
IEEE 802.1Qbg
Proposal to add Channel Type IDs
bg-kamath-channel-typeid-0810-v2

Daya Kamath (BNT)
Jay Kidambi (BNT)
Vijoy Pandey (BNT)
Jeffrey Lynch (IBM)
Rakesh Sharma (IBM)

Aug 2010

Overview

• Use cases for channel type identifiers

• Limitations of current mechanisms

• Suggested protocol enhancements

• Related concerns and counter arguments

• Modifications to EDCP in 802.1Qbg draft 1.0

Use cases

• A channel represents an uplink similar to a physical port in many aspects, and
should have the capacity to support port related features such as QoS, rate
limiting, default vid settings etc.

• A bridge may wish to customize the properties of each channel on a port
differently. For example, support ECP on one channel, and disable it on another.

• A bridge may need to pre-configure characteristics of channels, such as enabling
flow monitoring features on a channel

• A bridge needs to identify and track channels consistently in order to support
desired feature-sets on the channels

• A bridge may wish to control the rate of broadcast and multicast traffic on the
channel. VDP related QoS parameters apply to specific VSIs, whereas a bridge may
wish to apply shared properties for all VSIs on a given channel, such as bandwidth
limits

Use Cases
• A channel may have a VM directly attached, or may be partitioned for a specific

workload, needing customized network control policies

• A bridge may need to limit the number of VEBs or VEPAs connected to channels
across all the ports, due to resource restrictions. It may want to present different
default settings for a subset of connections in order to achieve this

• A channel can be used by bridges to implement and fine-tune a variety of features
like
– Failover support between channels across different ports
– Static or dynamic trunk pre-configuration
– Default vid settings
– Flow control
– Netflow/sflow

• Bridges can conserve resources if they have a mechanism to apply aggregate

common policies on a channel basis, rather than repeating them for each VSI

Limitations of current scheme

• A station requests channels by identifier only. No persistent binding
guarantees between a channel and its ‘user’ on the station side

• Even if the binding is maintained within the station, the requested
ordering of channels in CDCP tlv may change depending upon station
internal operational sequence, or parameters, or configuration

– Bridge has no mechanism available to identify a channel consistently

– Bridge cannot pre-configure any customized (non-default) parameters on the

channel

• Assuming the network admin configures parameters manually after the
channel has been set up, these cannot be persistent across bridge or
station resets

Protocol Enhancement
• NOTE - The proposal provides a tool to characterize and customize channels. The

actual properties to be applied, enforcement points, and level of enforcement on
bridges as well as stations can be vendor-specific customizations

• Mechanism is to add a type identifier and version field to EDCP tlv, similar to the
VSI mgr ID, VSI type ID and VSI version ID in the VDP tlv

• NOTE - Channel is link-local, no moves across l2 domain, so a channel ID field is not
needed. Station and bridge can use the local channel ID fields exchanged in the
CDCP tlv to associate a given channel with its type ID internally.

• Allows bridges and stations to converge on channel type definition using out-of-
band mechanisms outside of the scope of the specification (similar to VSI)

• Stations indicate the type of channel being created in the request, and the
properties for that channel type can be determined or retrieved by bridges

• Typical mode of configuration could be static on bridges, if the number of channels
is limited, or the same mechanism as is used for VSI types, or not

Protocol concerns and counter-
arguments

• The bandwidth policies defined for a channel may conflict with the
policies defined for the port by another mechanism like ETS/DCBX

This is a shared concern that needs to be handled for VSI policies as well,
irrespective of whether channel policies are defined. Any tie break
mechanism defined can be applicable for both

• Station and bridge may have conflicts on channel policy request and

application

This proposal is meant to aid bridge side application of policies only. A
network administrator can choose to maintain a global channel policy
database, so it is shared between the station and bridge, or keep it local on
the bridge. The station can merely send a persistent type id for the channel
each time it is created, to aid the bridge with its implementation. A default
value can be used if the station is not able to provide a persistent binding

Proposed EDCP TLV

Octets:

TLV header

TLV type =
127

(7 bits)

TLV information
string length

(9 bits)

OUI
(3 octets)

Subtype
(1 octet)

EVB
Capabilities
(2 octets)

EVB
Current Config.

(2 octets)

Bits:

1 2 3 6 7 9

8 2 1 8 1

8 7 8 3 1 2 1

Forwarding
Mode Capabilities

R
es

er
ve

d

R
TE

R
R

R
es

er
ve

d

4

ST
D

EC
P

V
D

P

8 7 6 8 3 1 2 1

Forwarding
Mode Capabilities

R
es

er
ve

d

R
TE

R
es

er
ve

d

4

ST
D

R
R

EC
P

V
D

P
 # VSI

Supported

(2 octets)

VSI

Configured

(2 octets)

TLV information string = 19 octets

Channel type ID

(2 octets)

Channel type ver

(1 octet)

VSI
(4 octets)

 RTE

11 15 14 16

 R

8 6 5 1

Mgr ID

(1 octet)

19 17

• Use reserved values for channel type ID, version ID and manager ID (all zeroes or all
ones) to indicate the absence of a specific type classifier

• The Bridge and station can then apply administrative defaults configured locally

