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functional blocks



	Summary

Recommendation ITU-T G.8021/Y.1341 specifies both the functional components and the methodology that should be used in order to specify Ethernet transport network functionality of network elements; it does not specify individual Ethernet transport network equipment as such.
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Introduction

This Recommendation forms part of a suite of ITU-T Recommendations covering the full functionality of Ethernet transport network architecture and equipment (e.g., Recommendations ITU-T G.8010/Y.1306 and ITU-T G.8012/Y.1308) and follows the principals defined in Recommendation ITU-T G.805.

This Recommendation specifies a library of basic building blocks and a set of rules by which they may be combined in order to describe equipment used in an Ethernet transport network. The building blocks are based on atomic modelling functions defined in Recommendations ITU-T G.806 and ITU-T G.809. The library comprises the functional building blocks needed to specify completely the generic functional structure of the Ethernet transport network. In order to be compliant with this Recommendation, the Ethernet functionality of any equipment which processes at least one of the Ethernet transport layers needs to be describable as an interconnection of a subset of these functional blocks contained within this Recommendation. The interconnections of these blocks should obey the combination rules given.

The specification method is based on functional decomposition of the equipment into atomic and compound functions. The equipment is then described by its Equipment Functional Specification (EFS) which lists the constituent atomic and compound functions, their interconnection and any overall performance objectives (e.g., transfer delay, availability, etc.).

Draft Recommendation ITU-T G.8021/Y.1341 (revised)

Characteristics of Ethernet transport network equipment
functional blocks
1
Scope

This Recommendation covers the functional requirements of Ethernet functionality within Ethernet transport equipment.

This Recommendation uses the specification methodology defined in [ITU-T G.806] in general for transport network equipment and is based on the architecture of Ethernet layer networks defined in [ITU-T G.8010], the interfaces for Ethernet transport networks defined in [ITU-T G.8012], and in support of services defined in the ITU-T G.8011.x series of Recommendations. It also provides processes for Ethernet OAM based on [ITU-T Y.1731]. The description is generic and no particular physical partitioning of functions is implied. The input/output information flows associated with the functional blocks serve for defining the functions of the blocks and are considered to be conceptual, not physical.

The functionality defined in this Recommendation can be applied at User-to-Network Interfaces (UNIs) and Network-to-Network Interfaces (NNIs) of the Ethernet transport network.

Not every functional block defined in this Recommendation is required for every application. Different subsets of functional blocks from this Recommendation and others (e.g., [ITU-T G.783], [ITU-T G.798], [ITU-T G.806] and [b-ITU-T I.732]) may be assembled in different ways according to the combination rules given in these Recommendations (e.g., [ITU-T G.806]) to provide a variety of different capabilities. Network operators and equipment suppliers may choose which functions must be implemented for each application.

The internal structure of the implementation of this functionality (equipment design) need not be identical to the structure of the functional model, as long as all the details of the externally observable behaviour comply with the Equipment Functional Specification (EFS).

Equipment developed prior to the production of this Recommendation may not comply in all details with this Recommendation.

The equipment requirements described in this Recommendation are generic and no particular physical partitioning of functions is implied. The input/output information flows associated with the functional blocks define the functions of the blocks and are considered to be conceptual, not physical.

Figure 1-1 presents a summary illustration of the set of atomic functions associated with the Ethernet signal transport. These atomic functions may be combined in various ways to support a variety of Ethernet services, some of which are illustrated in Appendix I. The functions for the processing of management communication channels (e.g., SDH DCC or OTH COMMS) are not shown in these figures in order to reduce their complexity. For DCC or COMMS functions, refer to the specific layer network descriptions.
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Figure 1-1 – Overview of G.8021/Y.1341 atomic model functions
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Acronyms and abbreviations

This Recommendation uses the following abbreviations:

1DM

1way Delay Measurement

A

Adaptation Function

AI

Adapted Information

AIS

Alarm Indication Signal
AP

Access Point

APP

Access Point Pool

APS

Automatic Protection Switching

ATM

Asynchronous Transfer Mode

BER

Bit Error Ratio

BS

Bad Second

C

Connection Function

CBR

Constant Bit Rate
CC

Continuity Check

CCM

Continuity Check Message

CFI

Canonical Format Identifier

CI

Characteristic Information

CK

Clock
COMMS
Communications channel
CoS

Class of Service
CP

Connection Point

CRC

Cyclic Redundancy Check

CSF

Client Signal Fail
D

Data
DA

Destination Address
DCC

Data Communication Channel
DCI

Defect Clear Indication
DE

Drop Eligibility

DEI

Drop Eligible Identifier

DEG

Degraded

DEGM

Degraded M

DEGTHR
Degraded Threshold

DM

Delay Measurement

DMM

Delay Measurement Message

DMR

Delay Measurement Reply

EC

Ethernet Connection

EFS

Equipment Functional Specification

EPL

Ethernet Private Line

EPLAN

Ethernet Private Local Area Network

ESMC

Ethernet Synchronization Message Channel
ETC

Ethernet Coding

ETH

Ethernet Media Access Control layer network

ETHD
Ethernet MAC layer network Diagnostic function

ETHDe
Ethernet MAC layer network Diagnostic function within MEP

ETHDi
Ethernet MAC layer network Diagnostic function within MIP

ETHG
Ethernet MAC layer network Group

ETH-m
Ethernet MAC layer network - multiplexing
ETHx
Ethernet MAC layer network at level x (x = Path, Tandem Connection, Section)

ETY

Ethernet Physical layer network
ETYn

Ethernet Physical layer network of type n
EVC

Ethernet Virtual Connection

EVPL

Ethernet Virtual Private Line

EVPLAN
Ethernet Virtual Private Local Area Network

EXI

Extension Header Identifier
EXM

Extension Header Mismatch

FCS

Frame Check Sequence

FD

Flow Domain

FD

Frame Delay

FDI

Forward Defect Indication
FDF

Flow Domain Flow

FDV

Frame Delay Variation

FF

Flow Forwarding
FOP

Failure Of Protocol

FP

Flow Point

FPP

Flow Point Pool

FS

Frame Start

FT

Flow Termination

GFP

Generic Framing Procedure

GFP-F

Generic Framing Procedure – Frame mapped

GFP-T

Generic Framing Procedure – Transparent mapped

GS

Good Second

GTCS

Group Traffic Conditioning and Shaping
LAG

Link Aggregation
LAN

Local Area Network

LB

LoopBack

LBM

LoopBack Message

LBR

LoopBack Reply

LCAS

Link Capacity Adjustment Scheme

LCK

Lock

LF

Lost Frames
LFD

Loss of Frame Delineation

LLC

Logical Link Control

LM

Loss Measurement

LMM

Loss Measurement Message

LMR

Loss Measurement Reply

LOC

Loss Of Continuity

LOS

Loss Of Signal

LT

Link Trace

LTM

Link Trace Message

LTR

Link Trace Reply

M_SDU
Media Access Control Service Data Unit

MAC

Media Access Control

MAU

Management Attachment Unit

ME

Maintenance Entity

MEG

Maintenance Entity Group

MEL

Maintenance Entity Group Level

MEP

Maintenance Entity Group End Point

MI

Management Information

MIP

Maintenance Entity Group Intermediate Point

MMG

Mismerge

MP

Manintenance Point

MPLS

Multi-Protocol Label Switching

NNI

Network-to-Network Interface

OAM

Operations, Administration and Maintenance

ODU

Optical Channel Data Unit

ODUj

Optical Channel Data Unit – order j

ODUj-Xv
Virtual concatenated Optical Channel Data Unit – order j

ODUk

Optical Channel Data Unit – order k

ODUk-Xv
Virtual concatenated Optical Channel Data Unit – order k

OO

Out of Order

OPC

OpCode
OPU

Optical channel Payload Unit
OSSP

Organization Specific Slow Protocol

OTH

Optical Transport Hierarchy

OTN

Optical Transport Netowork

OUI

Organizaional Unique Identifier
P

Priority

P11s

1544 kbit/s PDH path layer with synchronous 125 μs frame structure according to [b-ITU-T G.704]
P12s

2048 kbit/s PDH path layer with synchronous 125 μs frame structure according to [b-ITU-T G.704]
P31s

34 368 kbit/s PDH path layer with synchronous 125 μs frame structure according to [ITU-T G.832]

P4s

139 264 kbit/s PDH path layer with synchronous 125 μs frame structure according to [ITU-T G.832]

PA

(Ethernet) Preamble

PCP

Priority Code Point
PCS

Physical Convergence Sublayer

PDH

Plesiochronous Digital Hierarchy

PDU

Protocol Data Unit

PFI

Payload FCS Indicator
PHY

Physical Layer Entity

PI

Replication Information

PLM

Payload Mismatch

PLS

Physical Layer Signalling

PMA

Physical Medium Attachment sublayer

PMD

Physical Medium Dependent sublayer

POH

Path OverHead

PP

Replication Point

PP-OS

Preamble, Payload, and Ordered Set information
PRBS

Pseudo-Random Bit Sequence
PSI

Payload Structure Identifier
PT

Payload Type

PTI

Priority Type Idertifer
QoS

Quality of Service
R-APS

Ring Automatic Protection Switching
REC

Received
RES

Reserved
RDI

Remote Defect Indication

RI

Remote Information

RP

Remote Point

RPR

Resilient Packet Ring

RxFCf

Received Frame Count Far end

RxFCl

Received Frame Count Local

SA

Source Address

SDH

Synchronous Digital Hierarchy

SDU

Service Data Unit

SFD

Start of Frame Delimiter

SL

Synthetic Loss

SLM

Synthetic Loss Message

SLR

Synthetic Loss Reply

SNC

Sub-Network Connection

SSD

Server Signal Degrade

SSF

Server Signal Fail

STM-N

Synchronous Transport Module – level N

svd

saved

TA

Target MAC Address

TCI

Tag Control Information

TCM

Tandem Connection Monitoring

TCP

Trail Connection Point

TCS
Traffic Conditioning and Shaping

TF

Transmitted Frames
TFP

Termination Flow Point

TFPP

Termination Flow Point Pool

TI

Timing Information

TID

Transaction Identifier

TLV

Type, Length Value

TP

Timing Point

TPID

Tag Protocol Identifier

TSD

Trail Signal Degrade

TSF

Trail Signal Fail

TST

Test

TT

Trail Termination

TTL

Time To Live

TxFCf

Transmitted Frame Count Far end

TxFCl

Transmitted Frame Count Local

UNI

User-to-Network Interface

UNL

Unexpected Maintenance Entity Group Level

UNM

Unexpected Maintenance Entity Group End Point
UNP

Unexpected Period

UNPr

Unexpected Priority

UPI

(Generic Framing Procedure) User Payload Identifier

UPM

User Payload Mismatch

VID

Virtual Local Area Network Identifier
VC

Virtual Channel (Asynchronous Transfer Mode) or Virtual Container ( Synchronous Digital Hierarchy)

VCAT

Virtual ConCATenation

VC-m

Lower Order Virtual Channel – order m

VC-n

Higher Order Virtual Channel – order n

VC-n-Xc
Contiguous concatenated Virtual Channel – order n

VC-n-Xv
Virtual concatenated Virtual Channel – order n

VLAN

Virtual Local Area Network

5
Methodology

For the basic methodology to describe transport network functionality of network elements, refer to clause 5 of [ITU-T G.806]. For Ethernet-specific extensions to the methodology, see clause 5 of [ITU-T G.8010]. 

All process descriptions in clauses 6, 8 and 9 use the SDL methodolgy defined in [ITU-T Z.100].

6
Supervision

The generic supervision functions are defined in clause 6 of [ITU-T G.806]. Specific supervision functions for the Ethernet transport network are defined in this clause.

6.1
Defects

6.1.1
Summary of Detection and Clearance conditions for defects

The defect Detection and Clearance conditions are based on events. Occurrence or absence of specific events may detect or clear specific defects. 

In the following: 

Valid means a received value is equal to the value configured via the MI input interface(s).

Invalid means a received value is not equal to the value configured via the MI input interface(s).

The events defined for this Recommendation are summarized in Table 6-1. Events, other than APS or R-APS events, are generated by processes in the ETHx_FT_Sk function as defined in clause 9.2.1.2. APS events are generated by the subnetwork connection protection process as defined in clause 9.1.2. R-APS events are generated by the ring protection control process as defined in clause 9.1.3. These processes define the exact conditions for these events; Table 6-1 only provides a quick overview. 

Table 6-1 – Overview of Events

	Event
	Meaning

	unexpMEL
	Reception of a CCM frame with an invalid MEL value.

	unexpMEG
	Reception of a CCM frame with an invalid MEG value, but with a valid MEL value.

	unexpMEP
	Reception of a CCM frame with an invalid MEP value, but with valid MEL and MEG values.

	unexpPeriod
	Reception of a CCM frame with an invalid Periodicity value, but with valid MEL, MEG and MEP values.

	unexpPriority
	Reception of a CCM frame with an invalid Priority value, but with valid MEL, MEG and MEP values.

	expCCM[i]
	Reception of a CCM frame with valid MEL, MEG, MEP and Periodicity values, where a MEP is indexed by “i”.

	RDI[i]=x
	Reception of a CCM frame for a MEP indexed by ‘i’ with the RDI flag set to x; where x=0 (remote defect clear) and x=1 (remote defect set).  

	LCK
	Reception of a LCK frame.

	AIS
	Reception of an AIS frame.

	CSF-LOS
	Reception of a CSF frame that indicates Client Loss of Signal.

	CSF-FDI
	Reception of a CSF frame that indicates Client Forward Defect Indication.

	CSF-RDI
	Reception of a CSF frame that indicates Client Reverse Defect Indication.

	BS
	Bad Second, a second in which the Lost Frame Ratio exceeds the Degraded Threshold (MI_LM_DEGTHR). 

	expAPS
	Reception of a valid APS frame.

	expRAPS
	Reception of a valid R-APS frame.

	APSw
	Reception of an APS frame from the working transport entity.

	APSb
	Reception of an APS frame with incompatible “B” bit value.

	APSr
	Reception of an APS frame with incompatible “Requested Signal” value.

	RAPSpm
	Reception by the RPL Owner of an R-APS(NR, RB) frame with a Node ID that differs from its own.


The occurrence or absence of these events may detect or clear a defect. An overview of the conditions is given in Table 6-2. The notation “#event=x (K*period)” is used to indicate the occurrence of x events within the period as specified between the brackets; 3.25≤K≤3.5. 

Table 6-2 gives a quick overview of the detection and clearance conditions for the various defects; in the following clauses 6.1.2, 6.1.3, 6.1.4 and 6.1.5 the precise conditions are specified using SDL diagrams. 

Table 6-2 – Overview of Defect Detection and Clearance

	Defect
	Defect Detection
	Defect Clearance

	dLOC[]  
	#expCCM[] == 0 (K*MI_CC_Period)
	expCCM[]

	dUNL
	unexpMEL
	#unexpMEL == 0 (K*CCM_Period)

	dUNPr
	unexpPriority
	#unexpPriority == 0 (K*CCM_Period)

	dMMG
	unexpMEG
	#unexpMEG == 0 (K*CCM_Period)

	dUNM
	unexpMEP
	#unexpMEP == 0 (K*CCM_Period)

	dUNP
	unexpPeriod
	#unexpPeriod == 0 (K*CCM_Period)

	dRDI[]
	RDI[] == 1
	RDI[] == 0

	dAIS
	AIS
	#AIS == 0 (K*AIS_Period)

	dLCK
	LCK
	#LCK == 0 (K*LCK Period)

	dCSF-LOS
	CSF-LOS
	#CSF-LOS == 0 
(K*CSF_Period or CSF-DCI)

	dCSF-FDI
	CSF-FDI
	#CSF-FDI == 0 
(K*CSF_Period or CSF-DCI)

	dCSF-RDI
	CSF-RDI
	#CSF-RDI == 0 
(K*CSF_Period or CSF-DCI)

	dDEG
	#BadSecond == 1 
(MI_LM_DEGM*1second)
	#BadSecond == 0 
(MI_LM_M*1second)

	dFOP-CM
	APSw 
	#APSw == 0 (K*normal APS Period)

	dFOP-PM
	APSb or RAPSpm
	expAPS or #RAPSpm == 0 
(K*long R-APS frame interval)

	dFOP-NR
	APSr continues more than 50ms
	expAPS

	dFOP-TO
	#expAPS==0 (K * long APS interval) or #expRAPS==0 (K * long R-APS frame interval)
	expAPS or expRAPS


Note that for the case of CCM_Period, AIS_Period, LCK_Period, and CSF_Period the values for the CCM, AIS, LCK, and CSF periods are based on the periodicity as indicated in the CCM, AIS, LCK, or CSF frame that triggered the timer to be started. 

For dUNL, dMMG, dUNM, dUNP, dUNPr there may be multiple frames received detecting the same defect but carrying a different periodicity. In that case the longest received period will be used, see the detailed descriptions below. 

6.1.2
Continuity Supervision
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Figure 6-1 – dLOC[] detection and clearance process

6.1.2.1
Loss of Continuity defect (dLOC[])

The Loss of Continuity defect is calculated at the ETH layer. It monitors the presence of continuity in ETH trails. 
Its detection and clearance are defined in Figure 6-1. The Timer in Figure 6-1 is set to K*MI_CC_Period, where MI_CC_Period corresponds to the configured CCM Period and K is such that 3.25≤K≤3.5. 
NOTE - The dLOC entry/exit criteria defined in this version of the Recommendation are different that those defined in previous versions of this Recommendation (i.e., G.8021(2007) and G.8021(2010)), because they have been aligned those defined in clause 21 of [IEEE 802.1Q]. This change impacts only the conditions for defect detection and therefore does not affect interoperability between equipment compliant with this version of the Recommendation (and/or with clause 21 of [IEEE 802.1Q]) and those compliant with older version of this Recommendation.
6.1.3
Connectivity Supervision
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Figure 6-2 – Defect detection and clearance process for dUNL, dMMG, dUNM, dUNP, dUNPr, dAIS, dLCK, and dCSF
Figure 6-2 shows a generic state diagram that is used to detect and clear the dUNL, dMMG, dUNM, dUNP, dUNPr, dAIS, dLCK defects. In this diagram <Defect> needs to be replaced with the specific defect and <Event> with the specific event related to this defect. Furthermore, in Figure 6-2, 3.25≤K≤3.5. 

Figure 6-2 shows that the Timer is set based on the last received period value, unless an earlier CCM frame triggering <Event> (and therefore the detection of <Defect>) carried a longer period. As a consequence clearing certain defects may take more time than necessary.

6.1.3.1
Unexpected MEL defect (dUNL)

The Unexpected MEL defect is calculated at the ETH layer. It monitors the connectivity in a Maintenance Entity Group.

Its detection and clearance are defined Figure 6-2. The <Defect> in Figure 6-2 is dUNL. The <Event> in Figure 6-2 is the unexpMEL event (generated by the CCM reception process in clause 8.1.7.3) and the Period is the Period carried in the CCM frame that triggered this event, unless an earlier CCM frame triggering an unexpMEL event carried a greater period. 

6.1.3.2
Mismerge defect (dMMG)

The Mismerge defect is calculated at the ETH layer. It monitors the connectivity in a Maintenance Entity Group.

Its detection and clearance are defined in Figure 6-2. The <Defect> in Figure 6-2 is dMMG. The <Event> in Figure 6-2 is the unexpMEG event (as generated by the CCM reception process in clause 8.1.7.3) and the Period is the Period carried in the CCM frame that triggered the event, unless an earlier CCM frame triggering an unexpMEG event carried a greater period. 

6.1.3.3
Unexpected MEP defect (dUNM)

The Unexpected MEP defect is calculated at the ETH layer. It monitors the connectivity in a Maintenance Entity Group.

Its detection and clearance are defined in Figure 6-2. The <Defect> in Figure 6-2 is dUNM. The <Event> in Figure 6-2 is the unexpMEP event (as generated by the CCM reception process in clause 8.1.7.3) and the Period is the Period carried in the CCM frame that triggered the event, unless an earlier CCM frame triggering an unexpMEP event carried a greater period. 

6.1.3.4
Degraded Signal defect (dDEG)

This defect is only defined for point-to-point ETH connections.
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Figure 6-3 – dDEG detection and clearance process

The Degraded Signal defect is calculated at the ETH layer. It monitors the connectivity of an ETH Trail. 

Its detection and clearance are defined in Figure 6-3. 

Every second the state machine receives the one-second counters for near end received and transmitted frames and determines whether the second was a Bad Second. The defect is detected if there are MI_LM_DEGM consecutive Bad Seconds and cleared if there are MI_LM_M consecutive Good Seconds. 

In order to declare a Bad Second the number of transmitted frames must exceed a threshold (MI_LM_TFMIN). Furthermore, if the Frame Loss Ratio (lost frames/transmitted frames) is greater than MI_LM_DEGTHR, a Bad Second is declared 

6.1.4
Protocol Supervision

6.1.4.1
Unexpected Periodicity defect (dUNP)

The Unexpected Periodicity defect is calculated at the ETH layer. It detects the configuration of different periodicities at different MEPs belonging to the same MEG.

Its detection and clearance are defined in Figure 6-2. The <Defect> in Figure 6-2 is dUNP. The <Event> in Figure 6-2 is the unexpPeriod event (as generated by the CCM reception process in clause 8.1.7.3) and the Period is the Period carried in the CCM frame that triggered the event, unless an earlier CCM frame triggering an unexpPeriod event carried a greater period. 
6.1.4.2
Unexpected Priority defect (dUNPr)

The Unexpected Priority defect is calculated at the ETH layer. It detects the configuration of different Priorities for CCM at different MEPs belonging to the same MEG.  

Its detection and clearance are defined in Figure 6-2. The <Defect> in Figure 6-2 is dUNPr. The <Event> in Figure 6-2 is the unexpPriority event (as generated by the CCM reception process in clause 8.1.7.3) and the Period is the Period carried in the CCM frame that triggered the event, unless an earlier CCM frame triggering an unexpPriority event carried a greater period. 

6.1.4.3
Protection protocol supervision

6.1.4.3.1
Linear or Ring protection Failure of Protocol Provisioning Mismatch (dFOP-PM)
The Failure of Protocol Provisioning Mismatch defect is calculated at the ETH layer. It monitors provisioning mismatch of:

· Linear protection by comparing B bits of the transmitted and the received APS protocol, or

· Ring protection by comparing the Node ID of the RPL Owner and the Node ID in a received R-APS(NR, RB) frame.

Its detection and clearance are defined in Table 6-2. dFOP-PM is detected:

· In the case of linear protection, on receipt of an APSb event and cleared on receipt of an expAPS event. These events are generated by the subnetwork connection protection process (clause 9.1.2), or
· In the case of ring protection, on receipt of an RAPSpm event and cleared on receipt of no RAPSpm event during K times the long R-APS frame intervals defined in [ITU-T G.8032], where 3.25≤K≤3.5.  These events are generated by the ring protection control process (clause 9.1.3).

6.1.4.3.2
Linear protection Failure of Protocol No Response (dFOP-NR)
The Failure of Protocol No Response defect is calculated at the ETH layer. It monitors incompletion of protection switching by comparing the transmitted “Requested Signal” values and the received “Requested Signal” in the APS protocol.

Its detection and clearance are defined in Table 6-2. dFOP-NR is detected when APSr event continues more than 50ms and it is cleared on receipt of the expAPS event. These events are generated by the subnetwork connection protection process (clause 9.1.2). This defect is not applied in the case of unidirectional protection switching operation.
6.1.4.3.3
Linear protection Failure of Protocol Configuration Mismatch (dFOP-CM)
The Failure of Protocol Configuration Mismatch defect is calculated at the ETH layer. It monitors working and protection configuration mismatch by detecting the reception of APS protocol from the working transport entity.

Its detection and clearance are defined in Table 6-2. dFOP-CM is detected on receipt of an APSw events and cleared on receipt of no APSw event during K times the normal APS transmission period defined in [ITU-T G.8031], where 3.25≤K≤3.5. These events are generated by the subnetwork connection protection process (clause 9.1.2).
6.1.4.3.4
Linear or Ring protection Failure of Protocol Time Out (dFOP-TO)

The Failure of Protocol Time Out defect is calculated at the ETH layer. It monitors time out defect of:

· Linear protection by detecting the prolonged absence of expected APS frames, or
· Ring protection by detecting the prolonged absence of expected R-APS frames.

Its detection and clearance are defined in Table 6-2.

In the case of linear protection, dFOP-TO is detected on receipt of no expAPS event during K times the long APS interval defined in G.8031/Y.1342 (where K >= 3.5) when neither dLOC nor CI_SSF are reported. dFOP-TO is cleared on receipt of an expAPS event. These events are generated by the subnetwork connection protection process (clause 9.1.2).

In the case of ring protection, dFOP-TO is detected on receipt of no expRAPS event during K times the long R-APS frame intervals defined in G.8032/Y.1344 (where K>=3.5) on a ring port reporting no link level failure and neither administratively disabled, nor blocked from R-APS Message reception. dFOP-TO is cleared on receipt of an expRAPS event. These events are generated by the ring protection control process (clause 9.1.3).
6.1.5
Maintenance Signal Supervision

6.1.5.1
Remote Defect Indicator defect (dRDI[])

The Remote Defect Indicator defect is calculated at the ETH layer. It monitors the presence of an RDI maintenance signal.

dRDI is detected on receipt of the RDI[]=1 event and cleared on receipt of the RDI[]=0 event. These events are generated by the CCM reception process. 

6.1.5.2
Alarm Indication Signal defect (dAIS)

The Alarm Indication Signal defect is calculated at the ETH layer. It monitors the presence of an AIS maintenance signal.

Its detection and clearance conditions are defined in Figure 6-2. The <Defect> in Figure 6-2 is dAIS. The <Event> in Figure 6-2 is the AIS event (as generated by the AIS reception process in clause 9.2.1.2) and the Period is the Period carried in the AIS frame that triggered the event, unless an earlier AIS frame carried a greater period. 

6.1.5.3
Locked defect (dLCK)

The Locked defect is calculated at the ETH layer. It monitors the presence of a Locked maintenance signal.

Its detection and clearance conditions are defined in Figure 6-2. The <Defect> in Figure 6-2 is dLCK. The <Event> in Figure 6-2 is the LCK event (as generated by the LCK reception process in clause 9.2.1.2) and the Period is the Period carried in the LCK frame that triggered the event, unless an earlier LCK frame carried a greater period. 
6.1.5.4 Client Signal Fail defect (dCSF)
The CSF (CSF-LOS, CSF-FDI, and CSF-RDI) defect is calculated at the ETH layer. It monitors the presence of a CSF maintenance signal.
Its detection and clearance conditions are defined in Figure 6-2. The <Defect> in Figure 6-2 is dCSF-LOS, dCSF-FDI, or dCSF-RDI. The <Event> in Figure 6-2 is the CSF event (as generated by the CSF reception process in clause 9.2.1.2) and the Period is the Period carried in the CSF frame that triggered the event, unless an earlier CSF frame carried a greater period. 
The <Clear_event> in Figure 6-2 is the CSF event which indicates Detect Clearance Indication (DCI). 
6.2
Consequent actions

For consequent actions, see [ITU-T G.806] and the specific atomic functions.

6.3
Defect correlations

For the defect correlations, see the specific atomic functions.

6.4
Performance filters

6.4.1
One-second performance monitoring filters associated with counts

For further study.

6.4.2
Performance monitoring filters associated with gauges

For further study.

7
Information flow across reference points

See clause 7 of [ITU-T G.806] for the generic description of information flow. For Ethernet-specific information flow, see the description of the functions in clause 9.

8
Generic processes for Ethernet Equipment

This clause defines processes specific to equipment supporting the Ethernet transport network.

8.1
OAM related processes

8.1.1
OAM MEL Filter
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Figure 8-1 – OAM MEL Filter process

The OAM MEL Filter process filters incoming ETH OAM traffic units based on the MEL they carry. All traffic units with an MEL equal to or lower than the MEL provided by the MI_MEL signal are discarded. 

The criteria for filtering depend on the values of the fields in the M_SDU field of the ETH_CI_D signal.

The ETH OAM Traffic Unit and complementing P and DE signals will be filtered, if

· Length/Type field = OAM Ethertype (89-02 as defined in clause 10 of [ITU-T Y.1731]), and

· MEL field <= MI_MEL

Figure 8-1 shows the OAM MEL Filter Process for multiple ports. Figure 8-2 shows the filtering process that is running per port. 
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Figure 8-2 – OAM MEL Filter behaviour

8.1.2
LCK Generation Process
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Figure 8-3 – LCK Generation process

The LCK Generation Process generates ETH_CI traffic units where the ETH_CI_D signal contains the LCK signal. Figure 8-4 defines the behaviour of the LCK Generation Process.
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Figure 8-4 – LCK Generation behaviour 

The LCK Generation Process continuously generates LCK Traffic Units; every time the Timer expires a LCK Traffic Unit will be generated. The period between two consecutive traffic units is determined by the MI_LCK_Period input signal. Allowed values are defined in Table 8-1.

Table 8-1 – LCK period values

	3-bits
	Period Value
	Comments

	000-011
	Invalid Value
	Invalid value for LCK PDUs

	100
	1s
	1 frame per second

	101
	Invalid Value
	Invalid value for LCK PDUs

	110
	1 min
	1 frame per minute

	111
	Invalid Value
	Invalid value for LCK PDUs


The ETH_CI_D signal contains a Source and Destination address field and an M_SDU field. The format of the M_SDU field for LCK traffic units is defined in clauses 9.1 and 9.8 of [ITU-T Y.1731]. The MEL in the M_SDU field is determined by the MI_Client_MEL input parameter. 

