

April 23, 2010

Edge Virtual Bridge Proposal

Version 0, Rev 0.1

Abstract: This document is a proposal for the development of IEEE Edge Virtual Bridging
(EVB) technologies. These proposals cover a suite of mechanisms that may be used to
construct an EVB-based solution including architectural overview, discovery,
management objects, and state machines.

Keywords: VEPA, VEB, S-Channel, ECP, VDP, CDCP, EVB

This document is a proposal for Virtual Ethernet Port Aggregator, Edge Virtual Bridging
TLV, Edge Control Protocol, S-channels, and VSI Discovery Protocol.

1

Editors: Hewlett-Packard Corp., IBM

Contributing Authors

2

Company Contacts

BNT Daya Kamath
BNT Jay Kidambi
BNT Vijoy Pandey

Broadcom Pat Thaler

Brocade Anoop Ghanwani

Chelsio Asgeir Eiriksson

Emulex Chait Tumuluri

HP Paul Bottroff
HP Paul Congdon
HP Chuck Hudson
HP Michael Krause

IBM Vivek Kashyap
IBM Renato Recio
IBM Rakesh Sharma

Juniper Srikanth Kilaru

QLogic Manoj Wadekar

IEEE Member Uri Elzur

TABLE OF CONTENTS
Contributing Authors...2

TABLE OF CONTENTS..3

LIST OF FIGURES ...4

Related Documents..5

Change History ...5

1. Document Scope...6
1.1 Purpose ...6

2. Introduction ..7

3. Architecture and Operational Overview ..17
3.1 VEPA Address Table Management..17
3.2 Processing from VSI Instance to bridge ..18
3.3 Processing from the bridge to the VSI Instance ...19
3.4 S-Channel Operation ..21
3.5 Edge Control Protocol Operation...25
3.6 VSI Discovery and Configuration Protocol (VDP) Operation26

3.6.1 VDP Type Configuration and Automation _______________________________28
3.6.2 VSI Type Definition and Management ___________________________________30
3.6.3 VSI Manager ID __31

4. Ethernet Virtual Bridging TLV Semantics ..33

5. S-Channel TLV Semantics and State Machine......................................36

5.1 S-Channel Bridge Components and Operation...36
5.1.1 Introduction ___36
5.1.2 S-Component ___37

5.2 CDCP Discovery and Configuration ..38
5.2.1 CDCP TLV ___38
5.2.2 CDCP Configuration Procedures__40
5.2.3 CDCP Configuration Variables__40
5.2.4 CDCP Configuration Procedures__42
5.2.5 CDCP Configuration State Machines____________________________________43

6. Edge Control Protocol (ECP) and State Machine45

6.1 Requirements ...45
6.2 Edge Control Protocol Data Unit ..46
6.3 ECP Procedures..47

 Edge Virtual Bridging Proposal

6.4 ECP State Machines...47
6.4.1 ECP Transmit State Machine __48
6.4.2 ECP Receive State Machine __49

7. Virtual Station Interface (VSI) Discovery and Configuration (VDP) and
State Machine...50

7.1.1 VSI Discovery and Configuration TLV ____________________________________50
7.1.2 VDP Requirements and Assumptions ____________________________________55
7.1.3 VDP – Local Variables and Procedures __________________________________56
7.1.4 Station VSI State Machine __58
7.1.5 Edge Bridge VSI State Machine ___59

8. Glossary ..60

8.1 CDCP Basic Success Scenario (Sparse)..64
8.2 Station Adds an S-channel ...64
8.3 Station Removes a S-channel ..65
8.4 Drop #S-channels supported..66
8.5 Insufficient S-channels on bridge ..67
8.6 VSI PreAssociate, Associate and DeAssociate ..69
8.7 VSI Transport Error Case ..70
8.8 VSI PreAssociate Resource Lease Refresh Exchange..................................71
8.9 VSI Associate Resource Lease Exchange...72

LIST OF FIGURES
Figure 1. Example Hypervisor with Multiple VM, Multiple NIC, attached to an Adjacent Bridge 7
Figure 2. Example Physical End Station with Multiple VM and Two Software VEB 8
Figure 3. Example Physical End Station with Multiple Hardware VEB.. 9
Figure 4. VEB Frame Relay Support .. 10
Figure 5. Example Physical End Station with Multiple VM Communicating through a VEPA.............. 11
Figure 6. Example Physical End Station with Multiple Hardware VEPA ... 12
Figure 7. VEPA Frame Relay Support.. 13
Figure 8. S-channel Ethernet Components... 15
Figure 9. Multiple S-channels with on CAP at each end ... 16
Figure 10. Example VEPA with associated conceptual VEPA Address Table...................................... 17
Figure 11. VEPA Egress Processing.. 18
Figure 12. VEPA Unicast Ingress Processing from Source A to Destination C 19
Figure 13. VEPA Multicast Ingress Processing from Source A to Mulicate Group C 20
Figure 14. Frame fowarding from a directly accessible VSI over a S-channel LAN............................. 21
Figure 15. Frame fowarding when S-channels are configured underneath a VEB 22
Figure 16. Frame fowarding when S-channel are configured underneath a VEPA 23
Figure 17. Frame fowarding over S-channel between a VEPA and adirectly attached VSI 24
Figure 18. Example ECP Exchange ... 26

 4

Figure 19. VSI Type Architectural and Operational Overview ... 29

 Edge Virtual Bridging Proposal

Figure 20. VSI Manager ID ... 31
Figure 21. VSI Type , VSI Version and VSI Instance ID .. 32
Figure 22. VSI Manager Database Lookup.. 32
Figure 23. EVB TLV Format ... 33
Figure 24. Example EVB TLV Exchange.. 35
Figure 25. Example S-channel Block Diagram.. 36
Figure 26. Station and Bridge VEB/VEPA and S-comp Diagram... 37
Figure 27. CDCP TLV... 39
Figure 28. Example CDCP TLV Exchange ... 40
Figure 29. CDCP State Machine.. 44
Figure 30. ECP Data Unit .. 46
Figure 31. ECP Transmit State Machine.. 48
Figure 32. ECP Receive State Machine ... 49
Figure 33. VDP TLV ... 50
Figure 34. VDP Format = 1 Schema.. 51
Figure 35. MAC-VLAN Information Format 1 ... 54
Figure 36. Station’s VSI State Machine... 58
Figure 37. Edge Bridge’s VSI State Machine .. 59
Figure 38. Sparse S-channel Request... 64
Figure 39. Add an S-channel.. 65
Figure 40. Remove an S-channel ... 66
Figure 41. Drop an S-channel .. 67
Figure 42. Insufficient Resources .. 68
Figure 43. VSI PreAssociate, Associate and DeAssociate Exchange .. 69
Figure 44. VSI Transport Error.. 70
Figure 45. PreAssociate Resource Lease Exchance... 71
Figure 46. Associate Resource Lease Exchange.. 72

Related Documents
Specifications Company

Change History

 5

By Date Details
 4/2/2010 Version 0 Proposal

 Edge Virtual Bridging Proposal

1. Document Scope

This document details Virtual Ethernet Port Aggregator (VEPA) theory of operation and
the discovery and capability exchange protocol used to support a VEPA solution. VEPA
relies upon LLDP to provide discovery and capability exchange. These exchanges
occur between a physical end station and an adjacent bridge.

1.1 Purpose

The purpose of this proposal is to define a proposal for Discovery and Configuration of
Ethernet Virtual Bridging (EVB) capabilities, using: S-channel, Edge Control Protocol (ECP)
and Virtual Station Interface (VSI) Discovery and Configuration Protocol (VDP). These
protocols are used to determine EVB, S-channel, ECP and VDP capability presence
within a physical end station and an adjacent bridge.

 6

 Edge Virtual Bridging Proposal

2. Introduction

Evolving standards combined with the growing size of enterprise and cloud-based
networking deployments has led to a significant increase in the complexity of Ethernet
networking in the data center. The advent of virtualization technology has
compounded this complexity due to the significant increase in the number of Ethernet
switches and the change in the solution deployment scenario.

A hypervisor is a software entity that enables multiple Virtual Machines (VM) to share
common hardware as illustrated in figure 1. Each VM contains at least one virtual NIC
(vNIC) that is associated through the hypervisor with a physical NIC. To create this
association, hypervisors have incorporated Virtual Ethernet Bridges (VEB) into the physical
end station effectively adding one or more Ethernet switches per end node. A VEB is a
frame relay service that supports local bridging between multiple virtual end stations (an
internal private virtual network) and (optionally) the external bridging environment. A
VEB may be implemented in software as a virtual switch (vSwitch) as illustrated in Figure 2
or as embedded hardware within a Network Interface Controller (NIC) as illustrated in
Figure 3.

Hypervisor

Physical End Station

Adjacent Bridge

VM

Apps

VM

Apps

VM

Apps

VM

Apps

Switch Port

Physical NIC

Uplink

Ingress Egress

Aggregate

VM

Apps

VM

Apps

Virtual NIC

Hypervisor

Physical End Station

Adjacent Bridge

VM

Apps

VM

Apps

VM

Apps

VM

Apps

Switch Port

Physical NIC

Uplink

Ingress Egress

Aggregate

VM

Apps

VM

Apps

Virtual NIC

Figure 1. Example Hypervisor with Multiple VM, Multiple NIC, attached to an Adjacent Bridge

 7

 Edge Virtual Bridging Proposal

Software VEB (aka vSwitch)

Physical End Station

Adjacent Bridge

VM

Apps

VM

Apps

VM

Apps

VM

Apps

Virtual Station

Interface

Switch Port

Physical NIC

VEB Uplink

Ingress Egress

Aggregate

*

VM

Apps

VM

Apps

Software VEBVirtual NIC

Software VEB (aka vSwitch)

Physical End Station

Adjacent Bridge

VM

Apps

VM

Apps

VM

Apps

VM

Apps

Virtual Station

Interface

Switch Port

Physical NIC

VEB Uplink

Ingress Egress

Aggregate

*

VM

Apps

VM

Apps

Software VEBVirtual NIC

Figure 2. Example Physical End Station with Multiple VM and Two Software VEB

Figure 2 illustrates an example of the data paths for two software VEBs:

• Each VM may support one or more Virtual NICs.
o Typically, a VM will support a virtual NIC (vNIC) that emulates a physical

NIC. Each vNIC is associated with a Virtual Station Interface (VSI) which is
connected to a VEB.

• A VEB supports a single logical uplink to the external adjacent bridge. Multiple
uplinks can be aggregated via 802.3ad or other techniques.

• A software VEB (vSwitch) is typically implemented within a hypervisor requiring
each VM I/O operation to trap to the hypervisor for processing.

o Hypervisor traps consume system resources and can lead to varying
performance loss depending upon the number of I/O operations per
second and the amount of rich network functionality performed per
operation.

o Being in the hypervisor allows a software VEB to support one or more
physical NICs.

• VEB may be cascaded to provide modularity or additional fan-out.
• Not shown but important to note is a VEB does not require any modifications to

the Ethernet frame to operate.

 8

 Edge Virtual Bridging Proposal

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Ingress Egress

MAC /
PHY

Tx/Rx
Queues

PF0 VF1 VFN

VEB

NIC MAC /
PHY

Tx/Rx
Queues

PF0 VF1 VFN

VEB

NIC

Virtual Station
Interface

Physical NIC

VEB Uplink

VM Direct I/O via
SR-IOV Virtual

Function
VF2

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Ingress Egress

MAC /
PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues

PF0 VF1 VFN

VEB

NIC MAC /
PHY

Tx/Rx
Queues

PF0 VF1 VFN

VEB

NIC MAC /
PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues

PF0 VF1 VFN

VEB

PF0 VF1 VFN

VEB

NIC
Physical NIC

VEB Uplink

VM Direct I/O via
SR-IOV Virtual

Function
VF2

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Ingress Egress

MAC /
PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues

PF0 VF1 VFN

VEB

NIC MAC /
PHY

Tx/Rx
Queues

PF0 VF1 VFN

VEB

NIC MAC /
PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues

PF0 VF1 VFN

VEB

PF0 VF1 VFN

VEB

NIC

Virtual Station
Interface

Physical NIC

VEB Uplink

VM Direct I/O via
SR-IOV Virtual

Function
VF2

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Ingress Egress

MAC /
PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues

PF0 VF1 VFN

VEB

NIC MAC /
PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues

PF0 VF1 VFN

VEB

PF0 VF1 VFN

VEB

NIC MAC /
PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues

PF0 VF1 VFN

VEB

PF0 VF1 VFN

VEB

NIC
Physical NIC

VEB Uplink

VM Direct I/O via
SR-IOV Virtual

Function
VF2

Figure 3. Example Physical End Station with Multiple Hardware VEB

Figure 2 illustrates an example of the data paths for multiple hardware VEBs:
• Each physical NIC supports

o One (or more) physical ports attached to an adjacent bridge
 Each physical port represents a single VEB uplink.

o One or more hardware-embedded VEB. An embedded VEB cannot span
multiple physical NIC.

o Direct I/O support via SR-IOV Virtual Functions (VF).
 Direct I/O allows a VM to bypass the hypervisor and directly

access the NIC to send / receive packets. Bypassing the
hypervisor reduces system resource consumption allowing higher
performance solutions than traditional software VEB.

• Each VM may support one or more Virtual NICs.
o In this example, each VM supports two vNIC – one per physical NIC.
o Each vNIC is associated with a VSI which is associated with a SR-IOV VF to

provide Direct I/O support.

 9

 Edge Virtual Bridging Proposal

VEB

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Ingress Egress
*

expander

VM
Apps

VM
Apps

Software VEB

1 2

3

VEB

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Ingress Egress
*

expander

VM
Apps

VM
Apps

Software VEB

1 2

3

Figure 4. VEB Frame Relay Support

VEB packet forwarding supports both traditional end station-to-adjacent bridge as well
as local VSI-to-VSI packet forwarding. As illustrated in Figure 4, a VEB forwards packets as
follows:

• VEB forwards packets based on the MAC address and optionally via a port group
or VLAN identifier.

• VEB forwards packets from a VSI to the uplink from an adjacent bridge (path 1) or
between co-located VSI (path 2)

o A NIC-embedded VEB can only forward packets between VSI attached
to a common NIC. As shown in Figure 3, only VM that share the blue VEB
can forward packets via the blue VEB. Similarly, only VM that share the
green VEB can forward packets via the green VEB. A VM on the blue VEB
cannot forward packets to a VM on the green VEB directly; a software
VEB or external bridge would be required to bridge the two NIC-
embedded VEBs.

• VEB supports only a single active logical uplink
o Multiple uplinks can be teamed via 802.3ad or other techniques
o Uplink-to-uplink packet forwarding is not allowed (path 3)

• VEB does not participate in or affect spanning tree operation.

VEB solutions have been shipping for a number of years and are available from multiple
suppliers. Though the functional robustness of solutions will vary, local bridging via a VEB
provides a number of common benefits and allows hypervisors to:

• Operate without external bridges attached
• Operate with a broad range of Ethernet environments
• Maximize local bandwidth – bandwidth is limited by end station memory and

local I/O bandwidth and not by the Ethernet link bandwidth
• Minimize local latency – no incremental latency due to interaction with the

external network
• Minimize packet loss, i.e. no packet loss due to external network events – external

bridge or link failure, CRC error detection, congestion-based packet loss, etc.

By definition traffic between VMs connected to a VEB stay within the server. Some clients
prefer the traffic to be sent through an external switch, so the external network’s access

 10

 Edge Virtual Bridging Proposal

and security policies can be applied to the traffic. To address this type of requirement a
a Virtual Ethernet Port Aggregator (VEPA) is documented.

