

Network Interconnect Resiliency Requirements

János Farkas

Target: Peering interconnect

- The two independent providers have equal rights, none of them is inferior to the other; thus
- > The network providers may have independent decisions
- The Network Interconnect (NI) has to adapt to providers' decisions and provide the connectivity
- NI has its own control: the Network Interconnect Protocol (NIP), which is independent from the control of the attached networks

R1 – Independent service assignments

- A provider may select an NI node for a service independently of the peering provider's selection
- The service assignment is done by the provider (either by configuration or by a protocol run by the provider)
- For example
 - Network 1 selectsNI node A for service S
 - Network 2 selectsNI node D for service S

Bundling maybe supported

R2 – NI failure isolation

- NI failure should not cause state change in the provider networks' control protocols
 - Link failure
 - NI failure should not cause state change in any of the attached networks

- Node failure
 - Affects the provider network comprising the node
 - Provider has to re-assign affected services

- NI failure should not cause state change in the non-affected network
- Provider network failure may cause state change in the NI (e.g. a service is re-assigned due to a failure)

R3 – Failover time

Link failure

- NI should provide sub 50 msec failover time for link failures

Node failure

- Time constraint shouldn't be put on the entire failover
- The provider has to re-assign the affected service(s)
- NI then adapts to the service re-assignment
- Time constraint could be put on NI adaptation

R4 – Connectivity

- NIP should provide loop-free connectivity between the attached networks
- NIP should adapt to service assignments

NIP should ensure that frames are not looped

R5 – Congruency

- Congruency should be supported
 - The same path used in the NI for the two directions of a service

- Forwarding path may not be optimal due to the independent assignments
 - Providers may agree in the service assignments in order to use a direct link
 - Or one of them may relax service assignment for optimal path

If congruency is not applied

Non-congruent NI forwarding paths

 Other means are needed to avoid loops

R6 – NI topology

- NI topology should be at least two-connected
- Connection between NI nodes of the same provider
 - An NI node should be connected to at least another NI node belonging to the same provider
 - The connection maybe physical or virtual
- NI topology might be arbitrary otherwise

Consequence - Load balancing

 Service by service assignment provides support for load balancing

Mapping the list of "criteria or potential requirements" from the Webex meetings

- > 01 Protect a single service (VLAN) or a group of services (VLAN) R2
- > 02 Protect against any single failure or degradation of a facility (link or node) in the interconnected zone— R2
- > 03 Support interconnection between different network types (e.g. CN-PBN, PBN-PBN, PBN-PBBN, PBBN-PBBN, etc.) R4
- 04 Provide sub-50 ms fault recovery R3
- > 05 Provide a clear indication of the protection state R2
- > 06 Avoid modifying the protocols running inside each of the interconnected networks R2
- > 07 Maintain an agnostic approach regarding **R4**:
 - the network technology running on each of the interconnected networks, and
 - any protection mechanism deployed by each of the interconnected networks
- 08 Allow load-balancing between the interfaces that connect the networks to ensure efficient utilization of resources R1
- 09 The effects of protection events in the interconnected zone on the topology of the related attached networks should be minimized. R2
- > 10 Design the interconnected zone in a way that will ensure determinism and predictability.
- 11 There can be at least one failure in every provider cloud, and at least one failure in every interconnect cloud, and connectivity will still be maintained. R2
- > 12 Support topologies with more than two nodes and more than two inter-cloud links, so that equipment can be taken down and replaced without a period of unprotected operation. **R6**
- 13 Control packets cannot be 1:1 with customer services; that is, some kind of bundling is necessary in order to support thousands of services. – R1
- 14 The bundling of services for protection purposes (e.g. MST instances) can be completely different in different service provider clouds. R1
- > 15 The NNI protects services, not parts of services. R1
- > 16 If one service provider cloud becomes split into multiple disjoint clouds, it cannot depend on the interconnect cloud or any adjacent service provider cloud to provide connectivity among its parts.
- > 17 We cannot assume an ultra-reliable link. R6
- > 18 It must be possible to ensure the use of the same link in both directions for every service. R5
- 19 Inter-domain coordination should be minimized. R1
- > 20 Support asymmetrical links -- not all the same speed or cost— R5
- > 21 Do we support a encapsulation scheme in the interconnect cloud, or is the ENNI independent of the encapsulation?
- > 22 Do we assume that the bandwidth (or other Traffic Engineering parameter) of the interconnect cloud is adequate for all of the services, or do we do something special if it is insufficient?
- > 23 Do we need protocol for conveying service creating/deletion or traffic engineering requirements between Service Providers?