The values of the Source and Destination address fields in the ETH_CI_D signal are determined by the Local MAC address (SA) and the Multicast class 1 DA as described in [ITU-T Y.1731] (DA). The value of the Multicast class 1 DA is 01-80-C2-00-00-3x, where x is equal to MI_Client_MEL as defined in clause 10.1 of [ITU-T Y.1731]. The value of MI_MEP_MAC should be a valid unicast MAC address. 

The periodicity (as defined by MI_LCK_Period) is encoded in the three least significant bits of the Flags field in the LCK PDU using the values from Table 8-1.

The LCK (SA, Client_MEL, Period) function generates a LCK Traffic Unit with the SA, MEL and Period fields defined by the values of the parameters. Figure 8-5 below shows the ETH_CI_D signal format, resulting from the function call from Figure 8-4:
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Figure 8-5 – LCK Traffic Unit

The value of the ETH_CI_P signal associated with the generated LCK traffic units is defined by the MI_LCK_Pri input parameter; valid values are in the range 0-7.

The value of the ETH_CI_DE signal associated with the generated LCK traffic units is always set to drop ineligible. 

8.1.3
Selector Process
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Figure 8-6 – Selector process

The Selector process selects the valid signal from the input of the normal ETH_CI signal or the ETH_CI LCK signal (as generated by the LCK Generation process). The normal signal is blocked if MI_Admin_State is LOCKED. The behaviour is defined in Figure 8-7.

[image: image10.emf]Normal

Locked

D(D),P(P),DE(DE)

Normal.D(D),

Normal.P(P),

Normal.DE(DE)

MI_Admin_State(State)

D(D),P(P),DE(DE)

Lock.D(D),

Lock.P(P),

Lock.DE(DE)

Normal.D(D),

Normal.P(P),

Normal.DE(DE)

MI_Admin_State(State)

Lock.D(D),

Lock.P(P),

Lock.DE(DE)

State=Locked?

State=Normal?

N

Y

Y

N


Figure 8-7 – Selector Behaviour

8.1.4
AIS Insert Process
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Figure 8-8 – AIS Insert process

Figure 8-8 shows the AIS Insert Process Symbol and Figure 8-9 defines the behaviour. If the aAIS signal is true, the AIS Insert process continuously generates ETH_CI traffic units where the ETH_CI_D signal contains the AIS signal until the aAIS signal is false. The generated AIS traffic units are inserted in the incoming stream, i.e., the output stream contains the incoming traffic units and the generated AIS traffic units.
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Figure 8-9 – AIS Insert behaviour

The period between consecutive AIS traffic units is determined by the MI_AIS_Period parameter. Allowed values are once per second and once per minute; the encoding of these values is defined in Table 8-2. Note that these encoding are the same as for the LCK generation process. 

Table 8-2 – AIS period values

	3-bits
	Period Value
	Comments

	000-011
	Invalid Value
	Invalid value for AIS PDUs

	100
	1s
	1 frame per second

	101
	Invalid Value
	Invalid value for AIS PDUs

	110
	1 min
	1 frame per minute

	111
	Invalid Value
	Invalid value for AIS PDUs


The ETH_CI_D signal contains a Source and Destination address field and an M_SDU field. The format of the M_SDU field for AIS traffic units is defined in clauses 9.1 and 9.7 of [ITU-T Y.1731]. The MEL in the M_SDU field is determined by the MI_Client_MEL input parameter. 

The values of the Source and Destination address fields in the ETH_CI_D signal are determined by the Local MAC address (SA) and the Multicast class 1 DA as described in [ITU-T Y.1731] (DA). The value of the Multicast class 1 DA is 01-80-C2-00-00-3x, where x is equal to MI_Client_MEL as defined in clause 10.1 of [ITU-T Y.1731]. The value of MI_MEP_MAC should be a valid unicast MAC address. 

The periodicity (as defined by MI_AIS_Period) is encoded in the three least significant bits of the Flags field in the AIS PDU using the values from Table 8-2.

The AIS (SA, Client_MEL, Period) function generates an AIS Traffic Unit with the SA, MEL and Period fields defined by the values of the parameters. Figure 8-10 below shows the ETH_CI_D signal format resulting from the function call from Figure 8-9:

OAM=AIS(
MI_MEP_MAC, 
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MI_AIS_Period
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Figure 8-10 – AIS Traffic Unit

The value of the ETH_CI_P signal associated with the generated AIS traffic units is defined by the MI_AIS_Pri input parameter; valid values are in the range 0-7.

The value of the ETH_CI_DE signal associated with the generated AIS traffic units is always set to drop ineligible. 
8.1.5
APS Insert Process 
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Figure 8-11 – APS Insert process

The APS Insert process encodes the ETH_CI_APS (APS input signal in Figure 8-11) signal into the ETH_CI_D signal of an ETH_CI traffic unit; the resulting APS traffic unit is inserted into the stream of incoming traffic units, i.e., the outgoing stream consists of the incoming traffic units and the inserted APS traffic units. The ETH_CI_APS signal contains the APS Specific Information as defined in clause 11.1 of [ITU-T G.8031] (APS Format). The behaviour is defined in Figure 8-12.
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Figure 8-12 – APS Insert Behaviour

The ETH_CI_D signal contains a Source and Destination address field and an M_SDU field. The format of the M_SDU field for APS traffic units is defined in clauses 9.1 and 9.10 of [ITU-T Y.1731]. The MEL in the M_SDU field is determined by the MI_MEL input parameter. 

The values of the Source and Destination address fields in the ETH_CI_D signal are determined by the Local MAC address (SA) and the Multicast class 1 DA as described in [ITU-T Y.1731] (DA). The value of the Multicast class 1 DA is 01-80-C2-00-00-3x, where x is equal to MI_MEL as defined in clause 10.1 of [ITU-T Y.1731]. The value of MI_MEP_MAC should be a valid unicast MAC address. 
The APS(MEL, APS) function generates an APS Traffic Unit with the MEL and APS fields defined by the values of the parameters. Figure 8-13 below shows the ETH_CI_D signal format, resulting from the function call from Figure 8-12:
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Figure 8-13 – APS Traffic Unit

The value of the ETH_CI_P signal associated with the generated APS traffic units is determined by the MI_APS_Pri input parameter; valid values are in the range 0-7.  

The value of the ETH_CI_DE signal associated with the generated APS traffic units is always set to drop ineligible.  
8.1.6
APS Extract Process
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Figure 8-14 – APS Extract process

The APS Extract process extracts ETH_CI_APS signals from the incoming stream of ETH_CI traffic units. ETH_CI_APS signals are only extracted if they belong to the MEL as defined by the MI_MEL input parameter. 

If an incoming traffic unit is an APS traffic unit belonging to the MEL defined by MI_MEL, the ETH_CI_APS signal will be extracted from this traffic unit and the traffic unit will be filtered. The ETH_CI_APS is the APS Specific Information contained in the received Traffic Unit. All other traffic units will be transparently forwarded. The encoding of the ETH_CI_D signal for APS frames is defined in clause 9.10 of [ITU-T Y.1731]. 

The criteria for filtering are based on the values of the fields within the M_SDU field of the ETH_CI_D signal:

•
length/type field equals the OAM Ethertype (89-02), and

•
MEL field equals MI_MEL, and 

•
OAM type equals APS (39), as defined in clause 9.1 of [ITU-T Y.1731].

This is defined in Figure 8-15. The function APS(D) extracts the APS specific information from the received Traffic Unit. 
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Figure 8-15 – APS Extract Behaviour

8.1.7
Continuity Check (CC) Processes

8.1.7.1
Overview
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Figure 8-16 – Overview of Processes involved with Continuity Check 
Figure 8-16 gives an overview of the processes involved in the CC. The CCM Generation process generates the CCM frames if MI_CC_Enable is true. The MI_MEG_ID and MI_MEP_ID are the MEG and MEP IDs of the MEP itself and these IDs are carried in the CCM frame. The CCM frames are generated with a periodicity determined by MI_CC_Period and with a priority determined by MI_CC_Pri. If MI_LM_Enable is set the CCM frames will also carry Loss Measurement information. The Generated CCM Traffic Units are inserted in the flow of ETH_CI by the OAM MEP Source Insertion Process. 

The CCM frames pass transparently through MIPs. 

The OAM MEP Sink Extraction process extracts the CCM Unit from the flow of ETH_CI and the CCM Reception process processes the received CCM Traffic Unit. It compares the received MEG ID with the provisioned MI_MEG_ID, and the received MEP_ID with the provisioned MI_PeerMEP_ID[], that contains the list of all expected peer MEPs in the MEG. Based on the processing of this frame one or more events may be generated that serve as input for the Defect Detection Process (not shown in Figure 8-16). 

RDI information is carried in the CCM frame based upon the RI_CC_RDI input. It is extracted in the CCM Reception Process. 

8.1.7.2
CCM Generation Process
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Figure 8-17 – CCM Generation Behaviour

Figure 8-17 shows the state diagram for the CCM Generation process. The CCM Generation Process can be enabled and disabled using the MI_CC_Enable signal, where the default value is FALSE. 

In the Enabled state there are two main parts:

· Counter part that is triggered by the receipt of a data frame;

· CCM Generation part that is triggered by the expiration of the timer.

Counter Part

The counter part of the CCM Generation process forwards data frames and counts all ETH_AI frames with Priority (P) (i.e. ETH_AI_P) equal to MI_CC_Pri and Drop Eligibility (DE) (i.e. ETH_AI_DE) equal to <false (0)>. The D, P and DE signals are forwarded unchanged as indicated by the dotted lines in Figure 8-16.

CCM Generation Part

The CCM Generation part of the CCM Generation process generates and transmits an OAM frame every MI_CC_Period. The allowed values for MI_CC_Period are defined in Table 8-3.

Table 8-3 – CCM Period Values 
	3-bits
	Period Value
	Comments

	000
	Invalid Value
	Invalid value for CCM PDUs

	001
	3.33ms
	300 frames per second

	010
	10ms
	100 frames per second

	011
	100ms
	10 frames per second

	100
	1s
	1 frame per second

	101
	10s
	6 frames per minute

	110
	1 min
	1 frame per minute

	111
	10 min
	6 frame per hour


The ETH_CI_D signal contains a Source and Destination address field and an M_SDU field. The format of the M_SDU field is defined in clauses 9.1 and 9.8 of [ITU-T Y.1731]. 

The value of the Destination address field (DA) is the Multicast class 1 DA as described in [ITU-T Y.1731]. The value of the Multicast class 1 DA is 01-80-C2-00-00-3x, where x is equal to MI_MEL as defined in clause 10.1 of [ITU-T Y.1731]. This x will be filled in later by the OAM MEP insertion process and will be undefined in this process. 
The value of the Source Address will be filled in later by the OAM MEP insertion process and will be undefined in this process. 

The M_SDU field contains a CCM PDU. Figure 8-18 below shows the M_SDU field where the CCM specific values are shown. It shows the Traffic Unit resulting from the function call in Figure 8-17 (CCM Generation Part):

OAM=CCM(
  MI_CC_MEG,
  MI_CC_MEP,
  MI_CC_Period,
  RI_CC_RDI,
  TxFCl,
  RI_CC_RxFCl,
  RI_CC_TxFCf
)  

, or if !MI_LM_Enable: 

OAM=CCM(
  MI_CC_MEG,
  MI_CC_MEP,
  MI_CC_Period,
  RI_CC_RDI,
  0,
  0,
  0
) 

The value of the ETH_CI_P signal associated with the generated CCM traffic unit is defined by the MI_CC_Pri input parameter; valid values are in the range 0-7.

The value of the ETH_CI_DE signal associated with the generated CCM traffic units is always set to drop ineligible (0). 
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Figure 8-18 – CCM Traffic Unit

8.1.7.3
CCM Reception Process
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Figure 8-19 – CCM Reception behaviour

The CCM reception process consists of two parts: Counter and CCM Reception. 

Counter Part

The counter part of the CCM reception process receives ETH_CI, extracts pro-active ETH OAM frames and forwards remainder as ETH_AI traffic units. It counts this number of ETH_AI traffic units that have priority (P) (i.e. ETH_AI_P) equal to MI_CC_Pri and Drop Eligibility (DE) (i.e. ETH_AI_DE) equal to <false (0)>. 

 CCM Reception Part

The CCM reception part of the CCM reception process processes CCM OAM frames. It checks the various fields of the frames and generates the corresponding events (as defined in clause 6). If the Version, MEL, MEG and MEP are valid the values of the frame counters are sent to the performance counter process. 

Note that unexpPriority and unexpPeriod events do not prevent the CCM from being processed, since the MEL, MEG and MEP are as expected. 

8.1.7.4
ProActive Loss Measurement (LMp) Process

This process calculates the number of transmitted and lost frames per second.  
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Figure 8-20 – LM Process behaviour
It processes the TxFCf, RxFCb, TxFCb, RxFCl values and determines the number of transmitted frames and the number of lost frames. Every second the number of transmitted and lost frames, in that second, are sent to the Performance Monitoring and Defect Generation Processes. 

8.1.8
Loopback (LB) Processes

8.1.8.1
Overview

Figure 8-21 shows the different processes inside MEPs and MIPs that are involved in the Loopback Protocol.

The MEP OnDemand-OAM Source insertion process is defined in clause 9.4.1.1, the MEP OnDemand-OAM Sink extraction process in clause 9.4.1.2, the MIP OnDemand-OAM Sink Extraction process in clause 9.4.2.2, and the MIP OnDemand-OAM Source insertion process in clause 9.4.2.1. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D Traffic Units and the complementing P and D signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values in the OAM Traffic Units. The other processes are defined into this clause.
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Figure 8-21 – Overview of Processes involved with Loopback

The LBM Protocol is controlled by the LB Control Process. There are three possible MI signals that can trigger the LB protocol:

· MI_LB_Discover( P): To discover the MAC addresses of the other MEPs in the same MEG;

· MI_LB_Series(DA,DE,P,N,Length,Period): To send a series of N LB messages to a particular MEP/MIP; these LB messages are generated every ‘Period’.
· MI_LB_Test(DA,DE,P,Pattern,Length,Period): To send a series of LB messages carrying a Test Pattern to a particular MEP; these LB messages are generated every ‘Period’ until the MI_LB_Test_Terminate signal is received. 

The details are described later in this clause. 

The LBM Control Protocol triggers the LBM Generation Process to generate an LBM Traffic Unit that is received and forwarded by MIPs and received by MEPs in the same MEG. The LBM Control process controls the number of LBM generated and the period between consecutive LBM Traffic Units. 

The LBM MIP/MEP reception processes process the received LBM Traffic Units and as a result the LBR Generation Process may generate an LBR Traffic Unit in response. The LBR Reception Process receives and processes the LBR Traffic Units. The Source Address (SA), Transaction ID (TID) and TLV values are given to the LBM Control Process. 

The LBM Control Process processes these received values to determine the result of the requested LB operation. The result is communicated back using the following MI signals:

· MI_LB_Discover_Result(MACs): Reports back the MACs that have responded with a valid LBR. 

· MI_LB_Series_Result(REC,OO): Reports back the total number of received LBR frames (REC), as well as counts of specific errors:

· OO: Number of LBR Traffic Units that were received out of order (OO). 

· MI_LB_Test_Result(Sent, REC, CRC, BER, OO): Reports back the total number of LBM frames sent (Sent) as well as the total number of LBR frames received (REC); for the latter counts of specific errors are reported:

· CRC: Number of LBR frames where the CRC in the pattern failed.
· BER: Number of LBR frames where there was a bit error in the pattern.
· OO: Number of LBR frames that were received out of order.
The detailed functionality of the various processes is defined below. 

8.1.8.2
LB Control Process

The LB Control Process can receive several MI signals to trigger the LB protocol; this is shown in Figure 8-22.
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Figure 8-22 –LB Control Behaviour

Figure 8-23 shows the behaviour if the MI_LB_Discover signal is received.

Figure 8-24 shows the behaviour if the MI_LB_Series signal is received.

Figure 8-25 shows the behaviour if the MI_LB_Test signal is received. 

NOTE – The state machine (Figure 8-22 combined with Figures 8-23, 8-24 and 8-25) shows that the LB_Discover, LB_Series and LB_Test actions are mutually exclusive. Furthermore, a ‘new’ instantiation of any of these actions cannot be initiated until the current action is finished. 

MI_LB_Discover behaviour
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Figure 8-23 – LB Control Discover Behaviour

Figure 8-23 shows the behaviour when an MI_LB_Discover(DE,P) signal is received. 

First the LBM Generation process is requested to generate an LBM frame by sending the LBM(01-80-c2-00-00-3x, P, 0, Null, TID) signal to the LBM Generation process. The DA is set to the Class 1 Multicast Address as defined in [ITU-T Y.1731], where the last part (x) will be overwritten with MEL by the OAM MEP insertion process. There are no TLVs included, hence the TLV parameter is set to Null. 

After triggering the transmission of the LBM frame, received RI_LBR is processed for 5 seconds (as governed by the timer). Every time the RI_LBR(SA,rTLV,TID) is received the SA is stored in the set of received MACs. 

After 5 seconds all the received SAs are reported back using the MI_LB_Discover_Result(MACs) signal and the LBM Control process returns to the Init state. 

MI_LB_Series behaviour
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Figure 8-24 – LB Control Series Behaviour

Figure 8-24 defines the behaviour of the LB Control Process after the reception of the MI_LB_Series(DA,DE,P,N,Length,Period) signal. 

The TLV field of the LBM frames is determined by the Generate(Length) function. Generate(Length) generates a Data TLV with length ‘Length’ of arbitrary bit pattern  to be included in the LBM frame.

After the receipt of the MI_LB_Series signal, the LBM Generation Process is requested N times to generate an LBM frame (where Period determines the interval between two LBM frames); this is done by issuing the LBM(DA,P,DE,TLV,TID) signal. 

Whenever an RI_LBR(SA, rTLV, TID) signal is received, the number of received LBR frames is increased (REC++). If the TID value from the RI_LBR signal does not consecutively follow the last received TID value, the counter for out of order frames is incremented by one (OO++). 

Five seconds after sending the last LBM frame (i.e., after sending the Nth LBM frame) the REC and OO counters are reported back in the MI_LB_Series_Result signal. 

MI_LB_Test Behaviour
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Figure 8-25 – LB Control Test Behaviour

Figure 8-25 defines the behaviour of the LB Control Process after the reception of the MI_LB_Test(DA,DE,P,Pattern,Length,Period) signal. 

Every Period an LBM frame is generated, until the MI_LB_Test_Terminate signal is received. Five seconds after receiving this MI_LB_Test_Terminate signal the Sent, REC, CRC, BER and OO counters are reported back using the MI_LB_Test_Result signal. 

The TLV field of the LBM frames is determined by the Generate(Pattern, Length) function. For Pattern the following types are defined:

0: “Null signal without CRC-32”

1: “Null signal with CRC-32”

2: “PRBS 2^31-1 without CRC-32”

3: “PRBS 2^31-1 with CRC-32”

The Length parameter determines the length of the generated TLV. 

Generate(Pattern, Length) generates a Test TLV with length ‘Length’ to be included in the LBM frame. Therefore, this TLV is passed using the LBM(DA,P,DE,TLV,TID) signal to the LBM Generation Process.

Upon receipt of the RI_LBR(SA,rTLV,TID) remote information the received LBR counter is incremented by one (REC++). 
If the TLV contains a CRC (Pattern 1 or 3) the CRC counter is incremented by one if the CRC check fails. 
The function Check(Pattern, TLV) compares the received Test Pattern with the expected Test Pattern. If there is a mismatch, the BER counter is increased.
If the TID value from the RI_LBR signal does not follow the last received TID value, the counter for out of order frames is incremented by one (OO++). 

8.1.8.3
LBM Generation Process
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Figure 8-26 – LBM Generation Behaviour

The LBM Generation process generates a single LBM OAM Traffic Unit (ETH_CI_D) complemented with ETH_CI_P and ETH_CI_DE signals on receipt of the LBM(DA,P,DE,TLV,TID) signal. The process is defined in Figure 8-26.

From the LBM(DA,P,DE,TLV,TID) signal the P field determines the value of the ETH_CI_P signal, the DE field determines the value of the ETH_CI_DE signal. The DA, TLV and TID fields are used in the construction of the ETH_CI_D signal that carries the LBM Traffic Unit. 

The format of the LBM Traffic Unit and the values are shown in Figure 8-27. 

The values of the SA and MEL fields will be determined by the OAM MEP insertion process, as well as the last part (x) of the DA if the DA is set to 01-80-c2-00-00-3x.
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Figure 8-27 – LBM Traffic Unit

8.1.8.4
MIP LBM Reception Process
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Figure 8-28 – MIP LBM Reception Behaviour

The MIP LBM Reception Process receives ETH_CI Traffic Units containing LBM PDUs complemented by the P and D signals. 

The behaviour is defined in Figure 8-28. If the DA field in the Traffic Unit (D signal) equals the Local MAC address (MI_MIP_MAC), the Loopback is intended for this MIP and the information is forwarded to the Loopback Reply Generation Process using the RI_LBM(D,P,DE) signal; otherwise the information is ignored and no action is taken. 

Note that a MIP therefore does not reply to LBM Traffic Units that have a class 1 Multicast address.

8.1.8.5
MEP LBM Reception Process
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Figure 8-29 – MEP LBM Reception Behaviour

The MEP LBM Reception Process receives ETH_CI Traffic Units containing LBM PDUs complemented by the P and D signals. 

The behaviour is defined  in Figure 8-29. 

If the DA field in the LBM Traffic Unit (D signal) equals the Local MAC address (MI_MEP_MAC), the Loopback is intended for this MEP, and the information is forwarded to the Loopback Reply Generation Process (RI_LBM(D,P,DE)).

If the DA field in the LBM Traffic Unit (D signal) is a multicast address, an LBR Traffic Unit must be generated after a random delay between 0 and 1 second. This is specified by instantiating a separate process, the Send_MC_LBR process. This process chooses a random waiting time between 0 and 1 second and, after waiting for the chosen period of time, the D, P and DE information is forwarded to the Loopback Reply Generation Process (RI_LBM(D,P,DE)). Finally, this process instance is terminated. 

Since the 0 to 1 second waiting time is performed in a separate process, it does not block the reception and processing of other LBM frames within that waiting period. 

8.1.8.6
LBR Generation Process

[image: image29.emf]RI_LBM(D,P,DE)

RI_LBM(D,P,DE)

DA(D)=SA(D)

OPC(D)=02


Figure 8-30 – LBR Generation Behaviour

Note that the LBR Generation Process is the same for MEPs and MIPs.

Upon receipt of the LBM Traffic Unit and accompanying signals (RI_LBM(D,P,DE)) from the LBM reception process the LBR Generation Process generates an LBR Traffic Unit together with the complementing P and DE signals.

The behaviour is specified in Figure 8-30. The generated traffic unit is the same as the received RI_LBM(D) Traffic Unit except:

· the DA of the generated LBR Traffic Unit is the SA of the received LBM Traffic Unit, and 

· the Opcode is set to LBR opcode.

NOTE – In the generated LBR, in the OAM (MEP) Insertion process, the SA will be overwritten with the Local MAC address, and the MEL will be overwritten with MI_MEL.

The resulting LBR Traffic Unit format is shown in Figure 8-31.
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Figure 8-31 – LBR Traffic Unit

8.1.8.7
LBR Reception Process

[image: image30.emf]DA(D)=MI_MEP_MAC

D(D),P(P),DE(DE)

SA=SA(D)

TID=TID(D)

TLV=TLV(D)

RI_LBR(SA,TID,TLV)

Yes No


Figure 8-32 – LBR Reception Behaviour

The LBR Reception Process receives LBR Traffic Units (D signal) together with the complementing P and DE signals. The LBR Reception process will inspect the DA field in the received Traffic Unit; if the DA equals the Local MAC address (MI_MEP_MAC) the SA, TID and TLV values will be extracted from the LBR PDU and signalled to the LB Control Process using the RI_LBR(SA,TID,TLV) signal. The behaviour is defined in Figure 8-32.

8.1.9
Loss Measurement (LM) Processes
8.1.9.1
Overview

Figure 8-33 shows the different processes inside MEPs and MIPs that are involved in the on-demand Loss Measurement Protocol.

The MEP OnDemand-OAM Source insertion process is defined in clause 9.4.1.1, the MEP OnDemand-OAM Sink extraction process in clause 9.4.1.2, the MIP OnDemand-OAM Sink Extraction process in clause 9.4.2.2, and the MIP OnDemand-OAM Source insertion process in clause 9.4.2.1. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D Traffic Units together with the complementing P and D signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM Traffic Units. 
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Figure 8-33 – Overview of Processes involved with on-demand Loss Measurement

The on-demand LM control process controls the on-demand LM protocol. The protocol is activated upon receipt of the MI_LM_Start(DA,P,Period) signal and remains activated until the MI_LM_Terminate signal is received. 

The result is communicated via the MI_LM_Result(N_TF, N_LF, F_TF, F_LF) signal. If the on-demand LM control process activates the multiple monitoring on different CoS levels simultaneously, each result is independently managed per CoS level.
The LMM Generation process generates an LMM Traffic Unit that passes transparently through MIPs, but that will be processed by the LMM Reception Process in MEPs. The LMR Generation Process generates an LMR Traffic Unit in response to the receipt of an LMM Traffic Unit. The LMR Reception process receives and processes the LMR Traffic Units. 

The behaviour of the processes is defined below. 

Note that the LMM Generation and LMR Generation Process are both part of the LMx Generation Process. Similarly the LMM Reception and the LMR Reception Process are both part of the LMx Reception Process. 
Figure 8-33+yy shows the different processes inside MEPs and MIPs that are involved in the proactive Loss Measurement Protocol.
The MEP proactive OAM insertion process is defined in clause 9.2.1.1, the MEP OAM proactive extraction process in clause 9.2.1.2, the MIP OAM extraction process in clause 9.4.2.1, and the MIP OAM insertion process in clause 9.4.2.2. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D traffic units and the complementing P and D signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM traffic units.
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Figure 8-33+yy – Overview of Processes involved with proactive Loss Measurement

The MEP Proactive-OAM Source insertion process is defined in clause 9.2.1.1, the MEP Proactive-OAM Sink extraction process in clause 9.2.1.2. 
The proactive LM control process controls the proactive LM protocol. If MI_LM_Enable is set the LMM frames are sent periodically. The LMM frames are generated with a periodicity determined by MI_LM_Period and with a priority determined by MI_LM_Pri. The result (N_TF, N_LF, F_TF, F_LF) is reported per a LMR reception. If the proactive LM control process activates the multiple monitoring on different CoS levels simultaneously, each result is independently managed per CoS level.
8.1.9.2
LM Control Process

The behaviour of the on-demand LM Control Process is defined in Figure 8-34.
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Figure 8-34 – On-demand LM Control Behaviour

Upon receipt of the MI_LM_Start(DA,P,Period), the LM protocol is started. Every Period the generation of an LMM frame is triggered (using the LMM(DA,P,0) signal), until the MI_LM_Terminate signal is received. 

The received counters are used to count the near end and far end transmitted and lost frames. This result is reported using the MI_LM_Result(N_TF, N_LF, F_TF, F_LF) signal after the receipt of the MI_LM_Terminate signal. 
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Figure 8-34+yy – Proactive LM Control Behaviour

The behaviour of the proactive LM Control Process is defined in Figure 8-34+yy. If the MI_LM_Enable is asserted, the process starts to generate LMM frames (using the LMM(MI_LM_MAC_DA, MI_LM_Pri, 0) signal). The result (N_TF, N_LF, F_TF, F_LF) is reported per an LMR reception.

8.1.9.3
LMx Generation Process

The LMx Generation Process contains both the LMM Generation and LMR Generation functionality. Figure 8-35 shows the LMx Generation Process. 
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Figure 8-35 – LMx Generation Process 

Figure 8-36 defines the behaviour of the LMx Process. The behaviour consists of three parts: 

· LMM Generation part that is triggered by the receipt of the LMM(DA,P,Type) signal;

· LMR Generation part that is triggered by the receipt of RI_LMM(D,P,DE) signals;

· Counter part that is triggered by the receipt of a normal data signal. 
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Figure 8-36 – LMx Generation Behaviour

Counter Part

This part receives ETH_AI and forwards it. It counts the number of ETH_AI traffic units received with ETH_AI_DE to <false (0)>. 

LMM Generation Part

This part generates an LMM Traffic Unit on receipt of the LMM(DA,P,Type) signal. 

The  LMM Traffic Unit contains a Source and Destination address field and an M_SDU field. The format of the M_SDU field for LMM traffic units is defined in clauses 9.1 and 9.12 of [ITU-T Y.1731]. 

The LMM Traffic Unit is generated by the LMM generate function in Figure 8-36. Figure 8-37 shows the resultant LMM Traffic Unit. The Type signal is set to 1 if it is the proactive OAM, or set to 0 if it is the on-demand OAM operation. 
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Figure 8-37 – LMM Traffic Unit

LMR Generation Part

The LMR Generate part generates an LMR Traffic Unit on receipt of RI_LMM signals. The LMR Traffic Unit is based on the received LMM Traffic Unit (as conveyed in the RI_LMM_D signal), however:

· the SA of the LMM Traffic Unit becomes the DA of the LMR Traffic Unit;

· the Opcode is set to LMR;

· the TxFCb field is assigned the value of the Tx counter. 

NOTE – In the generated LMR, in the OAM (MEP) Insertion process, the SA will be overwritten with the Local MAC address, and the MEL will be over written with MI_MEL. 


Note that the RxFCf field is already assigned a value by the LMM reception process. 