A Virtual Ethernet Port Aggregator (VEPA) is a capability within a physical end-station
that collaborates with an adjacent bridge to provide frame relay services between
multiple co-located virtual machines (VMs) and the external network. A VEPA
collaborates by:

• Forwarding all station-originated frames to the adjacent bridge for frame
processing and frame relay.

• Steering all frames and replicating Multicast and Broadcast frames received from
the adjacent bridge to the appropriate VM destinations.

• A VEPA takes advantage of a special reflective relay forwarding mode (i.e. allow
forwarding back out the port a frame was received) on the adjacent bridge to
support inter-VM communication within the same physical host.

o Clause 8.6.1 of Standard IEEE 802.1Q-2005 [11] states that when a switch
reception port is in the forwarding state, each switch port in the
forwarding state, other than the reception port itself, is a potential
transmission port. A VEPA requires an exception to this rule in order to
allow inter-VM traffic on the adjacent host over the single uplink. This
exception distinguishes the port attached to a VEPA uplink as a VEPA-
enabled port which supports forwarding in reflective relay mode.

• Similar to a VEB, a VEPA may be implemented in software or in conjunction with
embedded hardware within a NIC.

The VEPA is connected to the adjacent bridge only by a single uplink connection. The
connection is attached to a VEPA-enabled port on the adjacent bridge. A conceptual
VEPA is shown in Figure 5.

Software VEPA

Physical End Station

Adjacent Bridge

VM

Apps

VM

Apps

VM

Apps

VM

Apps

Virtual Station

Interface

Switch Port

Physical NIC

VEPA Uplink

Ingress Egress

Aggregate

*
expander

VM

Apps

VM

Apps

Software VEPAVirtual NIC

Software VEPA

Physical End Station

Adjacent Bridge

VM

Apps

VM

Apps

VM

Apps

VM

Apps

Virtual Station

Interface

Switch Port

Physical NIC

VEPA Uplink

Ingress Egress

Aggregate

*
expander

VM

Apps

VM

Apps

Software VEPAVirtual NIC

Figure 5. Example Physical End Station with Multiple VM Communicating through a VEPA

 11

 Edge Virtual Bridging Proposal

Figure 5 illustrates an example of the data paths for multiple VM communicating through
a VEPA:

• Each VM may support one or more Virtual NICs..
o A VM supports a virtual NIC (vNIC) which emulates a physical NIC. A

vNIC is attached to a VEPA via a Virtual Station Interface (VSI). A VSI is a
physical or software emulated end station connected to a VEB or a VEPA.

• A VEPA supports a single logical uplink.
• Software VEPA (vSwitch) may support one or more physical NICs.
• The total number of VSI made available may be scaled by cascading VEPA in a

tree as shown in Figure 5. The port on a root VEPA connected to a leaf VEPA
higher in the topology is known as an expander port. A root VEPA will forward all
frames with an unknown destination address to the expander port. This eliminates
the need for the root VEPA to comprehend all of the MAC addresses of every VM
in the physical end station.

• Not shown but important to note is VEPA does not require any modifications to
the Ethernet frame to operate.

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Ingress Egress

MAC /
PHY

Tx/Rx
Queues

PF0 VF1 VFN

VEPA

NIC MAC /
PHY

Tx/Rx
Queues

PF0 VF1 VFN

VEPA

NIC

Virtual Station
Interface

Physical NIC

VEPA Uplink

VM Direct I/O via
SR-IOV Virtual

Function
VF2

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Ingress Egress

MAC /
PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues

PF0 VF1 VFN

VEPA

NIC MAC /
PHY

Tx/Rx
Queues

PF0 VF1 VFN

VEPA

NIC MAC /
PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues

PF0 VF1 VFN

VEPA

PF0 VF1 VFN

VEPA

NIC
Physical NIC

VEPA Uplink

VM Direct I/O via
SR-IOV Virtual

Function
VF2

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Ingress Egress

MAC /
PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues

PF0 VF1 VFN

VEPA

NIC MAC /
PHY

Tx/Rx
Queues

PF0 VF1 VFN

VEPA

NIC MAC /
PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues

PF0 VF1 VFN

VEPA

PF0 VF1 VFN

VEPA

NIC

Virtual Station
Interface

Physical NIC

VEPA Uplink

VM Direct I/O via
SR-IOV Virtual

Function
VF2

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Ingress Egress

MAC /
PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues

PF0 VF1 VFN

VEPA

NIC MAC /
PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues

PF0 VF1 VFN

VEPA

PF0 VF1 VFN

VEPA

NIC MAC /
PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues
MAC /

PHY

Tx/Rx
Queues

PF0 VF1 VFN

VEPA

PF0 VF1 VFN

VEPA

NIC
Physical NIC

VEPA Uplink

VM Direct I/O via
SR-IOV Virtual

Function
VF2

Figure 6. Example Physical End Station with Multiple Hardware VEPA

Figure 6 illustrates an example of the data paths for multiple hardware VEPAs:
• The end station contains two independent physical NICs. Each NIC supports

o One or more hardware-embedded VEPA. While this figure illustrates only
one VEPA (blue or green) per NIC, an implementation may support
multiple VEPA, each on a separate S-channel.

 In this example, the blue and the green VEPA are completely
separate, independent entities, i.e. they do not share any
resources and cannot directly communicate with one another.

 12

 Edge Virtual Bridging Proposal

o One or more physical ports attached to an adjacent bridge. A VEPA has
only one logical uplink.

o In this example, each NIC supports direct I/O via PCI SR-IOV technology.
 Direct I/O allows a VM to bypass the hypervisor and directly

access the NIC to send / receive packets. Direct I/O is achieved
by using a light-weight PCI Function called a Virtual Function (VF)
to act as a conduit between the VM and the NIC hardware. This
is analogous to a NIC supporting multiple traditional PCI Functions
but is less hardware-intensive. Each VF is associated with a
Physical Function (PF) which can be used by the hypervisor as a
management conduit to provide overall control of the device or
the port depending upon the implementation.

• Each VM may support one or more Virtual NICs.
o In this example, each VM supports two vNIC – one per physical NIC.
o Each vNIC contains a VSI which is associated with a SR-IOV VF to provide

the direct I/O conduit.

VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Ingress Egress
*

expander

VM
Apps

VM
Apps

Software VEPA

1 2

3

VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Ingress Egress
*

expander

VM
Apps

VM
Apps

Software VEPA

1 2

3

Figure 7. VEPA Frame Relay Support

As illustrated in Figure 7, a VEPA forwards packets as follows:
• VEPA forwards packets based on the MAC address and optionally via a port

group or VLAN identifier.
• All VEPA traffic must be forwarded from the VSI to the uplink of an adjacent

bridge (path 1).
o VSI-to-VSI packet forwarding is not allowed (path 2).

• A VEPA supports only a single active logical uplink
o Uplink-to-uplink packet forwarding is not allowed (path 3)
o A VEPA may be partitioned into multiple logical VEPA each associated

with its own independent uplink.
• A VEPA does not participate in or affect spanning tree operation, i.e. VEPA

internal topology is not visible to the adjacent bridge, except for management
associated TLVs (e.g. EVB TLV in this document).

 13

 Edge Virtual Bridging Proposal

Based on the prior materials, the reader should note the significant overlap in
functionality and potential implementation between a VEB and a VEPA with the primary
difference occurring in frame relay support. Further, this difference determines where
and how network features are surfaced and their associated impact on system
functional robustness and performance. This difference allows VEPA solutions to provide
the following benefits:

1. Reduces complexity and potentially enables higher performance by off-loading
advanced network functions from the VM or hypervisor to the adjacent bridge.

2. Allows NICs to maintain low cost circuitry by leveraging advanced functions on
the adjacent bridge.

3. Enables a consistent level of network policy enforcement by routing all network
traffic through the adjacent bridge with its more complete policy-enforcement
capabilities.

4. Provides visibility of inter-VM traffic to network management tools designed for
adjacent bridge.

5. Reduces the amount of network configuration required by server administrators,
and as a consequence, reduces the complexity for the network administrator.

6. Can increase solution performance by off-loading advanced network
functionality that may be computationally intensive to implement within a
hypervisor or VM to the adjacent bridge.

As it can be seen, a VEPA provides a number of benefits but it too has limitations:

• Promiscuous support – To support a promiscuous VSI, a VEPA address table must
be configured with all VM source MAC addresses. This requires either adding MAC
address learning support or provisioning large address tables. Either option adds
implementation cost and complexity.

• Support for simultaneous VEB, VEPA, and directly accessible ports on the same
physical link – The adjacent bridge can only process a frame based on its contents
and therefore lacks sufficient information to delineate between these three
operating modes.

• Hierarchy of unrestricted physical ports – Normal bridge learning and flooding is
not possible due to the lack of information within a frame.

To address these limitations, IEEE Std. 802.1Qbc-2011is applied. This standard enables
multiple virtual channels to be multiplexed on a single physical LAN – referred to as S-
channel functionality. Individual S-channels are delineated by a tag which is added to
the frame and processed by S-VLAN Components (a bridge component) which are
logically inserted into the adjacent bridge and the physical end station below the virtual
bridge layer as illustrated in the following figure.

 14

 Edge Virtual Bridging Proposal

VM
Apps

VM
Apps

VM
Apps

VM
Apps

VM
Apps

VM
Apps

Physical End Station

S-VLAN Component

S-VLAN Component

A B C D E F

A B C D E F

VSI

Physical End Station
S-Component

Virtual Bridge Layer
(VEB, VEPA, directly

accessible VSI)

Virtual Bridge Port
(may be VEPA-enabled)

Virtual Uplink

VEB VEPA

VE
B

VE
B

VE
B

VE
B

VM
Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps
VM

Apps

Physical End Station

S-VLAN Component

S-VLAN Component

A B C D E F

A B C D E F

VSI

Physical End Station
S-Component

Virtual Bridge Layer
(VEB, VEPA, directly

accessible VSI)

Virtual Bridge Port
(may be VEPA-enabled)

Virtual Uplink

VEB VEPA

VE
B

VE
B

VE
B

VE
B

Figure 8. S-channel Ethernet Components

The S-VLAN component recognizes, inserts and removes service VLAN tags (S-Tag) to
enable multiple S-channels in the bridged network. Adding an S-VLAN component to an
end-station allows VEPA, VEB, and individual VSI to operate independently and
simultaneously. Each VEPA, VEB, or individual VSI operates over its own virtual uplink
instantiated by a pair of S-VLAN components - one in the adjacent bridge and one on
the end-station.

The virtual uplinks created by the end-station’s S-VLAN component are effectively
connected over an S-channel uplink to virtual ports (S-channel Access Ports or CAPs)
created by the S-VLAN component on the adjacent bridge as illustrated in the following
figure.

 15

 Edge Virtual Bridging Proposal

Channel Access Port
Physical End Station

Adjacent Bridge

S-VLAN Component

S-VLAN Component
A B C D E F

A B C D E F

Channel Access Port

Physical Port

Physical Link

S-Channel

Channel Access Port
Physical End Station

Adjacent Bridge

S-VLAN Component

S-VLAN Component
A B C D E F

A B C D E F

A B C D E F

A B C D E F

Channel Access Port

Physical Port

Physical Link

S-Channel

Figure 9. Multiple S-channels with on CAP at each end

Each frame traversing the physical S-channel LAN will all have an S-Tag inserted by the
first S-VLAN component it encounters and removed by the second S-VLAN component
as it reaches the far side of the S-channel LAN. The S-Tag inserted by the end-station
identifies the particular source virtual uplink and the S-Tag inserted by the adjacent
bridge identifies the destination virtual uplink. Any frames that must be broadcast,
multicast or flooded to more than one VSI are replicated by the adjacent bridge and
delivered across the S-channel LAN as many times as needed, each with the proper S-
Tag inserted.

Adding the S-channel capability to the end-station solves the problem of supporting
virtual machines needing promiscuous ports by isolating such VSI in a separate S-
channel. By doing so, normal learning and forwarding behavior is pushed to the
adjacent bridge, isolating it from the simple forwarding of the VEPA. It also allows the
end station administrator to choose how virtual VM are connected to the network. A
group of VM that require direct connectivity between each other for high performance
and low latency can be attached to a VEB. Another group that requires traffic visibility,
firewall inspection or other services on the adjacent bridge can be attached to a VEPA.
Finally any individual VM that requires an isolated promiscuous VSI can be attached
directly to a virtual uplink.

The subsequent chapters within this proposal provide additional details on VEPA and S-
channel operation, discovery, and configuration.

 16

 Edge Virtual Bridging Proposal

3. Architecture and Operational Overview
This chapter will describe VEPA and S-Channel architectural components and illustrate
how these components are used via example operations.

3.1 VEPA Address Table Management
As a network edge end station, a VEPA is not required to support address learning.
Instead, the VEPA address table is populated through a registration process. As an
address, filter, or VLAN identifier is registered, the server virtualization infrastructure (e.g.
the Hypervisor) updates the corresponding VEPA address table entry. This applies to:

• VSI default MAC address
• Locally Administered Address (LAA)
• Multicast addresses
• Promiscuous address mode support

Note: A MAC address may appear on multiple VLANs. Hence, a <MAC, VLAN Identifier>
pair is required to identify a unique VSI.

The following figure illustrates an example physical end station, VEPA, and the associated
VEPA address table.
 Destination

MAC
VLAN Copy To

(ABCDEF)

A 1 100000

B 2 010000

C 1 001000

D 2 000100

E 1 000010

F 2 000001

Broadcast 1 101010

Broadcast 2 010101

Multicast
C

1 101010

Unknown
Multicast

1 100010

Unknown
Multicast

2 010101

Unknown
Unicast

1 000000

Unknown
Unicast

2 000000

Destination
MAC

VLAN Copy To
(ABCDEF)

A 1 100000

B 2 010000

C 1 001000

D 2 000100

E 1 000010

F 2 000001

Broadcast 1 101010

Broadcast 2 010101

Multicast
C

1 101010

Unknown
Multicast

1 100010

Unknown
Multicast

2 010101

Unknown
Unicast

1 000000

Unknown
Unicast

2 000000

VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps Apps

VM
Apps

VM
Apps

A B C E F

VM

D

VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps Apps

VM
Apps

VM
Apps

A B C E F

VM

D

Figure 10. Example VEPA with associated conceptual VEPA Address Table

 17

 Edge Virtual Bridging Proposal

In this example, the VEPA address table holds the following:
• A unicast MAC address (and VSI Instance Identifier) per VSI

• Per VLAN broadcast address – frames are forwarded to the VSIs indicated by the
corresponding bit mask

• Specified multicast addresses – VSI A, C, and E are the only participants in the
specified multicast group.

• Per VLAN unknown unicast address – unknown frames are discarded on ingress
(i.e. from the bridge to the VSI Instance), they are sent to the adjacent bridge on
egress (i.e. from VSI Instance to bridge).

• Per VLAN unknown multicast address – unknown frames are forwarded to the VSI
indicated by the corresponding bit mask

The address table is configured by the server virtualization infrastructure (e.g. the
Hypervisor) simplifying the VEPA implementation by eliminating the need to support
dynamic address learning. Further, the hypervisor can configure additional address
table fields (not shown in the figure examples) such as QoS settings, VLAN configuration,
promiscuous listening support, and so forth to provide additional functional capabilities.

3.2 Processing from VSI Instance to bridge

VEPA processing from VSI Instance to bridge is defined as the set of operations required
to transfer a frame from a VSI to the VEPA uplink. Since all frames are required to be
forwarded to the uplink, the frame is moved from the VSI to the physical uplink for
transmission and the S-VLAN-Tag is added.

VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps Apps

VM
Apps

VM
Apps

A B C E F

VM

D

VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps Apps

VM
Apps

VM
Apps

A B C E F

VM

D

VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps Apps

VM
Apps

VM
Apps

A B C E F

VM

D

Figure 11. VEPA Egress Processing

While the main objective of VEPA is to forward frames to the adjacent bridge for
advanced processing, VEPA implementations may provide additional processing on the
frame since the VEPA comprehends the source VSI Instance. For example, source VSI
MAC address validation to prevent spoofing, application of QoS and bandwidth
management policies, VLAN formatting validation (tagged or untagged), and so forth.
The adjacent bridge can only operate on the frame’s contents (MAC address, VLAN ID,

 18

 Edge Virtual Bridging Proposal

etc.) and is unaware of the source VSI Instance therefore eliminating such functional
possibilities.

3.3 Processing from the bridge to the VSI Instance
VEPA processing from the bridge to the VSI Instance is defined as the set of operations
required to steer and transfer a frame received on the uplink to the appropriate VSI or set
of VSIs. The VEPA must make use of the address table to perform this operation correctly.
Address table access is illustrated in the following figure as VSI A transmits a unicast frame
to VSI C.

Destination
MAC

VLAN Copy To
(ABCDEF)

A 1 100000

B 2 010000

C 1 001000

D 2 000100

E 1 000010

F 2 000001

Broadcast 1 101010

Broadcast 2 010101

Multicast
C

1 101010

Unknown
Multicast

1 100010

Unknown
Multicast

2 010101

Unknown
Unicast

1 000000

Unknown
Unicast

2 000000

Destination
MAC

VLAN Copy To
(ABCDEF)

A 1 100000

B 2 010000

C 1 001000

D 2 000100

E 1 000010

F 2 000001

Broadcast 1 101010

Broadcast 2 010101

Multicast
C

1 101010

Unknown
Multicast

1 100010

Unknown
Multicast

2 010101

Unknown
Unicast

1 000000

Unknown
Unicast

2 000000

VEPA Address Table

VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps Apps

VM
Apps

VM
Apps

A B C E F

VM

D

1

2

3

VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps Apps

VM
Apps

VM
Apps

A B C E F

VM

D

VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps Apps

VM
Apps

VM
Apps

A B C E F

VM

D

1

2

3

Figure 12. VEPA Unicast Ingress Processing from Source A to Destination C

In this example, the transmission and reception processing is:

1. VSI A performs egress processing and performs any additional functionality prior
to the frame being transmitted out the egress port (step 1)

2. The adjacent bridge has enabled VEPA communication. The bridge applies the
appropriate network processing to the frame and reflects the frame to the VEPA
uplink (step 2).

3. Upon frame receipt and validation, the VEPA searches the address table to
locate the destination VSI Instance based on the contents of the unicast frame
(minimally the Destination MAC address and the VLAN Identifier are required to
uniquely identify a destination). In this example, the “Copy to” mask indicates VSI
C is the destination and the VEPA delivers the frame (step 3).

a. If the unicast address is unknown, then the “Unknown Unicast” for the
associated VLAN identifier would determine the appropriate “Copy to”
mask, which is x000000, and the frame is discarded.

 19

 Edge Virtual Bridging Proposal

The address table access and associated processing is similar for multicast and
broadcast with one exception. The originator of a multicast or broadcast frame may
have been one of the VSI before the adjacent bridge reflected the frame back. In this
case, the VEPA must perform additional filtering to avoid delivering the frame to its
originator. This is illustrated in the following figure.

Destination
MAC

VLAN Copy To
(ABCDEF)

A 1 100000

B 2 010000

C 1 001000

D 2 000100

E 1 000010

F 2 000001

Broadcast 1 101010

Broadcast 2 010101

Multicast
C

1 101010

Unknown
Multicast

1 100010

Unknown
Multicast

2 010101

Unknown
Unicast

1 000000

Unknown
Unicast

2 000000

Destination
MAC

VLAN Copy To
(ABCDEF)

A 1 100000

B 2 010000

C 1 001000

D 2 000100

E 1 000010

F 2 000001

Broadcast 1 101010

Broadcast 2 010101

Multicast
C

1 101010

Unknown
Multicast

1 100010

Unknown
Multicast

2 010101

Unknown
Unicast

1 000000

Unknown
Unicast

2 000000

VEPA Address Table

VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps Apps

VM
Apps

VM
Apps

A B C E F

VM

D

1

2

3

4VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps Apps

VM
Apps

VM
Apps

A B C E F

VM

D

VEPA

Physical End Station

Adjacent Bridge

VM
Apps

VM
Apps

VM
Apps Apps

VM
Apps

VM
Apps

A B C E F

VM

D

1

2

3

4

Figure 13. VEPA Multicast Ingress Processing from Source A to Mulicate Group C

In this example, the transmission and receive processing is:

1. VSI A performs egress processing and performs any additional functionality prior
to the frame being transmitted out the egress port (step 1)

2. The adjacent bridge has enabled VEPA communication. The bridge applies the
appropriate network processing to the frame and reflects the frame to the VEPA
uplink (step 2).

3. Upon frame receipt and validation, the VEPA searches the address table to
locate the destination VSI based on the contents of the multicast frame (step 3).
To prevent the frame from being delivered to its originator, the VEPA performs a
source address lookup and filters out the VSI associated with the source address
from the original “Copy To” mask associated with the destination address (step 3).
The delivery mask is constructed via (Copy To = (Destination Copy To) AND
!(Source Copy To). In this example,

Destination Copy To = 101010
Source Copy To = 100000
Delivery Mask = 001010

4. The frame is replicated using the delivery mask (step 4).

 20

 Edge Virtual Bridging Proposal

a. If the unicast address is unknown, then the “Unknown Unicast” for the
associated VLAN identifier would determine the appropriate “Copy to”
mask, which is x000000, and the frame is discarded.

3.4 S-Channel Operation

This section illustrates S-channel operation through several example configurations. In
these examples, an S-VLAN component is logically inserted into the adjacent bridge and
the physical end station. Further, between these S-VLAN Components, six S-channels (A-
F) have been established and associated with a directly accessible VSI, a VEB, or a VEPA.

The first example illustrates how a directly accessible VSI operates over an S-channel
configuration when communicating to a VSI accessible through the adjacent bridge. A
directly accessible VSI includes a piece of VEB/VEPA function between the VSI and S-
channel. This function is called a 2-port VEB/VEPA. The purpose of this function is to
manipulate the C-tagging and untagging of frames passed between the S-channel and
the VSI. The tagging configuration of the 2-port VEB/VEPA may be configured by the
hypervisor in the same manner as it configures a standard VEB or VEPA.

 21

Figure 14. Frame fowarding from a directly accessible VSI over a S-channel LAN

 Edge Virtual Bridging Proposal

1. VSI performs egress processing and performs any additional functionality prior to

the frame being forwarded to the S-VLAN Component within the physical end
station. (step 1)

2. If the S-channel A is the default S-channel the S-VLAN Component passes it to the
adjacent Bridge un-S-tagged. If the S-channel is not the default then the S-VLAN
Component inserts an S-Tag associated with S-channel A into the frame and
forwards the frame to the adjacent bridge. (step 2)

3. Within the adjacent bridge, the S-VLAN Component removes the S-Tag and
forwards the frame to external destination. (step 3)

This example illustrates how a VEB operates.

Figure 15. Frame fowarding when S-channels are configured underneath a VEB

1. VM-to-VM communication (a transmitting to c) across a shared VEB does not
involve the multi-channel link.

 22

2. The frame forwarding steps to communicate to a VSI not attached to the VEB are
identical to the communication used for a directly accessible VSI running over an
S-channel.

 Edge Virtual Bridging Proposal

a. VSI (a) performs egress processing and performs any additional
functionality prior to the frame being forwarded to the S-VLAN
Component within the physical end station. (step 1)

b. The S-VLAN Component inserts an S-Tag associated with S-channel E (or if
the S-channel E is the default S-channel no S-tag is inserted) into the frame
and forwards the frame to the adjacent bridge. (step 2)

c. Within the adjacent bridge, the S-VLAN Component removes the S-Tag
and forwards the frame to external destination. (step 3)

This example illustrates VM-to-VM unicast communication through a VEPA when S-
channels are configured.

Figure 16. Frame fowarding when S-channel are configured underneath a VEPA

1. VSI performs egress processing and performs any additional functionality prior to
the frame being forwarded to the S-VLAN Component within the physical end
station. (step 1)

2. The S-VLAN Component inserts an S-Tag associated with S-channel F (or if the S-
channel F is the default S-channel no S-tag is inserted) into the frame and
forwards the frame to the adjacent bridge. (step 2)

 23

3. Within the adjacent bridge, the S-VLAN Component removes the S-Tag and
forwards the frame (step 3).

 Edge Virtual Bridging Proposal

4. The adjacent bridge determines that the CAP is configured for VEPA mode so it
forwards the frame based on the bridge forwarding table (step 4).

5. Within the adjacent bridge, the S-VLAN Component adds the S-Tag associated
with S-channel F (or if the S-channel F is the default S-channel no S-tag is inserted)
and forwards the frame to the S-VLAN Component within the physical end station
(step 5).

6. The S-VLAN Component within the physical end station removes the S-Tag and
forwards the frame to the associated VEPA (step 6).

7. The VEPA forwards the frame based on its VEPA address table to the associated
VSI (step 7).

The following example illustrates how a VEPA-attached VM communicates to a directly
attached VSI through a common physical end station.

Figure 17. Frame fowarding over S-channel between a VEPA and adirectly attached VSI

1. VSI performs egress processing and performs any additional functionality prior to
the frame being forwarded to the S-VLAN Component within the physical end
station. (step 1)

 24

2. The S-VLAN Component inserts an S-Tag associated with S-channel F (or if the S-
channel F is the default S-channel no S-tag is inserted) into the frame and
forwards the frame to the adjacent bridge. (step 2)

 Edge Virtual Bridging Proposal

3. Within the adjacent bridge, the S-VLAN Component removes the S-Tag and
forwards the frame (step 3).

4. The adjacent bridge determines that the frame’s next hop is associated with S-
channel D and forwards the frame to the S-VLAN component.

5. Within the adjacent bridge, the S-VLAN Component adds the S-Tag associated
with S-channel D (or if the S-channel D is the default S-channel no S-tag is
inserted) and forwards the frame to the S-VLAN Component within the physical
end station (step 5).

6. The S-VLAN Component within the physical end station removes the S-Tag and
forwards the frame to the directly attached VSI.

3.5 Edge Control Protocol Operation

Today, IEEE control plane discovery operations are performed over unacknowledged
protocols, such as LLDP and DCBX. For VSI Discovery (and potentially other ULPs), the
Edge Control (ECP) provides acknowledgements, which signal to the sender that the
receiver is able to receive an additional ECP Data Unit. ECP enables the sender to
transmit discovery operations more frequently than would be the case with timer based
approaches. The intent is to have the server’s virtualization infrastructure (e.g. Hypervisor)
implement ECP, versus having the NIC implement ECP.

The following diagram depicts, at a high level, ECP semantics. In step 1, the ULP passes
an outgoing ULP Data Unit to ECP by invoking a transmit request procedure. In step 2,
the ULP Data Unit, which for some ULPs (e.g. VSI) may contain a set of ULP TLVs, is
transmitted and a ECP low level Acknowledgement (L-ACK in the diagram) timer is set,
but the frame is not yet deleted from the transmit buffer until a ECP is received for that
ECPDU. In step 3, the arriving ECP frame is received into a receive ‘buffer’, where it is
held until it is removed by an ECP indication procedure that passes the ULP Data Unit to
the associated upper level protocol. In step 4, when the receive buffer is emptied, a low-
level acknowledge (L-ACK) is sent to the sender. In step 5, if the L-ACK is received before
the L-ACK timer expires, then the transmit buffer is cleared and ECP can process another
ULP PDU through the ECP procedure. However, if the L-ACK timer expires before the L-
ACK is received, then the frame in the transmit buffer is resent (some preset number of
times).

ECP is used to support VSI Discovery and Configuration Protocol (VDP) described in
section 3.6. To support VDP an instance of ECP is created in the station on each LAN
facing Bridge Port of the VEB, VEPA or 2-port VEB. This peers with an ECP peer located on
the adjacent Bridge at a Bridge Port of the C-component. The ECP dialog proceeds
using the Nearest Customer Bridge LLDP address and is configured using the EVB TLV
described in chapter 4.

 25

 Edge Virtual Bridging Proposal

Station BridgeLink or Channel

TLV TLV ECPRTLV

Upper
Level
Protocol
(ULP)

Upper
Level
Protocol
(ULP)

11

buffer

Flow/Ack
Processing

buffer
L-ACK Flow/Ack

Processing

22
33

44
55

ECP
Procedure

TLV
TLV
TLV

ULP
PDU

TLV
TLV
TLV

ULP
PDU

TLV
TLV
TLV

ULP
PDU

TLV
TLV
TLV

ULP
PDU

Figure 18. Example ECP Exchange

3.6 VSI Discovery and Configuration Protocol (VDP)
Operation

Enterprise and cloud-based networking deployments have been rapidly growing in size
leading to a significant increase in the complexity of Ethernet networking in data centers.
The advent of virtualization technology brings unprecedented network configuration
complexity due to the significant increase in the number of Ethernet switches and very
large number of Virtual Station Interfaces (VSIs). The problem is made more complex by
advent of Virtual Machine (VM) mobility and solutions requiring external network state to
move with the VM, when the VM moves.
advent of Virtual Machine (VM) mobility and solutions requiring external network state to
move with the VM, when the VM moves.

Virtual Ethernet Bridges (VEBs) are embedded in hypervisors or NICs have been around
for years. VEBs provide efficient VM to VM communications between co-located VM.
However, today’s virtual switch management is too manual and scale-out server sprawl
and virtualization magnifies this complexity. Two of the major challenges associated with
today’s virtualization approaches is the ability to automate the association of a VSI
Instance with it’s network state and automate VM migration, including all the network
state associated with the VM.

Virtual Ethernet Bridges (VEBs) are embedded in hypervisors or NICs have been around
for years. VEBs provide efficient VM to VM communications between co-located VM.
However, today’s virtual switch management is too manual and scale-out server sprawl
and virtualization magnifies this complexity. Two of the major challenges associated with
today’s virtualization approaches is the ability to automate the association of a VSI
Instance with it’s network state and automate VM migration, including all the network
state associated with the VM.

Today, when a VM migrates from one server to another, the internal VEB’s VSI Type that is
associated with the VM must be migrated. The VSI Type consists of the network state
associated with the VM and may include access and QoS Controls. In today’s
implementations, the external switch’s port profiles do not move with the VM. The client
has three options for dealing with this issue. Option 1 is to use the same VSI Type for all
VMs - the problem with this approach is that it limits virtualization’s value, because all VMs
in the network must have identical network capabilities and attributes. As a result, if a
group of servers doing the same type of work gets over utilized, the VMs from those
servers cannot be moved to a group of servers doing another type of work (e.g.
file/print).

Today, when a VM migrates from one server to another, the internal VEB’s VSI Type that is
associated with the VM must be migrated. The VSI Type consists of the network state
associated with the VM and may include access and QoS Controls. In today’s
implementations, the external switch’s port profiles do not move with the VM. The client
has three options for dealing with this issue. Option 1 is to use the same VSI Type for all
VMs - the problem with this approach is that it limits virtualization’s value, because all VMs
in the network must have identical network capabilities and attributes. As a result, if a
group of servers doing the same type of work gets over utilized, the VMs from those
servers cannot be moved to a group of servers doing another type of work (e.g.
file/print).

