
1

Link Utilization &
Convergence
Considerations for SPB

Ali Sajassi, Mike Shand

September 16, 2010

IEEE 802.1 Interim Meeting - York, U.K.

2

Agenda

 Link Utilization with Randomly Assigned Node IDs

 Link Utilization with Carefully Assigned Node IDs

 Link Utilization with per-hop hashing

 Convergence Time

 Conclusion

3

Consider the following topology with
randomly assigned 16 bit node IDs

4

Primary ECT (mask 0x0000)

•The paths are selected by finding the lowest ID between any split/merge
points

5

Xor IDs with 0xFFFF

• Note that all 3 vertical pairs of nodes IDs have together swapped their numerical
relationships

• i.e was Now

– 44f4 > 1343 bb0b < ecbc

– 533e > 064a acc1 < f9b5

– 78c3 < 7c8c 873c > 8373

• All other masks result in one of the above two ECTs

6

Link Utilization w/ Random Node ID
Assignments

• Traffic between the above pair of edge nodes can only exercise two
paths - leaving some of the links unutilized !!

7

Agenda

 Link Utilization with Randomly Assigned Node IDs

 Link Utilization with Carefully Assigned Node IDs

 Link Utilization with per-hop hashing

 Convergence Time

 Conclusion

8

ECT-1

•The following carefully constructed example shows where there are
4 different paths

•There may be cases where all 8 paths are available

9

ECT-2

10

ECT-3

11

ECT-4

12

Link Utilization for Edge Traffic using
.aq ECT

• It may appear from the above that all links are used in the set of trees
generated. But if we consider the links used by traffic between the two “edge
nodes” at either end, we see that not all links are used for THAT traffic

• This slide shows (in green) the actual number of packets sent on each link for
traffic between the pair of edge nodes

13

Agenda

 Link Utilization with Randomly Assigned Node IDs

 Link Utilization with Carefully Assigned Node IDs

 Link Utilization with per-hop hashing

 Convergence Time

 Conclusion

14

Link Utilization for Edge Traffic using
per-hop Hashing

15

Link Utilization w/ Randomly Assigned
Node IDs for a DC Network topology

 This topology was generated with random
node IDs. Notice that the core node cross
links are not effectively used, nor are some
of the agregation node cross links

• Remember that a different random
allocation of node IDs would give a
different result.

16

Link Utilization w/ Carefully Assigned
Node IDs for a DC Network Topology

17

Link Utilization w/ per-hop Hashing for a
DC network Topology

18

Agenda

 Link Utilization with Randomly Assigned Node IDs

 Link Utilization with Carefully Assigned Node IDs

 Link Utilization with per-hop hashing

 Convergence Time

 Conclusion

19

Forwarding Rules

Y

Z

D

X I promise I won’t forward to Z unless
my new distance from D is >= my old

distance from D

I promise I won’t forward to
anyone unless my new
distance from D is < Y’s

old distance from D

Z’s
permissible

range

Y’s
permissible

range

Y’s “old” distance from root

20

If Z-D decreases…

Y

Z
D

X

I promise I won’t forward to Z unless
my new distance from D is >= my old

distance from D
No longer true, so MUST stop all

forwarding to Z

I promise I won’t forward to
anyone unless my new
distance from D is < Y’s

old distance from D

Z’s
permissible

range

Y’s
permissible

range

Y’s “old” distance from root

21

Why?

 Z guarantees that it will stop forwarding if it is NOT
closer to D than Y’s old position.

 If it moves further away than Y, a loop could form since
Y COULD be downstream of Z, either directly (a loop
across ZY), or indirectly (a loop via some other nodes)

22

So why does it matter if Y moves closer?

 If Y moves ANY closer than its old position

A loop cannot form if Z doesn’t move, provided that Y doesn’t
actually move closer than Z

So why does it matter?

 Z has only agreed to stop forwarding if it doesn’t move
further away that Y’s old position, NOT its new
position

23

Multiple moves (from multiple topology
changes) are possible

 If Y moves closer than its old position

 AND Z moves further away than Y’s new position
(which it is allowed to do)

 A loop could form

 So Y MUST stop forwarding if it moves any closer.

24

Convergence Time

n = # of hops upstream of the failure having an inter-node cost less than

the increase in cost caused by the failure

m = # of hops upstream of the failure before the re-route point

p = the inter-node LSP propagation time

r = the inter-node resynchronization time (i.e. the time for the databases

and FIBs to be back in sync following a new LSP event)

d = the additional time to exchange digests in .aq

Topology 1

Topology 2

25

Convergence Time upon Failure

• with 802.1aq TAP : Total packet loss time = n*p+r+d

• with ECMP: Total packet loss time = m*p+r

• Example, for n=6, m=0, p=20 ms, r=100 ms, d=20 ms, we have
 Total packet loss time = 240 ms (TAP)
 Total packet loss time = 0 ms (ECMP)

• Example, for n=6, m=4, p=20 ms, r=100 ms, d=20 ms, we have
 Total packet loss time = 240 ms (TAP)
 Total packet loss time = 180 ms (ECMP)

26

Convergence Time upon Recovery

• with 802.1aq TAP : Total packet loss time = n*p+r+d

• with ECMP: Total packet loss time = m*p+r

• Example: for n=6, m=0, p=20 ms, r=100 ms, d=20 ms, we have
 Total packet loss time = 240 ms (TAP)
 Total packet loss time = 0 ms (ECMP)

• Example: for n=6, m=4, p=20 ms, r=100 ms, d=20 ms, we have
 Total packet loss time = 240 ms (TAP)
 Total packet loss time = 0 ms (ECMP)

27

Agenda

 Link Utilization with Randomly Assigned Node IDs

 Link Utilization with Carefully Assigned Node IDs

 Link Utilization with per-hop hashing

 Convergence Time

 Conclusion

28

Conclusion/Recommendation

 ECMP helps with both link utilization and convergence
time

 ECMP can be used for applications where utilizing links
EVENLY in the network is important

 Use TTL to achieve ECMP via per-hop hashing

- Simple to do & explain !!

- Proven method

- Every interested party (operator) is familiar with

- Can easily be incorporated into a new I-tag

- Simple to implement for most vendors (hashing function
already exists because of LACP)

