

802.1Qbv Scheduled Traffic: Window Options

Rodney Cummings

National Instruments

Rodney.Cummings@ni.com

Conventions

- A: Class A configured as scheduled traffic
 - Previously known as "ultra-low latency"
- Non-A: All traffic that is not scheduled
 - Class B: credit-based shaper
 - Best-effort: strict-priority shapers
- Figures show store & forward

Start of Scheduling Window (1 of 3)

 Guard band prevents non-A from ending after start-of-window (t0)

- Assume A prior to start of window will wait in queue
 - Reject instead? Policing... not covered in this presentation

Start of Scheduling Window (2 of 3)

 If talker window starts at same time as 1st bridge, we always have wasted bandwidth

- Proposal: Talker windows start earlier than 1st bridge
 - Offset by length of talker's 1st A frame for that window

Start of Scheduling Window (3 of 3)

- Offset in a similar manner from 1st bridge to 2nd bridge?
 - Window configuration is distinct per egress shaper (direction)
- Let's look at an example T1 B1 B2 B3 B4 T2
 Both talkers send to both listeners
 - Find offset back from each listener
 - If merge listener timelines, one bridge egress (e.g. B1 to B2) must repeat

Conclusion: Offset in bridges requires multiple windows

Inside Scheduling Window (1 of 2)

- March 2011 TABS presentation: burst A frames until A's queue empty, then allow non-A
 - Pro: Non-A uses available bandwidth (like Gen 1)
 - Con: Doesn't work for scheduled traffic

Inside Scheduling Window (2 of 2)

- Proposal: Allow only A inside window, not non-A
 - Non-A is blocked in queues until end of window
 - A uses a guard band for end of window

- Pro: Works for scheduled traffic
- Pro: Simple to calculate bandwidth for A (window)
- Con: Worse non-A bandwidth when window has idle time

End of Scheduling Window

- What happens when gap between windows is less than max frame length (1522 byte)?
 - Without preemption, max non-A is impossible
 - With preemption, max non-A preempted multiple times

- Con: Adverse effects on non-A latency and bandwidth
- Con: May complicate preemption design
- Proposal: Gap must be max frame length or more
 - Meets automotive & industrial requirements

How Many Windows? (1 of 2)

- Focus on windows first
 - Mapping of streams to windows... second
- One window

Multi window

How Many Windows? (2 of 2)

- Using the one and multi assumptions,
 I'll cover three options
- 1. One-in-talker, one-in-bridge
- 2. Multi-in-talker, one-in-bridge
- 3. Multi-in-talker, multi-in-bridge

One-in-talker, one-in-bridge (1 of 2)

- Also known as "one slot all stream"
- All bridge windows start same time (shared t0)
 - Previous conclusion:
 Offset of bridge windows requires multi-in-bridge
- Talker windows offset earlier than bridge window
- Talkers deblock all queued A frames at start of window
 - Slot within window is considered multi-in-talker

One-in-talker, one-in-bridge (2 of 2)

- Pro: Simple to implement
- Pro: Simple to configure
- Con: Latency and jitter close to window length

- Class A interference doesn't meet industrial/automotive reqs
 - http://www.ieee802.org/1/files/public/docs2011/new-avb-boiger-meeting-gen2-latency-req-1111.pdf
- Con: Large idle time in window for large hop counts
 - Decreases non-A bandwidth

Multi-in-talker, one-in-bridge (1 of 3)

- All bridge windows start at same time
- Two sub-options for talker windows (slots)
 - Slots subdivide bridge window Talker cycle Τ4 Non-A Bridge cycle Slots span multiple bridge windows

Sub-options not mutually exclusive

Multi-in-talker, one-in-bridge (2 of 3)

- Pro: Meets automotive/industrial requirements
 - Must engineer to ensure one stream per slot per egress
 - Avoid class A interference
 - Streams can share a slot as long as different egress
 - Example: stream T1→L1, stream T2→L2, T1 Bridge L2
- Pro: Supports ordering in talkers
- Con: End-station more complex than one-in-talker
- Con: Idle in bridge window; reduced non-A bandwidth

Multi-in-talker, one-in-bridge (3 of 3)

- For this option, slots must be specified in 802.1
 - Otherwise 802.1 doesn't meet requirements
 - Important part of talker's scheduled shaper
 - FlexRay Host Interface specifies that "message transmission operates on non-queued transmit buffers", where each buffer schedules a slot in the window
 - Slot-level scheduling in FlexRay end-station chip

Multi-in-talker, multi-in-bridge (1 of 3)

- List of windows in talker and bridge
- List can be different in each talker and each bridge
- Not necessarily window-per-stream
 - Streams in different directions can share a window

Pro: Removes idle; optimizes bandwidth usage

Multi-in-talker, multi-in-bridge (2 of 3)

Pro: Non-harmonic stream rates

Multi-in-talker, multi-in-bridge (3 of 3)

- Pro: Most flexible configuration
 - Can revert to one/one or multi/one
 - Add new windows with less impact to previous windows
 - No longer forced to share a window in bridges
- Pro: Consistent in talker and bridge
- Con: Talker and bridge more complex

How Many Windows?

- Proposal: Multi-in-talker, multi-in-bridge
 - Most pros with reasonable silicon complexity
 - One/one doesn't meet requirements
 - Multi/one wastes bandwidth
- Follow-up question:
 Minimum number of windows required (i.e. PICS)?
 - 4 is useful
 - Non-harmonic example uses 3
 - 128 is closer to enabling stream-per-window
 - Common number of messages in CAN & FlexRay MACs

Forwarding/Filtering by Port (1 of 3)

- Proposal: Specify 'Domain' for scheduled shaper
 - Specify end-stations and bridges using scheduled shaper
 - Agree on window/slot configuration within domain
 - Scheduled traffic filtered outside domain
 - Similar concept to AVB Gen 1 domain
- Do scheduled talkers broadcast or multicast in domain?
 - For this example with streams T1→L1 and T2→L2

does L2 receive T1 (broadcast), or not (multicast)?

Forwarding/Filtering by Port (2 of 3)

- Broadcast has benefits
 - Typical for automotive / industrial / big-physics control
 - E.g. CAN and FlexRay
 - Simple to configure and failover
 - No Stream concept required
 - Simple implementation: VLAN filtering for Domain
- Multicast has benefits
 - More flexible than broadcast
 - Reduces filtering in listeners
 - E.g. CAN / FlexRay MACs provide filtering to mitigate broadcast
 - Consistent with Gen 1: Destination MAC filtering

Forwarding/Filtering by Port (3 of 3)

- Proposal: Both... multicast and broadcast
 - Meets requirements for variety of applications
 - Specify 'Stream' concept for multicast
 - Registration of talker & listeners
 - If needed to complete stream specification, broadcast could register stream as talker only
 - Stream doesn't need a Tspec
 - Implicitly specified by stream's window/slot
- Proposal: Allow multiple domains, which can overlap
 - Facilitates use of broadcast
 - Overlap implies sharing slots across multiple domains

Thank you