Option 2 is to move the VSI Type after the VM moves. This can be done by having the
external switch look up the VSI Type when the VM starts sending messages on the new
server. For example, when the VM starts sending messages, the external switch uses the
VM’s MAC Address to look-up the port profile. This approach suffers from two problems:

Option 2 is to move the VSI Type after the VM moves. This can be done by having the
external switch look up the VSI Type when the VM starts sending messages on the new
server. For example, when the VM starts sending messages, the external switch uses the
VM’s MAC Address to look-up the port profile. This approach suffers from two problems:

 26

 Edge Virtual Bridging Proposal

The external switch cannot tell if the MAC Address used by the VM is a migrated MAC
address (i.e. from a migrated VM) or a re-incarnated MAC address (i.e. from a new VM
that is using a previously destroyed VM’s MAC address). The second problem is that
there is a VSI Type exposure window between the VM’s first message and the time it
takes the external switch to obtain the VSI Type from the switch’s fabric manager.

Option 3 is to simply configure the link between the server and the edge switch as a trunk
port. The issue with this approach is all physical servers must be in the same security
domain, which has the similar VM movement limitations as option 1. For example, a
physical server cannot be managed by tenant A in the same fabric as a physical server
that is managed by tenant B.

 27

The VDP Protocol specified in this document enables the association of a VSI Type with a
VSI instance (e.g. a VM virtual port) and the de-association of a VSI Type with a VSI
instance (e.g. a VM virtual port). VDP simplifies and automate Virtual Server (VS) network
configuration by enabling the movement of the VSI Type when the VSI Instance moves.

 Edge Virtual Bridging Proposal

3.6.1 VDP Type Configuration and Automation

A virtualized server hosts a set of VMs. Each VM may support one or more Virtual Station
Interface (VSI) Instances. Typically, a VM will support a virtual NIC (vNIC) that emulates a
physical NIC. Each vNIC will contain a VSI which is connected to a VEB or VEPA. The
server’s virtualization infrastructure (e.g. a Hypervisor) assigns one or more VSIs to a VM to
access the network. The VM is able to communicate with other VMs on the same
physical server through the VSI Instance. Similarly, the VM is able to communicate to
external stations through the VSI Instance.

Each VSI Instance is assigned VSI Type ID (VTID). The contents of a VSI Type are outside
the scope of this proposal. For information context purposes only, a VSI Type definition
may include port access or rate limiting controls. Prior to the activation of a VM, VDP
exchanges are used to associate a VSI Instance with a VLAN Identifier, a MAC Address
and a VTID in the adjacent bridge and, if VEB is used, VEB. Similarly, a VDP exchange is
used to de-associate a VSI Instance with a VLAN Identifier, a MAC Address and a VTID in
the adjacent bridge and, if VEB is used, VEB, when a VM is either destroyed or moved.

The following sections provide an operational overview of how VDP can be used to
automate the configuration of network state (e.g. VSI Type) and the association of
network state to a VSI Instance. It will then describe the management elements required
to support such an example.

 28

 Edge Virtual Bridging Proposal

3.6.1.1 VDP – Operational Example
An example of the steps associated with VDP is depicted in the following figure.

VSI Type
Database

System Admin

Network
Admin

Query available VSI types
Obtain a VSI instance

Push VM & VSI
info to server’s
virtualization
infrastructure

Physical End Station

Adjacent Bridge or Edge Bridge

VM

Apps

VM

Apps

VM

Apps

VM

Apps

VSI
Manager

VM
Manager

1 Create set of
VSI Types

2

VEB or VEPA
3

4
VSI Discovery and
Configuration
Protocol

Retrieve VSI
Information

5

L2 net(s)

Figure 19. VSI Type Architectural and Operational Overview

Following are the steps depicted in the figure above:

Step 1: Network Manager creates a set of VSI Types. Each VSI Type has a VSI Version and
the Network Manager can deploy one or more VSI Versions at any given time.

Step 2: VM Manager queries available Version Type IDs (VTIDs) and creates a VSI
Instance consisting of VSI Instance ID and the chosen VTID. The VTDB server may create
and track VSI Instance.

Step 3: VM Manager configures VSI with VTID and VSI Instance ID obtained from VSI
Manager’s VTDB.

Step 4: Before VSI Instance (VM) activation, the VDP Module performs VSI Discovery and
Configuration protocol exchanges to associate the VSI instance with a VTID, MAC
Address and VLAN Identifier. The VDP Module is intended to be implemented as part of
the server’s virtualization infrastructure (e.g. in the Hypervisor or a service VM guest
running on top of the Hypervisor). The VDP Module is also implemented in the adjacent
bridge.

 29

 Edge Virtual Bridging Proposal

Step 5: As part of the VDP exchange the adjacent Bridge retrieves the VSI Type from the
VTDB by using the VTID and possibly the VSI Type Version and VSI Instance ID. The
adjacent Bridge stores the association of VLAN ID, VSI Type, VSI Type Version and MAC
Address in its local memory. This association is then applied to the traffic flow from/to the
VSI Instance. Note the VTDB access protocol is not part of this document.

3.6.1.2 VSI Type Database (VTDB)
The VSI Type Database described above is used to store detailed definition of VSI types.
Again these definitions are outside the scope of this document. For information purposes
only, a VSI Type may contain access and traffic controls. Also for information purposes
only, a VSI Type Database is expected to be part of the database used by the edge
switch’s Network Change and Configuration Manager and the server’s virtualization
infrastructure.

VSI Type Definitions within a VTDB are identified by VSI Type ID (VTID) and VTID version.
Optionally, VSI instance specific definitions are possible.

The mechanisms used to create VSI Types in a VTDB are outside the scope of this
document. For information purposes only, each VSI Type may refer to different use
models, such as a server type, where each server type (e.g. web, file/print, e-mail) has a
unique VSI Type. Many other use models are possible, for example the Server
Virtualization Partitioning and Clustering from the DMTF.

3.6.2 VSI Type Definition and Management

VSI Type Definition and Management is outside the scope of this document. In other
words, the content of a VSI Type entry in the VTDB and how that content is managed are
outside the scope of this document.

Similarly, VSI Type management and access protocols are outside the scope this
proposal. This is not a hindrance to deployment of VDP because current Data Center
Network (DCN) infrastructure includes mature tools for management and configuration
and can be easily deployed to manage VSI Types. Further, VSI Type Management
approach proposed in this document matches well with currently deployed DCN
management practices. It is achieved by aligning management and configuration
responsibility with current organization structure e.g. VSI Types can be managed by
Network Administrator and deployed on servers by server administrators.

 30

 Edge Virtual Bridging Proposal

3.6.3 VSI Manager ID

VSI Manager ID tells the
edge bridge which VSI
Manager should be
contacted to obtain the VSI
configuration information

VSI Manager ID tells the
edge bridge which VSI
Manager should be
contacted to obtain the VSI
configuration information

Physical End Station

Adjacent Bridge or Edge Bridge

VM

Apps

VM

Apps

VM

Apps

VM

Apps

VEB or VEPA

Retrieve VSI
Information

1

L2 net(s)

VSI Type
Database B

VSI
Manager B

VSI Type
Database B

VSI
Manager B

VSI Type
Database C

VSI
Manager C

VSI Type
Database C

VSI
Manager C

VSI Type
Database A

VSI
Manager A

VSI Type
Database A

VSI
Manager A

Figure 20. VSI Manager ID

VSI Manager ID tells the edge bridge which VSI Type Manager should be contacted to
obtain the VSI configuration information. The VSI Manager ID is part of VDP exchange
between Station and the Edge Bridge.

Note, the VSI Type ID or VSI Instance ID can also be used as index to look up VSI Type
configuration in VSI Type Database, see the following figure:

 31

 Edge Virtual Bridging Proposal

 32

VSI Type, VSI Version and
VSI Instance ID can be
used as an index into the
selected VSI Manager’s
Database.

VSI Type, VSI Version and
VSI Instance ID can be
used as an index into the
selected VSI Manager’s
Database.

Physical End Station

Adjacent Bridge or Edge Bridge

VM

Apps

VM

Apps

VM

Apps

VM

Apps

VEB or VEPA

Retrieve VSI
Information

1

L2 net(s)

VSI Type
Database B

VSI
Manager B

VSI Type
Database B

VSI
Manager B

VSI Type
Database C

VSI
Manager C

VSI Type
Database C

VSI
Manager C

VSI Type
Database A

VSI
Manager A

VSI Type
Database A

VSI
Manager A

Figure 21. VSI Type , VSI Version and VSI Instance ID

3.6.3.1 VSI Manager ID Usage Example
The VSI Manager ID Identifies the VSI Manager with the Database that holds the detailed
VSI Type and/or VSI Instance Identifier definitions. The contents of the VSI Manager
Database are outside the scope of this proposal. The VSI Manager Database may use a
combination of the following fields to index into the VSI Manager Database:

• VSI Type Identifier
• VSI Type Version
• VSI Instance Identifier

VSI Type
Database

Vendor
Switch

VSI Manager
Identifier

VSI Type

VSI Type

f (VTID,
VSI Type
Version,
VSI Instance ID)

Figure 22. VSI Manager Database Lookup

 Edge Virtual Bridging Proposal

4. Ethernet Virtual Bridging TLV Semantics
The EVB TLV is used to:

• Advertise a station or bridge’s EVB functional and resource capabilities
• Activate common functional capabilities
• Negotiates resource capabilities to a maximum common value, for example the

number of VSIs supported.

The EVB TLV is exchanged via LLDP and conforms to the LLDP TLV specification. The LLDP
database carrying the EVB TLV is addressed using the Nearest Customer Bridge LLDP
address. One LLDP database is built at the Bridge Port of the VEB/VEPA/2-port VEB
attached to an S-channel by an internal LAN. When no S-VLAN components are
available in the station the LLDP database is built at the Bridge Port of the VEB/VEPA/2-
port VEB attached to the external LAN. In this case the VEB/VEPA/2-port VEB is attached
to the default S-channel.

The EVB TLV allows setting the adjacent Bridge’s C-component Port in reflective relay.
Reflective relay is implemented by changing the active topology enforcement rules
described in IEEE 802.1Q 8.6.1 to allow forwarding on the reception Bridge Port. When
reflective relay is enabled unicast and multicast frames are reflected.

The EVB TLV also allows turning off SA learning and enabling VDP based learning on the
adjacent Bridge’s C-component Bridge Port. When VDP learning is enabled addresses
are not aged. Instead, they exist in the filtering database as long as the VSI is pre-
associated or associated.

The EVB TLV is illustrated in the following figure:

TLV header

TLV type =
127

(7 bits)

TLV information
string length

(9 bits)

OUI
(3 octets)

Subtype
(1 octet)

EVB
Capabilities

(2 octets)

EVB
Current Config.

(2 octets)

VSI
(4 octets) RTE

Octets:

Bits:

1 2 3 6 7 9 11 15

8 2 1 8 1

8 7 8 31 2 1
Forwarding

Mode Capabilities

Re
se

rv
ed

RT
E

RR

Re
se

rv
ed

4

ST
D

EC
P

VD
P

8 7 8 31 2 1
Forwarding

Mode Capabilities

Re
se

rv
ed

RT
E

RR

Re
se

rv
ed

4

ST
D

EC
P

VD
P

14

VSI
Supported

(2 octets)

VSI

Configured

(2 octets)

TLV information string = 13 octets

R

5 18 6

TLV header

TLV type =
127

(7 bits)

TLV information
string length

(9 bits)

OUI
(3 octets)

Subtype
(1 octet)

EVB
Capabilities

(2 octets)

EVB
Current Config.

(2 octets)

VSI
(4 octets) RTE

Octets:

Bits:

1 2 3 6 7 9 11 15

8 2 1 8 1

8 7 8 31 2 1
Forwarding

Mode Capabilities

Re
se

rv
ed

RT
E

RR

Re
se

rv
ed

4

ST
D

EC
P

VD
P

8 7 8 31 2 1
Forwarding

Mode Capabilities

Re
se

rv
ed

RT
E

RR

Re
se

rv
ed

4

ST
D

EC
P

VD
P

14

VSI
Supported

(2 octets)

VSI

Configured

(2 octets)

TLV information string = 13 octetsTLV information string = 13 octets

RR

5 18 6

Figure 23. EVB TLV Format

The EVB TLV fields are:
The OUI used to identify the EVB protocols (EVB, CDCP, ECP and VDP) is XX-XX-XX.

The Subtype 0x0000 is used to identity the EVB TLV.

EVB Capabilities - The TLV describes EVB capabilities that are supported by the sender.
The capabilities are:

• Forwarding Mode:

 33

 Edge Virtual Bridging Proposal

o Standard 802.1Q forwarding
o Reflective Relay – enables frames to be reflected back through the

ingress port. For example, in a VEPA solution, frames exchanged
between co-located VM must flow through the adjacent bridge.
Reflective relay allows these exchanges to flow through a common
uplink between the station and the adjacent bridge.

 From the station, RR = TRUE indicates the station requests
reflective relay support.

 From the adjacent bridge, RR = TRUE indicates the bridge
supports reflective relay support.

 If the station and the adjacent bridge set RR = TRUE, then
reflective relay can be enabled. The EVB TLV Current
Configuration RR bit is set to TRUE.

 If either side does not set RR = TRUE, the reflective relay cannot
be enabled. The EVB TLV Current Configuration RR bit is set to
FALSE.

• Retransmission Timer Exponent (RTE) – Indicates the current RTE value is

present

• Edge Control Protocol (ECP) – Indicates the sender supports ECP

o From the station, ECP = TRUE indicates the station supports ECP.
o From the adjacent bridge, ECP = TRUE indicates the bridge supports

ECP.
o If the station and the adjacent bridge set ECP = TRUE, then ECP can

be enabled. The EVB TLV Current Configuration ECP bit is set to TRUE.

• If either side does not set ECP = TRUE, then ECP cannot be enabled. The EVB

TLV Current Configuration ECP bit is set to FALSE.

• VSI Discovery Protocol (VDP) – Indicates the sender supports VDP. VDP is

dependent upon ECP being enabled.
o From the station, VDP = TRUE indicates the station supports VDP.
o From the adjacent bridge, VDP = TRUE indicates the bridge supports

VDP.
o If the station and the adjacent bridge set VDP = TRUE and ECP ==

TRUE, then VDP can be enabled. The EVB TLV Current Configuration
VDP bit is set to TRUE.

o If either side sets VDP = FALSE or ECP == FALSE, then VDP cannot be
enabled. The EVB TLV Current Configuration VDP bit is set to FALSE.

EVB Current Configuration – The TLV describes the EVB capabilities that are currently
configured at the sender. Current configuration represents the intersection of the
capabilities and resources between the two senders on a link.

• Number of VSI Supported – The maximum number of VSI that can be supported
by the sender.
• From the station, it indicates the number of VSIs the station is able to support.
• From the adjacent bridge, it indicates the number of VSI the bridge is able to

support.

 34

 Edge Virtual Bridging Proposal

• Number of VSI configured – The number of VSI that has been configured by the
sender.
• From the station, it indicates the number of VSI the station is requesting the

bridge to reserve.
• From the adjacent bridge, it indicates the number of VSI the bridge has

reserved for use by the station.

• Retransmission Exponent (RTE) – RTE is an EVB link or S-channel attribute used to
calculate the minimum ULP PDU retransmission time. The ULP PDU retransmission
time is calculated as follows:
• The Retransmission Granularity (RTG) is set to 10 micro-seconds.
• The Retransmission Multiplier (RTM) is set to 2RTE
• The sender’s ULP transmission timer is set to RTM * RTG
• Both sides agree to the largest common value

The following illustrates an example EVB TLV exchange between a station (e.g. a
hypervisor) and the adjacent bridge. This exchange is accomplished using LLDP. In this
example, both the station and the bridge support Reflective Relay, VDP, and a set of VSI
resources.

