTLV and returns TRUE is response code is
unrecoverable (permanent) error.

The next sections contain the VSI State Machine. Following are notes regarding those
state machines:

1. The purpose of the ACKtimer is to catch the unusual case of a TLV getting
lost. The following architectural minimum shall be used: The
Acknowledgement timeout period is defined as 2*ETTP retransmission
period * Maximum number of retries, plus a locally administered wait that
is outside the scope of this document.

2. For any VSI ACK received for a non-active VSI the station shall drop the
packet.

3. VSI State is set to NULL on exit.
4. The VSI State Machine does will not implement retry mechanism on NACK.

Instead the ULP can process the NACK reasons and retry the VSI
operation.

5. VDP state machine will exit on receiving NACK.

 EVB, VEPA, ETTP, VDP, MC Proposal

 54

7.1.4 Station VSI State Machine

Following is the VSI State Machine for the Station.

Figure 35. Station’s VSI State Machine

7.1.5 Edge Bridge VSI State Machine

Following is the VSI State Machine for the Bridge.

localChange-PreAssoc

PreAssoc_NAK_Rx II
ACKTimeout || DeAssocAck Rx

vsiError ||
localChange-DeAssoc

localChange-Assoc

vsiLocalTLV = NULL
vsiState = UNASSOCIATED

INIT

vsiLocalTLV = NULL
vsiState = UNASSOCIATED

INIT

TxTLV(PreASSOC)
StartACKTimer()

PREASSOC_PROCESSING

TxTLV(PreASSOC)
StartACKTimer()

PREASSOC_PROCESSING

vsiError =
ProcRxAndSetCfg(vsiRemoteTLV,vsiLocalTLV,
vsiState);
If (!vsiError)

vsiState = PREASSOCIATED

PREASSOCIATED

vsiError =
ProcRxAndSetCfg(vsiRemoteTLV,vsiLocalTLV,
vsiState);
If (!vsiError)

vsiState = PREASSOCIATED

PREASSOCIATED

localChange-PreAssoc ||
ACIIVITY_TIMER_Event PreAssoc_ACK_Rx

TxTLV(DeASSOC)
StartACKTimer()

DEASSOC_PROCESSING

TxTLV(DeASSOC)
StartACKTimer()

DEASSOC_PROCESSING

TxTLV(ASSOC)
StartACKTimer()

ASSOC_PROCESSING

TxTLV(ASSOC)
StartACKTimer()

ASSOC_PROCESSING

vsiError =
ProcRxAndSetCfg(vsiRemoteTLV,vsiLocalTLV,vsiState);
If (!vsiError)

vsiState = ASSOCIATED

ASSOCIATED

vsiError =
ProcRxAndSetCfg(vsiRemoteTLV,vsiLocalTLV,vsiState);
If (!vsiError)

vsiState = ASSOCIATED

ASSOCIATED

(Assoc_NAK_Rx && VsiState == !Assoc)
II ACKTimeout || DeAssocAck Rx

Assoc_ACK_Rx ||
(Assoc_NAK_Rx &&
VsiState == Assoc) localChange - Assoc ||

ACIIVITY_TIMER_Event

localChange - PreAssoc

localChange - Assoc

ACKTimeout || DeAssoc Rx

vsiError ||
localChange-DeAssoc

Local VSI-START

EXIT

vsiError || DeAssocAck Rx

 EVB, VEPA, ETTP, VDP, MC Proposal

 55

Figure 36. Edge Bridge’s VSI State Machine

vsiLocalTLV = NULL
vsiState = UNASSOCIATED

INIT

vsiLocalTLV = NULL
vsiState = UNASSOCIATED

INIT

vsiError=ProcRxandSetCfg(localTLV,
remoteTLV, vsiState)
If (vsiError)

txTLV(PreAssoc NACK)
Else txTLV(PreAssoc-ACK)

PREASSOC_PROCESSING

vsiError=ProcRxandSetCfg(localTLV,
remoteTLV, vsiState)
If (vsiError)

txTLV(PreAssoc NACK)
Else txTLV(PreAssoc-ACK)

PREASSOC_PROCESSING

vsiState = PREASSOCIATED

PREASSOCIATED

vsiState = PREASSOCIATED

PREASSOCIATED

!vsiError

TxTLV(DeAssoc-
ACK)

DEASSOC

TxTLV(DeAssoc-
ACK)

DEASSOC

vsiError=ProcRxandSetCfg(localTLV,
remoteTLV, vsiState)
If (vsiError)

txTLV(Assoc NACK)
Else txTLV(Assoc-ACK)

ASSOC_PROCESSING

vsiError=ProcRxandSetCfg(localTLV,
remoteTLV, vsiState)
If (vsiError)

txTLV(Assoc NACK)
Else txTLV(Assoc-ACK)

