Resilient Network Interconnect: D-LAG Models
Version 2
(added two new slides at the end)

Stephen Haddock
Extreme Networks
October 19, 2010
Introduction

• At the September Interim two models for Distributed Link Aggregation were presented:
 – Distributed Bridge Model
 – Distributed Port Model

• Concerns were raised with respect to the Distributed Port model.

• This presentation modifies the model to address those concerns.
Distributed Bridge Model

• Emulate a single bridge
 • Create illusion that there is a single relay, single instance of all higher layer entities, and a single Bridge Port representing entire Distributed Link Aggregation Group.

• In normal operation neither the NNI nor My Network can distinguish this from a single bridge.

• Failure of the DLACC ("split brain" scenario) potentially causes a significant change in operation as viewed from My Network.
Distributed Port Model

• All unique behavior confined to the Ports that are part of the D-LAG.
 • Each Node operates as a separate bridge on all ports that are not part of the D-LAG.
• Distributed LAG creates a single Bridge Port on the Relay of each bridge.
 • LAG Distributor and Collector functions control frame forwarding between the D-LAG links and the Bridge Relays.
 • In some cases may require “tunneling” frames on the DLACC to the other Node.
• May need special behavior in port specific portions of some L2 protocols to maintain single Bridge Port illusion across D-LAG:
 • Probably xSTP and MxRP (if run these over D-LAG); maybe CFM LinkTrace
Concerns on Distributed Port Model

• Panos:
 – Generally uncomfortable with a single Link Aggregation Group looking like a Bridge Port on each of two distinct Bridges.

• Mick:
 – Specifically concerned with the idea that from the NNI the D-LAG looks like a single Bridge Port, while from My Network it looks like two distinct Bridge Ports, each on a distinct Bridge.
 – Means it is impossible for any control plane protocol operating over both My Network and the Other Network to have a consistent world view.
 – Presents an insoluble problem to any routing protocol (and perhaps to any control protocol?).

• Need a model where the D-LAG looks like a single Bridge Port from both the NNI and My Network.
Distributed Component Model

- Distributed LA Sublayer comprises a logical VLAN-aware component that:
 - Spans all physical bridges.
 - Has a single Bridge Port for all external links in the Distributed-LAG.
 - Has internal links/ports to the bridge component in each physical bridge.
 - Distributed Relay acts as a VLAN multiplexer (no MAC address learning).
Network Representation

Device View:

Logical View:

My Network

DLACC

D-LAG

LAG
Distributed Component Model: Data Plane

- FDB of Distributed Relay configured as a VLAN multiplexer.
 - Member set of an VID includes only the D-LAG Bridge Port and one of the internal Bridge Ports (same constraints as a PEB C-VLAN component).
 - No MAC address learning.
- Results in same behavior as the Gateway function described in the Distributed Port Model of
- Network data flows are the same as those described in the Distributed Port Model.
- Still have situations where a frame needs to be transferred between physical bridges in the Distributed Link Aggregation Sublayer:
 - Frames received (or to be transmitted) on a D-LAG link terminating at one physical bridge, while the frame’s VID is in the member set of a Bridge Port on another physical bridge.
 - Such frames may be transferred on a dedicated physical link, or tunneled on a physical link shared with the normal active topology.
Distributed Component Model: Control Plane

- Distributed Component runs an instance of all supported control applications (e.g. RSTP/MSTP).
 - Since Bridge Port and VLAN configuration have same constraints as a PEB C-VLAN component, can use the RSTP enhancements described in 13.38. This allows the Distributed Component to have multiple Root Ports when the D-LAG Bridge Port is Designated.

- As with Distributed Port Model, still need a Distributed Link Aggregation Communications Channel (DLACC):
 - to convey Distributed Link Aggregation Sublayer state and control information between physical devices.
 - to transfer data plane frames in the Distributed Link Aggregation Sublayer between physical devices.
Distributed Component Model: Observations

- Model presents D-LAG as supporting a single Bridge Port when viewed from NNI or My Network.
 - Provides a “consistent world view” from any point in network.
- Model provides clear behavioral reference for any higher layer application, control protocol, or protocol shim.
- Model easily accommodates more than two physical bridges in the D-LAG.
- Model easily accommodates bridges supporting multiple D-LAGs and overlapping D-LAGs.
- Model easily accommodates D-LAGs on bridges that are already multi-component.
 - E.g. Provider Edge Bridges and Backbone Edge Bridges
Some Thoughts on Standardizing Distributed Link Aggregation
Distributed Link Aggregation: Standardization 1

- **Amendment to 802.1AX Link Aggregation**
 - Add a new Distributed Link Aggregation Sublayer clause (or two)
 - Allow either Distributed Bridge or Distributed Component as conformant behavioral reference models.

- **No changes to 802.1Q**
 - Can just refer to 802.1Q for component definitions and specifications.

- **Minimal specification if assume single vendor for all bridges in D-LAG:**
 - Require that external behavior must match the Distributed Bridge or Distributed Component Model.
 - Specify constraints on VLAN configuration of Distributed Component Model.
 - All details of how to create Distributed Bridge or Distributed Component, including the DLACC, left to the implementer.
 - No standardized management model.
 - Will probably need to specify or constrain the uniqueness versus re-use of identifiers for logical ports and components.
 - Will need to specify what the model looks like when the DLACC fails.
Distributed Link Aggregation: Standardization 2

• Specification **if do NOT assume single vendor** for all bridges in D-LAG:
 – Specify how functionality is distributed between physical devices for Distributed Component Model only (not Distributed Bridge).
 • Distributed Relay probably best specified as a Gateway function in each device.
 • Specify whether control protocols are to be distributed, or run in a selected device with PDUs tunneled to/from Bridge Ports in other physical devices using the DLACC.
 • Specify Distributed Component management model, and which managed objects are implemented by which physical device.
 – Could follow 802.1ah precedent where all objects/parameters of a full-up component are specified, or 802.1ad precedent where only pertinent objects/parameters are specified.
 – Specify frame formats and protocol for the DLACC.
Distributed Link Aggregation: Standardization 3

• Specification of DLACC if do NOT assume single vendor for all bridges in D-LAG:
 – Define frame format and protocol for Distributed LACP.
 – Other control protocols
 • If select one physical bridge to run protocol, then need to define frame format to convey control protocol PDUs to and from that bridge.
 • If distribute protocol between physical bridges, then need to define frame formats to convey state and event information between bridges (potentially very complex).
 – Data frames on the DLACC
 • If have a directly connected link, dedicated for only DLACC traffic and only for one D-LAG, then don’t need to encapsulate data frames. This would represent the minimum multi-vendor implementation.
 • We could specify an optional encapsulation that would allow a physical single link to carry frames for the normal network active topology as well as DLACC frames for any number of D-LAGs. Probably this would need to be implemented in a software path on existing bridges, but may someday be implemented in hardware.
Recommendations for Standardization

• Write amendment to 802.1AX as described on “Standardization 1” slide.
 – Assume single vendor, with descriptions of both the Distributed Bridge or Distributed Component models.

• Consider specifying the minimal multi-vendor behavior on “Standardization 2 and 3” slides.
 – Assume DLACC is a dedicated link for a single D-LAG, so no encapsulation of data frames is required.
 – Standardizing the control and management planes may be a challenge.

• If successfully specify the minimal multi-vendor behavior, then specify an optional DLACC data frame encapsulation.
 – Allows a single physical link to be shared between “normal” traffic and the DLACCs for multiple D-LAGs.