Reduction of Impacts of Legacy Traffic on Stream Latency

Franz-Josef Goetz (Simens)
Jahanzaib Imtiaz (inIT)
Karl Weber (Fraunhofer IOSB-INA)

IEEE 802.1 Interim Meeting
May 2011, Santa Fe (NM)
Reduction of impacts of legacy Traffic

Options to reduce effects of long frames

2. Interrupt long legacy Frames
3. Make long Frames smaller

...Fragmentation! On demand or by default?

Assumptions:
- Store and Forward principle for non stream
- Only small changes in architecture required
- Maintain basic framing rules (min Frame, IFG...)

Diagram:
- Control frame arrived
- Legacy frame in tx
- Before control frame get a chance of tx, legacy frame tx must be finished
- Legacy frame interrupted, control frame start tx, later legacy frame is re-transmitted (not a good idea!)
- Legacy frame in tx, control frame arrived, legacy frame interrupted, control frame get tx, after it finishes rest of the legacy frame get tx
- Fixed size fragments of legacy frame in tx, control frame get tx after the current in service fragment
Fragmentation Protocol considerations

• Both options (2a, 2b) should use same infrastructure
 • Same fragmentation encoding
 • Dissassembly independant from fragmentation policy
 • Reassemble on ingress side operates in the same way

• Must we change some thing in side the MAC?
 • Interruption mechanism (On demand fragmentation)
 • some changes in IEEE802.3 (and others?) needed
 • Fixed Fragmentation
 • restrict max frame size at a link
 • fragmentation at egress and reassembly at ingress
 without change of MAC function?
 • cost more overhead
Codeing for frag tag (discussion)

- Fragmentation tag
- Length of frame in the first fragment
 - the end of the frame is known in advance
- Fragment Number or Frame Offset
 - Missing Fragments can be detected
- Frame number
 - Needed for a 2 fragment loss in case of a error burst
- Error field to cancel fragmentation?
 - Useful to reset the sender or signal fragmentation
- Length of fragment?
 - Not needed! Problem with the interruption approach
- Open issue: how to set Addresses
 - Use special MAC addresses and code the original ones later?
 - Keep frame addresses

=> Optimized coding to save bandwidth and minimize overhead
Example fragmentation

- Min Frame size: if residual fragment <46 upgrade last fragment to 46
- Additional padding octets are also possible but this will waste bandwidth
- The min Frame Size requirement will lead to 92 octets minimal Frames with Delays in the same order
Zero legacy frame interference Latency?

- Problem Statement
 - Fragmentation can reduce the impact by an order of magnitude
 - Smart stream management with look ahead can improve this further
 - Interruption technology (fragmentation on demand) can reduce fragmentation overhead but not latency

- Possible Solution
 - Use fixed time slots for RT traffic and stop legacy traffic before
 - Zero impact of legacy frames
 - Needs knowledge of the timing from talker to listener
 - Only work with homogenous networks, and need synchronized bridges/ no legacy bridges
 - High configuration effort
 - … both concepts can be combined
Queueing effects

• Problem Statement
 • Queueing delays can increase latency for some streams
 • Timing of the minimal latency streaming requires an efficient stream burst processing
 • Ordering and timing needed to minimize latency!!

• Possible Solutions
 • Smart protocols for topology detection in combination with MSRP
 • Engineered approach: timing information given to senders and bridges
 • Or both...
Thank you!