ASSOC_PROCESSING

VsiState = ASSOCIATED

ASSOCIATED

VsiState = ASSOCIATED

ASSOCIATED

!vsiError || (vsiError
&& VsiState ==
Assoc)

rxTLV == DeAssoc
|| INACTIVE

rxTLV == Assoc

rxTLV == PreAssoc

localChange-DeAssoc

rxTLV == Assoc

rxTLV == Assoc

rxTLV ==
PreAssoc

(rxTLV == DeAssoc)
|| INACTIVE

rxTLV == PreAssoc

EXIT

New-VSI-Instance ID TLV Rx

(rxTLV == DeAssoc)
|| INACTIVE

vsiError

vsiError &&
VsiState ==
!Assoc

 EVB, VEPA, ETTP, VDP, MC Proposal

 56

8. Glossary
Term Description

Channel An S-VLAN used to associate a set of VSI Instances with a physical Ethernet link.

Traffic within one channel is isolated from traffic in another channel on the same
link through the use of a S-Tag.

Chassis A physical component incorporating one or more IEEE 802 LAN stations and
their associated application functionality.

Chassis identifier An administratively assigned name that identifies the particular chassis within the
context of an administrative domain that comprise one or more networks.

CVID Customer VLAN Identifier
DA Destination Address
DS Distribution System

Edge Virtual
Bridging (EVB)

The environment where physical end stations, containing multiple VSI Instances,
all require the services of adjacent bridges forming a LAN. EVB environments
are unique in that virtual NIC configuration information is available to the EVB
device that is not normally available to an 802.1Q bridge.

EUI Extended Unique Identifier

Hypervisor Computer software and / or hardware platform virtualization software that enables
multiple operating systems to operate on top of common, shared hardware.

ID Identifier
IEEE 802 LAN Local area network (LAN) technologies that provide a media access control

(MAC) Service equivalent to the MAC Service defined in ISO/IED 158001-1.
IEEE 802 LANs include IEEE Sd. 802.3, IEEE Std 802.11, IEEE Std 802.16,
IEEE Std 802.17, and ISO 9314-2 LANs.

IEEE 802 LAN
Station

An IEEE 802-compatible entity that incorporates all the necessary mechanisms to
participate in media access control of an IEEE 802 LAN, and that is at least
capable of providing the MAC service plus the mandatory capabilities of the LLC.

LLC Logical Link Control (sub-layer)
Link Layer

Discovery Protocol
(LLDP)

A media-independent protocol capable of running on all IEEE 802 LAN stations
and to allow an LLDP agent to learn the connectivity and management
information from adjacent stations.

LLDP agent The protocol enttity that implements LLDP for a particular MSAP associated with
a Port.

LLDPDU Link Layer Discovery Protocol Data Unit
LSAP Link Service Access Point
MAC Media Access Control

MAC service
access point

(MSAP)

The access point for MAC services provided to the LLC sub-layer.

MSAP Identifier The identifier of a MAC service access point.

 EVB, VEPA, ETTP, VDP, MC Proposal

 57

Term Description

Management entity The protocol entity that implements a particular network management protocol
and that provides access support to a MIB associated with the protocol and
implemented in a host chassis.

Management
Information Base

(MIB)

The instantiation of all MIB modules in a managed entity (e.g. system or device)

Management
Information Base

module (MIB
module)

The specification or schema for a data base that can be populated with information
required to support a network management information system.

Multi-Channel The capability to multiplex multiple virtual channels over a single physical
Ethernet link.

Network An interconnected group of systems, each comprising one or more IEEE 802 LAN
stations.

Network Interface
Controller (NIC)

A device that includes a non-forwarding IEEE 802 LAN station.

Network
Management

System (NMS)

A management system that is capable of utilizing the information in a MIB.

Object identifier
(OID)

An identifier used to name an objective. Structurally, an OID consists of a node in
a hierarchically-assigned namespace, formally defined in ISO/IEC 8824-1.
Abstract Syntax Notation 1 (ASN.1). OIDs are used in this standard to identify
MIB modules and the objects they contain.

OUI Organizationally Unique Identifier
Physical network

topology
The identification of systems, of IEEE 802 LAN stations that compose each
system, and of the IEEE 802 LAN stations that attach to the same IEEE 802 LAN.

PCI Peripheral Component Interface as defined by the PCI-SIG.
http:www/pcisig.com. PCI Express (PCIe) represents the latest incarnation of PCI
technology within the industry.

PD Powered Device
Port The entity in a chassis/system to support an MSAP. A port incorporates one and

only one MSAP and identifies the collection of manageable entities that provide
the MAC Service at the MSAP.