Figure 24. Example EVB TLV Exchange

Station (e.g.,
Hypervisor)

1

Bridge

EVB TLV – OFFER CAPABILTIES

Capabilities
Forwarding: Std, RR
Other: VSI, etc.

Current Config.(Std, None)
VSIs Supported = J
VSIs Configured = 0

RTE = 15

EVB TLV - CONFIGURE

Capabilities & Current Config.
Forwarding: RR
Other: VSI, etc.

VSIs Supported = J
VSIs Configured = K

RTE = 10

EVB TLV – CONFIRMATION

Capabilities
Forwarding: Std, RR
Other: VSI, etc.

Current Config.
Forwarding: RR
Other: VSI, etc.

VSIs Supported = J
VSIs Configured = K

RTE 10

Bridge advertises
what modes it can
support and the
max number of VSIs
it can handle.

Server configures
itself from the

available
capabilities

according to
local policy.

But still advertises its
full set of
capabilities.

2

3

Bridge matches
its configuration
to the limited
capabilities
advertised by the
station.

Station or Bridge may initiate EVB TLV Exchange

Station (e.g.,
Hypervisor)

1

Bridge

EVB TLV – OFFER CAPABILTIES

Capabilities
Forwarding: Std, RR
Other: VSI, etc.

Current Config.(Std, None)
VSIs Supported = J
VSIs Configured = 0

RTE = 15

EVB TLV - CONFIGURE

Capabilities & Current Config.
Forwarding: RR
Other: VSI, etc.

VSIs Supported = J
VSIs Configured = K

RTE = 10

EVB TLV – CONFIRMATION

Capabilities
Forwarding: Std, RR
Other: VSI, etc.

Current Config.
Forwarding: RR
Other: VSI, etc.

VSIs Supported = J
VSIs Configured = K

RTE 10

Bridge advertises
what modes it can
support and the
max number of VSIs
it can handle.

Server configures
itself from the

available
capabilities

according to
local policy.

But still advertises its
full set of
capabilities.

2

3

Bridge matches
its configuration
to the limited
capabilities
advertised by the
station.

Station (e.g.,
Hypervisor)

11

Bridge

EVB TLV – OFFER CAPABILTIES

Capabilities
Forwarding: Std, RR
Other: VSI, etc.

Current Config.(Std, None)
VSIs Supported = J
VSIs Configured = 0

RTE = 15

EVB TLV - CONFIGURE

Capabilities & Current Config.
Forwarding: RR
Other: VSI, etc.

VSIs Supported = J
VSIs Configured = K

RTE = 10

EVB TLV – CONFIRMATION

Capabilities
Forwarding: Std, RR
Other: VSI, etc.

Current Config.
Forwarding: RR
Other: VSI, etc.

VSIs Supported = J
VSIs Configured = K

RTE 10

Bridge advertises
what modes it can
support and the
max number of VSIs
it can handle.

Server configures
itself from the

available
capabilities

according to
local policy.

But still advertises its
full set of
capabilities.

22

33

Bridge matches
its configuration
to the limited
capabilities
advertised by the
station.

Station or Bridge may initiate EVB TLV Exchange

 35

 Edge Virtual Bridging Proposal

5. S-Channel TLV Semantics and State Machine
This chapter provides an overview, detailed semantics, and state machines for the S-
Channel Discovery and Configuration Protocol (CDCP).

5.1 S-Channel Bridge Components and Operation

5.1.1 Introduction
The purpose of CDCP is to configure S-channels, which are used by a station to simplify
the internal configuration and operation of Virtual Station Interfaces (VSIs), Virtual
Ethernet Bridges (VEBs) and Virtual Ethernet Port Aggregators (VEPA). S-channels must be
used when more than one VEB, VEPA or 2-Port VEB is used simultaneously within the
station. S-channels are implemented in stations and bridges using an IEEE 802.1Qbc Port-
mapping S-VLAN component.

When no Port-mapping S-Component is in the system all traffic is un-S-tagged and is
considered part of the default S-channel (SCID=1). The SVID 1 is reserved for the default
S-channel and must not be assigned by the Bridge when a new S-channel is requested.
When the Port-mapping S-components used to create S-channels exist they may start
exchanging un-S-tagged frames which are assigned to the default S-VID 1 and are
considered the default S-channel 1. The default S-channel is always un-S-tagged even
when S-channels are enabled.

Figure 25. Example S-channel Block Diagram

 36

The S-channel configuration is determined by the bridge’s capabilities and by requests
made using CDCP described in this chapter. The hypervisor determines what S-channels
are needed and then requests S-channels using CDCP. CDCP in turn uses an LLDP TLV
exchange to co-ordinate the creation and deletion of S-channels. The LLDP database
used by CDCP is addressed using the Nearest non-TPMR Bridge LLDP address. The port-
mapping S-VLAN component filters both the Nearest Bridge and the Nearest non-TPMR
Bridge addresses on all ports and passes the Nearest Customer Bridge LLDP address. Only

 Edge Virtual Bridging Proposal

the exterior facing Station-Bridge Access Port will build an LLDP database. This database
is built from frames exchanged on the Nearest non-TPMR Bridge address.

The SCID=1 and SVID=1 are always reserved for the exclusive use as the un-S-tagged
default S-channel. The default S-channel number 1 with S-VID 1 is created unilaterally by
the Station and the Bridge, without the use of CDCP. CDCP reports the default S-channel
in the CDCP TLV as the first SCID,SVID pair (i.e. <1,1>). The Bridge must not assign this S-VID
except to the default S-channel. If the Bridge deletes the default S-channel from its
configured S-channels list it means the Bridge will not process the un-S-tagged set as an
S-channel (though control information may still be passed as un-S-tagged traffic).

5.1.2 S-Component
The figure below is a “baggy pants” Bridge relay architecture model for the station and
Bridge. The S-Component conforms to the Port-mapping S-VLAN component specified in
802.1Qbc. The S-Component is used to create S-channels. The C-Component of the
Bridge is a standard Bridge C-Component relay with the exception of additions for the
reflective relay feature and support for EVB and VSI discovery and configuration
protocols.

Not all the represented components need to be present in an implementation. If the S-
Components depicted are present and CDCP is present the system will be able to
create and delete S-channels. If no CDCP is present then the S-Components may be
present, however disabled or may not be present at all. It is also possible that one or both
of the S-Components will be absent. It is possible to have a VEB or VEPA without an S-
Component.

Figure 26. Station and Bridge VEB/VEPA and S-comp Diagram

S-channels are implemented using the S-Components. The C-VLANs carried over each S-
channel are determined by configuration of the C-Component within the Bridge (under
the control of EVB TLV and VDP). Each S-channel is terminates at an internal S-Comp
Bridge Port called an S-channel Access Port (CAP). Internal LANs, within the Bridge and
station, each span between one CAP and one internal C-Comp Bridge Port (Bridge) or
VEB/VEPA/2-port VEB (station).

 37

 Edge Virtual Bridging Proposal

The C-VLAN configuration and reflective relay configuration of the Bridge is determined
by the configuration of the C-VLAN aware component of the Bridge.

Each S-channel terminates at an internal S-Comp Bridge Port called an S-channel Access
Port (CAP). Internal LANs, within the Bridge and station, each span between one CAP
and one internal C-Comp Bridge Port (Bridge) or VEB/VEPA/2-port VEB (station). Each
CAP must be configured as follows:

1. Admit Only Untagged and Priority-tagged frames (802.1Q 6.9)
2. a PVID parameter equal to the S-VID associated with its S-channel (802.1Q 6.9)
3. must be a member of the untagged set (802.1Q 8.8.2) for the VLAN identified by

the S-channel’s S-VID
4. must not be a member of any S-VLAN member set except the one identified by

the SVID associated with the CAP’s S-channel (each CAP supports a single S-
channel)

5. each CAP filters the Nearest Bridge and Nearest non-TPMR Bridge LLDP addresses

Each S-Comp has external facing Bridge Ports called Station-Bridge Access Ports (SBAP).
All S-channels are multiplexed over these ports. Each SBAP must be configured as follows:

1. Admit All frames (802.1Q 6.9)
2. a PVID parameter equal to the default S-channel SVID of 1 (802.1Q 6.9)
3. the SBAP must be a member of the untagged set (802.1Q 8.8.2) for the S-VLAN

identified by the default S-channel SVID 1
4. the SBAP must be a member of the tagged set (802.1Q 8.8.2) for all S-VLANs

identified by the SVID of an active S-channels
5. each SBAP filters the Nearest Bridge and Nearest non-TPMR Bridge LLDP addresses

5.2 CDCP Discovery and Configuration
S-channels are configured by the exchange of LLDP TLV using the Nearest non-TPMR
bridge address. The exchange begins when the system is initialized. The configuration
protocol begins with the station, which makes a request for S-channel resources from the
Bridge. In response the Bridge provides the best matching set of S-VLANs it is capable of
providing. It is possible the Bridge does not have all the resources requested in which
case the Bridge response will provide a subset of the requested S-VLANs.

After initialization it is possible for the station to change it’s S-channel configuration. The
Bridge seeing a change in the stations request will alter it’s configuration to match the
needs of the station.

5.2.1 CDCP TLV
The station and Bridge both use the same LLDP TLV to configure S-channels. This TLV is in
LLDP OUI format (802.1AB sub-clause 8.6). The S-channel’s capabilities, requests and
running configuration is encoded in the info field of this TLV as follows:

 38

 Edge Virtual Bridging Proposal

Figure 27. CDCP TLV

• The OUI used to identify the EVB protocols (EVB, CDCP, ECP and VDP) is XX-XX-XX.
• The Subtype 0x0001 is used to identity the CDCP TLV.
• Role Bits (see note 1 regarding ties)

S(01b) – Indicates the sender assigns channels numbers and a default SVID for the
default channel 1 and requests SVID assignments from the neighboring ‘B’.
B(10b) – Indicates the sender accepts S-channel configuration requests from its
neighboring ‘S’ and that the sender will do the best it can to fill the SVID
assignment requests from the neighboring ‘S’.

• Vers – 2 bits: 10b identifies this version, 00b disables Sch (incompatibility)

• Res1- 16 bits: must be set to zero, ignored on receipt (for new features)

• ChnCap– S-channels supported identifies the number of S-channels that are

supportable by the sender.

• SCID/SVID Pairs
− SCID - indicates the index number of the S-channels. The station assigns S-

channel numbers in the range 0-167. Zero is reserved. The S-channel index
should be between 1 and the maximum number of S-channels supported
by the port.

− SVID – The VLAN ID assigned to the S-channel. The Bridge assigns SVIDs to
channels in the range 1-0xffe. A station uses the 0 SVID to request an SVID
assignment from the Bridge.

Note1: The first entry in the list of SCID/SVID pairs must contain the default S-channel. (i.e.
if the default S-channel is being used then the first channel pair must be <1,1>).

Note2: A maximum of 167 S-channels can be supported. Other formats (assuming
sequential SVIDs) could be defined to allow support for 4K+ S-channels.

Note3: This listing could be sparse (in order to indicate arrival and removal of S-channels).
The S-channel going away is indicated by removing the SCID/SVID pair.

Note4: The order of the list will determine the priority of SVID assignments. If the Bridge
does not have resources for all channels it will assign the first channels in the list.

 39

 Edge Virtual Bridging Proposal

5.2.2 CDCP Configuration Procedures
The CDCP protocol used to discover and configure S-channels begins by announcing
the presence of CDCP along with the station and Bridge capabilities (1). After the initial
announcement the Bridge will look for a request from the station (1). Once the Bridge
sees a station request it will configure itself with and provide the best matching
configuration to the station (2). The station seeing that the Bridge is now configured goes
operative using the Bridge’s configuration (3).

Figure 28. Example CDCP TLV Exchange

5.2.3 CDCP Configuration Variables
The following variables are used by the CDCP state machine to perform S-channel
configuration. The CDCP requires each side of the configuration be assigned a role as a
Bridge or a Station. This is done by setting the AdminRole variable. In most pieces of
equipment the station or bridge role will not be settable, though the protocol allows for
equipment which can take either role. For CDCP to configure an S-channel one side
must take the station role and one side must take the Bridge role. If both sides of the LAN
have equipment configured as stations or as bridges the protocol will not configure S-
channels.

 40

• AdminRole: Is the administratively configured value for the local port’s role
parameter. The value of AdminRole is not reflected in the S-channel TLV. The
AdminRole may take the value S or B. S indicates the sender is unwilling to accept
S-channels configuration (mode, # channels supported, channel index) from its
neighbor and that the sender is willing to accept SVID assignments from the
neighbor. Stations usually take the S role. B indicates the sender is willing to
accept S-channels configuration (mode, # channels supported, channel index)

 Edge Virtual Bridging Proposal

from its neighbor and that the sender is willing do the best it can to fill the SVID
assignments from the neighbor. Bridges usually take the B role.

• OperRole: The current operational value of the Role parameter in the local port.
This value is included as the Role parameter in the S-channel TLV and may take
values S or B as described for AdminRole.

• RemoteRole: Indicates the value in the remote S-channel TLV role field. rwNull
indicates either the TLV was not present in the last LLDP PDU or that no LLDP PDUs
have been received. rwS and rwB indicate that the Role field was set in the S-
channel TLV received and that it had a value of S or B respectively as described
for the AdminRole variable.

• schState: The current running state of CDCP. The values for this variable are
NOTRUNNING or RUNNING.

• AdminVersion: The administratively configured value for the Vers parameter. This
value is included as the Vers parameter in the S-channel TLV. If the value is
DISABLE = 00b it means S-channels are disabled. If the value is VER0 = 10b it
means this version.

• AdminChnCap: The administratively configured value for the Number of
Channels supported parameter. This value is included as the ChnCap parameter
in the S-channel TLV.

• AdminSVIDWants: The administratively configured value for (SCID, SVID) pairs
wanted by an S. Not used by a B. The first value is always the pair (1, 1) for the
default S-channel assignment. The S-channel numbers may be any valid number
from 0-0xffe. A 0 S-channel number indicates reserved space in the TLV. If the
SVID value is 0 it means the S is requesting any available SVID. SVID value 1is
reserved for exclusive use for the default S-channel SVID. . The AdminSVIDWants
parameter is used to form the (SCID, SVID) pairs in the S-channel TLV.

• LastSVIDWants: A local temporary copy of the AdminSVIDWants.
• LocalSVIDPool: The set of SVIDs and bridge ports available for S-channel

assignment. These are determined by both administrative resource assignments
and by resource availability. The OperSVIDList for a B role must be drawn from the
LocalSVIDPool.

• LastLocalSVIDPool: A temporary copy of the LocalSVIDPool.

• OperVersion: The current value for the Vers parameter. This value is included as

the Vers parameter in the local S-channel TLV. The value VER0 = 10b means this
version. The value DISABLE = 00b mean don’t run CDCP.

• OperChnCap: The current value for the ChnCap parameter. This value is
included as the ChnCap parameter in the local S-channel TLV. The range for this
variable is 1-0xffe.

• OperSVIDList: The current value for (SCID, SVID) assignments. This is the list of (SCID,
SVID) pairs included in the local S-channel TLV. The total size of the list may not
exceed 167 pairs. The list must always include the default S-channel pair (1,1).The
valid range for each S-channel of this list is from 1-0xffe. The valid range for each
SVID in the list is from 0 to 0xffe. For the S role a SVID of 0 indicates a request for a
channel. For the B role an SVID of 0 indicates a non-configured channel.

