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Abstract: This document is a proposal for the development of IEEE Edge Virtual Bridging 
(EVB) technologies.  These proposals cover a suite of mechanisms that may be used to 
construct an EVB-based solution including architectural overview, discovery, 
management objects, and state machines.  
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1. Document Scope 
 
This document details Virtual Ethernet Port Aggregator (VEPA) theory of operation and 
the discovery and capability exchange protocol used to support a VEPA solution.  VEPA 
relies upon LLDP to provide discovery and capability exchange.   These exchanges 
occur between a physical end station and an adjacent bridge.   
 

1.1 Purpose 
 
The purpose of this proposal is to define a proposal for Discovery and Configuration of 
Ethernet Virtual Bridging (EVB) capabilities, using: S-channel, Edge Control Protocol (ECP) 
and Virtual Station Interface (VSI) Discovery and Configuration Protocol (VDP).  These 
protocols are used to determine EVB, S-channel, ECP and VDP capability presence 
within a physical end station and an adjacent bridge. 
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2. Introduction 
 
Evolving standards combined with the growing size of enterprise and cloud-based 
networking deployments has led to a significant increase in the complexity of Ethernet 
networking in the data center.   The advent of virtualization technology has 
compounded this complexity due to the significant increase in the number of Ethernet 
switches and the change in the solution deployment scenario.    
 
A hypervisor is a software entity that enables multiple Virtual Machines (VM) to share 
common hardware as illustrated in figure 1.   Each VM contains at least one virtual NIC 
(vNIC) that is associated through the hypervisor with a physical NIC.  To create this 
association, hypervisors have incorporated Virtual Ethernet Bridges (VEB) into the physical 
end station effectively adding one or more Ethernet switches per end node.   A VEB is a 
frame relay service that supports local bridging between multiple virtual end stations (an 
internal private virtual network) and (optionally) the external bridging environment.     A 
VEB may be implemented in software as a virtual switch (vSwitch) as illustrated in Figure 2 
or as embedded hardware within a Network Interface Controller (NIC) as illustrated in 
Figure 3. 
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Figure 1.  Example Hypervisor with Multiple VM, Multiple NIC, attached to an Adjacent Bridge  
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Figure 2.  Example Physical End Station with Multiple VM and Two Software VEB 

 
Figure 2 illustrates an example of the data paths for two software VEBs: 

• Each VM may support one or more Virtual NICs. 
o Typically, a VM will support a virtual NIC (vNIC) that emulates a physical 

NIC.  Each vNIC is associated with a Virtual Station Interface (VSI) which is 
connected to a VEB. 

• A VEB supports a single logical uplink to the external adjacent bridge.  Multiple 
uplinks can be aggregated via 802.3ad or other techniques. 

• A software VEB (vSwitch) is typically implemented within a hypervisor requiring 
each VM I/O operation to trap to the hypervisor for processing.   

o Hypervisor traps consume system resources and can lead to varying 
performance loss depending upon the number of I/O operations per 
second and the amount of rich network functionality performed per 
operation.  

o Being in the hypervisor allows a software VEB to support one or more 
physical NICs.  

• VEB may be cascaded to provide modularity or additional fan-out. 
• Not shown but important to note is a VEB does not require any modifications to 

the Ethernet frame to operate. 
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Figure 3.  Example Physical End Station with Multiple Hardware VEB 

Figure 2 illustrates an example of the data paths for multiple hardware VEBs: 
• Each physical NIC supports  

o One (or more) physical ports attached to an adjacent bridge 
 Each physical port represents a single VEB uplink. 

o One or more hardware-embedded VEB.  An embedded VEB cannot span 
multiple physical NIC. 

o Direct I/O support via SR-IOV Virtual Functions (VF). 
 Direct I/O allows a VM to bypass the hypervisor and directly 

access the NIC to send / receive packets.  Bypassing the 
hypervisor reduces system resource consumption allowing higher 
performance solutions than traditional software VEB. 

• Each VM may support one or more Virtual NICs. 
o In this example, each VM supports two vNIC – one per physical NIC.   
o Each vNIC is associated with a VSI which is associated with a SR-IOV VF to 

provide Direct I/O support.  
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Figure 4.  VEB Frame Relay  Support 

VEB packet forwarding supports both traditional end station-to-adjacent bridge as well 
as local VSI-to-VSI packet forwarding.  As illustrated in Figure 4, a VEB forwards packets as 
follows:  

• VEB forwards packets based on the MAC address and optionally via a port group 
or VLAN identifier. 

• VEB forwards packets from a VSI to the uplink from an adjacent bridge (path 1) or 
between co-located VSI (path 2) 

o A NIC-embedded VEB can only forward packets between VSI attached 
to a common NIC.  As shown in Figure 3, only VM that share the blue VEB 
can forward packets via the blue VEB.  Similarly, only VM that share the 
green VEB can forward packets via the green VEB.  A VM on the blue VEB 
cannot forward packets to a VM on the green VEB directly; a software 
VEB or external bridge would be required to bridge the two NIC-
embedded VEBs.  

• VEB supports only a single active logical uplink 
o Multiple uplinks can be teamed via 802.3ad or other techniques 
o Uplink-to-uplink packet forwarding is not allowed (path 3) 

• VEB does not participate in or affect spanning tree operation. 
 
VEB solutions have been shipping for a number of years and are available from multiple 
suppliers.  Though the functional robustness of solutions will vary, local bridging via a VEB 
provides a number of common benefits and allows hypervisors to: 

• Operate without external bridges attached 
• Operate with a broad range of Ethernet environments 
• Maximize local bandwidth – bandwidth is limited by end station memory and 

local I/O bandwidth and not by the Ethernet link bandwidth 
• Minimize local latency – no incremental latency due to interaction with the 

external network 
• Minimize packet loss, i.e. no packet loss due to external network events – external 

bridge or link failure, CRC error detection, congestion-based packet loss, etc.  
 
By definition traffic between VMs connected to a VEB stay within the server.  Some clients 
prefer the traffic to be sent through an external switch, so the external network’s access 
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and security policies can be applied to the traffic.  To address this type of requirement a 
a Virtual Ethernet Port Aggregator (VEPA) is documented. 
 

A Virtual Ethernet Port Aggregator (VEPA) is a capability within a physical end-station 
that collaborates with an adjacent bridge to provide frame relay services between 
multiple co-located virtual machines (VMs) and the external network.   A VEPA 
collaborates by: 

• Forwarding all station-originated frames to the adjacent bridge for frame 
processing and frame relay.  

• Steering all frames and replicating Multicast and Broadcast frames received from 
the adjacent bridge to the appropriate VM destinations.   

• A VEPA takes advantage of a special reflective relay forwarding mode (i.e. allow 
forwarding back out the port a frame was received) on the adjacent bridge to 
support inter-VM communication within the same physical host. 

o Clause 8.6.1 of Standard IEEE 802.1Q-2005 [11] states that when a switch 
reception port is in the forwarding state, each switch port in the 
forwarding state, other than the reception port itself, is a potential 
transmission port.  A VEPA requires an exception to this rule in order to 
allow inter-VM traffic on the adjacent host over the single uplink.  This 
exception distinguishes the port attached to a VEPA uplink as a VEPA-
enabled port which supports forwarding in reflective relay mode. 

• Similar to a VEB, a VEPA may be implemented in software or in conjunction with 
embedded hardware within a NIC. 

The VEPA is connected to the adjacent bridge only by a single uplink connection.  The 
connection is attached to a VEPA-enabled port on the adjacent bridge.   A conceptual 
VEPA is shown in Figure 5.  
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Figure 5.  Example Physical End Station with Multiple VM Communicating through a VEPA 
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Figure 5 illustrates an example of the data paths for multiple VM communicating through 
a VEPA:  

• Each VM may support one or more Virtual NICs.. 
o A VM supports a virtual NIC (vNIC) which emulates a physical NIC.   A 

vNIC is attached to a VEPA via a Virtual Station Interface (VSI).    A VSI is a 
physical or software emulated end station connected to a VEB or a VEPA. 

• A VEPA supports a single logical uplink.  
• Software VEPA (vSwitch) may support one or more physical NICs.   
• The total number of VSI made available may be scaled by cascading VEPA in a 

tree as shown in Figure 5.  The port on a root VEPA connected to a leaf VEPA 
higher in the topology is known as an expander port.   A root VEPA will forward all 
frames with an unknown destination address to the expander port.  This eliminates 
the need for the root VEPA to comprehend all of the MAC addresses of every VM 
in the physical end station. 

• Not shown but important to note is VEPA does not require any modifications to 
the Ethernet frame to operate.  
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Figure 6.  Example Physical End Station with Multiple Hardware VEPA 

Figure 6 illustrates an example of the data paths for multiple hardware VEPAs: 
• The end station contains two independent physical NICs.  Each NIC supports  

o One or more hardware-embedded VEPA.   While this figure illustrates only 
one VEPA (blue or green) per NIC, an implementation may support 
multiple VEPA, each on a separate S-channel. 

 In this example, the blue and the green VEPA are completely 
separate, independent entities, i.e. they do not share any 
resources and cannot directly communicate with one another.  
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o One or more physical ports attached to an adjacent bridge.   A VEPA has 
only one logical uplink.   

o In this example, each NIC supports direct I/O via PCI SR-IOV technology.   
 Direct I/O allows a VM to bypass the hypervisor and directly 

access the NIC to send / receive packets.   Direct I/O is achieved 
by using a light-weight PCI Function called a Virtual Function (VF) 
to act as a conduit between the VM and the NIC hardware.   This 
is analogous to a NIC supporting multiple traditional PCI Functions 
but is less hardware-intensive.  Each VF is associated with a 
Physical Function (PF) which can be used by the hypervisor as a 
management conduit to provide overall control of the device or 
the port depending upon the implementation.   

• Each VM may support one or more Virtual NICs. 
o In this example, each VM supports two vNIC – one per physical NIC.   
o Each vNIC contains a VSI which is associated with a SR-IOV VF to provide 

the direct I/O conduit.  
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Figure 7.  VEPA Frame Relay  Support 

As illustrated in Figure 7, a VEPA forwards packets as follows:  
• VEPA forwards packets based on the MAC address and optionally via a port 

group or VLAN identifier. 
• All VEPA traffic must be forwarded from the VSI to the uplink of an adjacent 

bridge (path 1). 
o VSI-to-VSI packet forwarding is not allowed (path 2). 

• A VEPA supports only a single active logical uplink 
o Uplink-to-uplink packet forwarding is not allowed (path 3) 
o A VEPA may be partitioned into multiple logical VEPA each associated 

with its own independent uplink.  
• A VEPA does not participate in or affect spanning tree operation, i.e. VEPA 

internal topology is not visible to the adjacent bridge, except for management 
associated TLVs (e.g. EVB TLV in this document). 
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Based on the prior materials, the reader should note the significant overlap in 
functionality and potential implementation between a VEB and a VEPA with the primary 
difference occurring in frame relay support.  Further, this difference determines where 
and how network features are surfaced and their associated impact on system 
functional robustness and performance.  This difference allows VEPA solutions to provide 
the following benefits: 

1. Reduces complexity and potentially enables higher performance by off-loading 
advanced network functions from the VM or hypervisor to the adjacent bridge. 

2. Allows NICs to maintain low cost circuitry by leveraging advanced functions on 
the adjacent bridge.   

3. Enables a consistent level of network policy enforcement by routing all network 
traffic through the adjacent bridge with its more complete policy-enforcement 
capabilities. 

4. Provides visibility of inter-VM traffic to network management tools designed for 
adjacent bridge. 

5. Reduces the amount of network configuration required by server administrators, 
and as a consequence, reduces the complexity for the network administrator. 

6. Can increase solution performance by off-loading advanced network 
functionality that may be computationally intensive to implement within a 
hypervisor or VM to the adjacent bridge. 

As it can be seen, a VEPA provides a number of benefits but it too has limitations: 

• Promiscuous support – To support a promiscuous VSI, a VEPA address table must 
be configured with all VM source MAC addresses.  This requires either adding MAC 
address learning support or provisioning large address tables.  Either option adds 
implementation cost and complexity. 

• Support for simultaneous VEB, VEPA, and directly accessible ports on the same 
physical link – The adjacent bridge can only process a frame based on its contents 
and therefore lacks sufficient information to delineate between these three 
operating modes.  

• Hierarchy of unrestricted physical ports – Normal bridge learning and flooding is 
not possible due to the lack of information within a frame. 