Figure 8-38 shows the resultant LMR Traffic Unit. 
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Figure 8-38 – LMR Traffic Unit

8.1.9.4
LMx Reception Process

The LMx Reception Process contains both the LMM Reception and LMR Reception functionality. Figure 8-39 shows the LMx Reception Process. 
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Figure 8-39 – LMx Reception Process

Figure 8-40 defines the behaviour of the LMx Reception Process. The behaviour consists of three parts: 

· LMM Reception part that is triggered by the receipt of an LMM Traffic Unit;

· LMR Reception part that is triggered by the receipt of an LMR Traffic Unit;

· Counter part that is triggered by the receipt of a normal data signal. 
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Figure 8-40 – LMx Reception Behaviour

Counter Part

This part receives ETH_CI, extracts on-demand ETH OAM frames and forwards the remainder as ETH_AI traffic units. It counts this number of ETH_AI instances with ETH_AI_DE equal to <false (0)>. 

LMM Reception Part

This part processes received LMM Traffic Units. It checks the destination address, the DA must be either the Local MAC address or it should be a Multicast Class 1 Destination Address. If this is the case the LMM Reception process writes the Rx Counter value to the received Traffic Unit in the RxFCf field, and forwards the received Traffic Unit and complementing P and DE signals as Remote Information to the LMR Generation Process. 

LMR Reception Part

This part process received LMR Traffic Units. If the DA equals the Local MAC address, it extracts the counter values TxFCf, RxFCf, TxFCb from the received Traffic Unit as well as the SA field. These values together with the value of the Rx counter(RxFCl) are forwarded as RI signals. 

8.1.10
Delay Measurement (DM) Processes
8.1.10.1
Overview

Figure 8-41 shows the different processes inside MEPs and MIPs that are involved in the on-demand Delay Measurement Protocol.

The MEP OnDemand-OAM Source insertion process is defined in clause 9.4.1.1, the MEP OnDemand-OAM Sink extraction process in clause 9.4.1.2, the MIP OnDemand-OAM Sink Extraction process in clause 9.4.2.2, and the MIP OnDemand-OAM Source insertion process in clause 9.4.2.1. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D Traffic Units and the complementing P and D signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM Traffic Units. 
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Figure 8-41 – Overview of Processes involved with on-demand Delay Measurement

The MEP on-demand-OAM Source insertion process is defined in clause 9.4.1.1, the MEP on-demand-OAM Sink extraction process in clause 9.4.1.2. 
The on-demand DM control process controls the on-demand DM protocol. The protocol is activated upon receipt of the MI_DM_Start(DA,P,Test ID,Length,Period) signal and remains activated until the MI_DM_Terminate signal is received. The result is communicated via the MI_DM_Result(count, B_FD[], F_FD[] ,N_FD[]) signal. If the on-demand DM control process activates the multiple monitoring on different CoS levels simultaneously, each result is independently managed per CoS level. Optional Test ID TLV can be utilized to distinguish each measurement if multiple measurements are simultaneously activated in an ME. If the protocol is used in multipoint-to-multipoint environments, the multicast class 1 address is used for DA and the test result is independently managed per peer node.
The DMM generation process generates DMM Traffic Units that pass through MIPs transparently, but are received and processed by DMM Reception processes in MEPs. The DMR Generation process may generate a DMR Traffic Unit in response. This DMR Traffic Unit also passes transparently through MIPs, but is received and processed by DMR Reception processes in MEPs.

At the Source MEP side, the DMM generation process stamps the value of the Local Time to the TxTimeStampf field in the DMM message when the first bit of the frame is transmitted. Note well that at the sink MEP side, the DMM reception process stamps the value of the Local Time to the RxTimeStampf field in the DMM message when the last bit of the frame is received. 

The DMR generation and reception process stamps with the same way as the DMM generation and reception process.
Figure 8-41+yy shows the different processes inside MEPs and MIPs that are involved in the proactive Delay Measurement Protocol.
The MEP proactive OAM insertion process is defined in clause 9.2.1.1, the MEP OAM proactive extraction process in clause 9.2.1.2, the MIP OAM extraction process in clause 9.4.2.1, and the MIP OAM insertion process in clause 9.4.2.2. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D traffic units and the complementing P and D signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM traffic units.
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Figure 8-41+yy – Overview of Processes involved with proactive Delay Measurement

The MEP Proactive OAM Source insertion process is defined in clause 9.2.1.1, the MEP Proactive-OAM Sink extraction process in clause 9.2.1.2. 
The proactive DM control process controls the proactive DM protocol. If MI_DM_Enable is set the DMM frames are sent periodically. The DMM frames are generated with a periodicity determined by MI_DM_Period and with a priority determined by MI_DM_Pri. The result (B_FD, F_FD, N_FD) is reported per a DMR reception. If the proactive DM control process activates the multiple monitoring on different CoS levels simultaneously, each result is independently managed per CoS level. Optional Test ID TLV can be utilized to distinguish each measurement if multiple measurements are simultaneously activated in an ME. If the protocol is used in multipoint-to-multipoint environments, the multicast class 1 address is used for DA and the test result is independently managed per peer node.
8.1.10.2
DM Control Process

The behaviour of the on-demand DM Control Process is defined in Figure 8-42. 
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Figure 8-42 – On-demand DM Control Behaviour

Upon receipt of the MI_DM_Start(DA,P,Test ID,Length,Period), the DM protocol is started. Every Period the generation of a DMM frame is triggered (using the DMM(DA,P,0,Test ID TLV,TLV) signal), until the MI_DM_Terminate signal is received. The TLV field of the DMM frames can have two types of TLVs. The first one is the Test ID TLV, which is optionally used for a discriminator of each test and the value ‘Test ID’ is included in the TLV. The second one is the Data TLV, which is determined by the Generate(Length) function. Generate(Length) generates a Data TLV with length ‘Length’ of arbitrary bit pattern to be included in the DMM frame. 

Upon receipt of a DMR Traffic Unit the Delay value recorded by this particular DMR Traffic Unit is calculated. This result is reported using the MI_DM_Result(count, B_FD[], F_FD[] ,N_FD[]) signal after the receipt of the MI_DM_Terminate signal. Note that the measurements of F_FD and N_FD are not supported by peer MEP if both TxTimeStampb and TxTimeStampf are zero. 
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Figure 8-42+yy – Proactive DM Control Behaviour

The behaviour of the proactive DM Control Process is defined in Figure 8-42+yy. If the MI_DM_Enable is asserted, the process starts to generate DMM frames (using the DMM(MI_DM_MAC_DA,MI_DM_Pri,1, Test ID TLV,TLV) signal). The result (B_FD, F_FD, N_FD) is reported per a DMR reception.

8.1.10.3 DMM Generation Process

The behaviour of the DMM Generation Process is defined in Figure 8-43
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Figure 8-43 – DMM Generation Behaviour

Upon receiving the DMM(DA,P,Type,Test ID TLV,TLV), a single DMM Traffic Unit is generated together with the complementing P and DE signals. The DA of the generated Traffic Unit is determined by the DMM(DA) signal.  The TxTimeStampf field is assigned the value of the local time. 

The P signal value is defined by DMM(P). The DE signal is set to 0. The Type signal is set to 1 if it is the proactive OAM, or set to 0 if it is the on-demand OAM operation. The Test ID signal is determined by the DMM(Test ID TLV) signal. The TLV signal is determined by the DMM(TLV) signal.If both Test ID TLV and Data TLV are included in the DMM PDU, it is recommended that Test ID TLV be located at the beginning of the optional TLV field. It makes for the easier classification of the Test ID in the received PDUs.
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Figure 8-44 – DMM Traffic Unit

8.1.10.4
DMM Reception Process

The DMM Reception Process processes the received DMM Traffic Units and the complementing P and DE signals. The behaviour is defined in Figure 8-45. 
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Figure 8-45 – DMM Reception Behaviour

First the DA is checked, it should be the Local MAC address or a Multicast Class 1 address, otherwise the frame is ignored. 

If the DA is the Local MAC or a Multicast Class 1 address the RxTimeStampf field is assigned the value of the Local Time and Traffic Unit and the complementing P and DE signals are forwarded as Remote Information to the DMR Generation Process. 

8.1.10.5
DMR Generation Process

The DMR Generation Process generates a DMR Traffic Unit and its complementing P and DE signals. The behaviour is defined in Figure 8-46. 
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Figure 8-46 – DMR Generation Behaviour

Upon the receipt of Remote Information containing a DMM Traffic Unit, the DMR generation process generates a DMR Traffic Unit and forwards it to the OAM insertion Process. 

As part of the DMR generation the:

· DA of the DMR Traffic Unit is the SA of the original DMM Traffic Unit;

· The Opcode is changed into DMR Opcode;

· The TxTimeStampb field is assigned the value of the Local Time.
· All the other fields (including TLVs and padding after the End TLV) are copied from the Remote Information containing the original DMM Traffic Unit.

The resulting DMR Traffic Unit is shown in Figure 8-47. 

NOTE – In the generated DMR, in the OAM (MEP) Insertion process, the SA will be overwritten with the Local MAC address, and the MEL will be over written with MI_MEL. 
The TLVs are copied from the Remote Information containing the original DMM Traffic Unit. If multiple TLVs exist, the order of the TLVs is unchanged.
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Figure 8-47 – DMR Traffic Unit

8.1.10.6
DMR Reception Process

The DMR Reception Process processes the received DMR Traffic Units and the complementing P and DE signals. The behaviour is defined in Figure 8-48. 
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Figure 8-48 – DMR Reception Behaviour

Upon receipt of a DMR Traffic Unit the DA field of the Traffic Unit is checked. If the DA field equals the Local MAC address, the DMR Traffic Unit is processed further, otherwise it is ignored. 

If the DMR Traffic Unit is processed, the TxTimeStampf, RxTimeStampf, TxTimeStampb and Test ID are extracted from the Traffic Unit and signalled together with the Local Time. 

8.1.11
One Way Delay Measurement (1DM) Processes
8.1.11.1
Overview

Figure 8-49 shows the different processes inside MEPs and MIPs that are involved in the on-demand One Way Delay Measurement Protocol.

The MEP OnDemand-OAM Source insertion process is defined in clause 9.4.1.1, the MEP OnDemand-OAM Sink extraction process in clause 9.4.1.2, the MIP OnDemand-OAM Sink Extraction process in clause 9.4.2.2, and the MIP OnDemand-OAM Source insertion process in clause 9.4.2.1. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D Traffic Units and the complementing P and DE signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM Traffic Units. 
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Figure 8-49 – Overview of Processes involved with on-demand One Way Delay Measurement

The on-demand 1DM protocol is controlled by the on-demand 1DM Control_So and 1DM Control_Sk processes. The on-demand 1DM Control_So process triggers the generation of 1DM Traffic Units upon the receipt of an MI_1DM_Start(DA,P,Test ID,Length,Period) signal. The on-demand 1DM Control_Sk process processes the information from received 1DM Traffic Units after receiving the MI_1DM_Start(SA,Test ID) signal. 

The 1DM generation process generates 1DM messages that pass transparently through MIPs and are received and processed by the 1DM Reception Process in MEPs.

At the Source MEP side, the 1DM generation process stamps the value of the Local Time to the TxTimeStampf field in the 1DM message when the first bit of the frame is transmitted. Note well that at the sink MEP side, the 1DM reception process records the value of the Local Time when the last bit of the frame is received.
Figure 8-49+yy shows the different processes inside MEPs and MIPs that are involved in the proactive Delay Measurement Protocol.
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Figure 8-49+yy – Overview of Processes involved with proactive One Way Delay Measurement

The MEP Proatcive-OAM Source insertion process is defined in clause 9.2.1.1, the MEP Proactive-OAM Sink extraction process in clause 9.2.1.2. 
The proactive 1DM Control_So process triggers the generation of 1DM Traffic Units if MI_1DM_Enable signal is set. The 1DM frames are generated with a periodicity determined by MI_1DM_Period and with a priority determined by MI_1DM_Pri. The result (N_FD) is reported per a 1DM reception by the 1DM Control_Sk process.

8.1.11.2
1DM Control_So Process

Figure 8-50 shows the behaviour of the on-demand 1DM Control_So Process. Upon receipt of the MI_1DM_Start(DA,P,Test ID,Length,Period) signal the 1DM protocol is started. The protocol will run until the receipt of the MI_1DM_Terminate signal.

If the DM protocol is running every Period (as specified in the MI_1DM_Start signal) the generation of a 1DM message is triggered by generating the 1DM(DA,P,0,Test ID TLV,TLV) signal towards the 1DM Generation Process. The TLV field of the 1DM frames can have two types of TLVs. The first one is the Test ID TLV, which is optionally used for a discriminator of each test and the value ‘Test ID’ is included in the TLV. The second one is the Data TLV, which is determined by the Generate(Length) function. Generate(Length) generates a Data TLV with length ‘Length’ of arbitrary bit pattern to be included in the 1DM frame.
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Figure 8-50 – On-demand 1DM Control_So Behaviour
 [image: image50.emf]Init

MI_1DM_Start(DA

MI_1DM_Terminate

Running

Timer

Set(0,Timer)

Disabled

MI_1DM_Enable

!MI_1DM_Enable

Enabled

Timer

Set(0,Timer)

TLV=Generate(

MI_1DM_Length)

1DM(MI_1DM_MAC_DA,

Set(MI_1DM_Period,Timer)

MI_1DM_Pri,

1,

TLV)

Test ID TLV,

Test ID TLV=GenID (

MI_1DM_Test ID)


Figure 8-50+yy – Proactive 1DM Control_So Behaviour

The behaviour of the proactive 1DM Control Process is defined in Figure 8-50+yy.
If the MI_1DM_Enable is asserted, the process starts to generate 1DM frames (using the 1DM(MI_1DM_MAC_DA,MI_1DM_Pri,1, Test ID TLV,TLV) signal. 
8.1.11.3
1DM Generation Process
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Figure 8-51 – 1DM Generation Behaviour

Figure 8-51 shows the 1DM Generation Process. Upon receiving the 1DM(DA,P,Type,Test ID TLV,TLV) signal a single 1DM Traffic Unit is generated by the OAM=1DM (DA,P,Type, LocalTime, Test ID TLV, TLV) call.

Together with this 1DM Traffic Unit the complementing P and DE signals are generated. The DA of the generated 1DM Traffic Unit is determined by the 1DM(DA) signal. The TxTimeStampf field is assigned the value of the Local Time. The value of the P signal is determined by the 1DM(P) signal. The DE signal is set to 0. The Type signal is set to 1 if it is the proactive OAM, or set to 0 if it is the on-demand OAM operation. The Test ID signal is determined by the 1DM(Test ID TLV) signal. The TLV signal is determined by the 1DM(TLV) signal.
The resulting Traffic Unit is shown in Figure 8-52. 

NOTE – In the generated 1DM Traffic Unit, in the OAM (MEP) Insertion process, the SA will be assigned the Local MAC address, and the MEL will be assigned by MI_MEL. 

If both Test ID TLV and Data TLV are included in the 1DM PDU, it is recommended that Test ID TLV be located at the beginning of the optional TLV field. It makes for the easier classification of the Test ID in the received PDUs.
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Figure 8-52 – 1DM Traffic Unit
8.1.11.4
1DM Reception Process 

The 1DM Reception Process processes the received 1DM Traffic Units and the complementing P and DE signals. The behaviour is defined in Figure 8-53. 
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Figure 8-53 – 1DM Reception Behaviour

Upon receipt of a 1DM Traffic Unit the DA field is checked. The 1DM Traffic Unit is processed if the DA is equal to the Local MAC address or Multicast Class 1 MAC address. Otherwise, the Traffic Unit is ignored.

If the 1DM Traffic Unit is processed the SA and TxTimeStampf fields are extracted and forwarded to the 1DM Control_Sk process together with the Local Time using the 1DM(rSA,TxTimeStampf,RxTimef,rTestID) signal. 
8.1.11.5
1DM Control_Sk Process 

Figure 8-54 shows the behaviour of the on-demand 1DM Control_Sk process. The MI_1DM_Start(SA) signal starts the processing of 1DM messages coming from a MEP with SA as MAC address. The protocol runs until the receipt of the MI_1DM_Terminate signal. 

While running the process processes the received 1DM(rSA,TxTimeStampf,RxTimef,rTestID) information. First the rSA is compared with the SA from the MI_1DM_Start (SA) signal. If the rSA is not equal to this SA, the information is ignored. Next the rTestID is compared with the TestID from the MI_1DM_Start (Test ID) signal. If the MI_1DM_Start (Test ID) signal is configured and rTestID is available but both values are different, the information is ignored. Otherwise the Delay from the single received 1DM Traffic Unit is calculated. This result is reported using the MI_1DM_Result(count, N_FD[]) signal after the receipt of the MI_1DM_Terminate signal.
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Figure 8-54 – On-demand 1DM Control_Sk Process

 [image: image54.emf]Disabled

MI_1DM_Enable

!MI_1DM_Enable

Enabled

N_FD = RxTimef – TxTimeStampf

rSA=

MI_1DM_MAC_SA?

Y

N

1DM_Result(N_FD)

N

Y

MI_1DM_TestID!=NULL and 

rTestID!=MI_1DM_TestID

1DM(rSA,TxTimeStampf, 

RxTimef,rTestID)


Figure 8-54+yy – Proactive 1DM Control_Sk Process

The behaviour of the proactive 1DM Control_Sk Process is defined in Figure 8-54+yy. If the MI_1DM_Enable is asserted, the result (N_FD) is reported per a 1DM reception.
8.1.12
Test (TST) Processes
8.1.12.1
Overview

Figure 8-55 shows the different processes inside MEPs and MIPs that are involved in the Test Protocol.

The MEP OnDemand-OAM Source insertion process is defined in clause 9.4.1.1, the MEP OnDemand-OAM Sink extraction process in clause 9.4.1.2, the MIP OnDemand-OAM Sink Extraction process in clause 9.4.2.2, and the MIP OnDemand-OAM Source insertion process in clause 9.4.2.1. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D Traffic Units together with the complementing P and DE signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM Traffic Units. 
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Figure 8-55 – Overview of Processes involved with Test Protocol

The TST protocol is controlled by the TST Control_So and TST Control_Sk processes. The TST Control_So process triggers the generation of TST Traffic Units after the receipt of an MI_TST_Start(DA,DE,P,Pattern,Length,Period) signal. The TST Control_Sk process processes the information from received TST Traffic Units after receiving the MI_TST_Start(SA,Pattern) signal. 

The TST generation process generates TST messages that pass transparently through MIPs and are received and processed by the TST Reception Process in MEPs.

The processes are defined below. 

8.1.12.2
TST Control_So Process

Figure 8-56 defines the behaviour of the TST Control_So Process. This process triggers the transmission of TST Traffic Units after receiving the MI_Test(DA,DE,P,Pattern,Length,Period) signal. The transmission of TST Traffic Units is triggered by the generation of the TST(DA,P,DE,TLV,TID) signal. This is continued until the receipt of the MI_Test_Terminate signal. After receiving this signal the number of triggered TST Traffic Units is reported back using the MI_Test_Result(Sent) signal. 

The TLV field of the TST frames is determined by the Generate(Pattern, Length) function. For Pattern the following types are defined:

0: “Null signal without CRC-32”

1: “Null signal with CRC-32”

2: “PRBS 2^31-1 without CRC-32”

3: “PRBS 2^31-1 with CRC-32”

The Length parameter determines the length of the generated TLV. 

Generate(Pattern, Length) generates a Test TLV with length ‘Length’ to be included in the TST frame. Therefore, this TLV is passed using the TST(DA,P,DE,TLV,TID) signal to the TST Generation Process.
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Figure 8-56 – TST Control_So Behaviour

8.1.12.3
TST Generation Process

Figure 8-57 defines the behaviour of the TST Generation Process. 
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Figure 8-57 – TST Generation Behaviour

Upon receiving the TST(DA,P,DE,TLV,TID), a single TST Traffic Unit is generated together with the complementing P and DE signals. The TST Traffic Unit is generated by:

OAM=TST(DA,TLV,TID).

The DA of the generated TST Traffic Unit is determined by the TST(DA) signal.  The Transaction Identifier field gets the value of TST(TID); the TLV field is populated with TST(TLV). The resulting TST Traffic Unit is shown in Figure 8-58. 

NOTE – In the generated TST Traffic Unit, in the OAM (MEP) Insertion process, the SA will be assigned the Local MAC address, and the MEL will be assigned by MI_MEL. 

The P signal is determined by the TST(P) signal.

The DE signal is determined by the TST(DE) signal.  
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Figure 8-58 – TST Traffic Unit

8.1.12.4
TST Reception Process

Figure 8-59 defines the behaviour of the TST Reception Process. 
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Figure 8-59 – TST Reception Behaviour

First the DA is checked, it should be the Local MAC address (as configured via MI_MEP_MAC) or a Multicast Class 1 address, otherwise the frame is ignored. 

If the DA is the Local MAC or a Multicast Class 1 address the SA, TID and TLV fields from the TST Traffic Unit are forwarded using the TST signal.

8.1.12.5
TST Control_Sk Process

Figure 8-60 shows the behaviour of the TST Control_Sk process. The MI_TST_Start (SA) signal starts the processing of TST messages coming from a MEP with SA as MAC address. The protocol is running until the receipt of the MI_TST_Terminate signal. 

While running, the process processes the received TST(rSA,rTLV,TID) information. First the rSA is compared with the SA from the MI_TST_Start (SA) signal. If the rSA is not equal to this SA, the information is ignored. Otherwise the received information is processed.

First, the received TST counter is incremented by one (REC++). 
Furthermore, if the TLV contains a CRC (Pattern 1 or 3), the CRC counter is incremented by one (CRC++) if the CRC check fails. 
The function Check(Pattern, TLV) compares the received Test Pattern with the expected Test Pattern. If there is a mismatch the BERR counter is incremented by one.
If the TID value from the RI_LBR signal does not follow the last received TID value the counter for out of order frames is incremented by one (OO++). 
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Figure 8-60 – TST Control_Sk Behaviour

8.1.13
Link Trace (LT) Processes
8.1.13.1
Overview

Figure 8-61 shows the different processes involved in the Link Trace Protocol. 
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Figure 8-61 – LT Protocol Overview

The Link Trace Protocol is started upon receipt of an MI_LT(TA, TTL, P) signal. The result of the process will be communicated back via the MI_LT_Result(Results) signal. 

The LM Control will trigger the transmission of an LTM Traffic Unit and then wait for the LTR Traffic Units that are sent in reply to this LTM Traffic Unit. 

The LTM Traffic Unit is processed by MIP LTM Reception Processes and by MEP LTM Reception Processes. Depending on the DA given in the MI_LT(TA, TTL, P) signal these processes may decide to trigger the transmission of an LTR Traffic Unit back to the source of the LTM Traffic Unit. 

NOTE – In the 2008 version of [ITU-T Y.1731], the LTM Traffic Unit is received by an ETH-LT Responder process which solely resides in a network element and acts as an alternative process for LTM MIP reception. Similarly, the trigger of sending an LTR Traffic Unit is decided by the ETH-LT Responder.

8.1.13.2
LT Control Process

Figure 8-62 shows the behaviour of the LT Control Process.
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Figure 8-62 – LT Control Behaviour

After receiving the MI_LT(TA, TTL, P) input signal, the transmission of an LTM Traffic Unit is triggered. In the “Waiting for LTR” state, the LTM Control Process waits for the LTR Traffic Units that will be sent in response. The waiting period is five seconds. For each received LTR Traffic Unit the TID value in the received LTM Traffic Unit is compared with the one that was sent in the LTM Traffic Unit. If they are equal, the SA, TTL and TLV values are stored in the results. These results are communicated back using the MI_LT_Results signal after the five second waiting period is over. 

8.1.13.3
LTM Generation Process

Figure 8-63 shows the behaviour of the LTM Generation Process. 
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Figure 8-63 – LTM Generation Behaviour

The LTM Generation Process generates an LTM Traffic Unit with the function:

OAM=LTM(TA, TTL, TID) and the result is shown in Figure 8-64. 

NOTE – In the generated LTM Traffic Unit, in the OAM (MEP) Insertion process, the SA will be assigned the Local MAC address, and the MEL will be assigned by MI_MEL. The value of the Multicast class 2 DA is 01-80-C2-00-00-3y, where y is equal to {MI_MEL + 8} as defined in clause 10.1 of [ITU-T Y.1731]. The usage of Flags is specified in clause 9.5.2 of [ITU-T Y.1731].
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Figure 8-64 – LTM Traffic Unit

8.1.13.4
MIP LTM Reception Process

Figure 8-65 shows the behaviour of the MIP LTM Reception Process. 

 [image: image63.emf]Init

D(D),P(P),DE(DE)

TTL(D)>0

TMAC(D)=MI_MIP_MAC

|| Forward(TMAC(D))

TTL(D)--

D(D),P(P),DE(DE)

RI_LTM(D,P,DE)

Yes

Yes

TMAC(D)!=MI_MIP_MAC

&& TTL>0

Init

D(D),P(P),DE(DE)

TTL(D)>0

TMAC(D)=MI_MIP_MAC

|| Forward(TMAC(D))

TTL(D)--

D(D),P(P),DE(DE)

RI_LTM(D,P,DE)

Yes

Yes

TMAC(D)!=MI_MIP_MAC

&& TTL>0


Figure 8-65 – MIP LTM Reception Behaviour

Upon receipt of an LTM Traffic Unit, first the TTL is checked, only LTM Traffic Units with a TTL>0 are processed. Thereafter, the Target MAC (TMAC) of the LTM Traffic Unit is checked.

There are two reasons to send back an LTR Traffic Unit. The first is if the TMAC in the LTM Traffic Unit is the MAC address of the MIP itself. 

The second reason is summarized in Figure 8-65 as Forward(TMAC(D)). This function returns true if: 

· the network element that the MIP LTM reception process resides in would forward a normal data traffic unit with its DA equal to the TMAC to a single port (forwarding port), and 

· the MIP LTM Reception Process resides in the egress port which equals to the “forwarding port” (LTM in egress port), or the MIP LTM Reception Process resides in the ingress port which does not equal to the “forwarding port”  (LTM in ingress port)

Furthermore, after triggering the transmission of an LTR Traffic Unit, the LTM Traffic Unit is forwarded if the TMAC was not the MAC of the MIP and if the TTL>0. 

8.1.13.5
MEP LTM Reception Process
Figure 8-65+x shows the behaviour of the MEP LTM Reception Process. 
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Figure 8-65+x – MEP LTM Reception Behaviour

Upon receipt of an LTM Traffic Unit first the TTL is checked, only LTM Traffic Units with a TTL>0 are processed. Thereafter the Target MAC (TMAC) of the LTM Traffic Unit is checked. Conditions to send back an LTR Traffic Unit are similar with ones for MIP LTM Reception Process. The first is if the TMAC in the LTM Traffic Unit is the MAC address of the MEP itself. The second is summarized in Figure 8-65+x as Forward(TMAC(D)). This function returns true if: 

· the network element the MEP LTM reception process resides in would forward a normal data traffic unit with its DA equal to the TMAC to a single port (forwarding port), and 

· the MEP LTM Reception Process resides in the egress port which equals to the “forwarding port” (LTM in egress port), or the MEP LTM Reception Process resides in the ingress port which does not equal to the “forwarding port”  (LTM in ingress port)

Note that the LTM Traffic Unit is not forwarded anymore regardless of the value of TMAC. 

8.1.13.6
LTR Generation Process

Figure 8-66 shows the behaviour of the LTR Generation Process. 
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Figure 8-66 – LTR Generation Behaviour

The LTR Generation process generates the LTR Traffic Unit to be sent back, based on the LTM Traffic Unit. The DA of the LTR Traffic Unit is the Originating MAC (Orig MAC) as contained in the LTM Traffic Unit. The opcode is the LTR Opcode. The resulting LTR Traffic Unit is shown in Figure 8-67. The SA and MEL will be overwritten by the OAM insertion process. The LTR Traffic Unit is sent back, after a random delay between 0 and 1 second. The usage of Flags is specified in clause 9.6.2 of [ITU-T Y.1731].
The resulting frame is shown in Figure 8-67.

NOTE – In the generated LTR, in the OAM (MEP) Insertion process, the SA will be overwritten with the Local MAC address, and the MEL will be over written with MI_MEL. 
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Figure 8-67 – LTR Traffic Unit

8.1.13.7
LTR Reception Process

Figure 8-68 shows the behaviour of the LTR Reception Process. 
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Figure 8-68 – LTR Reception Behaviour

The LTR reception process checks the DA of the received LTR Traffic Unit and passes the SA, TTL, TID and TLV fields from the LTR Traffic Unit to the LT Control Process.
8.1.14
Synthetic Loss measurement (SL) Processes
8.1.14.1
Overview

Figure 8-xx shows the different processes inside MEPs and MIPs that are involved in the on-demand synthetic loss measurement protocol.

The MEP On-demand OAM insertion process is defined in clause 9.4.1.1, the MEP OAM on-demand extraction process in clause 9.4.1.2, the MIP OAM extraction process in clause 9.4.2.1, and the MIP OAM insertion process in clause 9.4.2.2. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D traffic units and the complementing P and D signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM traffic units.
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Figure 8-xx – Overview of processes involved with on-demand synthetic loss measurement protocol

The SL protocol is controlled by the SL Control process.

The On-demand SL Control process is activated upon receipt of the MI_SL_Start(DA,P,Test_ID,Length,Period) signal and remains activated until the MI_SL_Terminate signal is received. The measured synthetic loss values are output after the MI_SL_Terminate signal via the MI_SL_Result(N_TF,N_LF,F_TF,F_LF) signal
The SLM generation process generates SLM traffic units that pass through MIPs transparently, but are received and processed by SLM reception processes in MEPs. The SLR generation process may generate an SLR traffic unit in response. This SLR traffic unit also passes transparently through MIPs, but is received and processed by SLR reception processes in MEPs.