 41

• RemoteVersion: The current value for the remote S-channel Vers parameter. This
value is included as the Vers parameter in the remote S-channel TLV. NULL means
no remote S-channel TLV exists in the local LLDP database. The value for this

 Edge Virtual Bridging Proposal

variable may be VER0=100b setting any other value will result in stopping S-
channel operation.

• RemoteChnCap: The current value for the ChnCap parameter. This value is
included as the ChnCap parameter in the remote S-channel TLV. NULL means no
remote S-channel TLV exists in the local LLDP database. The range for this variable
is 1-0xffe.

• RemoteSVIDList: The current value for (SCID, SVID) assignments. This is the list of
(SCID, SVID) pairs included in the remote S-channel TLV. NULL means no remote S-
channel TLV exists in the local LLDP database. If the list is empty but the S-channel
TLV is present its value is NONE. The total size of the list may not exceed 167 pairs.
The valid range for each S-channel of this list is from 1-0xffe. The valid range for
each SVID in the list is from 0 to 0xfff. When the SVID is value is 0 the SVID is not
configured. For the S role a SVID of 0 indicates a request for a channel. For the B
role an SVID of 0 indicates a non-configured channel.

• LastRemoteSVIDList: Temporary local copy of the RemoteSVIDList. This variable is
not included in the S-channel TLV. The LastRemoteSVIDList has the same syntax as
RemoteSVIDList.

5.2.4 CDCP Configuration Procedures
The CDCP state machine uses three procedures. The SetSVIDRequest() procedure places
a new request from the station or sets the initial TLV for a Bridge. The RxSVIDConfig()
procedure is used by the station to configures a new set of S-channel and SVID
assignments. The TxSVIDConfig() is used by the Bridge to respond to the station’s request
for S-channels.

• SetSVIDRequest(OperRole, AdminSVIDWants, OperSVIDList)
− This function creates the OperSVIDList placed in the Local TLV database.
− If the OperRole for the equipment is B then the OperSVIDList remains

unchanged.
− If the OperRole for the equipment is S two possible cases exist. In the first

case we don’t have any configured S-channels, indicated by
OperSVIDList being equal to NONE. In this case the function places the
AdminSVIDWants in OperSVIDList. In the second case we already have a
running configuration indicated by the OperSVIDList not equal to NONE. In
this case the function compares the AdminSVIDWants with the
OperSVIDList. All active S-channels in the OperSVIDList which are in the
AdminSVIDWants are kept active and in addition any channels not
currently in the OperSVIDList are requested by including them in the
OperSVIDList along with a 0 SVID number. The OperSVIDList S-channel
order is set to match the AdminSVIDWants.

• RxSVIDConfig (OperSVIDs, LastRemoteVIDList)
− This function creates the OperSVIDList placed in the Local TLV database

for an S role port.

 42

• The function compares the AdminSVIDWants with the LastRemoteSVIDList. For
each AdminSVIDWants S-channel with an SVID assignment in the
LastRemoteSVIDList a (SCID, SVID) pair is generated in the OperSVIDList. For each
AdminSVIDWants S-channel without an SVID assignment in the LastRemoteSVIDList
a (SCID,0) pair is generated in the OperSVIDList. The OperSVIDList S-channel order

 Edge Virtual Bridging Proposal

is set to match the AdminSVIDWants.TxSVIDConfigB(OperChnCap,
RemoteChnCap, LastLocalSVIDPool, RemoteSVIDList, OperSVIDList)

− This function creates the OperSVIDList placed in the Local TLV database
for an S role equipment

− First the function takes the smaller of the OperChnCap and
RemoteChnCap and truncates the RemoteSVIDList to the smaller of the
two.

− A new OperSVIDList is created as follows:
• For each S-channel in the RemoteSVIDList with a (SCID, SVID) pair

in the OperSVIDList the (SCID, SVID) remains unchanged unless the
SVID is no longer part of the LastLocalSVIDPool. If the SVID is no
long in the pool a new one is selected if available. If no SVID is
available the (SCID, SVID) pair will be deleted from the
OperSVIDList.

• For each S-channel in the RemoteSVIDList without a (SCID, SVID)
pair in the OperSVIDList an SVID is obtained from the
LastLocalSVIDPool (the pool for Bridge resources) if available. If no
SVID is available the (SCID, SVID) pair will be deleted from the
OperSVIDList.

5.2.5 CDCP Configuration State Machines
The CDCP state machine operates on TLV exchanged using LLDP operating on the
nearest non_TMPR bridge address (figure 29).

 43

 Edge Virtual Bridging Proposal

Figure 29. CDCP State Machine

This LLDP instance is one per physical LAN associated with the Station/Bridge Access Port
of the S-Component, which faces the LAN connecting the station to the bridge. If either
the station or Bridge is not capable of S-channel operation no S-channel-TLV will be
inserted in the LLDP database. The absence of a S-channel-TLV therefore indicates that
the station or Bridge is only capable of creating the default S-channel. For CDCP to
progress both sides must indicate they are capable of dynamic S-channels operation,
have the same version number and one side must have the ‘B’ role while the other side
must have the ‘S’ role as indicated by the role bits of the S-channel TLV.

If both sides are dynamic S-channel capable, exactly one side has the ‘S’ role and one
side has the ‘B’ role, and the ‘B’ has at least some of the resources requested by the ‘S’
side, the state machine will configure S-channels. The configuration proceeds by the ‘B’
providing the best match it can to the ‘S’s requested channels and configuration. The ‘S’
makes the resource request, the ‘B’ responds with its best matching resources, the ‘S’
then goes operational and reports its running configuration to the ‘B’, and finally the ‘B’
goes operational with the running configuration of the ‘S’.

In the event the ‘S’ wishes to change its configuration it alters the request in its S-channel
TLV and then follows the same process as above. If the ‘B’ losses its ability to support the
current configuration it can alter the current configuration in its S-channel TLV at which
time the ‘S’ must drop down to the resources supplied by the ‘B’.

 44

In the event of a change of the administered parameters the current operating S-VLANs
must be terminated the configuration machine re-initialized.

 Edge Virtual Bridging Proposal

6. Edge Control Protocol (ECP) and State
Machine

This chapter will describe an architectural overview of the Edge Control Protocol (ECP)
protocol, followed by the semantics and associated state machines.

6.1 Requirements

ECP was designed with the following protocol requirements:

• Semantics associated with the <ULP, ECP> interface:

• A single LAN multiplexed using S-channels has one ECP per S-channel.
• For VSI, there is one VSI agent per S-channel ECP and that agent may have

multiple VSI sharing a single S-channel.
• The <ULP, ECP> interface is based on a complete ULPDU (i.e. the group of TLVs

that are handed to ECP for transmission).
• The number of octets in the ULPDU may be less than the maximum number of

octets that can fit into a ECP frame.
• The number of ULP TLVs may be less than the maximum number

that can fit into a ECP frame.
• Procedures are used to describe how the ULP hands off ULP PDUs

to ECP and how ECP hands off ULP PDUs to the ULP.
• Given the <ULP, ECP> interface is based on full ULPDUs, no immediate

processing is needed at the ECP level.
• Outside the scope of this proposal are the semantics for handling: link down;

and how multiple ULPs arbitrate when sharing the same ECP.

• ECP acknowledgement and sequencing semantics.

• A ECP acknowledge means the ECPDU was received and there is a free buffer
available to enable another send.
• It doesn’t mean the ECPDU were delivered to the ULP.

• At the transmit side, if an ECP Acknowledge is not received within an Ack timer
period, ECP will retransmit the ECPDU up to 2 times.
• The Station must set the EVB Maximum Retry Count to 3.

• Once the receive side ECP delivers the ULP PDU to the ULP through the receive
side hand-off procedure, the ECP buffer becomes available for another send.
• The Acknowledgement must be sent in a separate ECPDU

(vs piggy backing onto a Transmit message in the opposite direction).
• The receive side will issue a ECP Acknowledgement after the completing the

receive side hand-off procedure.
• If the receive side hand-off procedure takes too long, the receive side ECP

may toss the ULP PDU and send back an ACK to indicate the ECP buffer is
free on the receive side.
• Note: The length of time the send side waits, before tossing the ULPDU

should not be less than the retransmission period times the maximum
number of retries.

 45

• Semantics associated with slow ULP Data Unit reception (e.g. raising a
flag) are outside the scope of this proposal.

 Edge Virtual Bridging Proposal

• Sequence numbering must be used to detect duplicate vs new ECPDUs.
• ECP will not provide a keep-alive mechanism. Instead each ULP must do so.
• ECP will not provide a digest at the ECP level and any ULP Data Unit (or TLV)

database synchronization is left up to the ULP.

Note, the intent is to have the server’s virtualization infrastructure (e.g. Hypervisor)
implement ECP, versus having the NIC implement ECP.

6.2 Edge Control Protocol Data Unit

This section specifies the format of a ECP Data Unit, along with the header that is added
to and removed from ECP frames by the ECP function. The ECP header allows each ECP
Data Unit from the sender to be identified through a sequence number, which the
receiver acknowledges by sending a ECP Acknowledgement frame.

Ethertype = TBD Sub-type Mode Sequence Number ULPDU

 2 Octets 2 Octets 1 Octet 2 Octets Optional

Figure 30. ECP Data Unit

The destination address of the Ethernet frame that contains a ECPDU has the following
semantics:

• Nearest bridge (01-80-C2-00-00-0E) for ECP running at the link layer.
• Nearest Customer Bridge (01-80-C2-00-00-00) for ECP running over a S-channel.
• Note, ECP should also be allowed using a Uni-cast address.

The source address shall be the sending station or port individual MAC address.

A new Ethertype will be needed for ECP. A ECP exchange will run at the link if the link is
not configured for S-channels. If ECP is performed over an S-channel,
then the STAG for the S-channel shall precede the ECPDU.

The ECPDU contains:
• Sub-type - a 2 octet field that defines the ULP type included in the PDU. Note for

Ack’s the sub-type is ignored at the station.
• The version of VDP described in this document uses a sub-type of 0x0000.
• The sub-type 0xffff is reserved for organizationally unique use of ECP. In this case

the first 3 octets of the ULPDU shall contain the OUI defining the organization using
ECP.

• Mode – Identifies whether the operation is a:
• ECP request (0x00)
• ECP acknowledgement (0x01).

• Sequence number – identifies the sequential order of the PDU, with respect to other
ECPDUs. The starting sequence number may start anywhere for the first ECPDU, but
the sequence number for each subsequent new ECPDU is incremented by 1.

 46

 Edge Virtual Bridging Proposal

6.3 ECP Procedures

Two procedures are used to hand-off Data Units between the ULP and ECP:
ECP_UNITDATA.request and ECP_UNITDATA.indication. The implementation of these two
procedures is outside the scope of this proposal. These <ULP, ECP> interface procedures
may be implemented in many ways, including a queue. Also, the system must have a
way of associating the ulptype with a specific ULP.

The ECP_UNITDATA.request is invoked by the ULP at the sender to notify ECP that a ULPDU
is ready to be transmitted. The ulpdu parameter is a unit of work from the ULP. For
example, for VSI it consists of a set of VSI TLVs passed from the VSI ULP to ECP for
transmission, where the set of TLVs must be less than or equal to the maximum allowed
ECPDU. Following is the format for the ECP_UNITDATA.request procedure:

ECP_UNITDATA.request (ulptype, ulpdu)

The ECP_UNITDATA.indication is invoked by ECP at the receiver to indicate a ULPDU has
been successfully received and is available ULP processing. The ulpdu parameter is unit
of work from the ULP. For example, for VSI it consists of a set of VSI TLVs passed from the
ULP to ECP for transmission, where the set of TLVs must be less than or equal to the
maximum allowed ECPDU. Following is the format for the ECP_UNITDATA.indication
procedure:

ECP_UNITDATA.indication (ulptype, ulpdu)

6.4 ECP State Machines

There are two state machines used by each ECP instance: transmit and receive. The
transmit state machine is invoked through the ECP_UNITDATA.request procedure. The
receive state machine is invoked upon reception of an ECP Data Unit and it invokes the
ECP_UNITDATA.indication procedure.

 47

 Edge Virtual Bridging Proposal

6.4.1 ECP Transmit State Machine

[ackTimer done && Retries
== maxRetries]

||
[ackReceived && (Sequence

== ackSequence)]

Retries = 0
initTransmit
Retries = 0

initTransmit

ECP_UNITDATA.request

Transmit ECPDU;
Start ackTimer

transmitECPDU
Transmit ECPDU;
Start ackTimer

transmitECPDU

Retries ++
waitForAck

Retries ++
waitForAck

ackTimer done &&
(Retries <
maxRetries)

Retries = 0;
Sequence++

requestPDU
Retries = 0;
Sequence++

requestPDU

BEGIN

Figure 31. ECP Transmit State Machine

The first entrance into transmitECPDU is used to initiate the sequence counting on the
receive side. That is, an ECP Frame that simply contains the ECP header is sent and an
ackTimer is started. The waitForAck state waits for the L-ACK to be received that
matches the last transmitted ECP sequence number. If an L-ACK is received that
matches the last transmitted ECP sequence number or the number of retries exceeds the
maximum number of retries, the sender will stop transmitting the ECP Frame and proceed
to requestPDU. If an L-ACK is not received within an ackTimer period and the number of
retries is less than the maximum number of retries, the sender will retransmit the ECP
Frame. The requestPDU state increments the sequence count and waits for the
ECP_UNITDATA.request procedure to be invoked.

Note, the starting sequence number may start anywhere for the first ECPDU. Also a Link
Down event may restart the sequence number at the same point every time or not.

 48

 Edge Virtual Bridging Proposal

6.4.2 ECP Receive State Machine

seqECPDU == lastSequence

If (validate(ECPDU))
seqECPDU = sequenceOf(ECPDU);

receiveECPDU
If (validate(ECPDU))

seqECPDU = sequenceOf(ECPDU);

receiveECPDU

sendAcknowledgement(seqECPDU)
resendACK

sendAcknowledgement(seqECPDU)
resendACK

Invoke ECP_UNITDATA.indication procedure

lastSequence = seqECPDU;

sendACK
Invoke ECP_UNITDATA.indication procedure

lastSequence = seqECPDU;

sendACK

seqECPDU != lastSequence

receiveWaitreceiveWait

ECPDU received

BEGIN

lastSequence = NULL
initReceive

lastSequence = NULL
initReceive

Figure 32. ECP Receive State Machine

The first entrance into InitReceive is used to set the sequence counting to NULL and then
proceed to receiveWait, which waits for an ECP Data Unit to be received. The
receiveECPDU validates the ECPDU and sets the current sequence number to the
sequence number of the transmitted ECPDU. If the current sequence number doesn’t
match the last transmitted ECP sequence number, then in sendACK the ECP Data Unit is
delivered to the ULP and the lastSequence number is set to the current sequence
number. If the current sequence number doesn’t match the last transmitted ECP
sequence number, then in resendACK an L-ACK is sent.

 49

 Edge Virtual Bridging Proposal

7. Virtual Station Interface (VSI) Discovery and
Configuration (VDP) and State Machine

This section covers the Virtual Station Interface (VSI) Discovery and Configuration
Protocol (VDP) and State Machine. VDP uses ECP (Edge Control Protocol) for VDP
exchanges.

7.1.1 VSI Discovery and Configuration TLV
VSI TLV is used for discovery and configuration and is exchanged between the Station
and Bridge. One or more VSI TLVs are transported in an ECP Data Unit. Following is the
format and semantics for a VSI TLV:

TLV header TLV information string = 28+ M octets

TLV type =
127

(7 bits)

TLV information
string length

(9 bits)

OUI
(3 octets)

Subtype
(1 octet)

Octets:

Figure 33. VDP TLV

The OUI used to identify the EVB protocols (EVB, CDCP, ECP and VDP) is XX-XX-XX.