To address these limitations, IEEE Std. 802.1Qbc-2011is applied.  This standard enables 
multiple virtual channels to be multiplexed on a single physical LAN – referred to as S-
channel functionality.  Individual S-channels are delineated by a tag which is added to 
the frame and processed by S-VLAN Components (a bridge component) which are 
logically inserted into the adjacent bridge and the physical end station below the virtual 
bridge layer as illustrated in the following figure.  
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Figure 8.  S-channel Ethernet Components 

The S-VLAN component recognizes, inserts and removes service VLAN tags (S-Tag) to 
enable multiple S-channels in the bridged network.  Adding an S-VLAN component to an 
end-station allows VEPA, VEB, and individual VSI to operate independently and 
simultaneously.  Each VEPA, VEB, or individual VSI operates over its own virtual uplink 
instantiated by a pair of S-VLAN components - one in the adjacent bridge and one on 
the end-station. 
 
The virtual uplinks created by the end-station’s S-VLAN component are effectively 
connected over an S-channel uplink to virtual ports (S-channel Access Ports or CAPs) 
created by the S-VLAN component on the adjacent bridge as illustrated in the following 
figure. 
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Figure 9.  Multiple S-channels with on CAP at each end 

Each frame traversing the physical S-channel LAN will all have an S-Tag inserted by the 
first S-VLAN component it encounters and removed by the second S-VLAN component 
as it reaches the far side of the S-channel LAN.  The S-Tag inserted by the end-station 
identifies the particular source virtual uplink and the S-Tag inserted by the adjacent 
bridge identifies the destination virtual uplink.  Any frames that must be broadcast, 
multicast or flooded to more than one VSI are replicated by the adjacent bridge and 
delivered across the S-channel LAN as many times as needed, each with the proper S-
Tag inserted.  
 
Adding the S-channel capability to the end-station solves the problem of supporting 
virtual machines needing promiscuous ports by isolating such VSI in a separate S-
channel.  By doing so, normal learning and forwarding behavior is pushed to the 
adjacent bridge, isolating it from the simple forwarding of the VEPA.  It also allows the 
end station administrator to choose how virtual VM are connected to the network.  A 
group of VM that require direct connectivity between each other for high performance 
and low latency can be attached to a VEB.  Another group that requires traffic visibility, 
firewall inspection or other services on the adjacent bridge can be attached to a VEPA.  
Finally any individual VM that requires an isolated promiscuous VSI can be attached 
directly to a virtual uplink. 
 

The subsequent chapters within this proposal provide additional details on VEPA and S-
channel operation, discovery, and configuration.  
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3. Architecture and Operational Overview 
This chapter will describe VEPA and S-Channel architectural components and illustrate 
how these components are used via example operations. 

3.1 VEPA Address Table Management 
As a network edge end station, a VEPA is not required to support address learning.  
Instead, the VEPA address table is populated through a registration process.   As an 
address, filter, or VLAN identifier is registered, the server virtualization infrastructure (e.g. 
the Hypervisor) updates the corresponding VEPA address table entry.  This applies to: 

• VSI default MAC address 
• Locally Administered Address (LAA) 
• Multicast addresses 
• Promiscuous address mode support 

Note:  A MAC address may appear on multiple VLANs.  Hence, a <MAC, VLAN Identifier>  
pair is required to identify a unique VSI.    
 
The following figure illustrates an example physical end station, VEPA, and the associated 
VEPA address table.   
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Figure 10.  Example VEPA with associated conceptual VEPA Address Table 
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In this example, the VEPA address table holds the following: 
• A unicast MAC address (and VSI Instance Identifier) per VSI 

• Per VLAN broadcast address – frames are forwarded to the VSIs indicated by the 
corresponding bit mask 

• Specified multicast addresses – VSI A, C, and E are the only participants in the 
specified multicast group.  

• Per VLAN unknown unicast address – unknown frames are discarded on ingress 
(i.e. from the bridge to the VSI Instance), they are sent to the adjacent bridge on 
egress (i.e. from VSI Instance to bridge).  

• Per VLAN unknown multicast address – unknown frames are forwarded to the VSI 
indicated by the corresponding bit mask 

The address table is configured by the server virtualization infrastructure (e.g. the 
Hypervisor) simplifying the VEPA implementation by eliminating the need to support 
dynamic address learning.  Further, the hypervisor can configure additional address 
table fields (not shown in the figure examples) such as QoS settings, VLAN configuration, 
promiscuous listening support, and so forth to provide additional functional capabilities.  

3.2 Processing from VSI Instance to bridge 
 
VEPA processing from VSI Instance to bridge is defined as the set of operations required 
to transfer a frame from a VSI to the VEPA uplink.  Since all frames are required to be 
forwarded to the uplink, the frame is moved from the VSI to the physical uplink for 
transmission and the S-VLAN-Tag is added.   
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Figure 11.  VEPA Egress Processing 

While the main objective of VEPA is to forward frames to the adjacent bridge for 
advanced processing, VEPA implementations may provide additional processing on the 
frame since the VEPA comprehends the source VSI Instance.  For example, source VSI 
MAC address validation to prevent spoofing, application of QoS and bandwidth 
management policies, VLAN formatting validation (tagged or untagged), and so forth.    
The adjacent bridge can only operate on the frame’s contents (MAC address, VLAN ID, 
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etc.) and is unaware of the source VSI Instance therefore eliminating such functional 
possibilities.  

3.3 Processing from the bridge to the VSI Instance 
VEPA processing from the bridge to the VSI Instance is defined as the set of operations 
required to steer and transfer a frame received on the uplink to the appropriate VSI or set 
of VSIs.  The VEPA must make use of the address table to perform this operation correctly.   
Address table access is illustrated in the following figure as VSI A transmits a unicast frame 
to VSI C.  
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Figure 12.  VEPA Unicast Ingress Processing from Source A to Destination C 

 
In this example, the transmission and reception processing is: 

1. VSI A performs egress processing and performs any additional functionality prior 
to the frame being transmitted out the egress port (step 1) 

2. The adjacent bridge has enabled VEPA communication.  The bridge applies the 
appropriate network processing to the frame and reflects the frame to the VEPA 
uplink (step 2).   

3. Upon frame receipt and validation, the VEPA searches the address table to 
locate the destination VSI Instance based on the contents of the unicast frame 
(minimally the Destination MAC address and the VLAN Identifier are required to 
uniquely identify a destination).  In this example, the “Copy to” mask indicates VSI 
C is the destination and the VEPA delivers the frame (step 3).   

a. If the unicast address is unknown, then the “Unknown Unicast” for the 
associated VLAN identifier would determine the appropriate “Copy to” 
mask, which is x000000, and the frame is discarded. 
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The address table access and associated processing is similar for multicast and 
broadcast with one exception.   The originator of a multicast or broadcast frame may 
have been one of the VSI before the adjacent bridge reflected the frame back.  In this 
case, the VEPA must perform additional filtering to avoid delivering the frame to its 
originator.  This is illustrated in the following figure. 
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Figure 13.  VEPA Multicast Ingress Processing from Source A to Mulicate Group C 

 
In this example, the transmission and receive processing is: 

1. VSI A performs egress processing and performs any additional functionality prior 
to the frame being transmitted out the egress port (step 1) 

2. The adjacent bridge has enabled VEPA communication.  The bridge applies the 
appropriate network processing to the frame and reflects the frame to the VEPA 
uplink (step 2).   

3. Upon frame receipt and validation, the VEPA searches the address table to 
locate the destination VSI based on the contents of the multicast frame (step 3).   
To prevent the frame from being delivered to its originator, the VEPA performs a 
source address lookup and filters out the VSI associated with the source address 
from the original “Copy To” mask associated with the destination address (step 3).  
The delivery mask is constructed via (Copy To = (Destination Copy To) AND 
!(Source Copy To).  In this example,  

Destination Copy To  = 101010 
Source Copy To  = 100000 
Delivery Mask   = 001010 

4. The frame is replicated using the delivery mask (step 4).  
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a. If the unicast address is unknown, then the “Unknown Unicast” for the 
associated VLAN identifier would determine the appropriate “Copy to” 
mask, which is x000000, and the frame is discarded. 

 
 

3.4 S-Channel Operation 
 

This section illustrates S-channel operation through several example configurations.   In 
these examples, an S-VLAN component is logically inserted into the adjacent bridge and 
the physical end station.  Further, between these S-VLAN Components, six S-channels (A-
F) have been established and associated with a directly accessible VSI, a VEB, or a VEPA.   

The first example illustrates how a directly accessible VSI operates over an S-channel 
configuration when communicating to a VSI accessible through the adjacent bridge. A 
directly accessible VSI includes a piece of VEB/VEPA function between the VSI and S-
channel. This function is called a 2-port VEB/VEPA. The purpose of this function is to 
manipulate the C-tagging and untagging of frames passed between the S-channel and 
the VSI. The tagging configuration of the 2-port VEB/VEPA may be configured by the 
hypervisor in the same manner as it configures a standard VEB or VEPA. 
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Figure 14.  Frame fowarding from a directly accessible VSI over a S-channel LAN 
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1. VSI performs egress processing and performs any additional functionality prior to 

the frame being forwarded to the S-VLAN Component within the physical end 
station. (step 1) 

2. If the S-channel A is the default S-channel the S-VLAN Component passes it to the 
adjacent Bridge un-S-tagged. If the S-channel is not the default then the S-VLAN 
Component inserts an S-Tag associated with S-channel A into the frame and 
forwards the frame to the adjacent bridge. (step 2) 

3. Within the adjacent bridge, the S-VLAN Component removes the S-Tag and 
forwards the frame to external destination. (step 3) 

 
This example illustrates how a VEB operates. 
 
 

 
 

Figure 15.  Frame fowarding  when S-channels are  configured underneath a VEB 

1. VM-to-VM communication (a transmitting to c) across a shared VEB does not 
involve the multi-channel link. 
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2. The frame forwarding steps to communicate to a VSI not attached to the VEB are 
identical to the communication used for a directly accessible VSI running over an 
S-channel.  
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a. VSI (a) performs egress processing and performs any additional 
functionality prior to the frame being forwarded to the S-VLAN 
Component within the physical end station. (step 1) 

b. The S-VLAN Component inserts an S-Tag associated with S-channel E (or if 
the S-channel E is the default S-channel no S-tag is inserted) into the frame 
and forwards the frame to the adjacent bridge. (step 2) 

c. Within the adjacent bridge, the S-VLAN Component removes the S-Tag 
and forwards the frame to external destination. (step 3) 

 
This example illustrates VM-to-VM unicast communication through a VEPA when S-
channels are configured. 
 
 

 
Figure 16.  Frame fowarding when S-channel are configured underneath a VEPA 

1. VSI performs egress processing and performs any additional functionality prior to 
the frame being forwarded to the S-VLAN Component within the physical end 
station. (step 1) 

2. The S-VLAN Component inserts an S-Tag associated with S-channel F (or if the S-
channel F is the default S-channel no S-tag is inserted) into the frame and 
forwards the frame to the adjacent bridge. (step 2) 
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3. Within the adjacent bridge, the S-VLAN Component removes the S-Tag and 
forwards the frame (step 3). 
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4. The adjacent bridge determines that the CAP is configured for VEPA mode so it 
forwards the frame based on the bridge forwarding table (step 4). 

5. Within the adjacent bridge, the S-VLAN Component adds the S-Tag associated 
with S-channel F (or if the S-channel F is the default S-channel no S-tag is inserted) 
and forwards the frame to the S-VLAN Component within the physical end station 
(step 5). 

6. The S-VLAN Component within the physical end station removes the S-Tag and 
forwards the frame to the associated VEPA (step 6). 

7. The VEPA forwards the frame based on its VEPA address table to the associated 
VSI (step 7). 

 
 
The following example illustrates how a VEPA-attached VM communicates to a directly 
attached VSI through a common physical end station.  
 

 
Figure 17.  Frame fowarding over S-channel between a VEPA and adirectly attached VSI 

1. VSI performs egress processing and performs any additional functionality prior to 
the frame being forwarded to the S-VLAN Component within the physical end 
station. (step 1) 
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2. The S-VLAN Component inserts an S-Tag associated with S-channel F (or if the S-
channel F is the default S-channel no S-tag is inserted) into the frame and 
forwards the frame to the adjacent bridge. (step 2) 
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3. Within the adjacent bridge, the S-VLAN Component removes the S-Tag and 
forwards the frame (step 3). 

4. The adjacent bridge determines that the frame’s next hop is associated with S-
channel D and forwards the frame to the S-VLAN component. 

5. Within the adjacent bridge, the S-VLAN Component adds the S-Tag associated 
with S-channel D (or if the S-channel D is the default S-channel no S-tag is 
inserted) and forwards the frame to the S-VLAN Component within the physical 
end station (step 5). 