Figure 8-xx+1 shows the different processes inside MEPs and MIPs that are involved in the proactive synthetic loss measurement protocol.
The MEP proactive OAM insertion process is defined in clause 9.2.1.1, the MEP OAM proactive extraction process in clause 9.2.1.2, the MIP OAM extraction process in clause 9.4.2.1, and the MIP OAM insertion process in clause 9.4.2.2. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D traffic units and the complementing P and D signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM traffic units.
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Figure 8-xx+1 – Overview of processes involved with proactive synthetic loss measurement protocol

The SL protocol is controlled by the Proactive SL Control processes.

The Proactive SL Control process is activated upon receipt of the MI_SL_Enable signal and remains activated until the signal is deactivated. The measured results are output every 1s using the RI_SL_Result (N_TF, N_LF, F_TF, F_LF) signal.
8.1.14.2
SL Control Process
The behaviour of the on-demand SL Control process is defined in Figure 8-xx+2. There are multiple instances of the on-demand SL Control process, each handling an independent stream of SLM frames.
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Figure 8-xx+2 – On-demand SL Control behaviour
Upon receipt of the MI_SL_Start(DA,P,Test ID,Length,Period), the SL protocol is started. Every designated ‘period’ the generation of an SLM frame is triggered (using the SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) signal), until the MI_SL_Terminate signal is received. The MEP_ID is the MI_MEP_ID of the MEP itself. The TLV field of the SLM frames is determined by the Generate(Length) function. Generate(Length) generates a Data TLV with length ‘Length’ of arbitrary bit pattern, as described in section 8.1.8.2. If the Length is 0, the TLV is set to NULL.

Upon receipt of an SLR traffic unit, the received counter values are used to count the near-end and far-end transmitted and lost synthetic frames. This result is reported using the MI_SL_Result(N_TF,N_LF,F_TF,F_LF) signal after the receipt of the MI_SL_Terminate signal.
The behaviour of the Proactive SL Control process is defined in Figure 8-xx+3. There are multiple instances of the Proactive SL Control process, each handling an independent stream of SLM frames.

  [image: image70.emf]Init

MI_SL_Enable

Set (0, TxTimer)

N_TF = N_LF = F_TF = F_LF = 0

Saved = false

TxTimer

RI_SLR (rMEP_ID, rTest_ID, 

TxFCf, TxFCb)

ReportTimer !MI_SL_Enable

TLV = Generate 

(MI_SL_Length)

TxFCl++

If saved THEN {

  N_TF += |TxFCb – TxFCb_svd|

  N_LF += |TxFCb – TxFCb_svd| -|RxFCl – RxFCl_svd|  

  F_TF += |TxFCf – TxFCf_svd|

  F_LF += |TxFCf – TxFCf_svd| -|TxFCb – TxFCb_svd|

}

SLM (MI_SL_MAC_DA, 

MI_SL_Pri,

MI_SL_MEP_ID,

MI_SL_Test_ID,

TxFCl,TLV )

RI_SL_Result(

N_TF,N_LF,

F_TF,F_LF)

Set (1s, 

ReportTimer)

Running

Set (1s, 

ReportTimer)

Set (MI_SL_Period, 

TxTimer)

TxFCf_svd = TxFCf

TxFCb_svd = TxFCb

RxFCl_svd = RxFCl

RxFCl++

saved = true

N_TF = 0

N_LF = 0

F_TF = 0

F_LF = 0


Figure 8-xx+3 – Proactive SL Control behaviour
Upon receipt of the MI_SL_Enable, the SL protocol is started. Every designated MI_SL_Period the generation of an SLM frame is triggered (using the SLM(MI_SL_MAC_DA,MI_SL_Pri,MI_MEP_ID,MI_SL_Test_ID,TxFCl,TLV) signal). The TLV field of the SLM frames is determined by the Generate(MI_SL_Length) function. Generate(MI_SL_Length) generates a Data TLV with MI_SL_ Length of arbitrary bit pattern, as described in section 8.1.8.2. If the MI_SL_Length is 0, the TLV is set to NULL.

Upon receipt of an SLR traffic unit, the received counter values are used to count the near-end and far-end transmitted and lost synthetic frames. The calculation is performed every 1s and the RI_SL_Result(N_TF, N_LF, F_TF, N_LF) signal is generated.
8.1.14.3 SLM Generation Process
The behaviour of the SLM generation process is defined in Figure 8-xx+4.
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Figure 8-xx+4 – SLM generation behaviour
Upon receiving the SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV), a single SLM traffic unit is generated together with the complementing P and DE signals. The DA, Source MEP_ID, Test_ID and TxFCf of the generated traffic unit are determined by the DA, MEP_ID, Test_ID and TxFCl respectively in the SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) signal. If not NULL, the specified TLV is appended to the traffic unit as shown in Figure 8-xx+5.
The P signal value is defined by SLM(P). The DE signal is set to 0.
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Figure 8-xx+5 – SLM traffic unit
8.1.14.4
SLM Reception Process
The SLM reception process processes the received SLM traffic units and the complementing P and DE signals. The behaviour is defined in Figure 8-xx+6. 
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Figure 8-xx+6 – SLM reception behavior
First the DA is checked, it should be the local MAC address or a Multicast Class 1 address, otherwise the frame is ignored. 

If the DA is the local MAC or a Multicast Class 1 address, the MEP_ID and the Test_ID fields are extracted from the traffic unit. The local received counter RxFCl maintained per MEP_ID and Test_ID values, is incremented. The received OAM information, P and DE signals, as well as local TxFCb value are forwarded as remote information to the SLR generation process using the RI_SLM(OAM,P,DE, TxFCb) signal.
NOTE – The SLM reception process allocates and maintains local resources for the counter RxFCl per MEP_ID and Test_ID. To facilicate the automatic release of local resources, a timer for monitoring no receipt of SLM can be utilized. The SLM reception process must ensure there’s no discontinuity in RxFCl for given MEP ID and Test ID for some interval (e.g, 5 minutes) after the last received SLM for that MEP ID and Test ID. Detail mechanism for the release is out of scope of this recommendation.
8.1.14.5
SLR Generation Process
The SLR generation process generates an SLR traffic unit and its complementing P and DE signals. The behaviour is defined in Figure 8-xx+7. 

 [image: image73.emf]Waiting

RI_SLM (OAM,P,DE,

TxFCb)

D(OAM), 

D.P(P), 

D.DE(DE)

DA(OAM)=SA(OAM)

SA(OAM)=Undefined

OPC(OAM)=SLR

Responder_MEP_ID(OAM)=MI_MEP_ID

TxFCb(OAM)=TxFCb


Figure 8-xx+7 – SLR generation behaviour
Upon the receipt of the RI_SLM (P,DE,OAM, TxFCb) signal containing an SLM traffic unit, the SLR generation process generates an SLR traffic unit and forwards it to the MEP OAM insertion process. 

As part of the SLR generation:

–
The DA of the SLR traffic unit is the SA of the original SLM traffic unit;
–
The Opcode is changed into SLR Opcode;
–
The Responder MEP_ID is set to MI_MEP_ID;

–
TxFCb field is assigned the TxFCb value passed in the SLR(TxFCb).
–
The other fields and optional TLVs are copied from the SLM.

The resulting SLR traffic unit is shown in Figure 8-xx+8.

NOTE – In the generated SLR, in the OAM (MEP) insertion process, the SA will be overwritten with the local MAC address, and the MEL will be overwritten with MI_MEL.
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Figure 8-xx+8 – SLR traffic unit
8.1.14.6
SLR Reception Process
The SLR reception process processes the received SLR traffic units and the complementing P and DE signals. The behaviour is defined in Figure 8-xx+9. 
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Figure 8-xx+9 – SLR reception behavior
Upon receipt of an SLR traffic unit, the DA field of the traffic unit is checked. If the DA field equals the local MAC address, the SLR traffic unit is processed further, otherwise it is ignored. 

If the SLR traffic unit is processed, Test_ID, TxFCf, TxFCb, Responder MEP_ID,are extracted from the traffic unit and signaled, using the RI_SLR(MEP_ID, Test_ID,TxFCf,TxFCb) signal. 
8.1.15
One Way Synthetic Loss measurement (1SL) Processes
8.1.15.1
Overview
Figure 8-xx+10 shows the different processes inside MEPs and MIPs that are involved in the on-demand One Way Synthetic Loss measurement protocol.

The MEP OnDemand-OAM source insertion process is defined in clause 9.4.1.1, the MEP OnDemand-OAM sink extraction process in clause 9.4.1.2, the MIP OnDemand-OAM sink extraction process in clause 9.4.2.2, and the MIP OnDemand-OAM source insertion process in clause 9.4.2.1. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D traffic units and the complementing P and DE signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM traffic units.
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Figure 8-xx+10 – Overview of processes involved with on-demand One Way Synthetic Loss measurement
The on-demand 1SL protocol is controlled by the on-demand 1SL Control_So and 1SL Control_Sk processes. The on-demand 1SL Control_So process triggers the generation of 1SL Traffic Units upon the receipt of an MI_1SL_Start(DA,P,MEP_ID,Test ID,Length,Period) signal. The on-demand 1SL Control_Sk process processes the information from received 1SL Traffic Units after receiving the MI_1SL_Start(SA,Test ID) signal. 

The 1SL generation process generates 1SL messages that pass transparently through MIPs and are received and processed by the 1SL Reception Process in MEPs.

Figure 8-xx+11 shows the different processes inside MEPs and MIPs that are involved in the proactive One Way Synthetic Loss measurement protocol.
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Figure 8-xx+11 – Overview of processes involved with proactive One Way Synthetic Loss measurement
The MEP Proatcive-OAM Source insertion process is defined in clause 9.2.1.1, the MEP Proactive-OAM Sink extraction process in clause 9.2.1.2. 
The proactive 1SL protocol is controlled by the Proactive 1SL Control_So and 1SL Control_Sk processes. The proactive 1SL Control_So process triggers the generation of 1SL Traffic Units if MI_1SL_Enable signal is set. The 1SL frames are generated with a periodicity determined by MI_1SL_Period and with a priority determined by MI_1SL_Pri. The result is reported every one second by the 1SL Control_Sk process.

8.1.15.2
1SL Control_So Process
Figure 8-xx+12 shows the behaviour of the on-demand 1SL Control_So Process. Upon receipt of the MI_1SL_Start(DA,P,Test _ID, Length, Period) signal the 1SL protocol is started. The protocol will run until the receipt of the MI_1SL_Terminate signal.

If the 1SL protocol is running, every period (as specified in the MI_1SL_Start signal) the generation of a 1SL message is triggered by generating the 1SL(DA,P,MEP_ID,Test_ID,TxFCl,TLV) signal towards the 1SL Generation Process. The MEP_ID is the MI_MEP_ID of the MEP itself. The TLV is determined by the Generate(Length) function. Generate(Length) generates a Data TLV with length ‘Length’ of arbitrary bit pattern, as described in section 8.1.8.2. If the Length is 0, the TLV is set to NULL.
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Figure 8-xx+12 – On-demand 1SL Control_So Behaviour

The behaviour of the proactive 1SL Control Process is defined in Figure 8xx+13.
If the MI_1SL_Enable is asserted, the process starts to generate 1SL frames (using the 1SL (MI_1SL_MAC_DA, MI_1SL_Pri, MI_MEP_ID, MI_1SL_Test ID, TxFCl, TLV) signal. 
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Figure 8-xx+13 – Proactive 1SL Control_So Behaviour
8.1.15.3
1SL Generation Process
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Figure 8-xx+14 – 1SL Generation Behaviour

Figure 8-xx+14 shows the 1SL generation process. Upon receiving the 1SL(DA, P, MEP_ID, Test_ID, TxTCl, TLV) signal, a single 1SL traffic unit is generated, along with the complementing P and DE signals. 

The DA, Source MEP ID, TestID and TxFCl of the generated traffic unit are determined by the DA, MEP_ID, Test_ID and TxFCl respectively in the 1SL(DA,P,MEP_ID,Test_ID,TxTCl,TLV) signal. If not NULL, the specified TLV is appended to the traffic unit as shown.

The value of the P signal is determined by the 1SL(P) signal. The DE signal is set to 0. 

The resulting traffic unit is shown in Figure 8-xx+15. 

NOTE – In the generated 1SL traffic unit, in the OAM (MEP) insertion process, the SA will be assigned the local MAC address, and the MEL will be assigned by MI_MEL. 
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Figure 8-xx+15 – 1SL traffic unit

8.1.15.4
1SL Reception Process
The 1SL reception process processes the received 1SL traffic units and the complementing P and DE signals. The behaviour is defined in Figure 8-xx+16. 
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Figure 8-xx+16 – 1SL Reception Behavior

Upon receipt of a 1SL traffic unit, the DA field is checked. The 1SL traffic unit is processed if the DA is equal to the local MAC address or a multicast class 1 address and ignored otherwise.

If the 1SL traffic unit is processed, the SA, Source MEP ID, Test ID and TxFCf  fields are extracted and the appropriate RxFCl counter is incremented. The values are forwarded to the 1SL Control_Sk Process using the 1SL(rSA, rMEP_ID, rTest_ID, TxFCf,  RxFCl) signal. 
8.1.15.5
1SL Control_Sk Process
Figure 8-xx+17 shows the behaviour of the on-demand 1SL Control_Sk process. The MI_1SL_Start(SA,Test ID) signal starts the processing of 1SL messages coming from a MEP with SA as MAC address. The protocol runs until the receipt of the MI_1SL_Terminate signal. 

While running the process processes the received 1SL(rSA, rMEP_ID, rTest_ID, TxTCf, RxTCl) information. First the rSA is compared with the SA from the MI_1SL_Start (SA,Test ID) signal. If the rSA is not equal to this SA, the information is ignored. Next the rTestID is compared with the TestID from the MI_1SL_Start (SA,Test_ID) signal. If the Test_ID signal is configured and rTest_ID is available but both values are different, the information is ignored. Otherwise the loss from the single received 1SL Traffic Unit is calculated. This result is reported using the MI_1SL_Result(N_TF, N_LF) signal after the receipt of the MI_1SL_Terminate signal.
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Figure 8-xx+17 – On-demand 1SL Control_Sk Process

The behaviour of the proactive 1SL Control_Sk Process is defined in Figure 8-xx+18. If the MI_1SL_Enable is asserted, the result (N_TF, N_LF) is reported every one second.
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Figure 8-xx+18 – Proactive 1SL Control_Sk Process

8.1.16
CSF Insert Process
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Figure 8-zz – CSF Insert process

Figure 8-zz shows the CSF Insert Process Symbol and Figure 8-zz+1 defines the behaviour. If the aCSF signal is true, the CSF Insert process continuously generates ETH_CI traffic units where the ETH_CI_D signal contains the CSF signal until the aCSF signal is false. The generated CSF traffic units are inserted in the incoming stream, i.e., the output stream contains the incoming traffic units and the generated CSF traffic units.
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Figure 8-zz+1 – CSF Insert behaviour

The period between consecutive CSF traffic units is determined by the MI_CSF_Period parameter. Allowed values are once per second and once per minute; the encoding of these values is defined in Table 8-zz. Note that these encoding are the same as for the LCK/AIS generation process.
Table 8-zz – CSF period values

	3-bits
	Period Value
	Comments

	000
	Invalid Value
	Invalid value for CSF PDUs

	001
	FFS
	FFS

	010
	FFS
	FFS

	011
	FFS
	FFS

	100
	1s
	1 frame per second

	101
	FFS
	FFS

	110
	1 min
	1 frame per minute

	111
	FFS
	FFS


The ETH_CI_D signal contains a Source and Destination address field and an M_SDU field. The format of the M_SDU field for CSF traffic units is defined in clauses 9.1 and 9.12 of [ITU-T Y.1731]. The MEL in the M_SDU field is determined by the MI_ MEL input parameter.
The values of the Source and Destination address fields in the ETH_CI_D signal are determined by the Local MAC address (SA) and the Multicast class 1 DA as described in [ITU-T Y.1731] (DA). The value of the Multicast class 1 DA is 01-80-C2-00-00-3x, where x is equal to MI_MEL as defined in clause 10.1 of [ITU-T Y.1731]. The value of MI_MEP_MAC should be a valid unicast MAC address. 

The CSF_Type is encoded in the three bits of the Flags field in the CSF PDU using the values from Table 8-xx+1.
Table 8-zz+1 – CSF type values 
	Value
	Type
	Comments

	000
	LOS
	Client Loss of Signal

	001
	FDI/AIS
	Client Forward Defect Indication

	010
	RDI
	Client Reverse Defect Indication

	011
	DCI
	Client Defect Clear Indication


The periodicity (as defined by MI_CSF_Period) is encoded in the three least significant bits of the Flags field in the CSF PDU using the values from Table 8-zz.

The CSF (SA, MEL, Type, Period) function generates a CSF Traffic Unit with the SA, MEL, Type and Period fields defined by the values of the parameters. Figure 8-zz+2 below shows the ETH_CI_D signal format resulting from the function call from Figure 8-zz+1:

OAM=CSF(
MI_MEP_MAC,
MI_MEL,
CSF_Type,
MI_CSF_Period
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Figure 8-zz+2 – CSF Traffic Unit
8.1.17
CSF Extract Process
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Figure 8-zz+3 – CSF Extract process

The CSF Extract process extracts ETH_CI_CSF signals from the incoming stream of ETH_CI traffic units. ETH_CI_CSF signals are only extracted if they belong to the MEL as defined by the MI_MEL input parameter. 

If an incoming traffic unit is a CSF traffic unit belonging to the MEL defined by MI_MEL, the ETH_CI_CSF signal will be extracted from this traffic unit and the traffic unit will be filtered. The ETH_CI_CSF is the CSF Specific Information contained in the received Traffic Unit. All other traffic units will be transparently forwarded. The encoding of the ETH_CI_D signal for CSF frames is defined in clause 9.12 of [ITU-T Y.1731]. 

The criteria for filtering are based on the values of the fields within the M_SDU field of the ETH_CI_D signal:

•
length/type field equals the OAM Ethertype (89-02), and

•
MEL field equals MI_MEL, and 

•
OAM type equals CSF (52), as defined in clause 9.12 of [ITU-T Y.1731].

This is defined in Figure 8-zz+3. The function CSF(D) extracts the CSF specific information from the received Traffic Unit. 
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Figure 8- zz+4 – CSF Extract Behaviour

8.2 Queuing process

The queuing process buffers the received ETH_CI_D for output (see Figure 8-69). The queuing process is also responsible for discarding frames if their rate at the ETH_CI_D is higher than the <server>_AI_D can accommodate, as well as maintaining PM counters for discarded frames. Additional performance monitor counters (MI_PM_count) per [IEEE 802.1Q] are for further study.
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Figure 8-69 – Queuing process

The Queueing process is configured using the MI_Queue_Config input parameter. This parameter specifies the mapping of ETH_CI_D into the available queues based on the value of the ETH_CI_P signal. 

Furthermore, it specifies whether the value of the ETH_CI_DE signal should be taken into account when discarding frames. If this needs to be taken into account, ETH_CI with ETH_CI_DE set to drop eligible should have a higher probability of being discarded than ETH_CI with ETH_CI_DE set to drop ineligible.  

8.3
Filter process
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Figure 8-70 – Filter process

The filter process maintains the filter action for each of the 33 group MAC addresses indicating control frames as defined in clause 6.3 of [ITU-T G.8012]. Valid filter actions are "pass" and "block". The filter action for these 33 MAC addresses can be configured separately. If the destination address of the incoming ETH_CI_D matches one of the above addresses, the filter process shall perform the corresponding configured filter action:

•
Block: The frame is discarded by the filter process;

•
Pass: The frame is passed unchanged through the filter process.

If none of the above addresses match, the ETH_CI_D is passed.

Valid filter actions for specific services are indicated in the ITU-T G.8011.x series of Recommendations for services supported by those Recommendations. The default filter action value shall be "pass" for all frames with the exception of MAC control frames for which the default value shall be "block".

8.4
Replicate process

See Figure 8-71.


[image: image89.wmf]
Figure 8-71 – Replicate processes

The <Srv>/ETH_A_So replicate process shall:

•
replicate ETH_CI traffic units received on the input from the queuing process and deliver them as ETH_PI to the ETHF_PP interface and the 802.3 protocols process;
•
replicate ETH_CI traffic units received on the input from the ETH_TFP and deliver them as ETH_PI to the ETHTF_PP interface and the 802.3 protocols process.
The <Srv>/ETH_A_Sk replicate process shall:

•
replicate ETH_CI traffic units received on the input from the 802.3 protocols process and deliver them to the ETH_TFP and to the filter process;
•
deliver ETH_PI traffic units received on the input from the ETHF_PP interface to the ETH_TFP;
•
deliver ETH_PI traffic units received on the input from the ETHTF_PP to the filter process.
8.5
802.3 protocols processes

802.3 protocols processes include source and sink handling of MAC Control and optionally IEEE 802.3 slow protocols, as shown in Figure 8-72. The following subclauses specify processes for each of the illustrated process blocks.
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Figure 8-72 – 802.3 protocols processes

8.5.1
MAC control process

The Ethernet MAC control function specified in clause 31 of [IEEE 802.3] shall be implemented in all interfaces conforming to this Recommendation.

The process intercepts all MAC control frames, other frames are passed through unchanged. MAC control frames are characterized by the length/type value that is used (88-08). Every MAC control frame contains an Opcode. MAC control frames are handled based on the value of the Opcode. If the Opcode is not supported, the frame is discarded. If the Opcode is supported, the frame is processed by the corresponding MAC control function. In Annex 31A of [IEEE 802.3], the Opcode assignment is defined.

8.5.1.1
802.3 pause processes

The pause process handles MAC control frames with the Opcode value 00-01, as described in Annex 31B of [IEEE 802.3]. There are two kinds of pause processes: Pause Transmit Process and Pause Receive Process.

8.5.1.1.1
Pause transmit process
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Figure 8-73 – Transmit pause process

If enabled (MI_TxPauseEnable = true), this optional process generates pause frames according to clause 31 and Annexes 31A and 31B of [IEEE 802.3].

The generation of the pause frame is triggered as soon as a CI_PauseTrigger is received. The CI_PauseTrigger primitive that has triggered the Pause frame generation conveys the pause_time parameter used in the generated pause frame.

The CI_PauseTrigger is generated as a result of the IEEE 802.3 service interface signal MA_CONTROL.request described in clause 31.3.1 of [IEEE 802.3]. The generation of the MA_CONTROL.request is outside of the scope of this Recommendation.

8.5.1.1.2
Pause receive process
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Figure 8-74 – Receive pause process

On receipt of a pause request control frame, no action shall be performed (i.e., the pause request control frame shall be silently discarded).

8.5.2
802.3 slow protocols processes

This optional process inspects all slow protocol frames, other frames are passed through unchanged. Slow protocol frames are characterized by the length/type value that is used (88-09). Every slow protocol frame contains a subtype field that distinguishes between different slow protocols. Table 57A-3 of [IEEE 802.3] defines the assignment of subtypes to protocols. The processing of the slow protocol frames depends on the value of the subtype field. There are three options:

•
Illegal: The subtype field contains an illegal value (>10) and is discarded;

•
Unsupported: The subtype field indicates a protocol that is not supported and the frame is passed through.

•
Supported: The subtype field indicates a protocol that is supported, the frame is processed by the corresponding protocol function.

8.5.2.1
LACP process

The LACP process inserts and extracts LACP PDUs. LACP PDUs have a subtype=1. The LACP PDUs are processed and generated by the Aggregation Control Process in the ETY-Np/ETH-LAG-Na_A adaptation function (clause 9.7.1.1, see Figures 9-53 and 9-55).

8.5.2.2
LAMP process

The LAMP process inserts and extracts LAMP PDUs. LAMP PDUs have a subtype=2. The LAMP PDUs are processed and generated by the Aggregation Control Process in the ETY-Np/ETH-LAG-Na_A adaptation function (clause 9.7.1.1, see Figures 9-53 and 9-55).

8.5.2.3
OAM process

The OAM process generates and processes OAM frames according to clause 57 of [IEEE 802.3]. The OAM PDUs have subtype=3.

8.5.2.4
OSSP Process

The Organization Specific Slow Protocol (OSSP) process inserts and extracts OSSP PDUs. The OSSP PDUs have subtype=10. The OSSP process provides a messaging channel for other protocols. The OSSP multiplexes multiple protocols using an Organizational Unique Identifier (OUI). 

The OSSP Source process encodes input PDU signals into OSSP frames. An OSSP PDU has:

DA=01-80-C2-00-00-02(hex)
SA=Local MAC address

Ethertype=88-09 (hex)
Slow Protocol Type=0A(hex)

OUI= Identifying Specific Protocol
PDU=PDU for the protocol

The OSSP Sink process will decode the OUI and PDU information from the incoming frame. The PDU will be forwarded to the protocol function identified by the decoded OUI. If there is no protocol process associated with the OUI the PDU is discarded. 

The supported OUI’s are defined below. 

8.5.2.4.1
ITU Slow Protocols

The ITU Slow protocols use OUI=0x0019A7. The ITU-T Slow protocol process allows for multiplexing multiple ITU defined protocols by using an ITU-T subtype. 

The ITU Slow Protocols Source Process takes an incoming PDU and will create an ITU-T Slow Protocol PDU by prepending the incoming PDU with an ITU-T subtype. The resulting ITU-T Slow Protocol PDU is forwarded to the OSSP process. 

ITU Slow Protocols Sink Process takes an incoming ITU-T Slow Protocol PDU and removes the ITU-T subtype from it. The resulting PDU is forwarded to the protocol process identified by the removed ITU-T subtype. If there is no protocol process associated with the ITU-T subtype the PDU is discarded. 

Supported ITU-T subtypes:

01: Ethernet Synchronization Message Channel (ESMC) as defined in [ITU-T G.8264]

8.6
MAC Length Check process

[image: image93.emf]MAC length check

MI_MAC_Length

ETYn_AI

ETYn_AI

 
Figure 8-75 – MAC Length Check function

This process checks whether the length of the MAC frame is allowed. When the processed signal is ETYn_AI frames shorter than 64 bytes are discarded. Frames longer than MI_MAC_Length are discarded.

Note that frames shorter than 64 bytes are only foreseen on non-ETYn interfaces in connection with removal of VLAN tags. Such frames must be padded to a length of 64-bytes according to clause 4 of [IEEE 802.3]. 

Table 8-4 shows the values corresponding to the IEEE defined frame lengths. 

Table 8-4 – IEEE 802.3 MI_MAC_Length values

	Frame type
	MI_MAC_Length

	Basic
	1518

	Q-tagged
	1522

	Envelope
	
2000


8.7
MAC Frame Counter process
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Figure 8-76 – MAC Frame Count function

This process passes MAC frames and counts the number of frames that are passed.  
MI_pOctetsTransmittedOK[1..Np] per clause 30 of [IEEE 802.3].

MI_pFramesTransmittedOK[1..Np] per clause 30 of [IEEE 802.3].

8.8
“Server Specific” Common Processes

For some server signals MAC FCS generation is not supported. This will be defined in the server-specific adaptation functions.

8.8.1
MAC FCS generation process
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Figure 8-77 – MAC FCS Generation Process

The MAC FCS is calculated over the ETH_CI traffic unit and is inserted into the MAC FCS fields of the frame as defined in clause 4.2.3 of  [IEEE 802.3].
8.8.2 
MAC FCS Check process
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Figure 8-78 – MAC FCS Check Process

The MAC FCS is calculated over the ETH_CI traffic unit and checked as specified in clause 4.2.4.1.2 of [IEEE 802.3]. If errors are detected, the frame is discarded. Errored frames are indicated by FrameCheckSequenceErrors.

8.8.3
802.1AB/X Protocols Processes

802.1AB/X Protocols processes include source and sink handling of 802.1AB and 802.1X protocols, as shown in Figures 8-79 and 8-80. These processes are used in ETYn/ETH_A functions.

The following clauses specify processes for each of the illustrated process blocks.

8.8.3.1
802.1X protocol process

The 802.1X protocol block implements the port-based network access control as per [IEEE 802.1X]. 
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Figure 8-79 – 802.1X Protocols Processes

In the sink direction, the multiplexer separates the 802.1X PDUs from the rest of the frames based on MAC address 01-80-C2-00-00-03. The former are delivered to the 802.1X process, the latter are passed on in the sink direction. In the source direction, 802.1X PDUs are multiplexed with the rest of the frames.

In the function descriptions in which it appears, the 802.1X process is optional. 

8.8.3.2
802.1AB protocol process

The 802.1AB protocol block implements the Link Layer Discovery Protocol as per [IEEE 802.1AB].
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Figure 8-80 – 802.1AB Protocols Processes

In the sink direction, the multiplexer separates the 802.1AB PDUs from the rest of the frames. The former are delivered to the 802.1AB process, the latter are passed on in the sink direction. In the source direction, 802.1AB PDUs are multiplexed with the rest of the frames. Frames are defined by: MAC address 01-80-C2-00-00-0E, Ethertype 88-CC.

In the function description in which it appears, the 802.1AB process is optional. 

8.8.4
Link quality supervision

Counts of transmitted and received octets and frames are maintained in <Srv>/ETH_A functions per the requirements of clause 30 of [IEEE 802.3]. Discarded jabber frames are counted in ETYn/ETH_A_So functions.

Additional link quality performance monitors per clause 30 of [IEEE 802.3] are for further study.

8.8.5
FDI/BDI generation and detection

For further study.

8.8.6
ETH-specific GFP-F process

8.8.6.1
ETH-specific GFP-F source process

See clause 8.5.4.1.1 of [ITU-T G.806]. GFP pFCS generation is disabled (FCSenable=false). The UPI value for Frame-Mapped Ethernet shall be inserted (as defined in Table 6-3 of [ITU-T G.7041]). The Ethernet frames are inserted into the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041]. Client management frame insertion is governed by the consequent actions.