Port identifier An administratively assigned name that identifies the particular port within the
context of a system, where the identification is convenient, local to the system,
and persistent for the system’s use and management (whereas the MAC address
that globally identifies the MSAP can not be).

PVID Port VLAN ID
Reflective Relay Frame relay where the destination port is also the source port

SA Source Address
Service VLAN A VLAN identified by a S-VID

Service VLAN ID
(S-VID)

A VLAN identifier conveyed in an S-TAG

Service VLAN
Tag (S-Tag)

A VLAN tag with a Tag Protocol Identification value allocated for “802.1Q
Service Tag Type”

 EVB, VEPA, ETTP, VDP, MC Proposal

 58

Term Description

Single-Root I/O
Virtualization (SR-

IOV)

PCI-SIG specification that enables a PCIe Device to be simultaneously shared by
multiple operating systems. A SR-IOV Device supports multiple PCI physical
functions (PF) and virtual functions (VF). A PF or a VF is made visible to an
operating system by a hypervisor as though it is a single, non-shared PCI
Function.

S-VLAN
component

A VLAN-aware bridge component with each Port supported by an instance of the
IESS that can recognize, insert, and remove Service VLAN tags.

SVID Service VLAN Identifier
System A managed collection of hardware and software components incorporating one or

more chassis, stations, and ports.
Type, length, value

(TLV)
A short, variable length encoding of an information element consisting of
sequential type, length, and value fields where the type field identifies the type of
information, the length field indicates the length of the information field in octets,
and the value field contains the information itself.

VID VLAN ID
VDP Virtual Station Interface Discovery and Configuration Protocol. The protocol used

to discover and configure a Virtual Station Interface Instance.
Virtual Ethernet
Bridge (VEB)

A VEB is a frame relay service that supports local bridging between multiple VSI
Instances and (optionally) the external bridging environment. A VEB may be
implemented in software as a vSwitch or as embedded hardware within a NIC.

Virtual Ethernet
Port Aggregator

(VEPA)

A Virtual Ethernet Port Aggregator (VEPA) is a capability within a physical end
station that collaborates with an adjacent, external bridge to provide bridging
support between multiple virtual end stations and external networks. The VEPA
collaborates by forwarding all station-originated frames to the adjacent bridge for
frame processing and frame relay (including reflective relay forwarding) and by
steering and replicating frames received from the VEPA uplink to the appropriate
destinations.
May be implemented in software or in conjunction with embedded hardware.
Note: As with the case of VEBs, VEPAs have access to vNIC configuration
information that normally is not available to an 802.1Q bridge.

Virtual Machine
(VM)

An operating system running on top of a hypervisor.

Virtual Port
(vPort)

A vPort is a logical Port associated with one end of a channel.
Within a physical end station, one or more VSI may be multiplexed on top of a
vPort.
Within an adjacent bridge, a vPort represents a virtual bridge port.

Virtual Station
Interface (VSI)

A physical or software emulated end station connected to a VEB (vSwitch or
embedded hardware within a NIC), a VEPA or directly to an S-VLAN
Component.

Virtual Switch
(vSwitch)

A software emulated bridge typically implemented within the server virtualization
infrastructure (e.g. a Hypervisor). A vSwitch switches network packets between
multiple operating systems executing on common, shared hardware. See also
VEB.

 EVB, VEPA, ETTP, VDP, MC Proposal

 59

Appendix – VDP Exchange Examples

8.1 VSI PreAssociate, Associate and DeAssociate

The following example depicts the VDP exchanges used to Pre-Associate, Associate and
De-Associate a VSI Instance with a VSI Type, VSI Type Version and set of MAC Address
and VLAN pairs.

Figure 37. VSI PreAssociate, Associate and DeAssociate Exchange

8.2 VSI Transport Error Case
The following example depicts the VDP exchange associated with a lost EETP
transmission of a VSI Associate Request Acknowledgement, showing ETTP retrying the
transmission.

 EVB, VEPA, ETTP, VDP, MC Proposal

 60

Figure 38. VSI Transport Error

8.3 VSI PreAssociate Resource Lease Refresh Exchange
The following example depicts the VDP exchange associated with an inactive VSI
Instance in the Pre-Associated state, where the bridge’s VSI State Machine forces a De-
Association.

 EVB, VEPA, ETTP, VDP, MC Proposal

 61

Figure 39. PreAssociate Resource Lease Exchance

8.4 VSI Associate Resource Lease Exchange
The following example depicts the VDP exchange used with an inactive VSI Instance in
the Associated state, where the bridge’s VSI State Machine forces a De-Association.

 EVB, VEPA, ETTP, VDP, MC Proposal

 62

Figure 40. Associate Resource Lease Exchange