6. The S-VLAN Component within the physical end station removes the S-Tag and 
forwards the frame to the directly attached VSI. 

3.5 Edge Control Protocol Operation 
 
Today, IEEE control plane discovery operations are performed over unacknowledged 
protocols, such as LLDP and DCBX.  For VSI Discovery (and potentially other ULPs), the 
Edge Control (ECP) provides acknowledgements, which signal to the sender that the 
receiver is able to receive an additional ECP Data Unit.  ECP enables the sender to 
transmit discovery operations more frequently than would be the case with timer based 
approaches.  The intent is to have the server’s virtualization infrastructure (e.g. Hypervisor) 
implement ECP, versus having the NIC implement ECP. 
 
The following diagram depicts, at a high level, ECP semantics.  In step 1, the ULP passes 
an outgoing ULP Data Unit to ECP by invoking a transmit request procedure.  In step 2, 
the ULP Data Unit, which for some ULPs (e.g. VSI) may contain a set of ULP TLVs, is 
transmitted and a ECP low level Acknowledgement (L-ACK in the diagram) timer is set, 
but the frame is not yet deleted from the transmit buffer until a ECP is received for that 
ECPDU.  In step 3, the arriving ECP frame is received into a receive ‘buffer’, where it is 
held until it is removed by an ECP indication procedure that passes the ULP Data Unit to 
the associated upper level protocol.  In step 4, when the receive buffer is emptied, a low-
level acknowledge (L-ACK) is sent to the sender.  In step 5, if the L-ACK is received before 
the L-ACK timer expires, then the transmit buffer is cleared and ECP can process another 
ULP PDU through the ECP procedure.  However, if the L-ACK timer expires before the L-
ACK is received, then the frame in the transmit buffer is resent (some preset number of 
times). 
 
ECP is used to support VSI Discovery and Configuration Protocol (VDP) described in 
section 3.6. To support VDP an instance of ECP is created in the station on each LAN 
facing Bridge Port of the VEB, VEPA or 2-port VEB.  This peers with an ECP peer located on 
the adjacent Bridge at a Bridge Port of the C-component. The ECP dialog proceeds 
using the Nearest Customer Bridge LLDP address and is configured using the EVB TLV 
described in chapter 4. 
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Figure 18.  Example ECP Exchange 

3.6 VSI Discovery and Configuration Protocol (VDP) 
Operation 
 
Enterprise and cloud-based networking deployments have been rapidly growing in size 
leading to a significant increase in the complexity of Ethernet networking in data centers.  
The advent of virtualization technology brings unprecedented network configuration 
complexity due to the significant increase in the number of Ethernet switches and very 
large number of Virtual Station Interfaces (VSIs).  The problem is made more complex by 
advent of Virtual Machine (VM) mobility and solutions requiring external network state to 
move with the VM, when the VM moves.  
advent of Virtual Machine (VM) mobility and solutions requiring external network state to 
move with the VM, when the VM moves.  
  
Virtual Ethernet Bridges (VEBs) are embedded in hypervisors or NICs have been around 
for years.  VEBs provide efficient VM to VM communications between co-located VM.  
However, today’s virtual switch management is too manual and scale-out server sprawl 
and virtualization magnifies this complexity.  Two of the major challenges associated with 
today’s virtualization approaches is the ability to automate the association of a VSI 
Instance with it’s network state and automate VM migration, including all the network 
state associated with the VM. 

Virtual Ethernet Bridges (VEBs) are embedded in hypervisors or NICs have been around 
for years.  VEBs provide efficient VM to VM communications between co-located VM.  
However, today’s virtual switch management is too manual and scale-out server sprawl 
and virtualization magnifies this complexity.  Two of the major challenges associated with 
today’s virtualization approaches is the ability to automate the association of a VSI 
Instance with it’s network state and automate VM migration, including all the network 
state associated with the VM. 
  
Today, when a VM migrates from one server to another, the internal VEB’s VSI Type that is 
associated with the VM must be migrated.  The VSI Type consists of the network state 
associated with the VM and may include access and QoS Controls.  In today’s 
implementations, the external switch’s port profiles do not move with the VM.  The client 
has three options for dealing with this issue.  Option 1 is to use the same VSI Type for all 
VMs - the problem with this approach is that it limits virtualization’s value, because all VMs 
in the network must have identical network capabilities and attributes.  As a result, if a 
group of servers doing the same type of work gets over utilized, the VMs from those 
servers cannot be moved to a group of servers doing another type of work (e.g. 
file/print). 

Today, when a VM migrates from one server to another, the internal VEB’s VSI Type that is 
associated with the VM must be migrated.  The VSI Type consists of the network state 
associated with the VM and may include access and QoS Controls.  In today’s 
implementations, the external switch’s port profiles do not move with the VM.  The client 
has three options for dealing with this issue.  Option 1 is to use the same VSI Type for all 
VMs - the problem with this approach is that it limits virtualization’s value, because all VMs 
in the network must have identical network capabilities and attributes.  As a result, if a 
group of servers doing the same type of work gets over utilized, the VMs from those 
servers cannot be moved to a group of servers doing another type of work (e.g. 
file/print). 
  
Option 2 is to move the VSI Type after the VM moves.  This can be done by having the 
external switch look up the VSI Type when the VM starts sending messages on the new 
server.  For example, when the VM starts sending messages, the external switch uses the 
VM’s MAC Address to look-up the port profile.  This approach suffers from two problems: 

Option 2 is to move the VSI Type after the VM moves.  This can be done by having the 
external switch look up the VSI Type when the VM starts sending messages on the new 
server.  For example, when the VM starts sending messages, the external switch uses the 
VM’s MAC Address to look-up the port profile.  This approach suffers from two problems: 
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The external switch cannot tell if the MAC Address used by the VM is a migrated MAC 
address (i.e. from a migrated VM) or a re-incarnated MAC address (i.e. from a new VM 
that is using a previously destroyed VM’s MAC address).  The second problem is that 
there is a VSI Type exposure window between the VM’s first message and the time it 
takes the external switch to obtain the VSI Type from the switch’s fabric manager. 
 
Option 3 is to simply configure the link between the server and the edge switch as a trunk 
port.  The issue with this approach is all physical servers must be in the same security 
domain, which has the similar VM movement limitations as option 1.  For example, a 
physical server cannot be managed by tenant A in the same fabric as a physical server 
that is managed by tenant B. 
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The VDP Protocol specified in this document enables the association of a VSI Type with a 
VSI instance (e.g. a VM virtual port) and the de-association of a VSI Type with a VSI 
instance (e.g. a VM virtual port).  VDP simplifies and automate Virtual Server (VS) network 
configuration by enabling the movement of the VSI Type when the VSI Instance moves. 
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3.6.1 VDP Type Configuration and Automation 
 
A virtualized server hosts a set of VMs.  Each VM may support one or more Virtual Station 
Interface (VSI) Instances. Typically, a VM will support a virtual NIC (vNIC) that emulates a 
physical NIC.  Each vNIC will contain a VSI which is connected to a VEB or VEPA. The 
server’s virtualization infrastructure (e.g. a Hypervisor) assigns one or more VSIs to a VM to 
access the network. The VM is able to communicate with other VMs on the same 
physical server through the VSI Instance.  Similarly, the VM is able to communicate to 
external stations through the VSI Instance.   
 
Each VSI Instance is assigned VSI Type ID (VTID).  The contents of a VSI Type are outside 
the scope of this proposal.  For information context purposes only, a VSI Type definition 
may include port access or rate limiting controls.  Prior to the activation of a VM, VDP 
exchanges are used to associate a VSI Instance with a VLAN Identifier, a MAC Address 
and a VTID in the adjacent bridge and, if VEB is used, VEB.  Similarly, a VDP exchange is 
used to de-associate a VSI Instance with a VLAN Identifier, a MAC Address and a VTID in 
the adjacent bridge and, if VEB is used, VEB, when a VM is either destroyed or moved. 
 
The following sections provide an operational overview of how VDP can be used to 
automate the configuration of network state (e.g. VSI Type) and the association of 
network state to a VSI Instance.  It will then describe the management elements required 
to support such an example. 
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3.6.1.1 VDP – Operational Example 
An example of the steps associated with VDP is depicted in the following figure. 
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Figure 19.  VSI Type Architectural and Operational Overview 

 
Following are the steps depicted in the figure above: 
  
Step 1: Network Manager creates a set of VSI Types.  Each VSI Type has a VSI Version and 
the Network Manager can deploy one or more VSI Versions at any given time. 
 
Step 2: VM Manager queries available Version Type IDs (VTIDs) and creates a VSI 
Instance consisting of VSI Instance ID and the chosen VTID.  The VTDB server may create 
and track VSI Instance.  
 
Step 3: VM Manager configures VSI with VTID and VSI Instance ID obtained from VSI 
Manager’s VTDB.   
 
Step 4: Before VSI Instance (VM) activation, the VDP Module performs VSI Discovery and 
Configuration protocol exchanges to associate the VSI instance with a VTID, MAC 
Address and VLAN Identifier.   The VDP Module is intended to be implemented as part of 
the server’s virtualization infrastructure (e.g. in the Hypervisor or a service VM guest 
running on top of the Hypervisor).  The VDP Module is also implemented in the adjacent 
bridge. 
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Step 5:  As part of the VDP exchange the adjacent Bridge retrieves the VSI Type from the 
VTDB by using the VTID and possibly the VSI Type Version and VSI Instance ID.  The 
adjacent Bridge stores the association of VLAN ID, VSI Type, VSI Type Version and MAC 
Address in its local memory. This association is then applied to the traffic flow from/to the 
VSI Instance. Note the VTDB access protocol is not part of this document. 
 

3.6.1.2 VSI Type Database (VTDB) 
The VSI Type Database described above is used to store detailed definition of VSI types.  
Again these definitions are outside the scope of this document.  For information purposes 
only, a VSI Type may contain access and traffic controls.  Also for information purposes 
only, a VSI Type Database is expected to be part of the database used by the edge 
switch’s Network Change and Configuration Manager and the server’s virtualization 
infrastructure. 
 
VSI Type Definitions within a VTDB are identified by VSI Type ID (VTID) and VTID version. 
Optionally, VSI instance specific definitions are possible.  
 
The mechanisms used to create VSI Types in a VTDB are outside the scope of this 
document.  For information purposes only, each VSI Type may refer to different use 
models, such as a server type, where each server type (e.g. web, file/print, e-mail) has a 
unique VSI Type.  Many other use models are possible, for example the Server 
Virtualization Partitioning and Clustering from the DMTF. 
 

3.6.2 VSI Type Definition and Management 
 

VSI Type Definition and Management is outside the scope of this document.  In other 
words, the content of a VSI Type entry in the VTDB and how that content is managed are 
outside the scope of this document. 
 
Similarly, VSI Type management and access protocols are outside the scope this 
proposal. This is not a hindrance to deployment of VDP because current Data Center 
Network (DCN) infrastructure includes mature tools for management and configuration 
and can be easily deployed to manage VSI Types. Further, VSI Type Management 
approach proposed in this document matches well with currently deployed DCN 
management practices. It is achieved by aligning management and configuration 
responsibility with current organization structure e.g. VSI Types can be managed by 
Network Administrator and deployed on servers by server administrators. 
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3.6.3 VSI Manager ID 
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Figure 20.  VSI Manager ID 

VSI Manager ID tells the edge bridge which VSI Type Manager should be contacted to 
obtain the VSI configuration information.  The VSI Manager ID is part of VDP exchange 
between Station and the Edge Bridge. 
 
Note, the VSI Type ID or VSI Instance ID can also be used as index to look up VSI Type 
configuration in VSI Type Database, see the following figure: 
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Figure 21.  VSI Type , VSI Version and VSI Instance ID 

3.6.3.1 VSI Manager ID Usage Example 
The VSI Manager ID Identifies the VSI Manager with the Database that holds the detailed 
VSI Type and/or VSI Instance Identifier definitions. The contents of the VSI Manager 
Database are outside the scope of this proposal. The VSI Manager Database may use a 
combination of the following fields to index into the VSI Manager Database: 

• VSI Type Identifier 
• VSI Type Version 
• VSI Instance Identifier 
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Figure 22.  VSI Manager Database Lookup 
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4. Ethernet Virtual Bridging TLV Semantics  
The EVB TLV is used to: 

• Advertise a station or bridge’s EVB functional and resource capabilities 
• Activate common functional capabilities 
• Negotiates resource capabilities to a maximum common value, for example the 

number of VSIs supported. 
 