Consequent actions:

aCSF-RDI ( CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI ( CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS ( CI_SSF and CSFEnable

8.8.6.2
ETH-specific GFP-F sink process

See clause 8.5.4.1.2 of [ITU-T G.806]. GFP pFCS checking, GFP p_FCSError, p_FDis are not supported (FCSdiscard=false). The UPI value for Frame-Mapped Ethernet shall be expected (as defined in Table 6-3 of [ITU-T G.7041]). The Ethernet frames are extracted from the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041]. The generic defects and consequent actions are extended as follows.

Defects:

dCSF-RDI: GFP Client Signal Fail-Remote Defect Indication (dCSF-RDI) is raised when a GFP client management frame with the RDI UPI (as defined in Table 6-4 of [ITU-T G.7041]) is received. dCSF-RDI is cleared when no such GFP client management frame is received in N x 1000 ms (a value of 3 is suggested for N), a valid GFP client data frame is received, or a GFP client management frame with the DCI UPI is received.

dCSF-FDI: GFP Client Signal Fail-Forward Defect Indication (dCSF-FDI) is raised when a GFP client management frame with the FDI UPI (as defined in Table 6-4 of [ITU-T G.7041]) is received. dCSF-FDI is cleared when no such GFP client management frame is received in N x 1000 ms (a value of 3 is suggested for N), a valid GFP client data frame is received, or a GFP client management frame with the DCI UPI is received.

dCSF-LOS: GFP Client Signal Fail-Loss of Signal (dCSF-LOS) is raised when a GFP client management frame with the LOS UPI (as defined in Table 6-4 of [ITU-T G.7041]) is received. dCSF-LOS is cleared when no such GFP client management frame is received in N x 1000 ms (a value of 3 is suggested for N), a valid GFP client data frame is received, or a GFP client management frame with the DCI UPI is received.

Consequent actions:

aSSFrdi ( dCSF-RDI and CSFrdifdiEnable 

aSSFfdi ( dCSF-FDI and CSFrdifdiEnable

aSSF ( GFP_SF or  dUPM or dCSF-LOS

Defect correlations:

cCSF ( (dCSF-RDI or dCSF-FDI or dCSF-LOS) and (not dUPM) and (not GFP_SF) and CSF_Reported
The GFP_SF term refers collectively to the set of defects detected in the Common GFP-F sink process (see clause 8.5.3.2 of [ITU-T G.806]), the server-specific GFP-F sink process (see clause 8.5.2.2 of [ITU-T G.806]), or the server-specific process (see clause 11) with the consequent action of aGFP_SF.  This includes dEXM, dLFD, any server-specific defects related to the GFP-F mapping, and server layer TSF.

8.9
QoS related Processes

8.9.1
Queue

The queue process stores received ETH_CI Traffic Units and associated signals, and forwards a Traffic Unit if requested to do so by the connected process. 


[image: image99.emf]     Queue


Figure 8-81 – Queue Process

There are several parameters on the queue:

· Queue depth:  The maximum size of the queue in bytes. An incoming ETH_CI traffic unit is dropped if there is insufficient space to hold the whole unit

· Dropping Threshold: If the queue is filled beyond this threshold, incoming ETH_CI traffic units accompanied by the ETH_CI_DE signal set are dropped. 

8.9.2
Priority Splitter

The Priority Splitter Process forwards received ETH_CI onto different output ports depending on the value of the ETH_CI_P signal. 
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Figure 8-82 – Priority Splitter Function

The mapping of ETH_CI_P values to output ports of the Priority Splitter function need to be configured. 

8.9.3
Priority Merger

The Priority Merger Process forwards received ETH_CI on one of its input ports to a single output port.  
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Figure 8-83 – Priority Merger Function

Nothing has to be configured on this process. 

8.9.4
Conditioner

The conditioner determines the conformance of the incoming ETH_CI Traffic Units. The level of conformance is expressed as one of three colours; Green, Yellow or Red. 
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Figure 8-84 – Conditioner Process

Red Conformance means that the ETH_CI Traffic Unit is discarded; Yellow conformance means that for the ETH_CI Traffic Units the associated ETH_CI_DE signal is set to True; Green conformance means that the ETH_CI Traffic Unit is forwarded unchanged and the ETH_CI_DE signal is set to False. 

Compliance for a Bandwidth Profile is described by 4 parameters. The parameters are:

1. Committed Information Rate (CIR) expressed as bits per second. CIR must be ( 0.

2. Committed Burst Size (CBS) expressed as bytes. When CIR > 0, CBS must be ≥ Maximum Transmission Unit size allowed to enter the function.

3. Excess Information Rate (EIR) expressed as bits per second. EIR must be ( 0

4. Excess Burst Size (EBS) expressed as bytes. When EIR > 0, EBS must be ≥ Maximum Ethernet frame allowed to enter the network.

Two additional parameters are used to determine the behaviour of the Bandwidth Profile algorithm. The algorithm is said to be in colour aware mode when each incoming Ethernet Frame already has a level of conformance colour associated with it and that colour is taken into account in determining the level of conformance to the bandwidth profile parameters. The Bandwidth Profile algorithm is said to be in colour blind mode when level of conformance colour (if any), already associated with each incoming Ethernet Frame, is ignored in determining the level of conformance. Colour blind mode support is required at the UNI. Colour aware mode is optional at the UNI.

1. Coupling Flag (CF) must have only one of two possible values, 0 or 1.

2. Colour Mode (CM) must have only one of two possible values, “color-blind” and “color-aware”

All these parameters have to be configured at the conditioner function. The Conformance Algorithm is defined in [MEF 10.2]. 

8.9.5
Scheduler

The Scheduler Process forwards ETH_CI from its input ports to the corresponding output ports of the Scheduler function according to a specified scheduling algorithm. 
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Figure 8-85 – Scheduler Process

The Scheduling algorithm and its parameters must be configured. 

The Scheduling Algorithms are for further study.

9
Ethernet MAC layer (ETH) functions

Figure 1-1 illustrates all the ETH layer network, server and client adaptation functions. The information crossing the ETH flow point (ETH_FP) is referred to as the ETH Characteristic Information (ETH_CI). The information crossing the ETH access point (ETH_AP) is referred to as ETH adapted information (ETH_AI). 

ETH sublayers can be created by expanding an ETH_FP as illustrated in Figure 9-1.
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Figure 9-1 – ETH sublayering

Figure 9-1 illustrates the basic flow termination and adaptation functions involved and the possible ordering of these functions. The ETHx/ETH-m functions multiplex ETH_CI streams. The ETHx and ETHG flow termination functions insert and extract the pro-active Y.1731 OAM information (e.g., CCM). The ETHDy flow termination functions insert and extract the on-demand Y.1731 OAM information (e.g., LBM, LTM). The ETHx/ETH and ETHG/ETH adaptation functions insert and extract the administrative and control Y.1731 OAM information (e.g., LCK, APS).
Any combination that can be constructed by following the directions in the figure is allowed. Some recursion is allowed as indicated by the arrows upwards; the number next to the arrow defines the number of recursions allowed. 

Note that the ETHx Sublayers in Figure 9-1 correspond to the ETH0 (top), ETH1 (middle) and ETH2 (bottom) in Figure 7-5 of [ITU-T G.8010].

ETH Characteristic Information

The ETH_CI is a stream of ETH_CI traffic units complemented with ETH_CI_P, ETH_CI_DE, ETH_CI_SSF and ETH_CI_SSD signals. An ETH_CI traffic unit defines the ETH_CI_D signal as illustrated in Figure 9-2. Each ETH_CI Traffic Unit contains a Source Address (SA) field, a Destination Address (DA) field and an M_SDU field, this can be further decomposed into a Length/Type field and a Payload field; the Payload field may be padded. 
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Figure 9-2 – ETH Characteristic Information

The SA and DA field contain 48 byte MAC addresses as defined in [IEEE 802.3].

There are two types of ETH_CI Traffic Units: Data Traffic Units and OAM Traffic Units. If the L/T field equals the OAM Etype value (89-02 as defined in clause 10 of [ITU-T Y.1731]) the ETH_CI Traffic Unit is an ETH_CI OAM Traffic Unit, otherwise it is an ETH_CI Data Traffic Unit. 

The Payload field of an ETH_CI OAM Traffic Unit can be decomposed into the Maintenance Entity Group Level field  (MEL), the Version field (Ver), the Opcode field (Opc), the Flags field (F), the TLV Offset field (Offs) and Opcode Specific Fields. This structure of ETH_CI OAM Traffic Units is defined in clause 9 of [ITU-T Y.1731].

Functions for Traffic Units

The following functions are used in this Recommendation to indicate the various fields of a Traffic Unit:

SA(Traffic_Unit): Returns the value of the SA field in the Traffic Unit.

DA(Traffic_Unit): Returns the value of the DA field in the Traffic Unit. 

Etype(Traffic_Unit): Returns the value of the Ethertype field in the Traffic Unit

OPC(OAM Traffic_Unit): Returns the value of the Opcode field in the OAM Traffic Unit; returns undefined value if the Traffic Unit is not an OAM Traffic Unit. 

MEL(OAM Traffic_Unit): Returns the value of the Maintenance Entity Group Level field in the OAM Traffic Unit; returns undefined value if the Traffic Unit is not an OAM Traffic Unit.

Flags(OAM Traffic_Unit): Returns the value of Flags field in the OAM Traffic Unit; returns an undefined value if the Traffic Unit is not an OAM Traffic Unit. 

NOTE – The ETH_CI contains no VID field as the ETH_CI is defined per VLAN.

ETH Adapted Information

The ETH_AI is a stream of ETH_AI traffic units complemented with the following signals: ETH_AI_P, ETH_AI_DE, ETH_AI_TSF and ETH_AI_TSD. The ETH_AI Traffic Units define the ETH_AI_D signal. The ETH_AI Traffic Unit structure is shown in Figure 9-3.
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Figure 9-3 – ETH Adapted Information

The ETH_AI Traffic Unit contains the M_SDU and the DA and SA fields. The M_SDU field can be further decomposed into L/T, Payload and PAD fields. These fields are the same as in ETH_CI Traffic Units. 

There are four types of ETH_AI Traffic Units: Untagged Data, Tagged Tada, Untagged OAM and Tagged OAM traffic units. The untagged and tagged types are defined in [IEEE 802.1Q]. The OAM traffic units are defined in [ITU-T Y.1731]. 

The L/T field determines the type of the ETH_AI Traffic Unit:

· If the L/T field contains the OAM Ethertype value, the Traffic Unit is an Untagged OAM Traffic Unit, otherwise

· If the L/T field contains one of the Tag Protocol Identifier (TPID) values indicated in Figure 9-3, and the succeeding field to the Tag Control Information (TCI) value corresponds to the OAM Ethertype value, the Traffic Unit is a Tagged OAM Traffic Unit, otherwise 

· If the L/T field contains neither the OAM Ethertype value nor the TPID values, the Traffic Unit is an Untagged Data Traffic Unit, otherwise

· The Traffic Unit is a Tagged Data Traffic Unit. 

The Payload field of an ETH_AI OAM Traffic Unit can be decomposed into the Maintenance Entity Group Level field  (MEL), the Version field (Ver), the Opcode field (Opc), the Flags field (F), TLV Offset field (Offs) and Opcode Specific Fields. This structure of ETH_AI OAM Traffic Units is the same as ETH_CI OAM Traffic Units defined in clause 9 of [ITU-T Y.1731]. 

There are two types of Tagged Traffic Units: C-VLAN tagged and S-VLAN tagged. Each of these types has its own TPID value, 81-00 for C-VLAN tagged and 88-a8 for S-VLAN tagged as defined in clause 9.5 of [IEEE 802.1Q]. 

In a tagged frame (C-VLAN and S-VLAN tagged) a Tag Control Information (TCI) field follows the TPID field. This field consists of a Priority Code Point (PCP), VLAN ID (VID) and Canonical Format Identifier (CFI) for C-VLAN tagged, or Drop Eligible Indicator (DEI) field for S-VLAN tagged Traffic Units. 

The PCP field may be used to carry the ETH_CI_P and ETH_CI_DE signal values from an ETH_FP. The DEI field may be used to carry the ETH_CI_DE signal from an ETH_FP. 

All ETH_AI traffic units may come from one ETH_FP or different ETH_FPs (in the case of multiplexing in ETHx/ETH-m_A function). In the latter case the VID field value is used to identify the ETH_FP where the Traffic Unit is associated. 

Note that because of the stacking of ETH sublayers, ETH_CI of a client ETH sublayer is encapsulated in ETH_AI to be transferred via a server ETH sublayer. Figure 9-4 shows an ETH_CI OAM Traffic Unit encapsulated in an ETH_AI Data Traffic Unit. The grey fields constitute the original ETH_CI OAM Traffic Unit. The encapsulating Traffic Unit is no longer an OAM Traffic Unit, but a Tagged Traffic Units. Adding a VLAN Tag hides the OAM information, and transforms an ETH_CI OAM Traffic Units into a Tagged ETH_AI Data Traffic Unit. 
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Figure 9-4 – Tagged ETH_AI carrying ETH_CI OAM

This ETH_AI Tagged Traffic Unit will be transformed into an ETH_CI data Traffic Unit by the ETHx_FT source function, resulting in an ETH_CI data Traffic Unit carrying a client layer ETH_CI OAM Traffic Unit. 
9.1
ETH Connection Functions (ETH_C)

The information flow and processing of the ETH_C function is defined with reference to Figures 9-5 and 9-6. The ETH_C function connects ETH characteristic information from its input ports to its output ports. As the process does not affect the nature of characteristic information, the reference points on either side of the ETH_C function are the same as illustrated in Figure 9-5.

The connection process is unidirectional and as such no differentiation in sink and source is required.

In addition, the ETH_C function supports the following protection schemes:

–
1+1 unidirectional SNC/S protection without APS protocol.

–
1+1 unidirectional SNC/S protection with an APS protocol.

–
1+1 bidirectional SNC/S protection with an APS protocol.

–
1:1 bidirectional SNC/S protection with an APS protocol.
–
Ring protection with an APS protocol.
The protection functionality is described in clauses 9.1.2 and 9.1.3.

NOTE 1 – The SNC/S protection processes have a dedicated sink and source behaviour.
Symbol

The ETH Connection Function, as shown in Figure 9-5, forwards ETH_CI signals at its input ports to its output ports. 
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Figure 9-5 – ETH_C symbol

The actual forwarding is performed using Flow Forwarding processes ETH_FF interconnecting the input and output ports. 

Interfaces

Table 9-2 – ETH_C Interfaces

	Inputs
	Outputs

	Per ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_APS
ETH_CI_SSF
ETH_CI_SSD

ETH_C_MP:
ETH_C_MI_Create_FF
ETH_C_MI_Modify_FF
ETH_C_MI_Delete_FF
ETH_C_MP per flow forwarding process:
ETH_C_MI_FF_Set_PortIds
ETH_C_MI_FF_ConnectionType
ETH_C_MI_FF_Flush_Learned
ETH_C_MI_FF_Flush_Config
ETH_C_MI_FF_Group_Default
ETH_C_MI_FF_ETH_FF
ETH_C_MI_FF_Ageing
ETH_C_MI_FF_Learning
ETH_C_MI_FF_STP_Learning_State[i]


ETH_C_MP per SNC/S protection process:
ETH_C_MI_PS_WorkingPortId
ETH_C_MI_PS_ProtectionPortId
ETH_C_MI_PS_ProtType
ETH_C_MI_PS_OperType
ETH_C_MI_PS_HoTime
ETH_C_MI_PS_WTR
ETH_C_MI_PS_ExtCMD  ETH_C_MI_PS_BridgeType
ETH_C_MI_PS_SD_Protection
ETH_C_MP per Ring protection process:
ETH_C_MI_RAPS_RPL_Owner_Node
ETH_C_MI_RAPS_RPL_Neighbour_Node
ETH_C_MI_RAPS_Propagate_TC[1…M]
ETH_C_MI_RAPS_Compatible_Version
ETH_C_MI_RAPS_Revertive
ETH_C_MI_RAPS_Sub_Ring_Without_
                     Virtual_Channel
ETH_C_MI_RAPS_HoTime
ETH_C_MI_RAPS_WTR
ETH_C_MI_RAPS_GuardTime
ETH_C_MI_RAPS_ExtCMD
ETH_C_MI_RAPS_RingID
	Per ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_APS


Processes
The processes associated with the ETH_C function are as depicted in Figure 9-6.

ETH_CI traffic units are forwarded between input and output ETH flow points by means of an ETH flow forwarding process. ETH flow points may be allocated within a protection group.

NOTE 2 – Neither the number of input / output signals to the connection function, nor the connectivity, is specified in this Recommendation. That is a property of individual network elements.
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Figure 9-6 – ETH Connection function with ETH_FF processes

The flow forwarding process ETH_FF is described in sub-clause 9.1.1. 

Defects 




None.
Consequent Actions 

None.
Defect Correlations 

None.
Performance Monitoring 
None.
9.1.1
ETH Flow Forwarding process (ETH_FF)
The ETH Flow Forwarding process, as shown in Figure 9-6, forwards ETH_CI signals at its input ports to its output ports. The forwarding may take into account the value of the DA field of the ETH_CI Traffic Unit.
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Figure 9-7 – ETH Flow Forwarding Process

Figure 9-7 shows the ETH_FF in case of Individual VLAN Learning (IVL) mode. In this mode each ETH_FF has its own Address Table. Figure 9-8 shows the process for the case of Shared VLAN Learning (SVL) mode. In this mode two or more ETH_FF share the Address Table process.

 [image: image111.emf]Learning Forwarding

Address Table

ETH_CI

ETH_CI

ETH_CI

(Address, port) Address

(Address, {port})

ETH_FF

0

1

2

n

0

1

2

n

0

1

2

n

0

1

2

n

Learning Forwarding

ETH_CI

ETH_CI

0

1

2

n

0

1

2

n

0

1

2

n

0

1

2

n

Address

(Address, {port})

(Address, port)

Learning STP_LearningState[]

Learning

STP_LearningState[]

Ageing

ETH_CI

Group_Default

Flush_Learned

Flush_Config

MI_FF_ MI_FF_

MI_

FF_

MI_

FF_

MI_FF_ MI_FF_

MI_

FF_

MI_

FF_

MI_

FF_

MI_

FF_

MI_FF_ MI_FF_

MI_

FF_

MI_

FF_

MI_

FF_

MI_

FF_

MI_

FF_

MI_

FF_


Figure 9-8 – ETH Flow Forwarding Process in SVL mode

Address Table process:

The Address Table process maintains a list of tuples (Address, {ports}). This list may be configured using MI_FF_ETH_FF input signal and by the Learning process.

A tuple received from the Learning process is only stored in the Address Table process if there is no entry present for that MAC address that has been configured by the MI_FF_ETH_FF input signal.

The MI_FF_Ageing is used to provision the Ageing time period for entries configured from the Learning Process. Entries received from the Learning process are removed from the Address Table Ageing Time period after it was received. If, before the Ageing Time Period has expired, a new entry for the same MAC address is received, the Ageing Time Period starts again.

There is one specific value of MI_FF_Ageing: “never”. This means that the entries received from the Learning process are never removed.

All the tuples received from the Learning Process can be cleared using the MI_FF_Flush_Learned command.

All the tuples that are entered via the MI_FF_ETH_FF can be cleared using the MI_FF_Flush_Config command. Individual entries are removed via the MI_FF_ETH_FF signal.

The Address Table process processes Address requests from the Forwarding process, and responds with the tuple (Address, {port}) for the specified address. For unicast MAC addresses, if the tuple does not exist the port set ({port}) is empty. For Multicast MAC addresses, if the tuple does not exist the port set ({port}) contains the ports as configured using the MI_FF_Group_Default input signal.
Learning process:

If the value of MI_FF_Learning is enabled, the Learning process reads the SA field of the incoming ETH_CI Traffic Unit, and forwards a tuple (Address, {port}) to the Address Table process. The Address contains the value of the SA field of the ETH_CI Traffic Unit, and the port is the port on which the Traffic Unit was received.

If the value of MI_FF_Learning is disabled, the Learning process does not submit information to the AddressTable Process.

In both cases the ETH_CI itself is forwarded unchanged to the output of the learning process.

Forwarding process:

The parameters of MI_Create_FF, MI_Modify_FF, and MI_Delete_FF are used to provision the flow forwarding process.
The MI_FF_Set_PortIds parameter is used to provision TBD.

The MI_FF_ConnectionType parameter is used to provision TBD.

The MI_FF_STP_LearningState[i] input signal is provisioned per port [i]; it can be used to configure a specific port to be in the learning state. If a port is in the learning state this means that all frames received on that port will be discarded by the learning process, and therefore not forwarded to the forwarding process; however the (Address, {port}) tuple may be submitted to the Address Table process before the frame is dropped (depending on the value of MI_FF_Learning).

The Forwarding Process reads the DA field of the incoming ETH_CI Traffic Unit and sends this to the AddressTable process, the AddressTable will send a tuple (Address, {port}) back in response. It will forward the ETH_CI on all ports listed in the port set field of the tuple. If the port set is empty, the ETH_CI will be forwarded on all ports (flooding). In all cases the ETH_CI is never forwarded on the same port as it was received on.
9.1.2
Subnetwork Connection Protection Process

SNC Protection with Sublayer monitoring based on TCM is supported. 

Figure 9-9 shows the involved atomic functions in SNC/S. The ETH_FT_Sk provides the TSF/TSD protection switching criterion via the ETH/ETH_A_Sk function (SSF/SSD) to the ETH_C function.
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Figure 9-9 – SNC/S Atomic Functions

The protection functions at both ends operate the same way, by monitoring the working and protection subnetwork connections for defects, evaluating the system status taking into consideration the priorities of defect conditions and of external switch requests, and switching the appropriate subnetwork flow point (i.e., working or protection) to the protected (sub)network flow point.

The signal flows associated with the ETH_C SNC protection process are described with reference to Figure 9-10. The protection process receives control parameters and external switch requests at the MP reference point. The report of status information at the MP reference point is for further study.
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Figure 9-10 – SNC/S Protection Process

Source direction:

For a 1+1 architecture, the CI coming from the normal (protected) ETH_FP is bridged permanently to both the working and protection ETH_FP.

For a 1:1 architecture, the CI coming from the normal (protected) ETH_FP is switched to either the working or the protection ETH_FP. A switch-over from working to protection ETH_FP or vice versa is initiated by the switch initiation criteria defined below.

Sink direction:

For a 1+1 or 1:1 architecture, the CI coming from either the working or protection ETH_FP is switched to the normal (protected) ETH_FP. A switch-over from working to protection ETH_FP or vice versa is initiated by the switch initiation criteria defined below.

Switch initiation criteria:

Automatic protection switching is based on the defect conditions of the working and protection (sub)network connections, for SNC/S protection server signal fail (SSF) and server signal degrade (SSD).

In order to allow interworking between nested protection schemes, a hold-off timer is provided. The hold-off timer delays switch initiation, in case of signal fail, in order to allow a nested protection to react and clear the fault condition. The hold-off timer is started by the activation of signal fail and runs for the hold-off time. Protection switching is only initiated if signal fail is still present at the end of the hold-off time. The hold-off time shall be provisionable between 0 and 10 s in steps of 100 ms; this is defined in clause 11.12 of [ITU-T G.8031].

Protection switching can also be initiated by external switch commands received via the MP or a request from the far end via the received ETH_CI_APS. Depending on the mode of operation, internal states (e.g. wait-to-restore) may also affect a switch-over.

See the switching algorithm described in [ITU-T G.8031].

Switching time:

Refer to [ITU-T G.8031].

Switch restoration:

In the revertive mode of operation, the protected signal shall be switched back from the protection (sub)network connection to the working (sub)network connection when the working (sub)network connection has recovered from the fault.

To prevent frequent operation of the protection switch due to an intermittent fault, a failed working (sub)network connection must become fault-free for a certain period of time before it is used again. This period, called the wait-to-restore (WTR) period, should be of the order of 5-12 minutes and should be capable of being set. The WTR is defined in clause 11.13 of [ITU-T G.8031]. 

In the non-revertive mode of operation no switch back to the working (sub)network connection is

performed when it has recovered from the fault.

Configuration:
The following configuration parameters are defined in [ITU-T G.8031]:
ETH_C_MI_PS_WorkingPortId configures the Working Port. 
ETH_C_MI_PS_ProtectionPortId configures the Protection Port.

ETH_C_MI_PS_ProtType configures the protection Type.

ETH_C_MI_PS_OperType configures to be in revertive mode. 

ETH_C_MI_PS_HoTime configures the Hold Off Timer. 

ETH_C_MI_PS_WTR configures the Wait-To-Restore Timer.

ETH_C_MI_PS_ExtCMD configures the protection group command.

ETH_C_MI_PS_BridgeType configures the type of bridge used for 1:1 SNC protection switching.

ETH_C_MI_PS_SD_Protection configures the ability of a SNC protection switching process to trigger protection switching upon SD.
Defects:

The function detects dFOP-PM, dFOP-CM, dFOP-NR and dFOP-TO defects in case the APS protocol is used.
Consequent Actions:

None.

Defect correlations:

cFOP-TO ( dFOP-TO and (not dFOP-CM)

9.1.3
Ring Protection Control Process

Ring Protection with Inherent, Sub-Layer, or Test Trail monitoring is supported.

Figure 9-11 shows a subset of the atomic functions involved, and the signal flows associated with the ring protection control process. This is only an overview of the Ethernet Ring Protection Control Process as specified in [ITU-T G.8032]. The ETH_FT_Sk provides the TSF protection switching criterion via the ETH/ETH_A_Sk function (SSF). [ITU-T G.8032] specifies the requirements, options and the ring protection protocol supported by the ring protection control process.
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Figure 9-11 – Ring Protection Atomic Functions and Control Process
Configuration:
The following configuration parameters are defined in [ITU-T G.8032]:
ETH_C_MI_RAPS_RPL_Owner_Node configures the node type. 

ETH_C_MI_RAPS_RPL_Neighbour_Node configures the adjacency of a node to the RPL Owner. 
ETH_C_MI_RAPS_Propagate_TC[1…M] configures the flush logic of an interconnection node.

ETH_C_MI_RAPS_Compatible_Version configures the Backward compatibility logic.

ETH_C_MI_RAPS_Revertive configures the revertive mode. 

ETH_C_MI_RAPS_Sub_Ring_Without_Virtual_Channel configures the sub-ring type.

ETH_C_MI_RAPS_HoTime configures the Hold Off Timer.

ETH_C_MI_RAPS_WTR configures the Wait To Restore Timer.

ETH_C_MI_RAPS_GuardTime configures the Guard Timer.

ETH_C_MI_RAPS_ExtCMD configures the protection command.
ETH_C_MI_RAPS_RingID configures the Ring ID.

Defects:

The function detects dFOP-PM and dFOP-TO in case the R-APS protocol is used.

Consequent Actions:

None.

Defect correlations:

cFOP-PM ( dFOP-PM

cFOP-TO ( dFOP-TO

9.2 ETH Termination Functions

9.2.1
ETHx Flow Termination functions (ETHx_FT)

The bidirectional ETH Flow Termination (ETHx_FT) function is performed by a co-located pair of ETH flow termination source (ETHx_FT_So) and sink (ETHx_FT_Sk) functions.  