The Subtype 0x0002 is used to identity the VDP TLV.

Mode – Indicates VSI TLV Mode
• First octet identifies a pre-associate, associate, de-associate, or the corresponding

confirmation or rejection for each.
• Second octet is used during a rejection to indicate the reason for the pre-assoc or assoc

rejection.
VSI Manager ID – Identifies the VSI Manager with the Database that holds the detailed VSI type

and or instance definitions. VSI Manager ID can be used to obtain IP address and/or other
connectivity and access information for the manager.

VSI Type ID (VTID) – The integer identifier of the VSI Type.
VSI Type ID Version – The integer identifier designating the expected/desired version of the VTID
VSI Instance ID – A globally unique ID for the connection instance. The ID shall be done consistent

with IETF RFC 4122.
Format – identifies the format of the MAC and VLAN information that follows in the TLV. Note, the
VSI TLV allows multiple formats, which makes possible extensions in the future.
MAC/VLANs – Listing of the MAC/VLANs associated with the Virtual Station Instance (VSI).

Bits:

1 3 6

8 2 1 8 1

VSI
Mgr ID
(1 octet)

VSI
Type ID

(3 octets)

VSI Type
Version

(1 octets)

VSI
Instance ID
(16 octets)

MAC/VLAN
Format

(1 octets)

MAC/VLANs
(M octets)

10 13 14 30 31 31+M

MAC & VLAN InfoVSI Type and Instance
VSI Attributes

Mode
(2 octet)

9

TLV header TLV information string = 28+ M octets

TLV type =
127

(7 bits)

TLV information
string length

(9 bits)

OUI
(3 octets)

Subtype
(1 octet)

Octets:

Bits:

1 3 6

8 2 1 8 1

VSI
Mgr ID
(1 octet)

VSI
Type ID

(3 octets)

VSI Type
Version

(1 octets)

VSI
Instance ID
(16 octets)

MAC/VLAN
Format

(1 octets)

MAC/VLANs
(M octets)

10 13 14 30 31 31+M

MAC & VLAN InfoVSI Type and Instance

Mode
(2 octet)

9

VSI Attributes

 50

 Edge Virtual Bridging Proposal

Following is the format for Format = 1
Entries
(2 octets)

MAC
(6 octets)

VLAN ID
(2 octets)

 x # Entries

Figure 34. VDP Format = 1 Schema

Note, the station and switch environments and their common understanding of the VTID
meaning is outside the scope of this TLV. Also, the contents of a VSI Type are outside the
scope of this proposal.

7.1.1.1 VSI TLV – Mode and Mode Response
The purpose of the Mode field is to identify the type of VSI TLV. It is defined as follows.

VSI TLV Request field: 1st octet

Pre-Associate: 0x00
Pre-Associate with resource reservation: 0x01
Associate: 0x02
De-Associate: 0x03

VSI TLV Response field: 2nd octet
For all the responses, the bridge reflects the same VSI TLV fields as the Requester had
sent. On requests, response field is initialized to 0x00 (Success). Following are the possible
values of the response field.

Success: 0x00
The VSI Request was successfully completed by the switch

Invalid Format: 0x01
The VSI Format is not supported by the switch

Insufficient Resources: 0x02
The switch does not have enough resources to complete the VSI operation
successfully.

Unused VTID: 0x03
The VSI referenced by the VSIID does not exist in the VSI Manager database
referenced by the VSI Manager Identifier

VTID Violation: 0x04
The VSI referenced by the VSIID is not allowed to be associated with the VTID.

VTID Version Violation: 0x05

The VSI referenced by the VSIID is not allowed to be associated with the VTID
Version.

Out of Sync: 0x06

 51

The VTID or one of the VSI List fields used in the Associate is not the same as
the corresponding field used in the Pre-Associate.

 Edge Virtual Bridging Proposal

Reserved 0x08 – 0xFF
These Responses are reserved for future use.

Mode and Mode Response fields are used under the control of VDP state machines.

7.1.1.2 VSI TLV Mode and Responses Semantics
Following are the semantics association with each VSI TLV Request.

7.1.1.2.1 Pre-Associate
The Pre-Associate is used to pre-associate a VSI Instance Identifier to a VSI Type ID. If
required, the bridge should obtain VSI Type Definition from the VSI Manager Database.
The bridge must validate the request (see below) and fail it in case of errors (see below
for responses). Successful Pre-Association does not enable any traffic from VSI. Note that
VSI may still be associated at another station. The Pre-Associate enables faster response
to an Associate, by allowing the bridge to obtain VSI Type state, prior to an association.

The second Mode octet is used by the bridge to communicate the results of the Pre-
Associate requested for the VSI Instance ID (VSIID).

Following are the mode and responses with their semantics:

• Success - Pre-Associate was successful. The switch shall permit a subsequent

Associate or De-Associate by the VSI referenced by the VSI Instance Identifier.
• The following are all unsuccessful Pre-Associate Completions. For each of these, the

switch shall not permit a subsequent Associate or De-Associate by the VSI referenced
by the VSIID.
• Invalid Format.
• Insufficient PT Resources.
• Unused VTID
• VTID Violation
• VTID Version Violation

Pre-Associate requires resource lease timer mechanism to conserve Bridge resources.
Pre-Associate does not allow any traffic from VSI which is enabled when the VSI is
Associated.

7.1.1.2.2 Pre-Associate with Resource Reservation
Pre-Associate with Resource Reservation has same steps as Pre-Associate but also
reserves resources.

Bridge should validate required resources and shall reserve resources for subsequent
Associate step. Pre-Associate requires resource lease timer mechanism to conserve
Bridge resources. Pre-Associate does not allow any traffic from VSI which is enabled
when the VSI is Associated.

Second Mode octet contains the results of the Pre-Associate requested for the VSI
Instance ID (VSIID). Following are the mode and responses with their semantics.

 52

 Edge Virtual Bridging Proposal

• Success - Pre-Associate with Resource Reservation was successful. The switch shall
permit a subsequent Associate or De-Associate by the VSI referenced by the VSI
Instance Identifier.

• The following are all unsuccessful Pre-Associate with Resource Reservation
Completions. For each of these, the switch shall not permit a subsequent Associate or
De-Associate by the VSI referenced by the VSIID.
• Invalid Format.
• Insufficient PT Resources.
• Unused VTID
• VTID Violation
• VTID Version Violation

7.1.1.2.3 Associate
Associates the VSI Instance ID with the VSI Type ID (VTID). If VSI Type definition is not
already cached in the bridge, the bridge fetches the VSI Type definition from the VSI
Type definition Database. Bridge allocates required bridge resources for the referenced
VSI. The Bridge binds specific MAC/VLAN pairs with the VSI Type ID which allows
classification of L2 traffic to the VSI and enforcing of VSI Type controls. Bridge activates
the configuration for the VSI Type ID. This association is then applied to the traffic flow
from/to the VSI Instance.

For a given VSI Instance ID, a Station may issue an Associate without having previously
issued a Pre-Associate or Pre-Associate with Resource Reservation. During normal
operations a VSI Instance is Associated on only one port. During network transitions (e.g.
VM migration) a VSI Instance might be Associated with more than one port.

In VSI TLV, second octet in the mode field contains the results of the Associate request
performed for the VSI Instance Identifier. These are described below.

• Success - Associate was successful. Prior to issuing this response, for a format 1 VSI

TLV, the bridge shall associate the VSI Type referenced by the VSI Type Identifier and
VSI Type Version with the MAC Address, VLAN and VSIID.

• The following are all unsuccessful Associate Completions.
• Invalid Format
• Insufficient Resources - If the Associate was preceded by a successful Pre-

Associate with Resource Reservation, then the bridge shall not issue this response.
• VTID Violation
• VTID Version Violation
• Out of Sync

7.1.1.2.4 De-Associate
De-associate a VSI Instance Identifier from the associated VTID. Pre-Associated and
Associated VSIs can be De-Associated. De-Associate releases resources and de-
activates the configuration associated with the VSI instance. A VSI Instance may get De-
Associated by bridge due to bridge error situation or management action.

In VSI TLV, second octet in the mode field contains the results of the De-Associate request
performed for the VSI Instance Identifier. These are described below.

 53

 Edge Virtual Bridging Proposal

• Success - De-Associate was successful. Prior to issuing this response, for a format 1 VSI
TLV, the bridge shall de-associate the VSI Type referenced by the VSI Type Identifier
from the the MAC Address, VLAN and VSI Instance ID.

• The following are all unsuccessful De-Associate Completions.

• Invalid Format
• VTID Violation
• VTID Version Violation

Note: The result of the above semantics is that De-Associate can be issued at any time.

7.1.1.2.5 VSI Type ID (VTID) Semantics
VSI Type ID (VTID) is an integer value field used to identify a pre-configured set of
controls/attributes that are to be associated with a set of VSIs.

VTID contents and meaning and the database used to contain the VSI Type are outside
the scope of this effort. One VTID may describe the VSI Type configuration of multiple
VSIs. The VSI Type content referenced by the same VTID may differ between switches
and VEBs. For example: same VTID is used by switches from two different vendors; or
same VTID is used by a VEB and vendor switches.

7.1.1.3 VSI Type ID Version Semantics
VTID Version is integer identifier designating the expected/desired VTID version.
The VTID Version enables a VSI Manager Database to contain multiple VSI Type versions.
It allows smooth migration to newer VSI types.

7.1.1.4 VSI Instance ID
VSI Instance ID is a globally unique ID for the VSI instance. The ID shall be done consistent
with IETF RFC 4122. VSI ID is gets generated when VSI instance is created by VSI Instance
Manager at request of VM Manager. VSI Instance creation mechanism is outside scope
of this proposal but expected to be created by VM Manager or VSI Manager.

7.1.1.5 MAC – VLAN Information Format

#Entries
(2 octets)

MAC
(6 octets)

VLAN ID
(2 octets)

X# of entries

Figure 35. MAC-VLAN Information Format 1

 54

 Edge Virtual Bridging Proposal

MAC-VLAN Format-1 contains the set of MAC Addresses and VLANs to be associated
with the VSI Instance ID. Note the bridge uses MAC+VID to identify traffic from VSI and to
steer the frames.

Field:

#MAC-VLAN pairs: 2 octets

Per MAC-VLAN Pair Content:

MAC address: 48 bits

VID: 12 bits

7.1.2 VDP Requirements and Assumptions
Following are VDP requirements associated met by VDP state machines described in this
section:

1. VDP must support a VSI Pre-Associate (with and without resource reservations),
Associate and De-Associate.

2. Associate, Pre-Associate and De-Associate are Idempotent i.e. can be repeated.
3. The bridge must allow for an Associate to be issued without the need for a

previous Pre-Associate.
4. VDP may be used in conjunction with both a VEPA and VEB.
5. VDP utilizes ECP as the transport for a VDP Data Unit that contains one or more

VDP TLVs. VDP utilizes the following capabilities of ECP:
1. Transport will be transmitting TLVs in-order and are received in-order.
2. Flow control
3. ECP provides best effort delivery of TLV. At the Station, if a VDP

Acknowledgement is not received, within an Acknowledgement timeout
period, VSI exits the state machine. The Acknowledgement timeout
period is defined as 2*ECP retransmission period * Maximum number of
retries, plus a locally administered wait that is outside the scope of this
document.

6. Health TLV mechanism to ensure:
1. Bridge resources are not reserved for too long a time period for inactive

VSIs (lease semantics)
2. Allow removing resources from inactive VSIs with the goal of

1. Conserving bridges resources (Number VSIs being handled by
bridge can be large).

2. Prevent inactive or VMs in error state to continue to hold resources.
3. For S-channels, timeout out values to be negotiated on a per S-channel

basis between station and bridge. One timeout used for all ULPs on the S-
channel negotiated using EVB TLV.

4. If S-channels are not enabled, timeout out values to be negotiated per
link basis between station and bridge. One timeout used for all ULPs on
the link negotiated using EVB TLV.

7. Ensure VSI state and configuration between the Station and the Bridge remains
consistent.

 55

8. Hard errors at the Bridge or the Hypervisor that can impact individual VSI or
Hypervisor/Bridge as a whole are handled by removing all VSI configuration.

 Edge Virtual Bridging Proposal

9. Bridge and Station Errors are detected through one or more of the following
mechanisms.

1. VSI KEEP-ALIVE (periodic transmission of VSI TLV from station and response
from Bridge)

2. ACK Timer
10. The value of the Station’s Activity Timer must not be greater than three times ECP

Max Retries * EVB’s RTM * RTG. That is, Activity Timer <= 9 *RTM *RTG.
11. Supports for switch/hypervisor administrator actions that force VSI De-Associate.
12. Should enable statistics and logging capability.

7.1.3 VDP – Local Variables and Procedures

vsiState: Local variable for current state.

localTLV: Current local (active) TLV (configuration)

AdminTLV: TLV from local administration. In addition appropriate

localChange variable is set. It allows mode change
RemoteTLV: TLV received from remote.

TxTLV(vsiTLV): Transmits AdminTLV using TLV transport service (ECP)
 service interfaces.

ProcRxAndSetCfg(vsiRemoteTLV,vsiLocalTLV,vsiState):

Processes receive TLV and Sets local TLV variable based on
 Received Remote TLV and vsiState. In case of error, returns error.
This function handles PreAssociate with and without resource
 reservation case as well as accessing VSI Type definition and
 fetch, if required.

StartACKtimer(): Resets ACKTimeout local variable to FALSE and Starts ACK timer.
Response (ACK or NACK is expected before timer expires.

ACKTimeout: This local variable is set to true, if ACK timer expires
vsiErrorPerm(vsiRemoteTLV):

Processes the vsiRemoteTLV and returns TRUE if response code is
an unrecoverable (permanent) error.

The next sections contain the VSI State Machine. Following are notes regarding those
state machines:

1. The purpose of the ACKtimer is to catch the unusual case of a TLV getting
lost. The following architectural minimum shall be used: The
Acknowledgement timeout period is defined as 2*ECP retransmission
period * Maximum number of retries, plus a locally administered wait that
is outside the scope of this document.

2. For any VSI ACK received for a non-active VSI the station shall drop the
packet.

3. VSI State is set to NULL on exit.

 56

4. The VSI State Machine does will not implement retry mechanism on NACK.
Instead the ULP can process the NACK reasons and retry the VSI
operation.