The EVB TLV is exchanged via LLDP and conforms to the LLDP TLV specification.  The LLDP 
database carrying the EVB TLV is addressed using the Nearest Customer Bridge LLDP 
address. One LLDP database is built at the Bridge Port of the VEB/VEPA/2-port VEB 
attached to an S-channel by an internal LAN. When no S-VLAN components are 
available in the station the LLDP database is built at the Bridge Port of the VEB/VEPA/2-
port VEB attached to the external LAN. In this case the VEB/VEPA/2-port VEB is attached 
to the default S-channel.  
 
The EVB TLV allows setting the adjacent Bridge’s C-component Port in reflective relay. 
Reflective relay is implemented by changing the active topology enforcement rules 
described in IEEE 802.1Q 8.6.1 to allow forwarding on the reception Bridge Port. When 
reflective relay is enabled unicast and multicast frames are reflected.  
  
The EVB TLV also allows turning off SA learning and enabling VDP based learning on the 
adjacent Bridge’s C-component Bridge Port. When VDP learning is enabled addresses 
are not aged. Instead, they exist in the filtering database as long as the VSI is pre-
associated or associated. 
 
The EVB TLV is illustrated in the following figure: 
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Figure 23.  EVB TLV Format 

The EVB TLV fields are: 
The OUI used to identify the EVB protocols (EVB, CDCP, ECP and VDP) is XX-XX-XX. 
 
The Subtype 0x0000 is used to identity the EVB TLV. 
 
EVB Capabilities - The TLV describes EVB capabilities that are supported by the sender.  
The capabilities are: 

• Forwarding Mode: 
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o Standard 802.1Q forwarding  
o Reflective Relay – enables frames to be reflected back through the 

ingress port.   For example, in a VEPA solution, frames exchanged 
between co-located VM must flow through the adjacent bridge.  
Reflective relay allows these exchanges to flow through a common 
uplink between the station and the adjacent bridge. 

 From the station, RR = TRUE indicates the station requests 
reflective relay support.  

 From the adjacent bridge, RR = TRUE indicates the bridge 
supports reflective relay support.  

 If the station and the adjacent bridge set RR = TRUE, then 
reflective relay can be enabled.   The EVB TLV Current 
Configuration RR bit is set to TRUE. 

 If either side does not set RR = TRUE, the reflective relay cannot 
be enabled.  The EVB TLV Current Configuration RR bit is set to 
FALSE. 

 
• Retransmission Timer Exponent (RTE) – Indicates the current RTE value is 

present 
 
• Edge Control Protocol (ECP) – Indicates the sender supports ECP 

o From the station, ECP = TRUE indicates the station supports ECP.  
o From the adjacent bridge, ECP = TRUE indicates the bridge supports 

ECP.  
o If the station and the adjacent bridge set ECP = TRUE, then ECP can 

be enabled.   The EVB TLV Current Configuration ECP bit is set to TRUE. 
 
• If either side does not set ECP = TRUE, then ECP cannot be enabled.  The EVB 

TLV Current Configuration ECP bit is set to FALSE. 
 
• VSI Discovery Protocol (VDP) – Indicates the sender supports VDP.  VDP is 

dependent upon ECP being enabled.  
o From the station, VDP = TRUE indicates the station supports VDP.  
o From the adjacent bridge, VDP = TRUE indicates the bridge supports 

VDP.  
o If the station and the adjacent bridge set VDP = TRUE and ECP == 

TRUE, then VDP can be enabled.   The EVB TLV Current Configuration 
VDP bit is set to TRUE. 

o If either side sets VDP = FALSE or ECP == FALSE, then VDP cannot be 
enabled.  The EVB TLV Current Configuration VDP bit is set to FALSE. 

 
EVB Current Configuration – The TLV describes the EVB capabilities that are currently 
configured at the sender.  Current configuration represents the intersection of the 
capabilities and resources between the two senders on a link.  
 

• Number of VSI Supported – The maximum number of VSI that can be supported 
by the sender. 
• From the station, it indicates the number of VSIs the station is able to support. 
• From the adjacent bridge, it indicates the number of VSI the bridge is able to 

support.  
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• Number of VSI configured – The number of VSI that has been configured by the 
sender.   
• From the station, it indicates the number of VSI the station is requesting the 

bridge to reserve. 
• From the adjacent bridge, it indicates the number of VSI the bridge has 

reserved for use by the station. 
 

• Retransmission Exponent (RTE) – RTE is an EVB link or S-channel attribute used to 
calculate the minimum ULP PDU retransmission time.  The ULP PDU retransmission 
time is calculated as follows: 
• The Retransmission Granularity (RTG) is set to 10 micro-seconds. 
• The Retransmission Multiplier (RTM) is set to 2RTE 
• The sender’s ULP transmission timer is set to RTM * RTG 
• Both sides agree to the largest common value  

The following illustrates an example EVB TLV exchange between a station (e.g. a 
hypervisor) and the adjacent bridge.   This exchange is accomplished using LLDP.  In this 
example, both the station and the bridge support Reflective Relay, VDP, and a set of VSI 
resources.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24.  Example EVB TLV Exchange 
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5. S-Channel TLV Semantics and State Machine 
This chapter provides an overview, detailed semantics, and state machines for the S-
Channel Discovery and Configuration Protocol (CDCP). 

5.1 S-Channel Bridge Components and Operation 

5.1.1 Introduction 
The purpose of CDCP is to configure S-channels, which are used by a station to simplify 
the internal configuration and operation of Virtual Station Interfaces (VSIs), Virtual 
Ethernet Bridges (VEBs) and Virtual Ethernet Port Aggregators (VEPA).  S-channels must be 
used when more than one VEB, VEPA or 2-Port VEB is used simultaneously within the 
station.  S-channels are implemented in stations and bridges using an IEEE 802.1Qbc Port-
mapping S-VLAN component.  
 
When no Port-mapping S-Component is in the system all traffic is un-S-tagged and is 
considered part of the default S-channel (SCID=1). The SVID 1 is reserved for the default 
S-channel and must not be assigned by the Bridge when a new S-channel is requested. 
When the Port-mapping S-components used to create S-channels exist they may start 
exchanging un-S-tagged frames which are assigned to the default S-VID 1 and are 
considered the default S-channel 1. The default S-channel is always un-S-tagged even 
when S-channels are enabled.   
 
 

 
Figure 25.  Example S-channel Block Diagram 
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The S-channel configuration is determined by the bridge’s capabilities and by requests 
made using CDCP described in this chapter. The hypervisor determines what S-channels 
are needed and then requests S-channels using CDCP. CDCP in turn uses an LLDP TLV 
exchange to co-ordinate the creation and deletion of S-channels. The LLDP database 
used by CDCP is addressed using the Nearest non-TPMR Bridge LLDP address. The port-
mapping S-VLAN component filters both the Nearest Bridge and the Nearest non-TPMR 
Bridge addresses on all ports and passes the Nearest Customer Bridge LLDP address. Only 
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the exterior facing Station-Bridge Access Port will build an LLDP database. This database 
is built from frames exchanged on the Nearest non-TPMR Bridge address. 
 
The SCID=1 and SVID=1 are always reserved for the exclusive use as the un-S-tagged 
default S-channel. The default S-channel number 1 with S-VID 1 is created unilaterally by 
the Station and the Bridge, without the use of CDCP. CDCP reports the default S-channel 
in the CDCP TLV as the first SCID,SVID pair (i.e. <1,1>). The Bridge must not assign this S-VID 
except to the default S-channel. If the Bridge deletes the default S-channel from its 
configured S-channels list it means the Bridge will not process the un-S-tagged set as an 
S-channel (though control information may still be passed as un-S-tagged traffic).  

5.1.2 S-Component  
The figure below is a “baggy pants” Bridge relay architecture model for the station and 
Bridge. The S-Component conforms to the Port-mapping S-VLAN component specified in 
802.1Qbc. The S-Component is used to create S-channels. The C-Component of the 
Bridge is a standard Bridge C-Component relay with the exception of additions for the 
reflective relay feature and support for EVB and VSI discovery and configuration 
protocols. 
 
Not all the represented components need to be present in an implementation. If the S-
Components depicted are present and CDCP is present the system will be able to 
create and delete S-channels. If no CDCP is present then the S-Components may be 
present, however disabled or may not be present at all. It is also possible that one or both 
of the S-Components will be absent. It is possible to have a VEB or VEPA without an S-
Component. 
 

 
Figure 26.  Station and Bridge VEB/VEPA and S-comp Diagram 

 
S-channels are implemented using the S-Components. The C-VLANs carried over each S-
channel are determined by configuration of the C-Component within the Bridge (under 
the control of EVB TLV and VDP).  Each S-channel is terminates at an internal S-Comp 
Bridge Port called an S-channel Access Port (CAP). Internal LANs, within the Bridge and 
station, each span between one CAP and one internal C-Comp Bridge Port (Bridge) or 
VEB/VEPA/2-port VEB (station).  
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The C-VLAN configuration and reflective relay configuration of the Bridge is determined 
by the configuration of the C-VLAN aware component of the Bridge. 
 
Each S-channel terminates at an internal S-Comp Bridge Port called an S-channel Access 
Port (CAP). Internal LANs, within the Bridge and station, each span between one CAP 
and one internal C-Comp Bridge Port (Bridge) or VEB/VEPA/2-port VEB (station). Each 
CAP must be configured as follows:  
 

1. Admit Only Untagged and Priority-tagged frames (802.1Q 6.9) 
2. a PVID parameter equal to the S-VID associated with its S-channel (802.1Q 6.9) 
3. must be a member of the untagged set (802.1Q 8.8.2) for the VLAN identified by 

the S-channel’s S-VID 
4. must not be a member of any S-VLAN member set except the one identified by 

the SVID associated with the CAP’s S-channel (each CAP supports a single S-
channel)  

5. each CAP filters the Nearest Bridge and Nearest non-TPMR Bridge LLDP addresses  
 
Each S-Comp has external facing Bridge Ports called Station-Bridge Access Ports (SBAP). 
All S-channels are multiplexed over these ports. Each SBAP must be configured as follows:  
 

1. Admit All frames (802.1Q 6.9) 
2. a PVID parameter equal to the default S-channel SVID of 1 (802.1Q 6.9) 
3. the SBAP must be a member of the untagged set (802.1Q 8.8.2) for the S-VLAN 

identified by the default S-channel SVID 1  
4. the SBAP must be a member of the tagged set (802.1Q 8.8.2) for all S-VLANs 

identified by the SVID of an active S-channels  
5. each SBAP filters the Nearest Bridge and Nearest non-TPMR Bridge LLDP addresses 

 

5.2 CDCP Discovery and Configuration 
S-channels are configured by the exchange of LLDP TLV using the Nearest non-TPMR 
bridge address. The exchange begins when the system is initialized. The configuration 
protocol begins with the station, which makes a request for S-channel resources from the 
Bridge. In response the Bridge provides the best matching set of S-VLANs it is capable of 
providing. It is possible the Bridge does not have all the resources requested in which 
case the Bridge response will provide a subset of the requested S-VLANs. 
 
After initialization it is possible for the station to change it’s S-channel configuration. The 
Bridge seeing a change in the stations request will alter it’s configuration to match the 
needs of the station. 

5.2.1 CDCP TLV  
The station and Bridge both use the same LLDP TLV to configure S-channels. This TLV is in 
LLDP OUI format (802.1AB sub-clause 8.6). The S-channel’s capabilities, requests and 
running configuration is encoded in the info field of this TLV as follows: 
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Figure 27.  CDCP TLV 

 
• The OUI used to identify the EVB protocols (EVB, CDCP, ECP and VDP) is XX-XX-XX. 
• The Subtype 0x0001 is used to identity the CDCP TLV. 
• Role Bits (see note 1 regarding ties) 

S(01b) – Indicates the sender assigns channels numbers and a default SVID for the 
default channel 1 and requests SVID assignments from the neighboring ‘B’.  
B(10b) – Indicates the sender accepts S-channel configuration requests from its 
neighboring ‘S’ and that the sender will do the best it can to fill the SVID 
assignment requests from the neighboring ‘S’.  
 

• Vers – 2 bits: 10b identifies this version, 00b disables Sch (incompatibility) 
 

• Res1- 16 bits: must be set to zero, ignored on receipt (for new features) 
 

 
• ChnCap– S-channels supported identifies the number of S-channels that are 

supportable by the sender. 
 

• SCID/SVID Pairs 
− SCID - indicates the index number of the S-channels. The station assigns S-

channel numbers in the range 0-167. Zero is reserved. The S-channel index 
should be between 1 and the maximum number of S-channels supported 
by the port.  

− SVID – The VLAN ID assigned to the S-channel.  The Bridge assigns SVIDs to 
channels in the range 1-0xffe. A station uses the 0 SVID to request an SVID 
assignment from the Bridge. 
 