9.2.1.1
ETHx Flow Termination source function (ETHx_FT_So)

Symbol
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Figure 9-13 – ETHx_FT_So symbol

Interfaces

Table 9-3 – ETHx_FT_So interfaces

	Inputs
	Outputs

	ETH_AP:

ETH_AI_D
ETH_AI_P
ETH_AI_DE

ETH_RP:

ETH_RI_CC_RxFCl
ETH_RI_CC_TxFCf
ETH_RI_CC_RDI
ETH_RI_CC_Blk
ETH_RI_LMM(OAM,P,DE)
ETH_RI_LMR(TxFCf,RxFCf,TxFCb,RxFCl)
ETH_RI_DMM(OAM,P,DE)
ETH_RI_DMR(rSA,TxTimeStampf, 
  RxTimeStampf,TxTimeStampb,RxTimeb,
  rTestID)
ETH_RI_SLM(OAM,P,DE,TxFCb)
ETH_RI_SLR(rMEP_ID,rTest_ID,
                TxFCf, TxFCb)
ETHx_FT_So_MP:

ETHx_FT_So_MI_MEL
ETHx_FT_So_MI_MEP_MAC
ETHx_FT_So_MI_CC_Enable
ETHx_FT_So_MI_LM_Enable
ETHx_FT_So_MI_MEG_ID
ETHx_FT_So_MI_MEP_ID
ETHx_FT_So_MI_CC_Period
ETHx_FT_So_MI_CC_Pri
ETHx_FT_So_MI_LM_MAC_DA
ETHx_FT_So_MI_LM_Period
ETHx_FT_So_MI_LM_Pri ETHx_FT_So_MI_DM_Enable
ETHx_FT_So_MI_DM_MAC_DA
ETHx_FT_So_MI_DM_Test_ID
ETHx_FT_So_MI_DM_Length
ETHx_FT_So_MI_DM_Period
ETHx_FT_So_MI_DM_Pri
ETHx_FT_So_MI_1DM_Enable
ETHx_FT_So_MI_1DM_MAC_DA
ETHx_FT_So_MI_1DM_Test_ID
ETHx_FT_So_MI_1DM_Length
ETHx_FT_So_MI_1DM_Period
ETHx_FT_So_MI_1DM_Pri
ETHx_FT_So_MI_SL_Enable
ETHx_FT_So_MI_SL_MAC_DA
ETHx_FT_So_MI_SL_Test_ID
ETHx_FT_So_MI_SL_Length
ETHx_FT_So_MI_SL_Period
ETHx_FT_So_MI_SL_Pri
ETHx_FT_So_MI_1SL_Enable
ETHx_FT_So_MI_1SL_MAC_DA
ETHx_FT_So_MI_1SL_Test_ID
ETHx_FT_So_MI_1SL_Length
ETHx_FT_So_MI_1SL_Period
ETHx_FT_So_MI_1SL_Pri
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_RP:

ETH_RI_LM_Result(N_TF,N_LF,F_TF,F_LF)
ETH_RI_DM_Result(B_FD,F_FD,N_FD)
ETH_RI_SL_Result(N_TF,N_LF,F_TF,F_LF)


Processes

   [image: image116.emf]ETH_AI_D/P/DE

RI_CC_RxFCl

RI_CC_TxFCf

RI_CC_RDI

MI_CC_Enable

Data

Data

Block

RI_CC_Blk

ETH_AI_D/P/DE

RI_CC_RxFCl

RI_CC_TxFCf

RI_CC_RDI

MI_CC_Enable

Data

Data

Block

RI_CC_Blk

M

E

P

P

r

o

A

c

t

i

v

e

-

O

A

M

I

n

s

e

r

t

i

o

n

MI_MEL

MI_MEP_MAC

M

E

P

P

r

o

A

c

t

i

v

e

-

O

A

M

I

n

s

e

r

t

i

o

n

MI_MEL

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

MI_MEP_MAC

P DE

Data

DE

Data

D

O

A

M

D

P

DE

D

M

R

DMR

Generation

RI_DMM(OAM,P,DE)

DMM

Generation

D

P

DE

D

M

M

DMM(

DA,P,1,

Test ID TLV,

TLV)

DMM

Z

Y

X

Mux

Proactive DM

Control

MI_DM_Length

MI_DM_Period

MI_DM_Pri

RI_DM_Result

(B_FD,F_FD,N_FD)

MI_DM_MAC_DA

MI_DM_Enable

RI_DMR

(rSA, TxTimeStampf,

RxTimeStampf, TxTimeStampb,

RxTimeb,rTestID)

MI_DM_Test_ID

O

A

M

D

P

DE

D

M

R

DMR

Generation

RI_DMM(OAM,P,DE)

DMM

Generation

D

P

DE

D

M

M

DMM(

DA,P,1,

Test ID TLV,

TLV)

DMM

Z

Y

X

Mux

Proactive DM

Control

MI_DM_Length

MI_DM_Period

MI_DM_Pri

RI_DM_Result

(B_FD,F_FD,N_FD)

MI_DM_MAC_DA

MI_DM_Enable

RI_DMR

(rSA, TxTimeStampf,

RxTimeStampf, TxTimeStampb,

RxTimeb,rTestID)

MI_DM_Test_ID

1DM

Generation

D

P

DE

1

D

M

1DM(

DA,P,1,

Test ID TLV,

TLV)

1DM

Z

Y

X

Mux

Proactive 1DM

Control_So

MI_1DM_Length

MI_1DM_Period

MI_1DM_Pri

MI_1DM_MAC_DA

MI_1DM_Enable

MI_1DM_Test_ID

1DM

Generation

D

P

DE

1

D

M

1DM(

DA,P,1,

Test ID TLV,

TLV)

1DM

Z

Y

X

Mux

Proactive 1DM

Control_So

MI_1DM_Length

MI_1DM_Period

MI_1DM_Pri

MI_1DM_MAC_DA

MI_1DM_Enable

MI_1DM_Test_ID

D

P

DE

L

M

R

LMR

Generation

RI_LMM(OAM,P,DE)

LMM

Generation

D

P

DE

L

M

M

LMM(

DA,P,1)

LMM

Z

Y

X

Mux

Proactive LM

Control

MI_LM_Period

MI_LM_Pri

MI_LM_MAC_DA

CCM Generation

D

DE

P

O

A

M

C

C

M

MI_CC_

Pri

MI_CC_

Period

MI_MEG_ID

MI_MEP_ID

MI_CC_

Pri

MI_CC_

Period

MI_MEG_ID

MI_MEP_ID

RI_LM_Result

(N_TF,N_LF,F_TF,F_LF)

RI_LMR

(TxFCf,RxFCf,TxFCb,RxFCl)

Pri

MI_LM_

Enable

MI_ _

Pri

MI_LM_

Enable

MI_ _

TxFC[]

MI_LM_Enable MI_ _Enable

Counter

SLM

Generation

D

P

DE

S

L

M

SLM(

DA,P,

MEP_ID,

Test _ID,

TxFCl,

TLV)

SLM

Z

Y

X

Mux

Proactive SL

Control

MI_SL_Length

MI_SL_Period

MI_SL_Pri

MI_SL_MAC_DA

MI_SL_Enable

MI_SL_Test_ID

D

P

DE

S

L

R

SLR

Generation

RI_SL_Result

(N_TF,N_LF,F_TF,F_LF)

RI_SLM(OAM,P,DE,TxFCb)

RI_SLR

(rMEP_ID,rTest_ID,TxFCf,TxFCb)

SLM

Generation

D

P

DE

S

L

M

SLM(

DA,P,

MEP_ID,

Test _ID,

TxFCl,

TLV)

SLM

Z

Y

X

Mux

Proactive SL

Control

MI_SL_Length

MI_SL_Period

MI_SL_Pri

MI_SL_MAC_DA

MI_SL_Enable

MI_SL_Test_ID

D

P

DE

S

L

R

SLR

Generation

RI_SL_Result

(N_TF,N_LF,F_TF,F_LF)

RI_SLM(OAM,P,DE,TxFCb)

RI_SLR

(rMEP_ID,rTest_ID,TxFCf,TxFCb)

1SL

Generation

D

P

DE

1

S

L

1SL(

DA,P,

MEP_ID,

Test_ID,

TxFCl,

TLV)

1SL

Z

Y

X

Mux

Proactive 1SL

Control_So

MI_1SL_Length

MI_1SL_Period

MI_1SL_Pri

MI_1SL_MAC_DA

MI_1SL_Enable

MI_1SL_Test_ID

1SL

Generation

D

P

DE

1

S

L

1SL(

DA,P,

MEP_ID,

Test_ID,

TxFCl,

TLV)

1SL

Z

Y

X

Mux

Proactive 1SL

Control_So

MI_1SL_Length

MI_1SL_Period

MI_1SL_Pri

MI_1SL_MAC_DA

MI_1SL_Enable

MI_1SL_Test_ID

 
Figure 9-14 – ETHx_FT_So Process
MEP ProActive-OAM Insertion process:

This process inserts the OAM Traffic Units in the stream of ETH_CI, sets the MEL field to MI_MEL and sets the SA field to MI_MEP_MAC. 

If the DA of the OAM Traffic Unit is a Class 1 Multicast DA, the OAM insertion process updates the DA to reflect the correct MEL. 
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Figure 9-15 – OAM MEP Insertion Behaviour
CCM Generation process:

This Process is defined in clause 8.1.7 where the CC protocol is defined. Clause 8.1.7.2 defines the CCM Generation Process. 

Block process:

When RI_CC_Blk is raised, the Block process will discard all ETH_CI information it receives. If RI_CC_Blk is cleared, the received ETH_CI information will be passed to the output port. 

Proactive LM Control:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.2 defines the proactive LM Control Process. 

LMM Generation:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.3 defines the LMM Generation part in LMx Generation Process. 

LMR Generation:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.3 defines the LMR Generation part in LMx Generation Process. 

LMM Mux:

The LMM Mux process interleaves the signal sets LMM(DA,P,1) from the input ports (X, Y, Z).
Proactive DM Control:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.2 defines the DM Control Process. 

DMM Generation:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.3 defines the DMM Generation Process. 

DMR Generation:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.5 defines the DMR Generation Process. 

DMM Mux:

The DMM Mux process interleaves the signal sets DMM(DA,P,1,Test ID TLV, TLV) from the input ports (X, Y, Z).
Proactive1DM Control_So:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.2 defines the 1DM Control_So Process. 

1DM Generation:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.3 defines the 1DM Generation Process. 
1DM Mux:

The 1DM Mux process interleaves the signal sets 1DM(DA,P,1,Test ID TLV, TLV) from the input ports (X, Y, Z).
Proactive SL Control:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.2 defines the SL Control process. 

SLM Generation:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.3 defines the SLM Generation Process.

SLR Generation:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.5 defines the SLR Generation Process. 
SLM Mux:

The SLM Mux process interleaves the signal sets SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) from the input ports (X, Y, Z).
Proactive1SL Control_So:

This Process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.2 defines the 1SL Control_So Process. 

1SL Generation:

This Process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.3 defines the 1SL Generation Process. 

1SL Mux:

The 1SL Mux process interleaves the signal sets 1SL(DA,P, MEP_ID,Test _ID, TxFCl, TLV) from the input ports (X, Y, Z).
Defects





None.
Consequent Actions

None.

Defect correlations


None.

Performance Monitoring
None.
9.2.1.2
ETHx Flow Termination sink function (ETHx_FT_Sk)

The ETHx_FT_Sk Process diagram is shown in Figure 9-16.

Symbol
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Figure 9-16 – ETHx_FT_Sk symbol

Interfaces

Table 9-4 – ETHx_FT_Sk interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_RP:

ETH_RI_LM_Result(
N_TF,N_LF,F_TF,F_LF)
ETH_RI_DM_Result(B_FD,F_FD,N_FD)
ETH_RI_SL_Result(
N_TF,N_LF,F_TF,F_LF)
ETHx_FT_Sk_MP:

ETHx_FT_Sk_MI_CC_Enable
ETHx_FT_Sk_MI_LM_Enable
ETHx_FT_Sk_MI_1Second
ETHx_FT_Sk_MI_LM_DEGM
ETHx_FT_Sk_MI_LM_M
ETHx_FT_Sk_MI_LM_DEGTHR
ETHx_FT_Sk_MI_LM_TFMIN
ETHx_FT_Sk_MI_MEL
ETHx_FT_Sk_MI_MEG_ID
ETHx_FT_Sk_MI_PeerMEP_ID[i]
ETHx_FT_Sk_MI_CC_Period
ETHx_FT_Sk_MI_CC_Pri
ETHx_FT_Sk_MI_GetSvdCCM
ETHx_FT_Sk_MI_1DM_Enable
ETHx_FT_Sk_MI_1DM_MAC_SA
ETHx_FT_Sk_MI_1DM_Test_ID
ETHx_FT_Sk_MI_1SL_Enable
ETHx_FT_Sk_MI_1SL_MAC_SA
ETHx_FT_Sk_MI_1SL_MEP_ID
ETHx_FT_Sk_MI_1SL_Test_ID


	ETH_AP:

ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH_AI_TSF
ETH_AI_TSD
ETH_AI_AIS

ETH_RP:

ETH_RI_CC_RxFCl
ETH_RI_CC_TxFCf
ETH_RI_CC_RDI
ETH_RI_CC_Blk
ETH_RI_LMM(OAM,P,DE)
ETH_RI_LMR(TxFCf,RxFCf,TxFCb,RxFCl)

ETH_RI_DMM(OAM,P,DE)
ETH_RI_DMR(rSA,TxTimeStampf,
  RxTimeStampf,TxTimeStampb,RxTimeb,
  rTestID)
ETH_RI_SLM(OAM,P,DE,TxFCb)
ETH_RI_SLR(rMEP_ID,rTest_ID,TxFCf, TxFCb)
ETHx_FT_Sk_MP:

ETHx_FT_Sk_MI_cLOC[i]
ETHx_FT_Sk_MI_cUNL
ETHx_FT_Sk_MI_cMMG
ETHx_FT_Sk_MI_cUNM
ETHx_FT_Sk_MI_cDEG
ETHx_FT_Sk_MI_cUNP
ETHx_FT_Sk_MI_cUNPr
ETHx_FT_Sk_MI_cRDI
ETHx_FT_Sk_MI_cSSF
ETHx_FT_Sk_MI_cLCK
ETHx_FT_Sk_MI_pN_TF
ETHx_FT_Sk_MI_pN_LF
ETHx_FT_Sk_MI_pF_TF
ETHx_FT_Sk_MI_pF_LF
ETHx_FT_Sk_MI_pF_DS
ETHx_FT_Sk_MI_pN_DS
ETHx_FT_Sk_MI_pB_FD
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Figure 9-17 – ETHx_FT_Sk Process

MEP Proactive-OAM Extraction process:
The MEP Proactive-OAM Extraction process extracts OAM Traffic Units that are processed in the ETHx_FT_Sk process from the stream of Traffic Units according to the following pseudo code:

if (TYPE=<ETHOAM>) and (MEL=MI_MEL) then 
  switch(OPC) {
  case <CCM>: extract ETH-CCM OAM traffic unit and forward to CCM Port
  case <AIS>: extract ETH-AIS OAM traffic unit and forward to AIS Port
  case <LCK>: extract ETH-LCK OAM traffic unit and forward to LCK Port
  case <LMM>: extract ETH-LMM OAM traffic unit and forward to LMM Port
  case <LMR>: extract ETH-LMR OAM traffic unit and forward to LMR Port
  case <DMM>: extract ETH-DMM OAM traffic unit and forward to DMM Port
  case <DMR>: extract ETH-DMR OAM traffic unit and forward to DMR Port
  case <1DM>: extract ETH-1DM OAM traffic unit and forward to 1DM Port
  case <SLM>: extract ETH-SLM OAM traffic unit and forward to SLM port
  case <SLR>: extract ETH-SLR OAM traffic unit and forward to SLR port
  case <1SL>: extract ETH-1SL OAM traffic unit and forward to 1SL Port
  default: forward ETH_CI traffic unit to Data port

}

elseif (TYPE=<ETH0AM>) and (MEL<MI_MEL) and (OPC=CCM) then 
  extract ETH-CCM OAM traffic unit and forward to CCM Port 
else

forward ETH CI traffic unit to Data Port

endif
NOTE - Further filtering of OAM Traffic Units is performed by the OAM MEL Filter Process which forms part of the ETH Adaptation functions specified in clause 9.3.
ETH_AIS Reception process:

This process generates the AIS event upon the receipt of the AIS Traffic Unit from the OAM MEP Extraction Process.

ETH_LCK Reception process:

This process generates the LCK event upon the receipt of the LCK Traffic Unit from the OAM MEP Extraction Process.

LMM Reception:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.4 defines the LMM Reception part in LMx Reception Process. 

LMR Reception:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.4 defines the LMR Reception part in LMx Receiption Process. 

LMR Demux:

The LMR Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P signal can be used for the selection of the port.
DMM Reception:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.4 defines the DMM Reception Process. 

DMR Reception:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.6 defines the DMR Reception Process. 

DMR Demux:

The DMR Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1DM Reception:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.4 defines the 1DM Reception Process. 

1DM Demux:

The 1DM Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
Proactive 1DM Control_Sk:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.5 defines the 1DM Control_Sk Process. 

SLM Reception:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.4 defines the SLM reception process.

SLR Reception:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.6 defines the SLR reception process. 

SLR Demux:

The SLR Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1SL Reception:

This Process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.4 defines the 1SL Reception Process. 

1SL Demux:

The 1SL Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.

Proactive 1SL Control_Sk:

This Process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.5 defines the 1SL Control_Sk Process. 
Block process:

When aBlk is raised, the Block process will discard all ETH_CI information it receives. If aBLK is cleared, the received ETH_CI information will be passed to the output port. 

LMp process:

This process is defined in clause 8.1.7.4.

Defect Generation process:

This process detects and clears the defects (dLOC[i], dUNL, dMMG, dUNM, dDEG, dUNP, dUNPr, dRDI[i], dAIS, dLCK) as defined in clause 6, where [i] = maintenance entity. 

CCM Reception process:

This process is defined in clause 8.1.7.3. 

Defects

This function detects dLOC[i], dUNL, dMMG, dUNM, dDEG, dUNP, dUNPr, dRDI[i], dAIS, dLCK.
Consequent actions

aBLK

(
(dUNL or dMMG or dUNM)

Note that dUNP and dUNPr does not contribute to aBLK, because a mismatch of periodicity is not considered to be a security issue. 

aTSF

(
(dLOC[1..n] and MI_CC_Enable) or (dAIS and not(MI_CC_Enable)) or (dLCK and not(MI_CC_Enable)) or dUNL or dMMG or dUNM or CI_SSF

aTSD

(
dDEG[1] and (not aTSF) 
aAIS

(
aTSF

aRDI

(
aTSF
Defect correlations

cLOC[i]
(
dLOC[i] and (not dAIS) and (not dLCK) and (not CI_SSF) and (MI_CC_Enable)

cUNL

(
dUNL

cMMG

(
dMMG
cUNM

(
dUNM
cDEG[1]
(
dDEG[1] and (not dAIS) and (not dLCK) and (not CI_SSF) and (not (dLOC[1..n] or dUNL or dMMG or dUNM)) and (MI_CC_Enable))

cUNP

(
dUNP
cUNPr

(
dUNPr
cRDI

(
(dRDI[1..n]) and (MI_CC_Enable)

cSSF

(
CI_SSF or dAIS

cLCK

(
dLCK and (not dAIS)

Performance monitoring

pN_TF

(
N_TF

pN_LF

(
N_LF

pF_TF

(
F_TF

pF_LF

(
F_LF

pN_DS

(
aTSF

pF_DS

(
aRDI[1]

pB_FD

(
B_FD
pB_FDV
(
B_FDV
pF_FD

(
F_FD
pF_FDV
(
F_FDV
pN_FD

(
N_FD
pN_FDV
(
N_FDV
NOTE- A detail calculation formula for FDV is for further study.
9.2.2
ETH Group Flow Termination functions (ETHG_FT)

The bidirectional ETH Group Flow Termination (ETHG_FT) function is performed by a co-located pair of ETH Group flow termination source (ETHG_FT_So) and sink (ETHG_FT_Sk) functions.

9.2.2.1
ETH Group Flow Termination source function (ETHG_FT_So)
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Figure 9-x – ETHG_FT_So symbol

Interfaces

Table 9-y – ETHG_FT_So interfaces

	Inputs
	Outputs

	ETH_AP:

ETH_AI_D[1...M]
ETH_AI_P[1...M]
ETH_AI_DE[1...M]
ETH_RP:
ETH_RI_CC_RxFCl
ETH_RI_CC_TxFCf
ETH_RI_CC_RDI
ETH_RI_CC_Blk
ETH_RI_LMM(OAM,P,DE)
ETH_RI_LMR(TxFCf,RxFCf,TxFCb,RxFCl)
ETH_RI_DMM(OAM,P,DE)
ETH_RI_DMR(rSA,TxTimeStampf, 
  RxTimeStampf,TxTimeStampb,RxTimeb,
  rTestID)
ETH_RI_SLM(OAM,P,DE,TxFCb)
ETH_RI_SLR(rMEP_ID,rTest_ID,
                TxFCf, TxFCb)
ETHG_FT_So_MP:

ETHG_FT_So_MI_MEL
ETHG_FT_So_MI_MEP_MAC
ETHG_FT_So_MI_CC_Enable
ETHG_FT_So_MI_LM_Enable
ETHG_FT_So_MI_MEG_ID
ETHG_FT_So_MI_MEP_ID
ETHG_FT_So_MI_CC_Period
ETHG_FT_So_MI_CC_Pri
ETHG_FT_So_MI_LM_MAC_DA

ETHG_FT_So_MI_LM_Period

ETHG_FT_So_MI_LM_Pri ETHG_FT_So_MI_DM_Enable

ETHG_FT_So_MI_DM_MAC_DA

ETHG_FT_So_MI_DM_Test_ID

ETHG_FT_So_MI_DM_Length

ETHG_FT_So_MI_DM_Period

ETHG_FT_So_MI_DM_Pri

ETHG_FT_So_MI_1DM_Enable

ETHG_FT_So_MI_1DM_MAC_DA

ETHG_FT_So_MI_1DM_Test_ID

ETHG_FT_So_MI_1DM_Length

ETHG_FT_So_MI_1DM_Period

ETHG_FT_So_MI_1DM_Pri

ETHG_FT_So_MI_SL_Enable

ETHG_FT_So_MI_SL_MAC_DA

ETHG_FT_So_MI_SL_Test_ID

ETHG_FT_So_MI_SL_Length

ETHG_FT_So_MI_SL_Period

ETHG_FT_So_MI_SL_Pri
ETHG_FT_So_MI_1SL_Enable

ETHG_FT_So_MI_1SL_MAC_DA

ETHG_FT_So_MI_1SL_Test_ID

ETHG_FT_So_MI_1SL_Length

ETHG_FT_So_MI_1SL_Period

ETHG_FT_So_MI_1SL_Pri
	ETH_FP:
ETH_CI_D[1...M]
ETH_CI_P[1...M]
ETH_CI_DE[1...M]
ETH_RP:

ETH_RI_LM_Result(N_TF,N_LF,F_TF,F_LF)
ETH_RI_DM_Result(B_FD,F_FD,N_FD)
ETH_RI_SL_Result(N_TF,N_LF,F_TF,F_LF)
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Figure 9-x+1 – ETHG_FT_So Process
MEP ProActive-OAM Insertion process:

This process inserts the OAM Traffic Units in the stream of ETH_CI, sets the MEL field to MI_MEL and sets the SA field to MI_MEP_MAC. This process resides only in the lowest number in the contiguous range of ETH_FPs or a selected ETH_FP within the group of arbitrary ETH_FPs. The detail of the OAM Insertion Behaviour is described in clause 9.2.1.1.
CCM Generation process:

This Process is defined in clause 8.1.7 where the CC protocol is defined. Clause 8.1.7.2 defines the CCM Generation Process.

Block process:

When RI_CC_Blk is raised, the Block process will discard all ETH_CI information within the group of co-located flow points. If RI_CC_Blk is cleared, the received ETH_CI information will be passed to the output port. 

Proactive LM Control:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.2 defines the proactive LM Control Process. 

LMM Generation:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.3 defines the LMM Generation part in LMx Generation Process. 

LMR Generation:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.3 defines the LMR Generation part in LMx Generation Process. 

LMM Mux:

The LMM Mux process interleaves the signal sets LMM(DA,P,1) from the input ports (X, Y, Z).

Proactive DM Control:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.2 defines the DM Control Process. 

DMM Generation:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.3 defines the DMM Generation Process. 

DMR Generation:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.5 defines the DMR Generation Process. 

DMM Mux:

The DMM Mux process interleaves the signal sets DMM(DA,P,1,Test ID TLV, TLV) from the input ports (X, Y, Z).

Proactive1DM Control_So:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.2 defines the 1DM Control_So Process. 

1DM Generation:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.3 defines the 1DM Generation Process. 
1DM Mux:

The 1DM Mux process interleaves the signal sets 1DM(DA,P,1,Test ID TLV, TLV) from the input ports (X, Y, Z).

Proactive SL Control:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.2 defines the SL Control process. 

SLM Generation:

This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.3 defines the SLM generation process.

SLR Generation:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.5 defines the SLR generation process. 

SLM Mux:

The SLM Mux process interleaves the signal sets SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) from the input ports (X, Y, Z).

Proactive1SL Control_So:

This Process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.2 defines the 1SL Control_So Process. 

1SL Generation:

This Process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.3 defines the 1SL Generation Process. 

1SL Mux:

The 1SL Mux process interleaves the signal sets 1SL(DA,P,Test _ID,MEP_ID,TxFCl, TLV) from the input ports (X, Y, Z).
Defects





None.
Consequent Actions

None.

Defect correlations


None.
Performance Monitoring
None.
9.2.2.2
ETH Group Flow Termination sink function (ETHG_FT_Sk)

The ETHG_FT_Sk Process diagram is shown in Figure 9-x+2.
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Figure 9-x+2 – ETHG_FT_Sk symbol
Interfaces

Table 9-y+1 – ETHG_FT_Sk interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D[1...M]
ETH_CI_P[1...M]
ETH_CI_DE[1...M]
ETH_CI_SSF
ETH_RP:

ETH_RI_LM_Result(
N_TF,N_LF,F_TF,F_LF)
ETH_RI_DM_Result(B_FD,F_FD,N_FD)

ETH_RI_SL_Result(
N_TF,N_LF,F_TF,F_LF)

ETHG_FT_Sk_MP:

ETHG_FT_Sk_MI_CC_Enable
ETHG_FT_Sk_MI_LM_Enable
ETHG_FT_Sk_MI_1Second
ETHG_FT_Sk_MI_LM_DEGM
ETHG_FT_Sk_MI_LM_M
ETHG_FT_Sk_MI_LM_DEGTHR
ETHG_FT_Sk_MI_LM_TFMIN
ETHG_FT_Sk_MI_MEL
ETHG_FT_Sk_MI_MEG_ID
ETHG_FT_Sk_MI_PeerMEP_ID[i]
ETHG_FT_Sk_MI_CC_Period
ETHG_FT_Sk_MI_CC_Pri
ETHG_FT_Sk_MI_GetSvdCCM
ETHG_FT_Sk_MI_1DM_Enable
ETHG_FT_Sk_MI_1DM_MAC_SA
ETHG_FT_Sk_MI_1DM_Test_ID
ETHG_FT_Sk_MI_1SL_Enable
ETHG_FT_Sk_MI_1SL_MAC_SA
ETHG_FT_Sk_MI_1SL_MEP_ID
ETHG_FT_Sk_MI_1SL_Test_ID


	ETH_AP:

ETH_AI_D[1...M]
ETH_AI_P[1...M]
ETH_AI_DE[1...M]
ETH_AI_TSF
ETH_AI_TSD
ETH_AI_AIS
ETH_RP:

ETH_RI_CC_RxFCl
ETH_RI_CC_TxFCf
ETH_RI_CC_RDI
ETH_RI_CC_Blk
ETH_RI_LMM(OAM,P,DE)
ETH_RI_LMR(TxFCf,RxFCf,TxFCb,RxFCl)

ETH_RI_DMM(OAM,P,DE)
ETH_RI_DMR(rSA,TxTimeStampf,
  RxTimeStampf,TxTimeStampb,RxTimeb,
  rTestID)
ETH_RI_SLM(OAM,P,DE,TxFCb)
ETH_RI_SLR(rMEP_ID,rTest_ID,TxFCf, TxFCb)
ETHG_FT_Sk_MP:

ETHG_FT_Sk_MI_cLOC[i]
ETHG_FT_Sk_MI_cUNL
ETHG_FT_Sk_MI_cMMG
ETHG_FT_Sk_MI_cUNM
ETHG_FT_Sk_MI_cDEG
ETHG_FT_Sk_MI_cUNP
ETHG_FT_Sk_MI_cUNPr
ETHG_FT_Sk_MI_cRDI
ETHG_FT_Sk_MI_cSSF
ETHG_FT_Sk_MI_cLCK
ETHG_FT_Sk_MI_pN_TF
ETHG_FT_Sk_MI_pN_LF
ETHG_FT_Sk_MI_pF_TF
ETHG_FT_Sk_MI_pF_LF
ETHG_FT_Sk_MI_pF_DS
ETHG_FT_Sk_MI_pN_DS
ETHG_FT_Sk_MI_pB_FD
ETHG_FT_Sk_MI_pB_FDV
ETHG_FT_Sk_MI_pF_FD
ETHG_FT_Sk_MI_pF_FDV
ETHG_FT_Sk_MI_pN_FD
ETHG_FT_Sk_MI_pN_FDV
ETHG_FT_Sk_MI_SvdCCM
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Figure 9-x+3 – ETHG_FT_Sk Process

MEP Proactive-OAM Extraction process:
The MEP Proactive-OAM Extraction process extracts OAM Traffic Units that are processed in the ETHx_FT_Sk process from the stream of Traffic Units. This process resides only in the lowest number in the contiguous range of ETH_FPs or a selected ETH_FP within the group of arbitrary ETH_FPs (AIS Reception, LCK Reception, LMp, and Defect Generation processes as well). The detail of this process is described in clause 9.2.1.2.

AIS Reception process:

This process generates the AIS event upon the receipt of the AIS Traffic Unit from the OAM MEP Extraction Process.

LCK Reception process:

This process generates the LCK event upon the receipt of the LCK Traffic Unit from the OAM MEP Extraction Process.

LMM Reception:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.4 defines the LMM Reception part in LMx Reception Process. 

LMR Reception:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.4 defines the LMR Reception part in LMx Receiption Process. 

LMR Demux:

The LMR Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P signal can be used for the selection of the port.

DMM Reception:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.4 defines the DMM Reception Process. 

DMR Reception:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.6 defines the DMR Reception Process. 

DMR Demux:

The DMR Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.

1DM Reception:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.4 defines the 1DM Reception Process. 

1DM Demux:

The 1DM Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.

Proactive 1DM Control_Sk:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.5 defines the 1DM Control_Sk Process. 

SLM Reception:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.4 defines the SLM reception process.

SLR Reception:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.6 defines the SLR reception process. 

SLR Demux:

The SLR Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.

1SL Reception:

This Process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.4 defines the 1SL Reception Process. 

1SL Demux:

The 1SL Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.

Proactive 1SL Control_Sk:

This Process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.5 defines the 1SL Control_Sk Process. 
Block process:

When aBlk is raised, the Block process will discard all ETH_CI information within the group of co-located flow points. If aBLK is cleared, the received ETH_CI information will be passed to the output port. 

LMp process:

This process is defined in clause 8.1.7.4.

Defect Generation process:

This process detects and clears the defects (dLOC[i], dUNL, dMMG, dUNM, dDEG, dUNP, dUNPr, dRDI[i], dAIS, dLCK) as defined in clause 6, where [i] = maintenance entity. 

CCM Reception process:

This process is defined in clause 8.1.7.3. 

