
Bob Sultan (bsultan@huawei.com)

Which protocol for VSI-to-Profile
Binding?

2

VSI-to-Profile Binding

server
bridge

VM-A

VM-B
VSI-A

VSI-B

Note: the “port” may be a
vPort or a physical port

link
MAC
relay
entity

port

port

port

binding between VSI A and Profile with PID 1

stream to/from VSI-A

stream to/from VSI-B

A-1

B-2

A-1

• Binding between VSI and Profile maintained on Bridge
by communicating VSI and Profile ID (PID) to Bridge;

• Bridge fetches Profile from database based on PID;

Note: the “link” may be a
channel or a physical link

3

Terminology Note
• Now that we use the term VSI to describe the VM port

and the term vPort to describe the Bridge Port
associated with a Channel, the term ‘Port Profile’ does
not seem like a good choice as this profile is applied to
a VSI. In these slides we simply use the term ‘Profile’;

• The abbreviation PID is used for the Profile ID;
• Note also that a Bridge Port can be a vPort or a

‘physical port’ and the link (or point-to-point LAN)
between Server and Bridge can be a Channel or a
Physical Link.

4

Two ways to ‘apply’ Profile Attribute
• Apply Attribute to the individual VSI traffic stream with which the

Profile is associated;
– If you don’t agree that this case exists, no problem, just ignore slides

6 and 11;
• Apply Attribute to the Bridge Port (Port or vPort) by ‘combining’ it

with the corresponding attribute of all other Profiles associated with
the Bridge Port.

5

Alt 1: ACL applied to VSI

server bridge

VM-A

VM-B
VSI-A

VSI-B

MAC
relay
entity

port

port

port

ACL from Profile with PID 1 is applied to
traffic stream associated with VSI-A;

A-1

B-2

• ACL is applied to the specific VSI to which
the Profile is bound.

A-1

6

Alt 2: ACL applied to Bridge Port

server
bridge

VM-A

VM-B
VSI-A

VSI-B

MAC
relay
entity

port

port

port

ACLs associated with Profiles identified by PID 1
and PID 2 are ‘combined’ and the combined ACL
is applied to all traffic on the Bridge Port;

A-1

B-2

• ACLs from all Profiles associated with Bridge
Port are ‘combined’ and applied to the Bridge
Port;

A-1

B-2

7

What’s the point?

• There are currently three proposals under consideration
for the method of maintaining VSI-to-Profile bindings on
the bridge:

1. LLDP (Uri);
2. LLDP-like with T3P (Chuck);
3. Association Control Protocol (Bob);

• These proposals are difficult to compare because they
address different requirements;

• To choose among these, it is important to establish the
requirement that is to be met;

• As a convenience, let us group the first two proposals
as “A” and we refer to the third proposal as “B”

8

Requirements met by A
• Multiple changes in the binding database are committed in an

atomic operation;
– That is, if the currently committed binding list on Server and Bridge is

{A, B, C, D, E} and some sequence of changes occurs so that the list
becomes {A, C, E, F, G} then it is not permissible for the Server and
Bridge to commit successive binding lists {A, B, C, D, E} {A, C, D,
E} {A, C, E} {A, C, E, F} {A, C, E, F, G};

– Only the atomic change {A, B, C, D, E} {A, C, E, F, G} is allowed;
– The claim has been made that this is necessary due to

interdependencies among the bindings; i.e., the administrator has
calculated the consequences of committing {A, B, C, D, E} and {A, C,
E, F, G}, but not the intermediate lists;

• The order in which binding are specified in the binding set is
significant;
– For example, committing the binding set {A, B, C, D, E} produces a

different result than {A, D, C, B, E}; i.e., the order of TLVs in the
LLDPDU is significant;

• The binding set {A, B, C, D, E} is not committed if just one of the
bindings cannot be committed;
– The idea being that the bindings are interdependent; if you can’t

commit the entire new binding set, you retain the current binding set;

9

Requirements met by B
• Bind establish/release requests are made

individually by the server and are committed or
rejected individually by the bridge;
– There is no interdependence among the bindings;