Note1: The first entry in the list of SCID/SVID pairs must contain the default S-channel. (i.e. 
if the default S-channel is being used then the first channel pair must be <1,1>). 
 
Note2: A maximum of 167 S-channels can be supported.  Other formats (assuming 
sequential SVIDs) could be defined to allow support for 4K+ S-channels. 
 
Note3: This listing could be sparse (in order to indicate arrival and removal of S-channels).  
The S-channel going away is indicated by removing the SCID/SVID pair. 
 
Note4: The order of the list will determine the priority of SVID assignments. If the Bridge 
does not have resources for all channels it will assign the first channels in the list. 
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5.2.2 CDCP Configuration Procedures 
The CDCP protocol used to discover and configure S-channels begins by announcing 
the presence of CDCP along with the station and Bridge capabilities (1). After the initial 
announcement the Bridge will look for a request from the station (1). Once the Bridge 
sees a station request it will configure itself with and provide the best matching 
configuration to the station (2). The station seeing that the Bridge is now configured goes 
operative using the Bridge’s configuration (3). 
 
 
 

 
Figure 28.  Example CDCP TLV Exchange 

 

5.2.3 CDCP Configuration Variables 
The following variables are used by the CDCP state machine to perform S-channel 
configuration. The CDCP requires each side of the configuration be assigned a role as a 
Bridge or a Station. This is done by setting the AdminRole variable. In most pieces of 
equipment the station or bridge role will not be settable, though the protocol allows for 
equipment which can take either role. For CDCP to configure an S-channel one side 
must take the station role and one side must take the Bridge role. If both sides of the LAN 
have equipment configured as stations or as bridges the protocol will not configure S-
channels. 
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• AdminRole: Is the administratively configured value for the local port’s role 
parameter. The value of AdminRole is not reflected in the S-channel TLV. The 
AdminRole may take the value S or B. S indicates the sender is unwilling to accept 
S-channels configuration (mode, # channels supported, channel index) from its 
neighbor and that the sender is willing to accept SVID assignments from the 
neighbor. Stations usually take the S role. B indicates the sender is willing to 
accept S-channels configuration (mode, # channels supported, channel index) 
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from its neighbor and that the sender is willing do the best it can to fill the SVID 
assignments from the neighbor. Bridges usually take the B role. 

• OperRole: The current operational value of the Role parameter in the local port. 
This value is included as the Role parameter in the S-channel TLV and may take 
values S or B as described for AdminRole.  

• RemoteRole: Indicates the value in the remote S-channel TLV role field. rwNull 
indicates either the TLV was not present in the last LLDP PDU or that no LLDP PDUs 
have been received. rwS and rwB indicate that the Role field was set in the S-
channel TLV received and that it had a value of S or B respectively as described 
for the AdminRole variable. 

• schState: The current running state of CDCP. The values for this variable are 
NOTRUNNING or RUNNING.  
 

• AdminVersion: The administratively configured value for the Vers parameter. This 
value is included as the Vers parameter in the S-channel TLV. If the value is 
DISABLE = 00b it means S-channels are disabled. If the value is VER0 = 10b it 
means this version.  

• AdminChnCap: The administratively configured value for the Number of 
Channels supported parameter. This value is included as the ChnCap parameter 
in the S-channel TLV. 

• AdminSVIDWants: The administratively configured value for (SCID, SVID) pairs 
wanted by an S. Not used by a B. The first value is always the pair (1, 1) for the 
default S-channel assignment.  The S-channel numbers may be any valid number 
from 0-0xffe. A 0 S-channel number indicates reserved space in the TLV. If the 
SVID value is 0 it means the S is requesting any available SVID. SVID value 1is 
reserved for exclusive use for the default S-channel SVID. . The AdminSVIDWants 
parameter is used to form the (SCID, SVID) pairs in the S-channel TLV.  

• LastSVIDWants: A local temporary copy of the AdminSVIDWants. 
• LocalSVIDPool: The set of SVIDs and bridge ports available for S-channel 

assignment. These are determined by both administrative resource assignments 
and by resource availability. The OperSVIDList for a B role must be drawn from the 
LocalSVIDPool. 

• LastLocalSVIDPool: A temporary copy of the LocalSVIDPool.  
 
• OperVersion: The current value for the Vers parameter. This value is included as 

the Vers parameter in the local S-channel TLV. The value VER0 = 10b means this 
version. The value DISABLE = 00b mean don’t run CDCP.  

• OperChnCap: The current value for the ChnCap parameter. This value is 
included as the ChnCap parameter in the local S-channel TLV. The range for this 
variable is 1-0xffe. 

• OperSVIDList: The current value for (SCID, SVID) assignments. This is the list of (SCID, 
SVID) pairs included in the local S-channel TLV. The total size of the list may not 
exceed 167 pairs. The list must always include the default S-channel pair (1,1).The 
valid range for each S-channel of this list is from 1-0xffe. The valid range for each 
SVID in the list is from 0 to 0xffe. For the S role a SVID of 0 indicates a request for a 
channel. For the B role an SVID of 0 indicates a non-configured channel. 
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• RemoteVersion: The current value for the remote S-channel Vers parameter. This 
value is included as the Vers parameter in the remote S-channel TLV. NULL means 
no remote S-channel TLV exists in the local LLDP database. The value for this 
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variable may be VER0=100b setting any other value will result in stopping S-
channel operation.  

• RemoteChnCap: The current value for the ChnCap parameter. This value is 
included as the ChnCap parameter in the remote S-channel TLV. NULL means no 
remote S-channel TLV exists in the local LLDP database. The range for this variable 
is 1-0xffe. 

• RemoteSVIDList: The current value for (SCID, SVID) assignments. This is the list of 
(SCID, SVID) pairs included in the remote S-channel TLV. NULL means no remote S-
channel TLV exists in the local LLDP database. If the list is empty but the S-channel 
TLV is present its value is NONE. The total size of the list may not exceed 167 pairs. 
The valid range for each S-channel of this list is from 1-0xffe. The valid range for 
each SVID in the list is from 0 to 0xfff. When the SVID is value is 0 the SVID is not 
configured. For the S role a SVID of 0 indicates a request for a channel. For the B 
role an SVID of 0 indicates a non-configured channel. 

• LastRemoteSVIDList: Temporary local copy of the RemoteSVIDList. This variable is 
not included in the S-channel TLV. The LastRemoteSVIDList has the same syntax as 
RemoteSVIDList.  
 

5.2.4 CDCP Configuration Procedures 
The CDCP state machine uses three procedures. The SetSVIDRequest() procedure places 
a new request from the station or sets the initial TLV for a Bridge. The RxSVIDConfig() 
procedure is used by the station to configures a new set of S-channel and SVID 
assignments. The TxSVIDConfig() is used by the Bridge to respond to the station’s request 
for S-channels. 
 

• SetSVIDRequest( OperRole, AdminSVIDWants, OperSVIDList) 
− This function creates the OperSVIDList placed in the Local TLV database.  
− If the OperRole for the equipment is B then the OperSVIDList remains 

unchanged.  
− If the OperRole for the equipment is S two possible cases exist. In the first 

case we don’t have any configured S-channels, indicated by 
OperSVIDList being equal to NONE. In this case the function places the 
AdminSVIDWants in OperSVIDList. In the second case we already have a 
running configuration indicated by the OperSVIDList not equal to NONE. In 
this case the function compares the AdminSVIDWants with the 
OperSVIDList. All active S-channels in the OperSVIDList which are in the 
AdminSVIDWants are kept active and in addition any channels not 
currently in the OperSVIDList are requested by including them in the 
OperSVIDList along with a 0 SVID number. The OperSVIDList S-channel 
order is set to match the AdminSVIDWants. 

• RxSVIDConfig ( OperSVIDs, LastRemoteVIDList ) 
− This function creates the OperSVIDList placed in the Local TLV database 

for an S role port. 
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• The function compares the AdminSVIDWants with the LastRemoteSVIDList. For 
each AdminSVIDWants S-channel with an SVID assignment in the 
LastRemoteSVIDList a (SCID, SVID) pair is generated in the OperSVIDList. For each 
AdminSVIDWants S-channel without an SVID assignment in the LastRemoteSVIDList 
a (SCID,0) pair is generated in the OperSVIDList. The OperSVIDList S-channel order 
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is set to match the AdminSVIDWants.TxSVIDConfigB( OperChnCap, 
RemoteChnCap,  LastLocalSVIDPool,       RemoteSVIDList, OperSVIDList ) 

− This function creates the OperSVIDList placed in the Local TLV database 
for an S role equipment 

− First the function takes the smaller of the OperChnCap and 
RemoteChnCap and truncates the RemoteSVIDList to the smaller of the 
two. 

− A new OperSVIDList is created as follows: 
• For each S-channel in the RemoteSVIDList with a (SCID, SVID) pair 

in the OperSVIDList the (SCID, SVID) remains unchanged unless the 
SVID is no longer part of the LastLocalSVIDPool. If the SVID is no 
long in the pool a new one is selected if available. If no SVID is 
available the (SCID, SVID) pair will be deleted from the 
OperSVIDList. 

• For each S-channel in the RemoteSVIDList without a (SCID, SVID) 
pair in the OperSVIDList an SVID is obtained from the 
LastLocalSVIDPool (the pool for Bridge resources) if available. If no 
SVID is available the (SCID, SVID) pair will be deleted from the 
OperSVIDList.  

5.2.5 CDCP Configuration State Machines 
The CDCP state machine operates on TLV exchanged using LLDP operating on the 
nearest non_TMPR bridge address (figure 29). 
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Figure 29.  CDCP State Machine 

 
This LLDP instance is one per physical LAN associated with the Station/Bridge Access Port 
of the S-Component, which faces the LAN connecting the station to the bridge. If either 
the station or Bridge is not capable of S-channel operation no S-channel-TLV will be 
inserted in the LLDP database. The absence of a S-channel-TLV therefore indicates that 
the station or Bridge is only capable of creating the default S-channel. For CDCP to 
progress both sides must indicate they are capable of dynamic S-channels operation, 
have the same version number  and one side must have the ‘B’ role while the other side 
must have the ‘S’ role as indicated by the role bits of the S-channel TLV. 
 
If both sides are dynamic S-channel capable, exactly one side has the ‘S’ role and one 
side has the ‘B’ role, and the ‘B’ has at least some of the resources requested by the ‘S’ 
side, the state machine will configure S-channels. The configuration proceeds by the ‘B’ 
providing the best match it can to the ‘S’s requested channels and configuration. The ‘S’ 
makes the resource request, the ‘B’ responds with its best matching resources, the ‘S’ 
then goes operational and reports its running configuration to the ‘B’, and finally the ‘B’ 
goes operational with the running configuration of the ‘S’. 
 
In the event the ‘S’ wishes to change its configuration it alters the request in its S-channel 
TLV and then follows the same process as above. If the ‘B’ losses its ability to support the 
current configuration it can alter the current configuration in its S-channel TLV at which 
time the ‘S’ must drop down to the resources supplied by the ‘B’. 
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In the event of a change of the administered parameters the current operating S-VLANs 
must be terminated the configuration machine re-initialized. 
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6. Edge Control Protocol (ECP) and State 
Machine 
 
This chapter will describe an architectural overview of the Edge Control Protocol (ECP) 
protocol, followed by the semantics and associated state machines. 

6.1 Requirements 
 
ECP was designed with the following protocol requirements: 
 
• Semantics associated with the <ULP, ECP> interface: 

• A single LAN multiplexed using S-channels has one ECP per S-channel. 
• For VSI, there is one VSI agent per S-channel ECP and that agent may have 

multiple VSI sharing a single S-channel. 
• The <ULP, ECP> interface is based on a complete ULPDU (i.e. the group of TLVs 

that are handed to ECP for transmission). 
• The number of octets in the ULPDU may be less than the maximum number of 

octets that can fit into a ECP frame. 
• The number of ULP TLVs may be less than the maximum number  

that can fit into a ECP frame. 
• Procedures are used to describe how the ULP hands off ULP PDUs  

to ECP and how ECP hands off ULP PDUs to the ULP. 
• Given the <ULP, ECP> interface is based on full ULPDUs, no immediate 

processing is needed at the ECP level. 
• Outside the scope of this proposal are the semantics for handling: link down; 

and how multiple ULPs arbitrate when sharing the same ECP. 
 
• ECP acknowledgement and sequencing semantics. 

• A ECP acknowledge means the ECPDU was received and there is a free buffer 
available to enable another send. 
• It doesn’t mean the ECPDU were delivered to the ULP. 

• At the transmit side, if an ECP Acknowledge is not received within an Ack timer 
period, ECP will retransmit the ECPDU up to 2 times. 
• The Station must set the EVB Maximum Retry Count to 3. 