Defects 
See clause 9.2.1.2.
Consequent actions

See clause 9.2.1.2.
Defect correlations


See clause 9.2.1.2.
Performance monitoring
See clause 9.2.1.2.
9.3
ETH Adaptation functions

9.3.1
ETH to Client adaptation functions (ETH/<client>_A)

For further study.
9.3.2
ETH to ETH adaptation functions (ETHx/ETH_A)

9.3.2.1
ETH to ETH adaptation source function (ETHx/ETH_A_So)

This function maps client ETH_CI traffic units into server ETH_AI traffic units. 

Symbol
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Figure 9-18 – ETHx/ETH_A_So symbol
Interfaces

Table 9-5 – ETHx/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_APS
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

ETHx/ETH_A_So_MP:
ETHx/ETH_A_So_MI_Active
ETHx/ETH_A_So_MI_MEP_MAC
ETHx/ETH_A_So_MI_Client_MEL
ETHx/ETH_A_So_MI_LCK_Period
ETHx/ETH_A_So_MI_LCK_Pri
ETHx/ETH_A_So_MI_Admin_State
ETHx/ETH_A_So_MI_MEL
ETHx/ETH_A_So_MI_APS_Pri
ETHx/ETH_A_So_MI_CSF_Period
ETHx/ETH_A_So_MI_CSF_Pri
ETHx/ETH_A_So_MI_CSF_Enable
ETHx/ETH_A_So_MI_CSFrdifdiEnable
	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE
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Figure 9-19 – ETHx/ETH_A_So process
LCK Generation Process:

As defined in clause 8.1.2.

Selector Process:

As defined in clause 8.1.3.

OAM MEL FilterProcess:

As defined in clause 8.1.1.

CSF Insert Process:

As defined in clause 8.1.16.

APS Insert Process:

As defined in clause 8.1.5.

When this process is activated, LCK admin state shall be unlocked. See clause 7.5.2.2 of [ITU-T G.8010].
Defects





None.

Consequent Actions
aCSF-LOS ( CI_SSF and MI_CSFEnable
aCSF-RDI ( CI_SSFrdi and MI_CSFrdifdiEnable and MI_CSFEnable

aCSF-FDI ( CI_SSFfdi and MI_CSFrdifdiEnable and MI_CSFEnable

Defect correlations


None.

Performance Monitoring
None.

9.3.2.2
ETH to ETH adaptation sink function (ETHx/ETH_A_Sk)

This function retrieves client ETH_CI traffic units from server ETH_AI traffic units. 

Symbol
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Figure 9-20 – ETHx/ETH_A_Sk symbol
Interfaces

Table 9-6 – ETHx/ETH_A_Sk interfaces
	Inputs
	Outputs

	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH_AI_TSF
ETH_AI_TSD
ETH_AI_AIS
ETHx/ETH_A_Sk_MP:
ETHx/ETH_A_Sk_MI_Active
ETHx/ETH_A_Sk_MI_MEP_MAC
ETHx/ETH_A_Sk_MI_Client_MEL
ETHx/ETH_A_Sk_MI_LCK_Period
ETHx/ETH_A_Sk_MI_LCK_Pri
ETHx/ETH_A_Sk_MI_Admin_State
ETHx/ETH_A_Sk_MI_AIS_Period
ETHx/ETH_A_Sk_MI_AIS_Pri
ETHx/ETH_A_Sk_MI_MEL
ETHx/ETH_A_Sk_MI_CSF_Reported
ETHx/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_APS
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi
ETH_CI_SSD
ETHx/ETH_A_Sk_MP:
ETHx/ETH_A_Sk_MI_cCSF




Processes
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Figure 9-21 – ETHx/ETH_A_Sk process
APS Extract process:

As defined in clause 8.1.6.

CSF Extract process:

As defined in clause 8.1.17.

OAM MEL Filter process:

As defined in clause 8.1.1.

AIS Insert process:

As defined in clause 8.1.4.

LCK Generation process:

As defined in clause 8.1.2.

Selector process
:

As defined in clause 8.1.3.

Defects
dCSF-LOS – See clause 6.1.5.4.

dCSF-RDI – See clause 6.1.5.4.

dCSF-FDI – See clause 6.1.5.4.

Consequent Actions
aSSF ( (AI_TSF or dCSF-LOS) and (not MI_Admin_State == Locked)

aSSFrdi

(
dCSF-RDI and MI_CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and MI_CSFrdifdiEnable

aAIS ( AI_AIS 

Defect correlations

cCSF
(
(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not AI_TSF) and MI_CSF_Reported
Performance Monitoring
None.

9.3.3
ETH to ETH multiplexing adaptation functions (ETHx/ETH-m_A)

This adaptation function multiplexes different ETH_CI streams into a single ETH_AI stream in the source direction and demultiplexes the ETH_AI stream into individual ETH_CI streams. 
Symbol
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Figure 9-22 – ETHx/ETH-m_A symbol
The ETHx/ETH-m_A (Figure 9-22) function is further decomposed into separate source and sink adaptation functions that are interconnected as shown in Figure 9-23. 

[image: image129.emf]ETHx/ETH-m

ETH_FP

ETH_AP

....

ETH_TFP

ETHx/ETH-m_A_Sk_MP

ETHx/ETH-m

ETH_FP

ETH_AP

....

ETH_TFP

ETHx/ETH-m_A_So_MP ETHx/ETH-m_A_PP

ETHx/ETH-m

ETH_FP

ETH_AP

....

ETH_TFP

ETHx/ETH-m_A_Sk_MP

ETHx/ETH-m

ETH_FP

ETH_AP

....

ETH_TFP

ETHx/ETH-m_A_So_MP ETHx/ETH-m_A_PP


Figure 9-23 – ETHx/ETH-m_A Source and Sink symbols
9.3.3.1
ETH to ETH multiplexing adaptation source function (ETHx/ETH-m_A_So)

This function multiplexes individual ETH_CI streams into a single ETH_AI stream. 

Symbol
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Figure 9-24 – ETHx/ETH-m_A_So symbol
Interfaces

Table 9-7 – ETHx/ETH-m_A_So interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D[1...M]
ETH_CI_P[1...M]
ETH_CI_DE[1...M]
ETH_CI_SSF[1]
ETH_CI_SSFrdi[1]
ETH_CI_SSFfdi[1]
ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETHx/ETH-m_A_So_MP:
ETHx/ETH-m_A_So_MI_Active
ETHx/ETH-m_A_So_MI_MEP_MAC
ETHx/ETH-m_A_So_MI_Client_MEL[1…M]
ETHx/ETH-m_A_So_MI_LCK_Period[1…M]
ETHx/ETH-m_A_So_MI_LCK_Pri[1…M]
ETHx/ETH-m_A_So_MI_Admin_State
ETHx/ETH-m_A_So_MI_VLAN_Config[1...M]
ETHx/ETH-m_A_So_MI_Etype
ETHx/ETH-m_A_So_MI_PCP_Config
ETHx/ETH-m_A_So_MI_MEL
ETHx/ETH-m_A_So_MI_CSF_Period
ETHx/ETH-m_A_So_MI_CSF_Pri
ETHx/ETH-m_A_So_MI_CSF_Enable
ETHx/ETH-m_A_So_MI_CSFrdifdiEnable
	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE
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Figure 9-25 – ETHx/ETH-m_A_So process
LCK Generation Process:

As defined in clause 8.1.2. Each FP has its LCK Generation process.

Selector Process:

As defined in clause 8.1.3. The normal CI is blocked if Admin_State = LOCKED.

VID Mux Process:

The VID MUX process interleaves the signal sets (P, D, DE) from the input ports (X, Y, Z)  For each incoming signal set on forwarding the signal set, a VID signal is generated. The value of the VID signal is based on the port on which the signal set is received and the configuration from the MI_VLAN_Config input parameter. 

The MI_VLAN_Config input parameter determines for every input port the associated VID Value. The allowed values for the VID signal are untagged, priority tagged and 1-4094.  The following restriction applies to the allowed MI_VLAN_Config values:

· Every VID value is only used once;

Note that IEEE 802.1 standards do not allow IEEE bridges to generate priority tagged frames. Priority tagged frames are only generated by end stations. However a C-VLAN bridge may create S-VLAN priority tagged frames. 

VLAN Tag Process:

This process inserts a VLAN tag into the M_SDU field of the incoming D signal. The Ethertype used is determined by the value of the MI_Etype input parameter. The MI_PCP_Config signal determines the encoding of the P and DE signals in the VLAN tag. This parameter defines a mapping from P value to PCP value in the case of C-VLAN tags, and from P value to PCP and DEI value in the case of S-VLAN tags.

The VID signal determines the VID value in the VLAN tag. If the VID signal equals priority tagged, the VID value used is 0. If the VID signal equals untagged, no VLAN tag is inserted in the M_SDU field. 

P Replicate Process:

The P Replicate Process replicates the incoming P signal to both output ports, without changing the value of the signal. 

DE Generation Process:

The DE Generation Process generates a DE signal with the value drop ineligible. 

Replicate Process:

As defined in clause 8.4.

OAM MEL Filter Process:

As defined in clause 8.1.1.

CSF Insert Process:

As defined in clause 8.1.16. Since ETHx/ETH-m Adaptation function generates a single OAM flow while it can accommodate multiple ETH APs. In the case of using multiple APs, CSF signal is supported at only a representative OAM flow.

Defects





None.

Consequent Actions
aCSF-LOS ( CI_SSF and MI_CSFEnable
aCSF-RDI ( CI_SSFrdi and MI_CSFrdifdiEnable and MI_CSFEnable

aCSF-FDI ( CI_SSFfdi and MI_CSFrdifdiEnable and MI_CSFEnable
Defect correlations


None.

Performance Monitoring
None.

9.3.3.2
ETH to ETH multiplexing adaptation sink function (ETHx/ETH-m_A_Sk)

Symbol
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Figure 9-26 – ETHx/ETH-m_A_Sk symbol
Interfaces

Table 9-8 – ETHx/ETH-m_A_Sk interfaces

	Inputs
	Outputs

	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH_AI_TSF
ETH_AI_AIS
ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHx/ETH-m_A_Sk_MP:
ETHx/ETH-m_A_Sk_MI_Active
ETHx/ETH-m_A_Sk_MI_MEP_MAC
ETHx/ETH-m_A_Sk_MI_Client_MEL[1…M]
ETHx/ETH-m _A_Sk_MI_LCK_Period[1…M]
ETHx/ETH-m _A_Sk_MI_LCK_Pri[1…M]
ETHx/ETH-m_A_Sk_MI_Admin_State
ETHx/ETH-m_A_Sk_MI_AIS_Period[1…M]
ETHx/ETH-m_A_Sk_MI_AIS_Pri[1…M]
ETHx/ETH-m_A_Sk_MI_VLAN_Config[1...M]
ETHx/ETH-m_A_Sk_MI_P_Regenerate
ETHx/ETH-m_A_Sk_MI_PVID
ETHx/ETH-m_A_Sk_MI_PCP_Config
ETHx/ETH-m_A_Sk_MI_Etype
ETHx/ETH-m_A_Sk_MI_MEL
ETHx/ETH-m_A_Sk_MI_CSF_Reported
ETHx/ETH-m_A_Sk_MI_CSFrdifdiEnable
ETHx/ETH-m_A_Sk_MI_Frametype_Config
ETHx/ETH-m_A_Sk_MI_Filter_Config
	ETH_FP:
ETH_CI_D[1...M]
ETH_CI_P[1...M]
ETH_CI_DE[1...M]
ETH_CI_SSF[1...M]
ETH_CI_SSFrdi[1]
ETH_CI_SSFfdi[1]
ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETHx/ETH-m_A_Sk_MP:
ETHx/ETH-m_A_Sk_MI_cCSF
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Figure 9-27 – ETHx/ETH-m_A_Sk process
Replicate Process:

As defined in clause 8.4. 

Filter Process:

As defined in clause 8.3.

Frame Type Filter Process:

The Frame Type Filter Process filters the ETH_CI depending on the value of the MI_frametype_Config input parameter. There are three possible values for this parameter:

· All Frames;

· Only VLAN Tagged;

· Only Untagged and Priority Tagged.

If the value of MI_frametype_Config equals All Frames, all ETH_CI is passed through. For the other two values, the process inspects the M_SDU field of the ETH_CI_D signal. It inspects the Length/Type field and, if applicable, the VID field. 

If MI_frametype_Config is set to only Untagged and Priority Tagged, all frames with L/T equals MI_Etype and VID in the range 1…4094 are filtered.

If MI_frametype_Config is set to only VLAN tagged, all frames with L/T not equal to MI_Etype and all frames with L/T equal to MI_Etype and VID equal to zero are filtered. 
CSF Extract process:

As defined in clause 8.1.16. Since ETHx/ETH-m Adaptation function generates a single OAM flow while it can accommodate multiple ETH APs. In the case of using multiple APs, CSF signal is supported at only a representative OAM flow.
OAM MEL Filter Process:

As defined in clause 8.1.1.

VLAN Tag Process:

The VLAN Tag Process inspects the incoming D signal; if the value in the L/T field is equal to the value provisioned by the MI_Etype input parameter a VLAN tag is present in the D signal. 

If there is no VLAN tag present the VID signal gets the value presented by the MI_PVID input parameter. 

If there is a VLAN tag present the VLAN Tag Process extracts the P, DE and VID information from this VLAN tag.  The VID value is taken from the VID field in the VLAN tag. The P and DE values are decoded from the PCP field of the VLAN tag (C-VLAN) or from the PCP and DEI fields of the VLAN tag (S-VLAN), using the decoding information presented via the MI_PCP_Config input parameter. The P value is presented to the P Selector process and the DE value is presented to the DE Selector process. 
DE Selector Process:

This process forwards the incoming DE signal. If there is no incoming DE signal present, it generates a DE signal with value drop ineligible. 

P Selector Process:

This process forwards the P signal coming from the VLAN Tag process. If this signal is not present, the P signal coming from the OAM MEL process is forwarded. 

P Regeneration Process:

This process regenerates the incoming P signal, based on the MI_P_Regenerate input signal. The MI_P_Regenerate signal specifies a mapping table from P value to P value. 

VID Demux Process
:

The VID Demux Process deinterleaves the incoming signal set (DE, P, D) to the different ports (X, Y, Z in Figure 9-27). The VID signal determines the port to be selected, based on the MI_Vlan_Config input parameter. 

The MI_Vlan_Config parameter specifies the possible VID values for the ports to be used. If there is no port assigned to a specific VID value, and this VID value is used, the VID Demux process will filter the incoming signal set. 
Disabling the Ingress VID Filtering is modelled by setting MI_Vlan_Config [1…4094]. Refer to Appendix VIII.

AIS Insert Process:

As defined in clause 8.1.4.

LCK Generation Process:

As defined in clause 8.1.2. Each FP has its own LCK Generation process.

Selector Process:

As defined in clause 8.1.3. The normal CI is blocked if Admin_State = LOCKED.

Defects
dCSF-LOS – See clause 6.1.5.4.

dCSF-RDI – See clause 6.1.5.4.

dCSF-FDI – See clause 6.1.5.4.
Consequent Actions
aSSF[1]
 
(
(AI_TSF or dCSF_LOS) and (not MI_Admin_State == Locked)

aSSFrdi
[1]
(
dCSF-RDI and MI_CSFrdifdiEnable

aSSFfdi[1]
(
dCSF-FDI and MI_CSFrdifdiEnable

aSSF[2…M] ( AI_TSF and (not MI_Admin_State == Locked)

aAIS ( AI_AIS 

Defect correlations
cCSF
(
(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not AI_TSF) and MI_CSF_Reported
Performance Monitoring
None.

9.3.4
ETH Group to ETH adaptation functions (ETHG/ETH_A)

9.3.4.1
ETH Group to ETH adaptation source function (ETHG/ETH_A_So)

Symbol
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Figure 9-28 – ETHG/ETH_A_So symbol
Interfaces

Table 9-9 – ETHG/ETH_A_So Interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D[1…M]
ETH_CI_P[1…M]
ETH_CI_DE[1…M]
ETH_CI_APS
ETH_CI_SSF[1]
ETH_CI_SSFrdi[1]
ETH_CI_SSFfdi[1]
ETHG/ETH_A_So_MP:
ETHG/ETH_A_So_MI_Active
ETHG/ETH_A_So_MI_MEP_MAC
ETHG/ETH_A_So_MI_Client_MEL[1..M]
ETHG/ETH_A_So_MI_LCK_Period[1…M]
ETHG/ETH_A_So_MI_LCK_Pri[1…M]
ETHG/ETH_A_So_MI_Admin_State
ETHG/ETH_A_So_MI_MEL
ETHG/ETH_A_So_MI_APS_Pri
ETHG/ETH_A_So_MI_CSF_Period
ETHG/ETH_A_So_MI_CSF_Pri
ETHG/ETH_A_So_MI_CSF_Enable
ETHG/ETH_A_So_MI_CSFrdifdiEnable
	ETH_AP:
ETH_AI_D[1...M]
ETH_AI_P[1...M]
ETH_AI_DE[1...M]




Processes

[image: image135.emf]MI_Admin_State

OAM MEL Filter

MI_MEL

MI_MEP_MAC

Selector

Normal

ETH_CI_P/DE/D

LCK 

Generation

P

D

E

D

Lock

P

D

E

D

P

D

E

D

MI_Client_MEL[1…M]

MI_LCK_Period[1…M]

MI_LCK_Pri[1…M]

Selector

Normal

ETH_CI_P/DE/D

LCK 

Generation

P

D

E

D

Lock

P

D

E

D

P

D

E

D

Selector

Normal

ETH_CI_P/DE/D

LCK 

Generation

P

D

E

D

Lock

P

D

E

D

P

D

E

D P

D

E

D

P

D

E

D

P

D

E

D

ETH_AI_P/DE/D

ETH_CI_SSF

P

D

E

D P

D

E

D

APS Insert

MI_APS_Pri

MI_MEL

MI_MEP_MAC

Consequent 

Actions

aCSF-RDI

aCSF-FDI

aCSF-LOS

MI_CSF_Enable

MI_CSFfdirdiEnable

CSF Insert

P

D

E

D P

D

E

D

MI_CSF_Period

MI_CSF_Pri

ETH_AI_P/DE/D

P

D

E

D

ETH_AI_P/DE/D

ETH_CI_APS

MI_MEL

MI_MEP_MAC

 
Figure 9-29 – ETHG/ETH_A_So process
LCK Generation Process:

As defined in clause 8.1.2. There is a single LCK Generation process for each ETH.

Selector Process:

As defined in clause 8.1.3. The normal CI of each input is blocked if Admin_State = LOCKED.

OAM MEL Filter Process:

As defined in clause 8.1.1.

APS Insert Process:

As defined in clause 8.1.5.

CSF Insert Process:

As defined in clause 8.1.16.

Defects





None.

Consequent Actions
aCSF-LOS ( CI_SSF and MI_CSFEnable
aCSF-RDI ( CI_SSFrdi and MI_CSFrdifdiEnable and MI_CSFEnable

aCSF-FDI ( CI_SSFfdi and MI_CSFrdifdiEnable and MI_CSFEnable
Defect correlations


None.

Performance Monitoring
None.

9.3.4.2
ETH Group to ETH adaptation sink function (ETHG/ETH_A_Sk)

Symbol

[image: image136.emf]ETHG/ETH

ETH_FP

....

ETHG/ETH_A_Sk_MP

ETH_AP

....


Figure 9-30 – ETHG/ETH_A_Sk symbol
Interfaces

Table 9-10 – ETHG/ETH_A_Sk interfaces

	Inputs
	Outputs

	ETH_AP:
ETH_AI_D[1...M]
ETH_AI_P[1...M]
ETH_AI_DE[1...M]
ETH_AI_TSF
ETH_AI_TSD
ETH_AI_AIS
ETHG/ETH_A_Sk_MP:
ETHG/ETH_A_Sk_MI_Active
ETHG/ETH_A_Sk_MI_MEP_MAC
ETHG/ETH_A_Sk_MI_Client_MEL[1…M]
ETHG/ETH_A_Sk_MI_LCK_Period[1…M]
ETHG/ETH_A_Sk_MI_LCK_Pri[1…M]
ETHG/ETH_A_Sk_MI_Admin_State
ETHG/ETH_A_Sk_MI_AIS_Period[1…M]
ETHG/ETH_A_Sk_MI_AIS_Pri[1…M]
ETHG/ETH_A_Sk_MI_MEL
ETHG/ETH_A_Sk_MI_CSF_Reported
ETHG/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_FP:
ETH_CI_D[1…M]
ETH_CI_P[1…M]
ETH_CI_DE[1…M]
ETH_CI_APS
ETH_CI_SSF[1…M]
ETH_CI_SSD
ETH_CI_SSFrdi[1]
ETH_CI_SSFfdi[1]


ETHG/ETH_A_Sk_MP:
ETHG/ETH_A_Sk_MI_cCSF
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Figure 9-31 – ETHG/ETH_A_Sk process
APS Extract Process:

As defined in clause 8.1.6. 
CSF Extract process:

As defined in clause 8.1.17.

OAM MEL Filter Process:

As defined in clause 8.1.1. 

AIS Insert Process:

As defined in clause 8.1.4. There is a single AIS Insert process for each ETH.

LCK Generation Process:
As defined in clause 8.1.2. There is a single LCK Generation process for each ETH.

Selector Process:

As defined in clause 8.1.3. The normal CI of each input is blocked if Admin_State = LOCKED.

Defects
dCSF-LOS – See clause 6.1.5.4.

dCSF-RDI – See clause 6.1.5.4.

dCSF-FDI – See clause 6.1.5.4.
Consequent Actions
aSSF[1] 
(
(AI_TSF or dCSF_LOS) and (not MI_Admin_State == Locked)

aSSFrdi
[1]
(
dCSF-RDI and MI_CSFrdifdiEnable

aSSFfdi[1]
(
dCSF-FDI and MI_CSFrdifdiEnable
aSSF[2…M] ( AI_TSF and (not MI_Admin_State == Locked)
aAIS ( AI_AIS 

Defect correlations

cCSF
(
(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not AI_TSF) and MI_CSF_Reported
Performance Monitoring
None.

9.3.5
ETHx to ETH Group adaptation functions (ETHx/ETHG_A)

This adaptation function multiplexes different ETH_CI streams in the ETH Group into a single ETH_AI stream and demultiplexes the ETH_AI stream into individual ETH_CI streams. 
Symbol
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Figure 9-z – ETHx/ETHG_A symbol
The ETHx/ETHG_A (Figure 9-z) function is further decomposed into separate source and sink adaptation functions that are interconnected as shown in Figure 9-z+1. 
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Figure 9-z+1 – ETHx/ETHG_A source and sink symbols
9.3.5.1
ETHx to ETH Group adaptation source function (ETHx/ETHG_A_So)

This function multiplexes individuals ETH_CI streams in the ETH Group into a single ETH_AI stream. 
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Figure 9-z+2 – ETHx/ETHG_A_So symbol
Interfaces

Table 9-aa – ETHx/ETHG_A_So interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D[1...M]
ETH_CI_P[1...M]
ETH_CI_DE[1...M]
ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETHx/ETHG_A_So_MP:
ETHx/ETHG_A_So_MI_Active
ETHx/ETHG_A_So_MI_MEP_MAC
ETHx/ETHG_A_So_MI_Client_MEL[1…M]
ETHx/ETHG_A_So_MI_LCK_Period[1…M]
ETHx/ETHG_A_So_MI_LCK_Pri[1…M]
ETHx/ETHG_A_So_MI_Admin_State
ETHx/ETHG_A_So_MI_VLAN_Config[1...M]
ETHx/ETHG_A_So_MI_Etype
ETHx/ETHG_A_So_MI_PCP_Config
ETHx/ETHG_A_So_MI_MEL
	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETHF_PP:
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ETH_PI_DE

ETHTF_PP:
ETH_PI_D
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ETH_PI_DE
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Figure 9-z+3 – ETHx/ETHG_A_So process
LCK Generation Process:

As defined in clause 8.1.2. Each FP has its LCK Generation process.

Selector Process:

As defined in clause 8.1.3. The normal CI is blocked if Admin_State = LOCKED.

VID Mux Process:

The VID MUX process interleaves the signal sets (P, D, DE) from the input ports (X, Y, Z). The detail of this process is described in clause 9.3.3.1.
VLAN Tag Process:

This process inserts a VLAN tag into the M_SDU field of the incoming D signal. The detail of this process is described in clause 9.3.3.1.

P Replicate Process:

The P Replicate Process replicates the incoming P signal to both output ports, without changing the value of the signal. 

DE Generation Process:

The DE Generation Process generates a DE signal with the value drop ineligible. 

Replicate Process:

As defined in clause 8.4.

OAM MEL Filter Process:

As defined in clause 8.1.1.

Defects





None.

Consequent Actions

None.

Defect correlations


None.

Performance Monitoring
None.

9.3.5.2
ETHx to ETH Group adaptation sink function (ETHx/ETHG_A_Sk)

Symbol
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Figure 9-z+4 – ETHx/ETHG_A_Sk symbol
Interfaces

Table 9-aa+1 – ETHx/ETHG_A_Sk interfaces

	Inputs
	Outputs

	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH_AI_TSF
ETH_AI_AIS
ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHx/ETHG_A_Sk_MP:
ETHx/ETHG_A_Sk_MI_Active
ETHx/ETHG_A_Sk_MI_MEP_MAC
ETHx/ETHG_A_Sk_MI_Client_MEL[1…M]
ETHx/ETHG_A_Sk_MI_LCK_Period[1…M]
ETHx/ETHG_A_Sk_MI_LCK_Pri[1…M]
ETHx/ETHG_A_Sk_MI_Admin_State
ETHx/ETHG_A_Sk_MI_AIS_Period[1…M]
ETHx/ETHG_A_Sk_MI_AIS_Pri[1…M]
ETHx/ETHG_A_Sk_MI_VLAN_Config[1...M]
ETHx/ETHG_A_Sk_MI_P_Regenerate
ETHx/ETHG_A_Sk_MI_PVID
ETHx/ETHG_A_Sk_MI_PCP_Config
ETHx/ETHG_A_Sk_MI_Etype
ETHx/ETHG_A_Sk_MI_MEL
ETHx/ETHG_A_Sk_MI_Frametype_Config
ETHx/ETHG_A_Sk_MI_Filter_Config
	ETH_FP:
ETH_CI_D[1...M]
ETH_CI_P[1...M]
ETH_CI_DE[1...M]
ETH_CI_SSF[1...M]
ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
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Figure 9-z+5 – ETHx/ETHG_A_Sk process
Replicate Process:

As defined in clause 8.4. 

Filter Process:

As defined in clause 8.3.

Frame Type Filter Process:

The Frame Type Filter Process filters the ETH_CI depending on the value of the MI_frametype_Config input parameter. The detail of this process is described in clause 9.3.3.2.
OAM MEL Filter Process:

As defined in clause 8.1.1.

VLAN Tag Process:

The VLAN Tag Process inspects the incoming D signal. The detail of this process is described in clause 9.3.3.1. 
DE Selector Process:

This process forwards the incoming DE signal. If there is no incoming DE signal present, it generates a DE signal with value drop ineligible. 

P Selector Process:

This process forwards the P signal coming from the VLAN Tag process. If this signal is not present, the P signal coming from the OAM MEL process is forwarded. 

P Regeneration Process:

This process regenerates the incoming P signal, based on the MI_P_Regenerate input signal. The MI_P_Regenerate signal specifies a mapping table from P value to P value. 

VID Demux Process:

The VID Demux Process deinterleaves the incoming signal set (DE, P, D) to the different ports (X, Y, Z in Figure 9-z+5). The detail of this process is described in clause 9.3.3.1. 

AIS Insert Process:

As defined in clause 8.1.4.

LCK Generation Process:

As defined in clause 8.1.2. Each FP has its own LCK Generation process.

Selector Process:

As defined in clause 8.1.3. The normal CI is blocked if Admin_State = LOCKED.

Defects





None.

Consequent Actions

aSSF ( AI_TSF and (not MI_Admin_State == Locked)







aAIS ( AI_AIS 

Defect correlations


None.

Performance Monitoring
None.

9.4
ETH Diagnostic Functions

9.4.1
ETH Diagnostic Flow Termination Functions for MEPs (ETHDe_FT)

The bidirectional ETHDe Flow Termination (ETHDe_FT) function is performed by a co-located pair of ETHDe flow termination source (ETHDe_FT_So) and sink (ETHDe_FT_Sk) functions.  
9.4.1.1
ETH Diagnostic Flow Termination Source Function for MEPs (ETHDe_FT_So)

The ETHDe_FT_So Process diagram is shown in Figure 9-32.