 Edge Virtual Bridging Proposal

5. VDP state machine will exit on receiving NACK.

 57

 Edge Virtual Bridging Proposal

7.1.4 Station VSI State Machine

Following is the VSI State Machine for the Station.

localChange-PreAssoc

PreAssoc_NAK_Rx II
ACKTimeout || DeAssocAck Rx

vsiError ||
localChange-DeAssoc

localChange-Assoc

vsiLocalTLV = NULL
vsiState = UNASSOCIATED

INIT

vsiLocalTLV = NULL
vsiState = UNASSOCIATED

INIT

TxTLV(PreASSOC)
StartACKTimer()

PREASSOC_PROCESSING

TxTLV(PreASSOC)
StartACKTimer()

PREASSOC_PROCESSING

vsiError =
ProcRxAndSetCfg(vsiRemoteTLV,vsiLocalTLV,
vsiState);
If (!vsiError)

vsiState = PREASSOCIATED

PREASSOCIATED

vsiError =
ProcRxAndSetCfg(vsiRemoteTLV,vsiLocalTLV,
vsiState);
If (!vsiError)

vsiState = PREASSOCIATED

PREASSOCIATED

localChange-PreAssoc ||
ACIIVITY_TIMER_Event PreAssoc_ACK_Rx

TxTLV(DeASSOC)
StartACKTimer()

DEASSOC_PROCESSING

TxTLV(DeASSOC)
StartACKTimer()

DEASSOC_PROCESSING

TxTLV(ASSOC)
StartACKTimer()

ASSOC_PROCESSING

TxTLV(ASSOC)
StartACKTimer()

ASSOC_PROCESSING

vsiError =
ProcRxAndSetCfg(vsiRemoteTLV,vsiLocalTLV,vsiState);
If (!vsiError)

vsiState = ASSOCIATED

ASSOCIATED

vsiError =
ProcRxAndSetCfg(vsiRemoteTLV,vsiLocalTLV,vsiState);
If (!vsiError)

vsiState = ASSOCIATED

ASSOCIATED

(Assoc_NAK_Rx && VsiState == !Assoc)
II ACKTimeout || DeAssocAck Rx

Assoc_ACK_Rx ||
(Assoc_NAK_Rx &&
VsiState == Assoc) localChange - Assoc ||

ACIIVITY_TIMER_Event

localChange - PreAssoc

localChange - Assoc

ACKTimeout || DeAssoc Rx

vsiError ||
localChange-DeAssoc

Local VSI-START

EXIT

vsiError || DeAssocAck Rx

Figure 36. Station’s VSI State Machine

 58

 Edge Virtual Bridging Proposal

7.1.5 Edge Bridge VSI State Machine

Following is the VSI State Machine for the Bridge.

vsiLocalTLV = NULL
vsiState = UNASSOCIATED

INIT

vsiLocalTLV = NULL
vsiState = UNASSOCIATED

INIT

vsiError=ProcRxandSetCfg(localTLV,
remoteTLV, vsiState)
If (vsiError)

txTLV(PreAssoc NACK)
Else txTLV(PreAssoc-ACK)

PREASSOC_PROCESSING

vsiError=ProcRxandSetCfg(localTLV,
remoteTLV, vsiState)
If (vsiError)

txTLV(PreAssoc NACK)
Else txTLV(PreAssoc-ACK)

PREASSOC_PROCESSING

vsiState = PREASSOCIATED

PREASSOCIATED

vsiState = PREASSOCIATED

PREASSOCIATED

!vsiError

TxTLV(DeAssoc-
ACK)

DEASSOC

TxTLV(DeAssoc-
ACK)

DEASSOC

vsiError=ProcRxandSetCfg(localTLV,
remoteTLV, vsiState)
If (vsiError)
txTLV(Assoc NACK)

Else txTLV(Assoc-ACK)

ASSOC_PROCESSING

vsiError=ProcRxandSetCfg(localTLV,
remoteTLV, vsiState)
If (vsiError)
txTLV(Assoc NACK)

Else txTLV(Assoc-ACK)

ASSOC_PROCESSING

VsiState = ASSOCIATED

ASSOCIATED

VsiState = ASSOCIATED

ASSOCIATED

!vsiError || (vsiError
&& VsiState ==
Assoc)

rxTLV == DeAssoc
|| INACTIVE

rxTLV == Assoc

rxTLV == PreAssoc

localChange-DeAssoc

rxTLV == Assoc

rxTLV == Assoc

rxTLV ==
PreAssoc

(rxTLV == DeAssoc)
|| INACTIVE

rxTLV == PreAssoc

EXIT

New-VSI-Instance ID TLV Rx

(rxTLV == DeAssoc)
|| INACTIVE

vsiError

vsiError &&
VsiState ==
!Assoc

Figure 37. Edge Bridge’s VSI State Machine

 59

 Edge Virtual Bridging Proposal

8. Glossary

 60

Term Description

S-channel An S-VLAN used to associate a set of VSI with a physical Ethernet LAN. Traffic

within one S-channel is isolated from traffic in another S-channel on the same
LAN through the use of a S-Tag.

Chassis A physical component incorporating one or more IEEE 802 LAN stations and
their associated application functionality.

Chassis identifier An administratively assigned name that identifies the particular chassis within the
context of an administrative domain that comprise one or more networks.

CVID Customer VLAN Identifier
DA Destination Address
DS Distribution System

Edge Virtual
Bridging (EVB)

The environment where physical end stations, containing multiple VSI, all require
the services of adjacent bridges forming a LAN. EVB environments are unique in
that virtual NIC configuration information is available to the EVB device that is
not normally available to an 802.1Q bridge.

EUI Extended Unique Identifier

Hypervisor Computer software and / or hardware platform virtualization software that enables
multiple operating systems to operate on top of common, shared hardware.

ID Identifier
IEEE 802 LAN Local area network (LAN) technologies that provide a media access control

(MAC) Service equivalent to the MAC Service defined in ISO/IED 158001-1.
IEEE 802 LANs include IEEE Sd. 802.3, IEEE Std 802.11, IEEE Std 802.16,
IEEE Std 802.17, and ISO 9314-2 LANs.

IEEE 802 LAN
Station

An IEEE 802-compatible entity that incorporates all the necessary mechanisms to
participate in media access control of an IEEE 802 LAN, and that is at least
capable of providing the MAC service plus the mandatory capabilities of the LLC.

LLC Logical Link Control (sub-layer)
Link Layer

Discovery Protocol
(LLDP)

A media-independent protocol capable of running on all IEEE 802 LAN stations
and to allow an LLDP agent to learn the connectivity and management
information from adjacent stations.

LLDP agent The protocol enttity that implements LLDP for a particular MSAP associated with
a Port.

LLDPDU Link Layer Discovery Protocol Data Unit
LSAP Link Service Access Point
MAC Media Access Control

MAC service
access point

(MSAP)

The access point for MAC services provided to the LLC sub-layer.

MSAP Identifier The identifier of a MAC service access point.

 Edge Virtual Bridging Proposal

Term Description

 61

Management entity The protocol entity that implements a particular network management protocol
and that provides access support to a MIB associated with the protocol and
implemented in a host chassis.

Management
Information Base

(MIB)

The instantiation of all MIB modules in a managed entity (e.g. system or device)

Management
Information Base

module (MIB
module)

The specification or schema for a data base that can be populated with information
required to support a network management information system.

S-Channels The capability to multiplex multiple virtual channels over a single physical
Ethernet LAN.

Network An interconnected group of systems, each comprising one or more IEEE 802 LAN
stations.

Network Interface
Controller (NIC)

A device that includes a non-forwarding IEEE 802 LAN station.

Network
Management

System (NMS)

A management system that is capable of utilizing the information in a MIB.

Object identifier
(OID)

An identifier used to name an objective. Structurally, an OID consists of a node in
a hierarchically-assigned namespace, formally defined in ISO/IEC 8824-1.
Abstract Syntax Notation 1 (ASN.1). OIDs are used in this standard to identify
MIB modules and the objects they contain.

OUI Organizationally Unique Identifier
Physical network

topology
The identification of systems, of IEEE 802 LAN stations that compose each
system, and of the IEEE 802 LAN stations that attach to the same IEEE 802 LAN.

PCI Peripheral Component Interface as defined by the PCI-SIG.
http:www/pcisig.com. PCI Express (PCIe) represents the latest incarnation of PCI
technology within the industry.

PD Powered Device
Port The entity in a chassis/system to support an MSAP. A port incorporates one and

only one MSAP and identifies the collection of manageable entities that provide
the MAC Service at the MSAP.

Port identifier An administratively assigned name that identifies the particular port within the
context of a system, where the identification is convenient, local to the system,
and persistent for the system’s use and management (whereas the MAC address
that globally identifies the MSAP can not be).

PVID Port VLAN ID
Reflective Relay Frame relay where the destination port is also the source port

SA Source Address
Service VLAN A VLAN identified by a S-VID

Service VLAN ID
(S-VID)

A VLAN identifier conveyed in an S-TAG

Service VLAN
Tag (S-Tag)

A VLAN tag with a Tag Protocol Identification value allocated for “802.1Q
Service Tag Type”

 Edge Virtual Bridging Proposal

Term Description

 62

Single-Root I/O
Virtualization (SR-

IOV)

PCI-SIG specification that enables a PCIe Device to be simultaneously shared by
multiple operating systems. A SR-IOV Device supports multiple PCI physical
functions (PF) and virtual functions (VF). A PF or a VF is made visible to an
operating system by a hypervisor as though it is a single, non-shared PCI
Function.

S-VLAN
component

A VLAN-aware bridge component with each Port supported by an instance of the
IESS that can recognize, insert, and remove Service VLAN tags.

SVID Service VLAN Identifier
System A managed collection of hardware and software components incorporating one or

more chassis, stations, and ports.
Type, length, value

(TLV)
A short, variable length encoding of an information element consisting of
sequential type, length, and value fields where the type field identifies the type of
information, the length field indicates the length of the information field in octets,
and the value field contains the information itself.

VID VLAN ID
VDP Virtual Station Interface Discovery and Configuration Protocol. The protocol used

to discover and configure a Virtual Station Interface Instance.
Virtual Ethernet
Bridge (VEB)

A VEB is a frame relay service that supports local bridging between multiple VSI
and (optionally) the external bridging environment. A VEB may be implemented
in software as a vSwitch or as embedded hardware within a NIC.

Virtual Ethernet
Port Aggregator

(VEPA)

A Virtual Ethernet Port Aggregator (VEPA) is a capability within a physical end
station that collaborates with an adjacent, external bridge to provide bridging
support between multiple virtual end stations and external networks. The VEPA
collaborates by forwarding all station-originated frames to the adjacent bridge for
frame processing and frame relay (including reflective relay forwarding) and by
steering and replicating frames received from the VEPA uplink to the appropriate
destinations.
May be implemented in software or in conjunction with embedded hardware.
Note: As with the case of VEBs, VEPAs have access to vNIC configuration
information that normally is not available to an 802.1Q bridge.

Virtual Machine
(VM)

An operating system running on top of a hypervisor.

Virtual NIC
(vNIC)

An entity which performs the MAC, LLC, management and control functions
needed to attach a VM to an internal LAN.

Channel Access
Port

A CAP is a logical Port associated with one end of a S-channel.
Within a physical end station, one or more VSI may be multiplexed on top of a
CAP.
Within an adjacent bridge, a CAP represents a virtual bridge port.

Virtual Station
Interface (VSI)

An internal point-to-point Ethernet LAN which connects a Bridge Port of a VEB
or VEPA to a vNIC. Each VSI carries a single MAC service instance. Sometimes
the term VSI is used to refer to the reference point where the internal LAN
attaches to the vNIC.

VSI Instance
Identifier

References a specific VSI.

VSI Type
Identifier

References a specific VSI Type.

 Edge Virtual Bridging Proposal

Term Description

 63

VSI Type Defines the class of network attributes that can be associated with the VSI.
Virtual Switch

(vSwitch)
A software emulated bridge typically implemented within the server virtualization
infrastructure (e.g. a Hypervisor). A vSwitch switches network packets between
multiple operating systems executing on common, shared hardware. See also
VEB.

 Edge Virtual Bridging Proposal

Appendex CDCP Examples

8.1 CDCP Basic Success Scenario (Sparse)

Figure 38. Sparse S-channel Request

8.2 Station Adds an S-channel

 64

 Edge Virtual Bridging Proposal

Figure 39. Add an S-channel

8.3 Station Removes a S-channel

 65

 Edge Virtual Bridging Proposal

Figure 40. Remove an S-channel

8.4 Drop #S-channels supported

 66

 Edge Virtual Bridging Proposal

Figure 41. Drop an S-channel

8.5 Insufficient S-channels on bridge

 67

 Edge Virtual Bridging Proposal

Figure 42. Insufficient Resources

 68

 Edge Virtual Bridging Proposal

Appendix – VDP Exchange Examples

8.6 VSI PreAssociate, Associate and DeAssociate

The following example depicts the VDP exchanges used to Pre-Associate, Associate and
De-Associate a VSI Instance with a VSI Type, VSI Type Version and set of MAC Address
and VLAN pairs.

Figure 43. VSI PreAssociate, Associate and DeAssociate Exchange

 69

 Edge Virtual Bridging Proposal

8.7 VSI Transport Error Case
The following example depicts the VDP exchange associated with a lost EETP
transmission of a VSI Associate Request Acknowledgement, showing ECP retrying the
transmission.

Figure 44. VSI Transport Error

 70

 Edge Virtual Bridging Proposal

8.8 VSI PreAssociate Resource Lease Refresh Exchange
The following example depicts the VDP exchange associated with an inactive VSI
Instance in the Pre-Associated state, where the bridge’s VSI State Machine forces a De-
Association.

Figure 45. PreAssociate Resource Lease Exchance

 71

 Edge Virtual Bridging Proposal

8.9 VSI Associate Resource Lease Exchange
The following example depicts the VDP exchange used with an inactive VSI Instance in
the Associated state, where the bridge’s VSI State Machine forces a De-Association.

Figure 46. Associate Resource Lease Exchange

 72

	1. Document Scope
	1.1 Purpose

	2. Introduction
	3. Architecture and Operational Overview
	3.1 VEPA Address Table Management
	3.2 Processing from VSI Instance to bridge
	3.3 Processing from the bridge to the VSI Instance
	3.4 S-Channel Operation
	3.5 Edge Control Protocol Operation
	3.6 VSI Discovery and Configuration Protocol (VDP) Operation
	3.6.1 VDP Type Configuration and Automation
	3.6.1.1 VDP – Operational Example
	3.6.1.2 VSI Type Database (VTDB)

	3.6.2 VSI Type Definition and Management
	3.6.3 VSI Manager ID
	3.6.3.1 VSI Manager ID Usage Example

	4. Ethernet Virtual Bridging TLV Semantics
	5. S-Channel TLV Semantics and State Machine
	5.1 S-Channel Bridge Components and Operation
	5.1.1 Introduction
	5.1.2 S-Component

	5.2 CDCP Discovery and Configuration
	5.2.1 CDCP TLV
	5.2.2 CDCP Configuration Procedures
	5.2.3 CDCP Configuration Variables
	5.2.4 CDCP Configuration Procedures
	5.2.5 CDCP Configuration State Machines

	6. Edge Control Protocol (ECP) and State Machine
	6.1 Requirements
	6.2 Edge Control Protocol Data Unit
	6.3 ECP Procedures
	6.4 ECP State Machines
	6.4.1 ECP Transmit State Machine
	6.4.2 ECP Receive State Machine

	7. Virtual Station Interface (VSI) Discovery and Configuration (VDP) and State Machine
	7.1.1 VSI Discovery and Configuration TLV
	7.1.1.1 VSI TLV – Mode and Mode Response
	7.1.1.2 VSI TLV Mode and Responses Semantics
	7.1.1.2.1 Pre-Associate
	7.1.1.2.2 Pre-Associate with Resource Reservation
	7.1.1.2.3 Associate
	7.1.1.2.4 De-Associate
	7.1.1.2.5 VSI Type ID (VTID) Semantics

	7.1.1.3 VSI Type ID Version Semantics
	7.1.1.4 VSI Instance ID
	7.1.1.5 MAC – VLAN Information Format

	7.1.2 VDP Requirements and Assumptions
	7.1.3 VDP – Local Variables and Procedures
	7.1.4 Station VSI State Machine
	7.1.5 Edge Bridge VSI State Machine

	8. Glossary
	8.1 CDCP Basic Success Scenario (Sparse)
	8.2 Station Adds an S-channel
	8.3 Station Removes a S-channel
	8.4 Drop #S-channels supported
	8.5 Insufficient S-channels on bridge
	8.6 VSI PreAssociate, Associate and DeAssociate
	8.7 VSI Transport Error Case
	8.8 VSI PreAssociate Resource Lease Refresh Exchange
	8.9 VSI Associate Resource Lease Exchange