• Once the receive side ECP delivers the ULP PDU to the ULP through the receive 
side hand-off procedure, the ECP buffer becomes available for another send. 
• The Acknowledgement must be sent in a separate ECPDU  

(vs piggy backing onto a Transmit message in the opposite direction). 
• The receive side will issue a ECP Acknowledgement after the completing the 

receive side hand-off procedure. 
• If the receive side hand-off procedure takes too long, the receive side ECP 

may toss the ULP PDU and send back an ACK to indicate the ECP buffer is 
free on the receive side. 
• Note:  The length of time the send side waits, before tossing the ULPDU 

should not be less than the retransmission period times the maximum 
number of retries. 
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• Semantics associated with slow ULP Data Unit reception (e.g. raising a 
flag) are outside the scope of this proposal.   
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• Sequence numbering must be used to detect duplicate vs new ECPDUs. 
• ECP will not provide a keep-alive mechanism.  Instead each ULP must do so. 
• ECP will not provide a digest at the ECP level and any ULP Data Unit (or TLV) 

database synchronization is left up to the ULP. 
 
Note, the intent is to have the server’s virtualization infrastructure (e.g. Hypervisor) 
implement ECP, versus having the NIC implement ECP. 

6.2 Edge Control Protocol Data Unit 
 
This section specifies the format of a ECP Data Unit, along with the header that is added 
to and removed from ECP frames by the ECP function.  The ECP header allows each ECP 
Data Unit from the sender to be identified through a sequence number, which the 
receiver acknowledges by sending a ECP Acknowledgement frame. 
 
Ethertype = TBD Sub-type Mode Sequence Number ULPDU 

 2 Octets   2 Octets   1 Octet   2 Octets  Optional 
        
 

Figure 30.  ECP Data Unit 

The destination address of the Ethernet frame that contains a ECPDU has the following 
semantics: 

• Nearest bridge (01-80-C2-00-00-0E) for ECP running at the link layer. 
• Nearest Customer Bridge (01-80-C2-00-00-00) for ECP running over a S-channel. 
• Note, ECP should also be allowed using a Uni-cast address. 

 
The source address shall be the sending station or port individual MAC address. 
 
A new Ethertype will be needed for ECP.  A ECP exchange will run at the link if the link is 
not configured for S-channels.   If ECP is performed over an S-channel,  
then the STAG for the S-channel shall precede the ECPDU.   
 
The ECPDU contains: 
• Sub-type - a 2 octet field that defines the ULP type included in the PDU.  Note for 

Ack’s the sub-type is ignored at the station.   
• The version of VDP described in this document uses a sub-type of 0x0000. 
• The sub-type 0xffff is reserved for organizationally unique use of ECP.  In this case 

the first 3 octets of the ULPDU shall contain the OUI defining the organization using 
ECP. 

• Mode – Identifies whether the operation is a: 
• ECP request (0x00) 
• ECP acknowledgement (0x01).  

• Sequence number – identifies the sequential order of the PDU, with respect to other 
ECPDUs.  The starting sequence number may start anywhere for the first ECPDU, but 
the sequence number for each subsequent new ECPDU is incremented by 1. 

 
 

     46 

 



    Edge Virtual Bridging Proposal  

6.3 ECP Procedures 
 
Two procedures are used to hand-off Data Units between the ULP and ECP:  
ECP_UNITDATA.request and ECP_UNITDATA.indication.  The implementation of these two 
procedures is outside the scope of this proposal.  These <ULP, ECP> interface procedures 
may be implemented in many ways, including a queue.  Also, the system must have a 
way of associating the ulptype with a specific ULP. 
 
The ECP_UNITDATA.request is invoked by the ULP at the sender to notify ECP that a ULPDU 
is ready to be transmitted. The ulpdu parameter is a unit of work from the ULP.  For 
example, for VSI it consists of a set of VSI TLVs passed from the VSI ULP to ECP for 
transmission, where the set of TLVs must be less than or equal to the maximum allowed 
ECPDU.  Following is the format for the ECP_UNITDATA.request procedure: 

ECP_UNITDATA.request (ulptype, ulpdu) 

The ECP_UNITDATA.indication is invoked by ECP at the receiver to indicate a ULPDU has 
been successfully received and is available ULP processing.  The ulpdu parameter is unit 
of work from the ULP. For example, for VSI it consists of a set of VSI TLVs passed from the 
ULP to ECP for transmission, where the set of TLVs must be less than or equal to the 
maximum allowed ECPDU.  Following is the format for the ECP_UNITDATA.indication 
procedure: 

ECP_UNITDATA.indication (ulptype, ulpdu) 

6.4 ECP State Machines 
 
There are two state machines used by each ECP instance: transmit and receive.  The 
transmit state machine is invoked through the ECP_UNITDATA.request procedure.  The 
receive state machine is invoked upon reception of an ECP Data Unit and it invokes the 
ECP_UNITDATA.indication procedure. 
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6.4.1 ECP Transmit State Machine 
 

[ackTimer done && Retries 
== maxRetries] 

|| 
[ackReceived && (Sequence 

== ackSequence)]

Retries = 0
initTransmit
Retries = 0

initTransmit

ECP_UNITDATA.request

Transmit ECPDU; 
Start ackTimer

transmitECPDU
Transmit ECPDU; 
Start ackTimer

transmitECPDU

Retries ++
waitForAck

Retries ++
waitForAck

ackTimer done && 
(Retries < 
maxRetries)

Retries = 0;
Sequence++

requestPDU
Retries = 0;
Sequence++

requestPDU

BEGIN

     
Figure 31.  ECP Transmit State Machine 

    
The first entrance into transmitECPDU is used to initiate the sequence counting on the 
receive side.  That is, an ECP Frame that simply contains the ECP header is sent and an 
ackTimer is started.  The waitForAck state waits for the L-ACK to be received that 
matches the last transmitted ECP sequence number.  If an L-ACK is received that 
matches the last transmitted ECP sequence number or the number of retries exceeds the 
maximum number of retries, the sender will stop transmitting the ECP Frame and proceed 
to requestPDU.  If an L-ACK is not received within an ackTimer period and the number of 
retries is less than the maximum number of retries, the sender will retransmit the ECP 
Frame.  The requestPDU state increments the sequence count and waits for the 
ECP_UNITDATA.request procedure to be invoked. 
 
Note, the starting sequence number may start anywhere for the first ECPDU.  Also a Link 
Down event may restart the sequence number at the same point every time or not. 
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6.4.2 ECP Receive State Machine 
 
 

seqECPDU == lastSequence

If (validate(ECPDU))
seqECPDU = sequenceOf(ECPDU);

receiveECPDU
If (validate(ECPDU))

seqECPDU = sequenceOf(ECPDU);

receiveECPDU

sendAcknowledgement(seqECPDU)
resendACK

sendAcknowledgement(seqECPDU)
resendACK

Invoke ECP_UNITDATA.indication procedure

lastSequence = seqECPDU;

sendACK
Invoke ECP_UNITDATA.indication procedure

lastSequence = seqECPDU;

sendACK

seqECPDU != lastSequence

receiveWaitreceiveWait

ECPDU received

BEGIN

lastSequence = NULL
initReceive

lastSequence = NULL
initReceive

 
Figure 32.  ECP Receive State Machine 

 
The first entrance into InitReceive is used to set the sequence counting to NULL and then 
proceed to receiveWait, which waits for an ECP Data Unit to be received.  The 
receiveECPDU validates the ECPDU and sets the current sequence number to the 
sequence number of the transmitted ECPDU.  If the current sequence number doesn’t 
match the last transmitted ECP sequence number, then in sendACK the ECP Data Unit is 
delivered to the ULP and the lastSequence number is set to the current sequence 
number.  If the current sequence number doesn’t match the last transmitted ECP 
sequence number, then in resendACK an L-ACK is sent. 
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7. Virtual Station Interface (VSI) Discovery and 
Configuration (VDP) and State Machine 
 
This section covers the Virtual Station Interface (VSI) Discovery and Configuration 
Protocol (VDP) and State Machine.  VDP uses ECP (Edge Control Protocol) for VDP 
exchanges.  
 

7.1.1 VSI Discovery and Configuration TLV 
VSI TLV is used for discovery and configuration and is exchanged between the Station 
and Bridge. One or more VSI TLVs are transported in an ECP Data Unit.  Following is the 
format and semantics for a VSI TLV: 
 
 
 
 
 
  

TLV header TLV information string = 28+ M octets

TLV type =
127

(7 bits)

TLV information
string length

(9 bits)

OUI
(3 octets)

Subtype
(1 octet)

Octets:

 
 
 

Figure 33.  VDP TLV 

The OUI used to identify the EVB protocols (EVB, CDCP, ECP and VDP) is XX-XX-XX. 

The Subtype 0x0002 is used to identity the VDP TLV. 

Mode – Indicates VSI TLV Mode 
• First octet identifies a pre-associate, associate, de-associate, or the corresponding 

confirmation or rejection for each.    
• Second octet is used during a rejection to indicate the reason for the pre-assoc or assoc 

rejection. 
VSI Manager ID – Identifies the VSI Manager with the Database that holds the detailed VSI type 

and or instance definitions. VSI Manager ID can be used to obtain IP address and/or other 
connectivity and access information for the manager. 

VSI Type ID (VTID) – The integer identifier of the VSI Type. 
VSI Type ID Version – The integer identifier designating the expected/desired version of the VTID 
VSI Instance ID – A globally unique ID for the connection instance.  The ID shall be done consistent 

with IETF RFC 4122. 
Format – identifies the format of the MAC and VLAN information that follows in the TLV.  Note, the 
VSI TLV allows multiple formats, which makes possible extensions in the future.  
MAC/VLANs – Listing of the MAC/VLANs associated with the Virtual Station Instance (VSI).   

Bits:

1 3 6

8 2 1 8 1

VSI
Mgr ID
(1 octet)

VSI
Type ID

(3 octets)

VSI Type
Version

(1 octets)

VSI
Instance ID
(16 octets)

MAC/VLAN
Format

(1 octets)

MAC/VLANs
(M octets)

10 13 14 30 31 31+M

MAC & VLAN InfoVSI Type and Instance
VSI Attributes

Mode
(2 octet)

9

TLV header TLV information string = 28+ M octets

TLV type =
127

(7 bits)

TLV information
string length

(9 bits)

OUI
(3 octets)

Subtype
(1 octet)

Octets:

Bits:

1 3 6

8 2 1 8 1

VSI
Mgr ID
(1 octet)

VSI
Type ID

(3 octets)

VSI Type
Version

(1 octets)

VSI
Instance ID
(16 octets)

MAC/VLAN
Format

(1 octets)

MAC/VLANs
(M octets)

10 13 14 30 31 31+M

MAC & VLAN InfoVSI Type and Instance

Mode
(2 octet)

9

VSI Attributes
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Following is the format for Format = 1 
# Entries
(2 octets)

MAC
(6 octets)

VLAN ID
(2 octets)

 
                                                                      x # Entries 
 

Figure 34.  VDP Format = 1 Schema 

 
Note, the station and switch environments and their common understanding of the VTID 
meaning is outside the scope of this TLV.  Also, the contents of a VSI Type are outside the 
scope of this proposal. 
 

7.1.1.1 VSI TLV – Mode and Mode Response 
The purpose of the Mode field is to identify the type of VSI TLV. It is defined as follows. 
 
VSI TLV Request field: 1st octet 

Pre-Associate:       0x00 
Pre-Associate with resource reservation:   0x01 
Associate:       0x02  
De-Associate:       0x03 

 
VSI TLV Response field: 2nd octet 
For all the responses, the bridge reflects the same VSI TLV fields as the Requester had 
sent. On requests, response field is initialized to 0x00 (Success). Following are the possible 
values of the response field. 

Success:      0x00 
The VSI Request was successfully completed by the switch 

Invalid Format:      0x01 
The VSI Format is not supported by the switch 

Insufficient Resources:      0x02 
The switch does not have enough resources to complete the VSI operation 
successfully. 

Unused VTID:      0x03 
The VSI referenced by the VSIID does not exist in the VSI Manager database 
referenced by the VSI Manager Identifier 

VTID Violation:      0x04 
The VSI referenced by the VSIID is not allowed to be associated with the VTID. 

 
VTID Version Violation:     0x05 

The VSI referenced by the VSIID is not allowed to be associated with the VTID 
Version. 

Out of Sync:      0x06 
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The VTID or one of the VSI List fields used in the Associate is not the same as 
the corresponding field used in the Pre-Associate. 
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Reserved      0x08 – 0xFF 
These Responses are reserved for future use. 