10

How do we choose?
• “A” meets a significantly more stringent set of

requirements and implies greater complexity;
– The complete database must be communicated every time there

is a change in the binding set;
• Overhead of packing, unpacking, and processing every element;

– The elements of the binding set (i.e., TLVs) must be placed in the
proper order

• and the Server must know what that order should be;
– The Server must understand how to revise a binding set when

that binding set is denied by the bridge;
• “B” meets a much simpler requirement and implies lower

complexity;
– When a binding is to be added or removed, the server simply

sends the information associated with that individual binding;
• So, it’s clear that we need to know which is the minimum

requirement to be met;
• Claim: No credible evidence has been presented that

meeting requirement B is insufficient;
– It was suggested at the Dec. 22 evb meeting that the use of ACLs

requires A, but we will now describe why this is not the case;

11

First Step In Proof
• It was described in slides 3 and 4 that there are two

ways that a profile element, such as an ACL, can be
applied when it is bound to a VSI:
– Alt 1: the ACL can be applied to the specific VSI traffic stream

with which the Profile has been bound;
– Alt 2: the ACL can be ‘combined’ with the other ACLs

associated with the Bridge Port and the resulting ACL applied
to the Bridge Port.

• In the case of Alt. 1, the ACL is applied to a VSI traffic
stream in the same way was it would be applied to a
traffic stream associated with a Bridge port in a non-VM
environment;
– That is, today, there is no requirement to apply ACL1 to

BridgePort1 and ACL2 to BridgePort2 as an atomic operation;
– The same is true when an ACL is applied to a VSI traffic

stream in a VM environment;
• Thus, there is clearly no requirement for an atomic

operation when ACLs are utilized as described by Alt 1.

12

Second Step In Proof
• It follows that we need only consider Alt. 2

where per-VSI ACLs are ‘combined’ into a
single per-BridgePort ACL on the Bridge;

• Norm made the argument in the Dec. 22
meeting that
– The order of entries in the BridgePort-ACL is

significant (absolutely true) and
– The order in which per-VSI ACLs are specified (i.e.,

order of TLVs in LLDPDU) is important in
determining the order of entries in the BridgePort-
ACL (not true);

• The claim would be true if each VSI binding
identified a distinct ACL entry,
– but it doesn’t, it identifies a complete ACL (via the

Profile ID), not an ACL entry;

13

Second Step In Proof (con’d)
• Consider the following example of two

VSI bindings associated with a Link:
From the Profile with Profile ID 1 bound to VSI-A:
access-list 104 permit tcp any 172.22.0.0 0.0.255.255 established
access-list 104 permit tcp any host 172.22.1.2 eq smtp
access-list 104 permit udp any any eq dns
access-list 104 deny icmp any any echo
access-list 104 deny icmp any any echo-reply

From the Profile with Profile ID 2 bound to VSI-B:
access-list 105 permit tcp any 172.22.0.0 0.0.255.255 established
access-list 105 deny tcp any host 172.22.1.2
access-list 105 permit udp any any eq dns
access-list 105 permit icmp any 172.22.0.0 0.0.255.255 echo
access-list 105 permit icmp any 172.22.0.0 0.0.255.255 echo-reply

• Let’s say that the TLV for VSI-A precedes
that for VSI-B in the LLDPDU

14

Second Step In Proof (con’d)
• The VSI-bindings have been specified in the order {VSI-

A, VSI-B} in the LLDPDU in order in order to ensure that
the red entry from per-VSI ACL 104 will precede the red
entry from the per-VSI ACL 105 in the combined
BridgePort ACL 106:

access-list 106 permit tcp any host 172.22.1.2 eq smtp
access-list 106 deny tcp any host 172.22.1.2

• However, this has the nasty side effect that the green
entries from per-VSI ACL 104 will precede the green
entry from the per-VSI ACL 105 in the combined
BridgePort ACL 106:

access-list 106 deny icmp any any echo
access-list 106 deny icmp any any echo-reply
access-list 106 permit icmp any 172.22.0.0 0.0.255.255 echo
access-list 106 permit icmp any 172.22.0.0 0.0.255.255 echo-reply

• So, it seems clear that no ordering of the TLVs is going
to help you correctly order the entries in the ‘combined’
BridgePort ACL.