 
Mode and Mode Response fields are used under the control of VDP state machines. 

7.1.1.2 VSI TLV Mode and Responses Semantics 
Following are the semantics association with each VSI TLV Request.  

7.1.1.2.1 Pre-Associate 
The Pre-Associate is used to pre-associate a VSI Instance Identifier to a VSI Type ID. If 
required, the bridge should obtain VSI Type Definition from the VSI Manager Database. 
The bridge must validate the request (see below) and fail it in case of errors (see below 
for responses).  Successful Pre-Association does not enable any traffic from VSI.  Note that 
VSI may still be associated at another station.  The Pre-Associate enables faster response 
to an Associate, by allowing the bridge to obtain VSI Type state, prior to an association. 
 
The second Mode octet is used by the bridge to communicate the results of the Pre-
Associate requested for the VSI Instance ID (VSIID).  
 
Following are the mode and responses with their semantics: 
 
• Success - Pre-Associate was successful.  The switch shall permit a subsequent 

Associate or De-Associate by the VSI referenced by the VSI Instance Identifier. 
• The following are all unsuccessful Pre-Associate Completions. For each of these, the 

switch shall not permit a subsequent Associate or De-Associate by the VSI referenced 
by the VSIID. 
• Invalid Format.  
• Insufficient PT Resources. 
• Unused VTID 
• VTID Violation 
• VTID Version Violation  

 
Pre-Associate requires resource lease timer mechanism to conserve Bridge resources.  
Pre-Associate does not allow any traffic from VSI which is enabled when the VSI is 
Associated. 
 

7.1.1.2.2 Pre-Associate with Resource Reservation 
Pre-Associate with Resource Reservation has same steps as Pre-Associate but also 
reserves resources. 
  
Bridge should validate required resources and shall reserve resources for subsequent 
Associate step.  Pre-Associate requires resource lease timer mechanism to conserve 
Bridge resources.  Pre-Associate does not allow any traffic from VSI which is enabled 
when the VSI is Associated. 
 
Second Mode octet contains the results of the Pre-Associate requested for the VSI 
Instance ID (VSIID). Following are the mode and responses with their semantics. 
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• Success - Pre-Associate with Resource Reservation was successful.  The switch shall 
permit a subsequent Associate or De-Associate by the VSI referenced by the VSI 
Instance Identifier. 

• The following are all unsuccessful Pre-Associate with Resource Reservation 
Completions. For each of these, the switch shall not permit a subsequent Associate or 
De-Associate by the VSI referenced by the VSIID. 
• Invalid Format.  
• Insufficient PT Resources. 
• Unused VTID 
• VTID Violation 
• VTID Version Violation 

 

7.1.1.2.3 Associate 
Associates the VSI Instance ID with the VSI Type ID (VTID). If VSI Type definition is not 
already cached in the bridge, the bridge fetches the VSI Type definition from the VSI 
Type definition Database. Bridge allocates required bridge resources for the referenced 
VSI. The Bridge binds specific MAC/VLAN pairs with the VSI Type ID which allows 
classification of L2 traffic to the VSI and enforcing of VSI Type controls.  Bridge activates 
the configuration for the VSI Type ID.  This association is then applied to the traffic flow 
from/to the VSI Instance. 
 
For a given VSI Instance ID, a Station may issue an Associate without having previously 
issued a Pre-Associate or Pre-Associate with Resource Reservation.  During normal 
operations a VSI Instance is Associated on only one port.  During network transitions (e.g. 
VM migration) a VSI Instance might be Associated with more than one port. 

 
In VSI TLV, second octet in the mode field contains the results of the Associate request 
performed for the VSI Instance Identifier. These are described below.  
 
• Success - Associate was successful.  Prior to issuing this response, for a format 1 VSI 

TLV, the bridge shall associate the VSI Type referenced by the VSI Type Identifier and 
VSI Type Version with the MAC Address, VLAN and VSIID. 

• The following are all unsuccessful Associate Completions. 
• Invalid Format 
• Insufficient Resources - If the Associate was preceded by a successful Pre-

Associate with Resource Reservation, then the bridge shall not issue this response. 
• VTID Violation  
• VTID Version Violation 
• Out of Sync  

7.1.1.2.4 De-Associate 
De-associate a VSI Instance Identifier from the associated VTID. Pre-Associated and 
Associated VSIs can be De-Associated. De-Associate releases resources and de-
activates the configuration associated with the VSI instance. A VSI Instance may get De-
Associated by bridge due to bridge error situation or management action. 
 
In VSI TLV, second octet in the mode field contains the results of the De-Associate request 
performed for the VSI Instance Identifier. These are described below. 
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• Success - De-Associate was successful.  Prior to issuing this response, for a format 1 VSI 
TLV, the bridge shall de-associate the VSI Type referenced by the VSI Type Identifier 
from the the MAC Address, VLAN and VSI Instance ID. 

• The following are all unsuccessful De-Associate Completions. 
 

• Invalid Format 
• VTID Violation  
• VTID Version Violation 

 
Note: The result of the above semantics is that De-Associate can be issued at any time. 

7.1.1.2.5 VSI Type ID (VTID) Semantics 
VSI Type ID (VTID) is an integer value field used to identify a pre-configured set of 
controls/attributes that are to be associated with a set of VSIs.  
 
VTID contents and meaning and the database used to contain the VSI Type are outside 
the scope of this effort. One VTID may describe the VSI Type configuration of multiple 
VSIs. The VSI Type content referenced by the same VTID may differ between switches 
and VEBs. For example: same VTID is used by switches from two different vendors; or 
same VTID is used by a VEB and vendor switches. 
 

7.1.1.3 VSI Type ID Version Semantics 
VTID Version is integer identifier designating the expected/desired VTID version. 
The VTID Version enables a VSI Manager Database to contain multiple VSI Type versions. 
It allows smooth migration to newer VSI types. 
 

7.1.1.4 VSI Instance ID 
VSI Instance ID is a globally unique ID for the VSI instance. The ID shall be done consistent 
with IETF RFC 4122. VSI ID is gets generated when VSI instance is created by VSI Instance 
Manager at request of VM Manager. VSI Instance creation mechanism is outside scope 
of this proposal but expected to be created by VM Manager or VSI Manager. 

7.1.1.5 MAC – VLAN Information Format 
 

 

#Entries 
(2 octets) 

MAC 
(6 octets) 

VLAN ID 
(2 octets) 

X# of entries 

Figure 35.  MAC-VLAN Information Format 1 
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MAC-VLAN Format-1 contains the set of MAC Addresses and VLANs to be associated 
with the VSI Instance ID. Note the bridge uses MAC+VID to identify traffic from VSI and to 
steer the frames. 
 
Field: 

#MAC-VLAN pairs:   2 octets 

 
Per MAC-VLAN Pair Content: 

MAC address:    48 bits 

VID:     12 bits 

 

7.1.2 VDP Requirements and Assumptions 
Following are VDP requirements associated met by VDP state machines described in this 
section: 

1. VDP must support a VSI Pre-Associate (with and without resource reservations), 
Associate and De-Associate. 

2. Associate, Pre-Associate and De-Associate are Idempotent i.e. can be repeated. 
3. The bridge must allow for an Associate to be issued without the need for a 

previous Pre-Associate. 
4. VDP may be used in conjunction with both a VEPA and VEB. 
5. VDP utilizes ECP as the transport for a VDP Data Unit that contains one or more 

VDP TLVs. VDP utilizes the following capabilities of ECP: 
1. Transport will be transmitting TLVs in-order and are received in-order. 
2. Flow control 
3. ECP provides best effort delivery of TLV. At the Station, if a VDP 

Acknowledgement is not received, within an Acknowledgement timeout 
period, VSI exits the state machine.  The Acknowledgement timeout 
period is defined as 2*ECP retransmission period * Maximum number of 
retries, plus a locally administered wait that is outside the scope of this 
document. 

6. Health TLV mechanism to ensure: 
1. Bridge resources are not reserved for too long a time period for inactive 

VSIs (lease semantics) 
2. Allow removing resources from inactive VSIs with the goal of 

1. Conserving bridges resources (Number VSIs being handled by 
bridge can be large). 

2. Prevent inactive or VMs in error state to continue to hold resources. 
3. For S-channels, timeout out values to be negotiated on a per S-channel 

basis between station and bridge. One timeout used for all ULPs on the S-
channel negotiated using EVB TLV. 

4. If S-channels are not enabled, timeout out values to be negotiated per 
link basis between station and bridge. One timeout used for all ULPs on 
the link negotiated using EVB TLV. 

7. Ensure VSI state and configuration between the Station and the Bridge remains 
consistent.  
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8. Hard errors at the Bridge or the Hypervisor that can impact individual VSI or 
Hypervisor/Bridge as a whole are handled by removing all VSI configuration. 
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9. Bridge and Station Errors are detected through one or more of the following 
mechanisms. 

1. VSI KEEP-ALIVE (periodic transmission of VSI TLV from station and response 
from Bridge) 

2. ACK Timer  
10. The value of the Station’s Activity Timer must not be greater than three times ECP 

Max Retries * EVB’s RTM * RTG.  That is, Activity Timer <= 9 *RTM *RTG. 
11. Supports for switch/hypervisor administrator actions that force VSI De-Associate. 
12. Should enable statistics and logging capability. 
 

7.1.3 VDP – Local Variables and Procedures 
 
vsiState:  Local variable for current state. 
 
localTLV:   Current local (active) TLV (configuration) 
 
AdminTLV:   TLV from local administration. In addition appropriate 

localChange variable is set. It allows mode change 
RemoteTLV:   TLV received from remote. 
 
TxTLV(vsiTLV):  Transmits AdminTLV using TLV transport service (ECP)  
                                       service interfaces. 
  
ProcRxAndSetCfg(vsiRemoteTLV,vsiLocalTLV,vsiState):  

Processes receive TLV and Sets local TLV variable based on 
 Received Remote TLV and vsiState. In case of error, returns error.  
This function handles PreAssociate with and without resource 
 reservation case as well as accessing VSI Type definition and 
 fetch, if required. 
 

StartACKtimer():  Resets ACKTimeout local variable to FALSE and Starts ACK timer. 
Response (ACK or NACK is expected before timer expires.  

ACKTimeout:   This local variable is set to true, if ACK timer expires 
vsiErrorPerm(vsiRemoteTLV):  

Processes the vsiRemoteTLV and returns TRUE if response code is  
an unrecoverable (permanent) error. 

 
The next sections contain the VSI State Machine.  Following are notes regarding those 
state machines: 

1. The purpose of the ACKtimer is to catch the unusual case of a TLV getting 
lost. The following architectural minimum shall be used: The 
Acknowledgement timeout period is defined as 2*ECP retransmission 
period * Maximum number of retries, plus a locally administered wait that 
is outside the scope of this document. 

2. For any VSI ACK received for a non-active VSI the station shall drop the 
packet. 

3. VSI State is set to NULL on exit. 
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4. The VSI State Machine does will not implement retry mechanism on NACK.  
Instead the ULP can process the NACK reasons and retry the VSI 
operation. 
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5. VDP state machine will exit on receiving NACK. 
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7.1.4 Station VSI State Machine 
 
Following is the VSI State Machine for the Station.   
 

localChange-PreAssoc

PreAssoc_NAK_Rx II 
ACKTimeout || DeAssocAck Rx

vsiError || 
localChange-DeAssoc

localChange-Assoc

vsiLocalTLV = NULL
vsiState = UNASSOCIATED

INIT

vsiLocalTLV = NULL
vsiState = UNASSOCIATED

INIT

TxTLV(PreASSOC)
StartACKTimer()

PREASSOC_PROCESSING

TxTLV(PreASSOC)
StartACKTimer()

PREASSOC_PROCESSING

vsiError = 
ProcRxAndSetCfg(vsiRemoteTLV,vsiLocalTLV,
vsiState);
If (!vsiError)

vsiState = PREASSOCIATED

PREASSOCIATED

vsiError = 
ProcRxAndSetCfg(vsiRemoteTLV,vsiLocalTLV,
vsiState);
If (!vsiError)

vsiState = PREASSOCIATED

PREASSOCIATED

localChange-PreAssoc ||
ACIIVITY_TIMER_Event PreAssoc_ACK_Rx

TxTLV(DeASSOC)
StartACKTimer()

DEASSOC_PROCESSING

TxTLV(DeASSOC)
StartACKTimer()

DEASSOC_PROCESSING

TxTLV(ASSOC)
StartACKTimer()

ASSOC_PROCESSING

TxTLV(ASSOC)
StartACKTimer()

ASSOC_PROCESSING

vsiError = 
ProcRxAndSetCfg(vsiRemoteTLV,vsiLocalTLV,vsiState);
If (!vsiError)

vsiState = ASSOCIATED

ASSOCIATED

vsiError = 
ProcRxAndSetCfg(vsiRemoteTLV,vsiLocalTLV,vsiState);
If (!vsiError)

vsiState = ASSOCIATED

ASSOCIATED

(Assoc_NAK_Rx && VsiState == !Assoc) 
II ACKTimeout || DeAssocAck Rx

Assoc_ACK_Rx ||
(Assoc_NAK_Rx && 
VsiState == Assoc) localChange - Assoc || 

ACIIVITY_TIMER_Event

localChange - PreAssoc

localChange - Assoc

ACKTimeout || DeAssoc Rx

vsiError || 
localChange-DeAssoc

Local VSI-START

EXIT

vsiError || DeAssocAck Rx

 
 
 

Figure 36.  Station’s VSI State Machine 
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7.1.5 Edge Bridge VSI State Machine 
 
Following is the VSI State Machine for the Bridge.   
 

vsiLocalTLV = NULL
vsiState = UNASSOCIATED

INIT

vsiLocalTLV = NULL
vsiState = UNASSOCIATED

INIT

vsiError=ProcRxandSetCfg(localTLV, 
remoteTLV, vsiState)
If (vsiError)

txTLV(PreAssoc NACK)
Else txTLV(PreAssoc-ACK)

PREASSOC_PROCESSING

vsiError=ProcRxandSetCfg(localTLV, 
remoteTLV, vsiState)
If (vsiError)

txTLV(PreAssoc NACK)
Else txTLV(PreAssoc-ACK)

PREASSOC_PROCESSING

vsiState = PREASSOCIATED

PREASSOCIATED

vsiState = PREASSOCIATED

PREASSOCIATED

!vsiError

TxTLV(DeAssoc-
ACK)

DEASSOC

TxTLV(DeAssoc-
ACK)

DEASSOC

vsiError=ProcRxandSetCfg(localTLV,
remoteTLV, vsiState)
If (vsiError)
txTLV(Assoc NACK)

Else txTLV(Assoc-ACK)

ASSOC_PROCESSING

vsiError=ProcRxandSetCfg(localTLV,
remoteTLV, vsiState)
If (vsiError)
txTLV(Assoc NACK)

Else txTLV(Assoc-ACK)

ASSOC_PROCESSING

VsiState = ASSOCIATED

ASSOCIATED

VsiState = ASSOCIATED

ASSOCIATED

!vsiError || (vsiError
&& VsiState == 
Assoc)

rxTLV == DeAssoc
|| INACTIVE 

rxTLV == Assoc

rxTLV == PreAssoc

localChange-DeAssoc

rxTLV == Assoc

rxTLV == Assoc

rxTLV == 
PreAssoc

(rxTLV == DeAssoc)
|| INACTIVE 

rxTLV == PreAssoc

EXIT

New-VSI-Instance ID TLV Rx

(rxTLV == DeAssoc)
|| INACTIVE 

vsiError

vsiError && 
VsiState == 
!Assoc

 
 

Figure 37.  Edge Bridge’s VSI State Machine 
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8. Glossary 
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Term Description 

  
S-channel An S-VLAN used to associate a set of VSI with a physical Ethernet LAN.  Traffic 

within one S-channel is isolated from traffic in another S-channel on the same 
LAN through the use of a S-Tag.  

Chassis A physical component incorporating one or more IEEE 802 LAN stations and 
their associated application functionality. 

Chassis identifier An administratively assigned name that identifies the particular chassis within the 
context of an administrative domain that comprise one or more networks.  

CVID  Customer VLAN Identifier 
DA Destination Address 
DS Distribution System  

Edge Virtual 
Bridging (EVB) 

The environment where physical end stations, containing multiple VSI, all require 
the services of adjacent bridges forming a LAN.  EVB environments are unique in 
that virtual NIC configuration information is available to the EVB device that is 
not normally available to an 802.1Q bridge.  

EUI Extended Unique Identifier 
  

Hypervisor Computer software and / or hardware platform virtualization software that enables 
multiple operating systems to operate on top of common, shared hardware.   

ID Identifier 
IEEE 802 LAN Local area network (LAN) technologies that provide a media access control 

(MAC) Service equivalent to the MAC Service defined in ISO/IED 158001-1.  
IEEE 802 LANs include IEEE Sd. 802.3, IEEE Std 802.11, IEEE Std 802.16, 
IEEE Std 802.17, and ISO 9314-2 LANs. 

IEEE 802 LAN 
Station 

An IEEE 802-compatible entity that incorporates all the necessary mechanisms to 
participate in media access control of an IEEE 802 LAN, and that is at least 
capable of providing the MAC service plus the mandatory capabilities of the LLC.  

LLC Logical Link Control (sub-layer) 
Link Layer 

Discovery Protocol 
(LLDP) 

A media-independent protocol capable of running on all IEEE 802 LAN stations 
and to allow an LLDP agent to learn the connectivity and management 
information from adjacent stations.  

LLDP agent The protocol enttity that implements LLDP for a particular MSAP associated with 
a Port. 

LLDPDU Link Layer Discovery Protocol Data Unit 
LSAP Link Service Access Point 
MAC Media Access Control 

  
MAC service 
access point 

(MSAP) 

The access point for MAC services provided to the LLC sub-layer.  

MSAP Identifier The identifier of a MAC service access point.  
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Management entity The protocol entity that implements a particular network management protocol 
and that provides access support to a MIB associated with the protocol and 
implemented in a host chassis. 

Management 
Information Base 

(MIB) 

The instantiation of all MIB modules in a managed entity (e.g. system or device) 

Management 
Information Base 

module (MIB 
module) 

The specification or schema for a data base that can be populated with information 
required to support a network management information system.  

S-Channels The capability to multiplex multiple virtual channels over a single physical 
Ethernet LAN.  

Network  An interconnected group of systems, each comprising one or more IEEE 802 LAN 
stations. 

Network Interface 
Controller (NIC) 

A device that includes a non-forwarding IEEE 802 LAN station. 

Network 
Management 

System (NMS) 

A management system that is capable of utilizing the information in a MIB. 

Object identifier 
(OID)  

An identifier used to name an objective.  Structurally, an OID consists of a node in 
a hierarchically-assigned namespace, formally defined in ISO/IEC 8824-1.  
Abstract Syntax Notation 1 (ASN.1).  OIDs are used in this standard to identify 
MIB modules and the objects they contain.  

OUI Organizationally Unique Identifier 
Physical network 

topology  
The identification of systems, of IEEE 802 LAN stations that compose each 
system, and of the IEEE 802 LAN stations that attach to the same IEEE 802 LAN. 

PCI Peripheral Component Interface as defined by the PCI-SIG.  
http:www/pcisig.com.  PCI Express (PCIe) represents the latest incarnation of PCI 
technology within the industry.  

PD Powered Device 
Port The entity in a chassis/system to support an MSAP.  A port incorporates one and 

only one MSAP and identifies the collection of manageable entities that provide 
the MAC Service at the MSAP. 

Port identifier An administratively assigned name that identifies the particular port within the 
context of a system, where the identification is convenient, local to the system, 
and persistent for the system’s use and management (whereas the MAC address 
that globally identifies the MSAP can not be). 

PVID Port VLAN ID 
Reflective Relay Frame relay where the destination port is also the source port   

SA Source Address 
Service VLAN  A VLAN identified by a S-VID 

Service VLAN ID 
(S-VID) 

A VLAN identifier conveyed in an S-TAG 

Service VLAN 
Tag  (S-Tag) 

A VLAN tag with a Tag Protocol Identification value allocated for “802.1Q 
Service Tag Type” 
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Single-Root I/O 
Virtualization (SR-

IOV) 

PCI-SIG specification that enables a PCIe Device to be simultaneously shared by 
multiple operating systems.  A SR-IOV Device supports multiple PCI physical 
functions (PF) and virtual functions (VF).  A PF or a VF is made visible to an 
operating system by a hypervisor as though it is a single, non-shared PCI 
Function. 

S-VLAN 
component 

A VLAN-aware bridge component with each Port supported by an instance of the 
IESS that can recognize, insert, and remove Service VLAN tags. 

SVID  Service VLAN Identifier 
System A managed collection of hardware and software components incorporating one or 

more chassis, stations, and ports.  
Type, length, value 

(TLV) 
A short, variable length encoding of an information element consisting of 
sequential type, length, and value fields where the type field identifies the type of 
information, the length field indicates the length of the information field in octets, 
and the value field contains the information itself.  

VID VLAN ID 
VDP Virtual Station Interface Discovery and Configuration Protocol. The protocol used 

to discover and configure a Virtual Station Interface Instance.  
Virtual Ethernet 
Bridge (VEB) 

A VEB is a frame relay service that supports local bridging between multiple VSI 
and (optionally) the external bridging environment.  A VEB may be implemented 
in software as a vSwitch or as embedded hardware within a NIC. 

Virtual Ethernet 
Port Aggregator 

(VEPA) 

A Virtual Ethernet Port Aggregator (VEPA) is a capability within a physical end 
station that collaborates with an adjacent, external bridge to provide bridging 
support between multiple virtual end stations and external networks.   The VEPA 
collaborates by forwarding all station-originated frames to the adjacent bridge for 
frame processing and frame relay (including reflective relay forwarding) and by 
steering and replicating frames received from the VEPA uplink to the appropriate 
destinations.  
May be implemented in software or in conjunction with embedded hardware. 
Note:  As with the case of VEBs, VEPAs have access to vNIC configuration 
information that normally is not available to an 802.1Q bridge. 

Virtual Machine 
(VM) 

An operating system running on top of a hypervisor. 

Virtual NIC 
(vNIC) 

An entity which performs the MAC, LLC, management and control functions 
needed to attach a VM to an internal LAN. 

Channel Access 
Port 

A CAP is a logical Port associated with one end of a S-channel.   
Within a physical end station, one or more VSI may be multiplexed on top of a 
CAP.   
Within an adjacent bridge, a CAP represents a virtual bridge port.  

Virtual Station 
Interface (VSI) 

An internal point-to-point Ethernet LAN which connects a Bridge Port of a VEB 
or VEPA to a vNIC. Each VSI carries a single MAC service instance.  Sometimes 
the term VSI is used to refer to the reference point where the internal LAN 
attaches to the vNIC. 

VSI Instance 
Identifier 

References a specific VSI. 

VSI Type 
Identifier 

References a specific VSI Type. 
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VSI Type Defines the class of network attributes that can be associated with the VSI. 
Virtual Switch 

(vSwitch) 
A software emulated bridge typically implemented within the server virtualization 
infrastructure (e.g. a Hypervisor).  A vSwitch switches network packets between 
multiple operating systems executing on common, shared hardware.   See also 
VEB. 
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Appendex CDCP Examples 

8.1 CDCP Basic Success Scenario (Sparse) 
 
 
 

 
 
 

Figure 38.  Sparse S-channel Request 

 

 

 

8.2 Station Adds an S-channel 
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Figure 39.  Add an S-channel 

 
 
 
 
 
 
 
 
 
 
 

8.3 Station Removes a S-channel 
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Figure 40.  Remove an S-channel 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

8.4 Drop #S-channels supported 
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Figure 41.  Drop an S-channel 

 
 
 
 
 
 
 
 
 
 
 
 
 

8.5 Insufficient S-channels on bridge 
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Figure 42.  Insufficient Resources 
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Appendix – VDP Exchange Examples 

8.6 VSI PreAssociate, Associate and DeAssociate 
 
The following example depicts the VDP exchanges used to Pre-Associate, Associate and 
De-Associate a VSI Instance with a VSI Type, VSI Type Version and set of MAC Address 
and VLAN pairs. 
 

 
 

Figure 43.  VSI PreAssociate, Associate and DeAssociate Exchange 
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8.7 VSI Transport Error Case 
The following example depicts the VDP exchange associated with a lost EETP 
transmission of a VSI Associate Request Acknowledgement, showing ECP retrying the 
transmission. 

 
Figure 44.  VSI Transport Error  
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8.8 VSI PreAssociate Resource Lease Refresh Exchange 
The following example depicts the VDP exchange associated with an inactive VSI 
Instance in the Pre-Associated state, where the bridge’s VSI State Machine forces a De-
Association. 
 

  
Figure 45.  PreAssociate Resource Lease Exchance 
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8.9 VSI Associate Resource Lease Exchange 
The following example depicts the VDP exchange used with an inactive VSI Instance in 
the Associated state, where the bridge’s VSI State Machine forces a De-Association. 
 

 
Figure 46.  Associate Resource Lease Exchange 
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