15

Third Step In Proof
• So how do you guarantee that the entries of the

BridgePort (i.e., ‘combined’) ACL will be in some
sensible order?

• You must have an ‘ACL combiner’ on the Bridge
with sufficient intelligence to know how to
construct an ACL (eg., more specific entry
preceding less specific entry) and to know when
entries are in conflict and can’t be ‘combined’;
– In fact, if you require VSI-binding to be an atomic

operation, I’d claim that the liklihood of having to fail
the entire set of bindings can be quite high;

– It seems preferable to establish the bindings you can,
and reject those you can’t (i.e., not an atomic
operation);

16

Fourth Step In Proof
• ‘Combining’ requires that a list of the active VSI-

to-Profile bindings be maintained on the Bridge;
– We might imagine a way to incrementally add a per-

VSI ACL to the current BridgePort ACL without having
the list of previously ‘combined’ per-VSI ACLs

– But it is infeasible to remove per-VSI ACLs from the
BridgePort ACL without having the complete list of
active per-VSI ACLs;

• We have now established that Alt. 2
– requires a ‘combiner’ on the Bridge
– the ‘combiner’ must have access to the complete list of

active VSI-to-Profile bindings associated with the
BridgePort

– the order of VSI-to-Profile bindings is not useful input
to the ‘combiner’ and need not be maintained by the
Bridge;

17

Final Step In Proof
• The only remaining possibility to consider is

a case in which binding lists {A, B, C} and
{A, B, C, D, E} both produce desired results
but the intermediate lists {A, B, C, D} and
{A, B, C, E}, while not rejected, produce
undesirable results;
– This is the case that would require multiple

binding changes to be committed in an atomic
operation;

• We can show that this possibility cannot
occur.

18

Final Step In Proof (con’d)

• For {A, B, C, D} to be legal, it cannot contain any entry
that conflicts with {A, B, C}

• Thus, it cannot explicitly deny any range that is explicitly
permitted by {A, B, C} or explicitly permit any range that is
explicitly denied by {A, B, C};

• So, suppose {A, B, C, D} is legal, but does not produce a
result desired by the operator;

• And {A, B, C, D, E} is legal and fixes the undesired result
of {A, B, C, D};

• For this to be the case, E would have to change the effect
of D in the range in which they overlap;

• But since D and E do not conflict; this is not possible;

19

Conclusion

• VSI-to-Profile binding does not require a protocol in which multiple
bindings are committed as an atomic operation;
– And the order of bindings specified within such an atomic operation can

be shown not to be useful;
• It is sufficient for the Server to request individual bindings that may be

accepted or rejected by the Bridge;
• If there is disagreement with this conclusion please identify a specific

flaw in the argument or provide a counterexample;
• A simple protocol (eg., ACP) that requests one binding at a time, and

either accepts or rejects that binding, meets the requirement for VSI-
to-Profile binding;
– Note: Earlier descriptions of ACP did not include flow control to prevent

buffer overrun; we assume that flow is added to the proposed ACP;
• The use of LLDP or an LLDP-like protocol (with or without T3P) adds

very significant complexity to meet requirements that don’t exist (even
considering that LLDP already exists.

20

A Further Note

• It might be claimed that it is necessary to send the entire
database with each binding request (and periodically) in
order to keep the database ‘refreshed’ on the Bridge;

• This is not the case;
• The requirement is only to keep the individual database

entries refreshed;
• This does not require sending the entire database;
• There is no significant difference in the bandwidth or

cycles required to periodically refresh the database by (1)
sending the database in its entirety or (2) sending each
entry at periods after its commitment;
– It could be argued that it’s better to send the refreshes individually

as this would tend the spread the load;
• There is, however, a significant increase in bandwidth and

processing if we ship the entire database each time a new
binding is established;