Symbol
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Figure 9-32 – ETHDe_FT_So symbol

Interfaces

Table 9-11 – ETHDe_FT_So interfaces

	Inputs
	Outputs

	ETH_AP:

ETH_AI_D
ETH_AI_P
ETH_AI_DE

ETH_RP:
ETH_RI_LMM(D,P,DE)

ETH_RI_LMR(TxFCf,RxFCf,TxFCb,RxFCl)

ETH_RI_LBM(D,P,DE)

ETH_RI_LBR(SA,rTLV,TID)

ETH_RI_DMM(D,P,DE)

ETH_RI_DMR(rSA,TxTimeStampf,RxTimeStampf,
TxTimeStampb,RxTimeb,rTestID)

ETH_RI_LTM(D,P,DE)

ETH_RI_LTR(SA,TTL,TID,TLV)
ETH_RI_SLM(OAM,P,DE,TxFCb)

ETH_RI_SLR(rMEP_ID,rTest_ID,TxFCf,TxFCb)
ETHDe_FT_So_MP:
ETHDe_FT_So_MI_LM_Start(DA,P,Period)

ETHDe_FT_So_MI_LM_Terminate

ETHDe_FT_So_MI_LB_Discover( P)

ETHDe_FT_So_MI_LB_Series(DA,DE,P,N, Length, Period)

ETHDe_FT_So_MI_LB_Test
(DA,DE,P,Pattern, Length, Period)

ETHDe_FT_So_MI_LB_Test_Terminate

ETHDe_FT_So_MI_DM_Start(DA,P,Test ID,Length,Period)

ETHDe_FT_So_MI_DM_Terminate

ETHDe_FT_So_MI_1DM_Start(DA,P,Test ID,Length,Period)

ETHDe_FT_So_MI_1DM_Terminate

ETHDe_FT_So_MI_TST(DA,DE,P,Pattern, Length, Period)

ETHDe_FT_So_MI_TST_Terminate

ETHDe_FT_So_MI_LT(TA,TTL.P)

ETHDe_FT_So_MI_MEP_MAC

ETHDe_FT_So_MI_MEL

ETHDe_FT_So_MI_MEP_ID 
ETHDe_FT_So_MI_LM_Enable
ETHDe_FT_So_MI_SL_Start(DA,P,Test_ID,Length,Period)
ETHDe_FT_So_MI_SL_Terminate
ETHDe_FT_So_MI_1SL_Start(
                         DA,P,Test_ID,Length,Period)
ETHDe_FT_So_MI_1SL_Terminate

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETHDe_FT_So_MP:

ETHDe_FT_So_MI_LM_Result( N_TF, N_LF, F_TF, F_LF)

ETHDe_FT_So_MI_LB_Discover_Result(MACs)

ETHDe_FT_So_MI_LB_Series_Result(REC,ERR,OO)

ETHDe_FT_So_MI_LB_Test_Result
(Sent, REC, CRC, BER, OO)

ETHDe_FT_So_MI_DM_Result(count,B_FD[],F_FD[],N_FD[])
ETHDe_FT_So_MI_TST_Result(Sent)

ETHDe_FT_So_MI_LT_Results(Results)

ETHDe_FT_So_MI_SL_Result(N_TF,N_LF,F_TF,F_LF)


Processes    
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Figure 9-33 – ETHDe_FT_So Process

MEP On Demand-OAM Insertion process:

The MEP On Demand OAM Insertion process inserts OAM Traffic Units that are generated in the ETHDe_FT_So process into the stream of Traffic Units. 

For all ETH_CI_D received on any but the data input port, the SA field is overwritten with the MI_MEP_MAC value. In the M_SDU field, the MEL field is overwritten with the MI_MEL value. 

If  the DA of the OAM Traffic Unit is a Class1 or Class 2 Multicast DA the OAM insertion process updates the DA to reflect the right MEL. 
This ensures that every generated OAM field has the correct SA, DA and MEL. 

LB Control:

This Process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.2 defines the LB Control Process. 

LBM Generation:

This Process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.3 defines the LBM Generation Process. 

LBR Generation:

This Process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.6 defines the LBR Generation Process. 

On-demand LM Control:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.2 defines the on-demand LM Control Process. 

LMM Generation:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.3 defines the LMM Generation part in LMx Generation Process. 

LMR Generation:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.3 defines the LMR Generation part in LMx Generation Process. 

LMM Mux:

The LMM Mux process interleaves the signal sets LMM(DA,P,0) from the input ports (X, Y, Z).
On-demand DM Control:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.2 defines the DM Control Process. 

DMM Generation:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.3 defines the DMM Generation Process. 

DMR Generation:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.5 defines the DMR Generation Process. 

DMM Mux:

The DMM Mux process interleaves the signal sets DMM(DA,P,0,Test ID TLV, TLV) from the input ports (X, Y, Z).
On-demand 1DM Control_So:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.2 defines the 1DM Control_So Process. 

1DM Generation:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.3 defines the 1DM Generation Process. 

1DM Mux:

The 1DM Mux process interleaves the signal sets 1DM(DA,P,0,Test ID TLV, TLV) from the input ports (X, Y, Z).
TST Control_So:

This Process is defined in clause 8.1.12 where the TST protocol is defined. Clause 8.1.12.2 defines the TST Control Process. 

TST Generation:

This Process is defined in clause 8.1.12 where the TST protocol is defined. Clause 8.1.12.3 defines the TST Generation Process. 

LT Control:

This Process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.2 defines the LT Control Process. 

LTM Generation:

This Process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.3 defines the LTM Generation Process. 

LTR Generation:

This Process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.6 defines the LTR Generation Process. 

On-demand SL Control:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.2 defines the SL Control process. 

SLM Generation:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.3 defines the SLM generation process.

SLR Generation:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.5 defines the SLR generation process.
SLM Mux:

The SLM Mux process interleaves the signal sets SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) from the input ports (X, Y, Z).
Ondemand 1SL Control_So:

This Process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.2 defines the 1SL Control_So Process. 

1SL Generation:

This Process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.3 defines the 1SL Generation Process. 

1SL Mux:

The 1SL Mux process interleaves the signal sets 1SL(DA,P, MEP_ID,Test _ID, TxFCl, TLV) from the input ports (X, Y, Z).
Defects





None.
Consequent actions

None.
Defect correlations


None.
Performance monitoring
None.

9.4.1.2
ETH Diagnostic Flow Termination Sink Function for MEPs (ETHDe_FT_Sk)

The ETHDe_FT_Sk Process diagram is shown in Figure 9-34.

Symbol
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Figure 9-34 – ETHDe_FT_Sk symbol

Interfaces

Table 9-12 – ETHDe_FT_Sk interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETHDe_FT_Sk_MP:
ETHDe_FT_Sk_MI_LM_Enable
ETHDe_FT_Sk_MI_MEL
ETHDe_FT_Sk_MI_MEP_MAC
ETHDe_FT_Sk_MI_1DM_Start(SA,Test ID)
ETHDe_FT_Sk_MI_1DM_Terminate
ETHDe_FT_Sk_MI_TST_Start(SA,Pattern)
ETHDe_FT_Sk_MI_TST_Terminate
ETHDe_FT_Sk_MI_1SL_Start(
                   SA,MEP ID, Test ID)
ETHDe_FT_Sk_MI_1SL_Terminate

	ETH_AP:

ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH _RP:

ETH_RI_LMM(D,P,DE)
ETH_RI_LMR(TxFCf,RxFCb,TxFCb,RxFCl)
ETH_RI_LBM(D,P,DE)
ETH_RI_LBR(SA,rTLV,TID)
ETH_RI_DMM(D,P,DE)

ETH_RI_DMR(
rSA,TxTimestampf,RxTimeStampf,
TxTimeStampb,RxTimeb,rTest ID)

ETH_RI_LTM(D,P,DE)
ETH_RI_LTR(SA,TTL,TID,TLV)
ETH_RI_SLM(OAM,P,DE,TxFCb)
ETH_RI_SLR(
         rMEP_ID,rTest_ID,TxFCf,TxFCb)

ETHDe_FT_Sk_MP:
ETHDe_FT_Sk_MI_1DM_Result(
                          count,N_FD[])
ETHDe_FT_Sk_MI_TST_Result(
                      REC,CRC,BER,OO)
ETHDe_FT_Sk_MI_1SL_Result(N_TF,N_LF)


Processes
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 Figure 9-35 – ETHDe_FT_Sk processes

MEP On Demand -OAM extraction process:

The MEP On Demand-OAM Extraction process extracts OAM Traffic Units that are processed in the ETHDe_FT_Sk process from the stream of Traffic Units as defined in the following pseudo code:

if (TYPE=<ETHOAM>) and (MEL=MI_MEL) then 
  switch(OPC) {
  case <LMM>: if (Flag.Type=0) then 
                   extract ETH-LMM OAM traffic unit and forward to LMM Port 
                endif
  case <LMR>: if (Flag.Type=0) then 
                   extract ETH-LMR OAM traffic unit and forward to LMR Port

                endif
  case <DMM>: if (Flag.Type=0) then 

extract ETH-DMM OAM traffic unit and forward to DMM Port
                endif
  case <DMR>: if (Flag.Type=0) then 

extract ETH-DMR OAM traffic unit and forward to DMR Port
                endif
  case <1DM>: extract ETH-1DM OAM traffic unit and forward to 1DM Port

  case <LTM>: extract ETH-LTM OAM traffic unit and forward to LTM Port

  case <LTR>: extract ETH-LTR OAM traffic unit and forward to LTR Port

  case <LBM>: extract ETH-LBM OAM traffic unit and forward to LBM Port
  case <LBR>: extract ETH-LBR OAM traffic unit and forward to LBR Port

  case <TST>: extract ETH-TST OAM traffic unit and forward to TST Port 

  case <SLM>: extract ETH-SLM OAM traffic unit and forward to SLM port

  case <SLR>: extract ETH-SLR OAM traffic unit and forward to SLR port
  case <1SL>: extract ETH-1SL OAM traffic unit and forward to 1SL Port

  default: forward ETH_CI traffic unit to Data port

  }

else

  forward ETH_CI_traffic unit to Data Port

endif
NOTE 1 - Further filtering of OAM Traffic Units is performed by the OAM MEL Filter Process which forms part of the ETH Adaptation functions specified in clause 9.3.
NOTE 2 – If both ETHDe_FT and ETHx_FT are involved in synthetic loss measurments, the MEP On Demand-OAM Extraction process need to take a role of the discrimination which Flow Termination the received ETH-SLM PDU belongs to. Detail mechanism is for further study.

MEP LBM Reception:

This Process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.5 defines the LBM MEP Reception Process. 

LBR Reception:

This Process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.7 defines the LBR Reception Process. 

LMM Reception:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.4 defines the LMM Reception part in LMx Reception Process. 

LMR Reception:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.4 defines the LMR Reception part in LMx Receiption Process. 

LMR Demux:

The LMR Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P signal can be used for the selection of the port.
DMM Reception:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.4 defines the DMM Reception Process. 

DMR Reception:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.6 defines the DMR Reception Process. 

DMR Demux:

The DMR Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1DM Reception:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.4 defines the 1DM Reception Process. 

1DM Demux:

The 1DM Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1DM Control_Sk:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.5 defines the 1DM Control_Sk Process. 

TST Reception:

This Process is defined in clause 8.1.12 where the TST protocol is defined. Clause 8.1.12.4 defines the TST Reception Process. 

TST Control_Sk:

This Process is defined in clause 8.1.12 where the TST protocol is defined. Clause 8.1.12.5 defines the TST Control_Sk Process. 

MEP LTM Reception:

This Process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.5 defines the MEP LTM Reception Process. 

LTR Reception:

This Process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.7 defines the LTR Reception Process. 

SLM Reception:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.4 defines the SLM reception process.

SLR Reception:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.6 defines the SLR reception process. 

SLR Demux:

The SLR Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1SL Reception:
This process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.4 defines the 1SL reception process.

1SL Demux:

The 1DM Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1SL Control_Sk:
This process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.5 defines the 1SL control_Sk process. 

Defects





None.
Consequent actions

None.
Defect correlations


None.
Performance monitoring
None.

9.4.2
ETH Diagnostic Flow Termination Functions for MIPs (ETHDi_FT)

9.4.2.1
ETH Diagnostic Flow Termination Source Function for MIPs (ETHDi_FT_So)

Symbol
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Figure 9-36 – ETHDi_FT_So symbol

Interfaces

Table 9-13 – ETHDi_FT_So interfaces

	Inputs
	Outputs

	ETH_AP:

ETH_AI_D
ETH_AI_P
ETH_AI_DE

ETH_RP:

ETH_RI_LBM(D,P,DE)
ETH_RI_LTM(D,P,DE)
ETHDi_FT_So_MP:

ETHDi_FT_So_MI_MEL
ETHDi_FT_So_MI_MIP_MAC
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE



Processes
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Figure 9-37 – ETHDi_FT_So Process

MIP OAM Insertion:

The MIP OAM Insertion process inserts OAM Traffic Units that are generated in the ETHDi_FT_So process into the stream of Traffic Units. 

For all ETH_CI_D received on any but the data input port, the SA field is overwritten with the MI_MIP_MAC value. In the M_SDU field the Ethertype value is overwritten with the OAM Ethertype value (89-02) and the MEL field is overwritten with the MI_MEL value. 

This ensures that every generated OAM field has the correct SA, Ethertype and MEL. 

LBR Generation:

This Process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.6 defines the LBR Generation Process. 

LTR Generation:

This Process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.6 defines the LTR Generation Process. This process may be regarded as the LT Responder which is located outside of this MIP independently, however, the process itself is the same.

Defects





None.
Consequent actions

None.
Defect correlations


None.
Performance monitoring
None.
9.4.2.2
ETH Diagnostic Flow Termination Sink Function for MIPs (ETHDi_FT_Sk)

Symbol
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Figure 9-38 – ETHDi_FT_Sk symbol

Interfaces

Table 9-14 – ETHDi_FT_Sk interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETHDi_FT_Sk_MP:
ETHDi_FT_Sk_MI_MEL
ETHDi_FT_Sk_MI_MIP_MAC
	ETH_AP:

ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH_RP:
ETH_RI_LBM(D,P,DE)
ETH_RI_LTM(D,P,DE)


Processes
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Figure 9-39 – ETHDi_FT_Sk Process

MIP OAM extraction process:

The MIP OAM Extraction process extracts OAM Traffic Units that are processed in the ETHDi_FT_Sk process from the stream of Traffic Units as defined in the following pseudo code:

if (TYPE=<ETHOAM>) and (MEL=MI_MEL) then 
  switch(OPC) {
  case <LBM>: extract ETH-LBM OAM traffic unit and forward to LBM Port
  case <LTM>: extract ETH-LTM OAM traffic unit and forward to LTM Port
  default: forward ETH_CI traffic unit to Data port

  }
else

forward ETH CI traffic unit to Data Port

endif
NOTE - Further filtering of OAM Traffic Units is performed by the OAM MEL Filter Process which forms part of the ETH Adaptation functions specified in clause 9.3.
MIP OAM insertion process:

The MIP OAM Insertion process inserts OAM Traffic Units that are generated in the ETHDi_FT_Sk process into the stream of Traffic Units. 

For all ETH_CI_D received on any but the data input port, the SA field is overwritten with the MI_MEP_MAC value. In the M_SDU field the Ethertype value is overwritten with the OAM Ethertype value (89-02) and the MEL field is overwritten with the MI_MEL value. 

This ensures that every generated OAM field has the correct SA, Ethertype and MEL.

MIP LBM Reception Process:

This Process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.4 defines the LBM MIP Reception Process. 

MIP LTM Reception Process:

This Process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.4 defines the MIP LTM Reception Process. This process may be regarded as the LT Responder which is located outside of this MIP independently, however, the process itself is the same.

Defects





None.
Consequent actions

None.
Defect correlations


None.
Performance monitoring
None.

9.4.3 ETHD to ETH Adaptation functions (ETHD/ETH_A) 

The ETHD/ETH adaptation function is an empty function; it is included to satisfy the modelling rules.

The bidirectional ETHD/ETH adaptation function is performed by a co-located pair of ETHD/ETH adaptation source (ETHD/ETH_A_So) and sink (ETHD/ETH_A_Sk) functions.  

9.4.3.1
ETHD to ETH Adaptation Source function (ETHD/ETH_A_So)

The ETHD/ETH_A_So function symbol is shown in Figure 9-40 and the process in Figure 9-41.
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Figure 9-40 – ETHD/ETH_A_So symbol
Interfaces

Table 9-15 – ETHD/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

See specific OAM process for additional inputs
	ETH_AP:

ETHD_AI_D
ETHD_AI_P
ETHD_AI_DE

See specific OAM process for additional inputs


Processes
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Figure 9-41 – ETHD/ETH_A_So Process

Defects





None.
Consequent Actions

None.

Defect correlations


None.
Performance Monitoring
None.

9.4.3.2
ETHD to ETH Adaptation Sink function (ETHD/ETH_A_Sk)

The ETHD/ETH_A_Sk function symbol is shown in Figure 9-42 and the process in Figure 9-43.

Symbol
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Figure 9-42 – ETHD/ETH_A_Sk symbol
Interfaces

Table 9-16 – ETHD/ETH_A_Sk interfaces

	Inputs
	Outputs

	ETH_AP:

ETHD_AI_D
ETHD_AI_P
ETHD_AI_DE
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE


Processes
The ETHD/ETH_A_Sk Process diagram is shown in Figure 9-43.
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Figure 9-43 – ETHD/ETH_A_Sk Process

9.4.4 ETHDi to ETH adaptation functions (ETHDi/ETH_A)
The ETHDi/ETH inserts and extracts the R-APS information into or from the stream of ETH_CI.

9.4.4.1
ETHDi to ETH adaptation source function (ETHDi/ETH_A_So)

This function allows the insertion of R-APS information into a stream of ETH_CI. 

Symbol
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Figure 9-x – ETHDi/ETH_A_So symbol

Interfaces

Table 9-y – ETHDi/ETH_A_So Interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_RAPS
ETHDi/ETH_A_So_MP:
ETHDi/ETH_A_So_MI_Active
ETHDi/ETH_A_So_MI_MEL
ETHDi/ETH_A_So_MI_RAPS_Pri
ETHDi/ETH_A_So_MI_MIP_MAC
	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE



Processes
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Figure 9-x+1 – ETHDi/ETH_A_So Process
RAPS Insert:

The RAPS Insert process encodes the ETH_CI_RAPS signal into the ETH_CI_D signal of an ETH_CI traffic unit; the resulting RAPS traffic unit is inserted into the stream of incoming traffic units, i.e., the outgoing stream consist of the incoming traffic units and the inserted RAPS traffic units. The ETH_CI_RAPS signal contains the RAPS Specific Information as defined in [ITU-T G.8032]. 

The ETH_CI_D signal contains a Source and Destination address field and an M_SDU field. The format of the M_SDU field for RAPS traffic units is determined by the ETH_CI_RAPS signal. The MEL in the M_SDU field is determined by the MI_MEL input parameter. 

The values of the Source and Destination address fields in the ETH_CI_D signal are determined by the Local MAC address of the maintenance entity group intermediate point (MIP) (MI_MIP_MAC) and the Ring Multicast address as described in [ITU-T G.8032]. The value of the Ring Multicast MAC address is 01-19-A7-00-00-01. The value of MI_ MIP_MAC should be a valid unicast MAC address. 

The value of the ETH_CI_P signal associated with the generated RAPS traffic units is determined by the MI_RAPS_Pri input parameter. 

The value of the ETH_CI_DE signal associated with the generated RAPS traffic units is set to drop ineligible. 

9.4.4.2
ETHDi to ETH adaptation sink function (ETHDi/ETH_A_Sk)

This function extracts the RAPS information from the RAPS traffic units, without filtering the traffic unit. 

Symbol
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Figure 9-x+2 – ETHDi/ETH_A_Sk symbol

Interfaces

Table 9-y+1 – ETHDi/ETH_A_Sk Interfaces
	Inputs
	Outputs

	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH_AI_TSF
ETHDi/ETH_A_Sk_MP:
ETHDi/ETH_A_Sk_MI_Active
ETHDi/ETH_A_Sk_MI_MEL
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_RAPS
ETH_CI_SSF




NOTE – Currently in this Recommendation, for the ETHDi_FT_Sk, no consequent action for the ETH_CI_SSF input has been defined. However the consequent action should be ETH_AI_TSF output, to propagate the failure information. 

Processes
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Figure 9-x+3 – ETHDi/ETH_A_Sk process
RAPS Extract:

The RAPS Extract process extracts ETH_CI_RAPS signals from the incoming stream of ETH_CI traffic units, without filtering the RAPS Traffic Unit. ETH_CI_RAPS signals are only extracted if they belong to the MEL as defined by the MI_MEL input parameter. 

If an incoming traffic unit is an RAPS traffic unit belonging to the MEL defined by MI_MEL, the traffic unit will be duplicated. The original RAPS traffic unit will be transparently forwarded and the ETH_CI_RAPS signal will be extracted from the duplicate. The ETH_CI_RAPS is the RAPS Specific Information contained in the received Traffic Unit. All other traffic units will be transparently forwarded, without being duplicated. The encoding of the ETH_CI_D signal for RAPS frames is defined in clause 9.10 of [ITU-T Y.1731]. 

The criteria for filtering are based on the values of the fields within the M_SDU field of the ETH_CI_D signal:

•
length/type field equals the OAM Ethertype (89-02), and

•
MEL field equals MI_MEL, and 

•
OAM type equals RAPS (40), as defined in clause 9.1 of [ITU-T Y.1731]
Defects





None.

Consequent Actions

aSSF ( AI_TSF

Defect correlations


None.

Performance Monitoring
None.

9.5
Server to ETH Adaptation functions (<server>/ETH_A)

Figure 9-44 presents a high level view of the processes that are present in a generic Server to ETH adaptation function (<server>/ETH). The information crossing the <server>/ETH termination flow point (ETH_TFP) is referred to as the ETH characteristic information (ETH_CI). The information crossing the Server layer access point (<server>_AP) is referred to as the Server-specific adapted information (<server>_AI). Note that for some server signals not all processes need to be present, as defined in the server specific adaptation functions.
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Figure 9-44 – Server to ETH adaptation functions

The following generic processes are specified: “Filter” in clause 8.3, “Queues” in clause 8.2, “Replicate” in clause 8.4, and “802.3 Protocols” in clause 8.5. Server-specific processes are specified in server-specific clauses.  

NOTE 1 – Filtering in <server>/ETH_A sink adaptation function is not applied to frames forwarded to the ETH_TFP. The processes connected to this ETH_TFP should filter ETH_CI or process it.
NOTE 2 – Queuing of frames in the source direction is also not applied for frames from the ETH_TFP. If queuing of frames in the sink direction is required when traffic conditioning is applied, this will be included in the Traffic Conditioning function.
NOTE 3 – For G.8011.1 EPL service, ETH_TFP is unconnected. For services supporting ETH_TFP in the source direction, prioritization of frames received across the ETH_FP and ETH_TFP interfaces will be required. Such prioritization is for further study.

NOTE 4 – Server to ETH adaptation functions may have the processes of ETH-AIS insertion and ETH-LCK generation. Note that Figure 9-44 and related figures in clauses 9.7, 10 and 11 don’t explicitly depict those features to avoid introducing the description complexity.

9.6
ETH Traffic Conditioning and Shaping functions (ETH_TCS)

9.6.1
ETH Traffic Conditioning and Shaping functions (ETH_TCS)

9.6.1.1
ETH Traffic Shaping Function (ETH_TCS_So)

Symbol
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Figure 9-45 – ETH_TCS_So symbol
Interfaces

Table 9-17 – ETH_TCS_So Interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_TCS_So_MP:
ETH_TCS_So_MI_Prio_Config
ETH_TCS_So_MI_Queue_Config[]
ETH_TCS_So_MI_Sched_Config
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE



Processes
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Figure 9-46 – ETH_TCS_So process
Priority Splitter:

As defined in clause 8.9.2.
Queue:

As defined in clause 8.9.1.
Scheduler:

As defined in clause 8.9.5.
Priority Merger:

As defined in clause 8.9.3.
Defects





None.

Consequent Actions

None.

Defect correlations


None.

Performance Monitoring
None.

9.6.1.2
ETH Traffic Conditioning Function (ETH_TCS_Sk)

Symbol
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Figure 9-47 – ETH_TCS_Sk symbol
Interfaces

Table 9-18 – ETH_TCS_Sk Interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_TCS_Sk_MP:
ETH_TCS_Sk_MI_Prio_Config
ETH_TCS_Sk_MI_Cond_Config[]
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE



Processes
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Figure 9-48 – ETH_TCS_Sk processes

Priority Splitter:

As defined in clause 8.9.2.
Conditioner:

As defined in clause 8.9.4.
Priority Merger:
As defined in clause 8.9.3.
Defects





None.

Consequent Actions

None.

Defect correlations


None.

Performance Monitoring
None.

9.6.2
ETH Group Traffic Conditioning and Shaping Functions (ETH_GTCS)

9.6.2.1
ETH Group Traffic Shaping Function (ETH_GTCS_So)

Symbol
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Figure 9-49 – ETH_GTCS_So symbol
Interfaces

Table 9-19 – ETH_GTCS_So Interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_GTCS_So_MP:
ETH_GTCS_So_MI_Prio_Config[]
ETH_GTCS_So_MI_Queue_Config[][]
ETH_GTCS_So_MI_Sched_Config
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE



Processes
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Figure 9-50 – ETH_TCS_So processes

Priority Splitter:

As defined in clause 8.9.2.
Queue:

As defined in clause 8.9.1.
Scheduler:

As defined in clause 8.9.5.
Priority Merger:
As defined in clause 8.9.3.

Defects





None.

Consequent Actions

None.

Defect correlations


None.

Performance Monitoring
None.

9.6.2.2
ETH Group Traffic Conditioning Function (ETH_GTCS_Sk)

For ETH Group Traffic, traffic conditioning process is performed per flow point but there is no correlation between each process. Threfore, an ETH_GTCS_Sk function can be modelled by multiple ETH_TCS_Sk functions and no specific function is defined in this recommendation.
9.7
ETH Link Aggregation Functions

The ETH Link Aggregation functions model the Link Aggregation functionality as described in [IEEE 802.1AX] (moved from clause 43 of IEEE 802.3-2005). The definitions in the present clause provide references to the appropriate generic process definitions in clause 8 of [ITU-T G.806] where necessary.

The generic model used is shown in Figures 9-51 and 9-52. Figure 9-51 shows the simplified model for the case of one single aggregator, while Figure 9-52 shows the generic model for the case of several aggregators. Np denotes the number of ETYn_AP interfaces (interfaces to the IEEE 802.3 PHY layer), while Na is the number of ETH-LAG_FP interfaces (interfaces to the IEEE 802.3 MAC layer).
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Figure 9-51 – Simplified model of Ethernet Link Aggregation with decomposition of ETH-LAG-Np-Na_TT function for Na=1
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Figure 9-52 – Generic model of Ethernet Link Aggregation with decomposition of ETH-LAG-Np-Na_TT function

9.7.1
ETH Link Aggregation Layer Trail Termination Function (ETH-LAG-Np-Na_TT)

The ETH-LAG-Np-Na_TT function is decomposed as shown in Figures 9-53 and 9-55. 

NOTE – ETH-LAG-Np-Na_TT functions always consist of a pair of identically-sized source and sink functions (i.e., a source function with certain values of Na/Np and a sink function with the same Na/Np values), as per [IEEE 802.3].

9.7.1.1
ETH Link Aggregation Adaptation Source Function (ETYn-Np/ETH-LAG-Na_A_So)

Symbol
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Figure 9-53 – ETYn-Np/ETH-LAG-Na_A_So symbol

Interfaces

Table 9-20 – ETYn-Np/ETH-LAG-Na_A_So interfaces

	Inputs
	Outputs

	ETH-LAG_FP:
ETH-LAG-Na_CI_D =
        ETH-LAG_CI[1..Na]_D
ETH-LAG-Na_CI_P =
        ETH-LAG_CI[1..Na]_P
ETH-LAG-Na_CI_DE =
        ETH-LAG_CI[1..Na]_DE
ETH-LAG-Na_CI_Clock =
        ETH-LAG_CI[1..Na]_Clock


ETYn-Np/ETH-LAG-Na _A_So_MP:

ETYn-Np/ETH-LAG-Na_A_So_
  MI_Active
ETYn-Np/ETH-LAG-Na_A_So_
  MI_TxPauseEnable

ETYn-Np/ETH-LAG-Na_A_So_
  MI_Agg[1..Na]_AP_List 

ETYn-Np/ETH-LAG-Na_A_So_
  MI_AggPort[1..Np]_
   ActorAdmin_State


	ETYn_AP:
ETYn-Np_AI_Data = ETYn_AI[1..Np]_Data
ETYn-Np_AI_Clock = ETYn_AI[1..Np]_Clock
ETYn-Np/ETH-LAG-Na _A_So_MP:
ETYn-Np/ETH-LAG-Na_A_So_
  MI_Agg[1..Na]_
   ActorSystemID
   ActorSystemPriority
   ActorOperKey
   PartnerSystemID
   PartnerSystemPriority
   PartnerOperKey
   DataRate
   CollectorMaxDelay

ETYn-Np/ETH-LAG-Na_A_So_
  MI_AggPort[1..Np]_
   ActorOperKey
   PartnerOperSystemPriority
   PartnerOperSystemID
   PartnerOperKey
   ActorPort
   ActorPortPriority
   PartnerOperPort
   PartnerOperPortPriority
   ActorOperState
   PartnerOperState

ETYn-Np/ETH-LAG-Na_A_So_
  MI_pAggOctetsTxOK[1..Na]

ETYn-Np/ETH-LAG-Na_A_So_
  MI_pAggFramesTxOK[1..Na]

ETYn-Np/ETH-LAG-Na_A_So_
  MI_pFramesTransmittedOK[1..Np]

ETYn-Np/ETH-LAG-Na_A_So_
  MI_pOctetsTransmittedOK[1..Np]


NOTE 1 – The signals MI_Agg[1..Na]_… and MI_AggPort[1..Np]_… represent the attributes of the "Aggregator" and "Aggregator Port" objects of the same name in the model in clause 6.3 of [IEEE 802.1AX]. As an example, the output MI_Agg[k]_PartnerSystemID corresponds to the IEEE read-only attribute aAggPartnerSystemID for aggregator object #k.

NOTE 2 – For the purposes of Ethernet Transport Equipment, the above table contains the minimum set of aggregator and aggregator port inputs and outputs to be supported. This set is a subset of the IEEE 802.1AX model, of which some attributes have been omitted because they are specific to the IEEE management philosophy or for simplification in transport equipment. All parameters not explicitly settable per the table above take their default values as per [IEEE 802.1AX].

NOTE 3 – this is the minimum set of common requirements that transport equipment must fulfil.

Processes

A process diagram of this function is shown in Figure 9-54.
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Figure 9-54 – ETYn-Np/ETH-LAG-Na_A_So processes

The input MI_Agg[1..Na]_AP_List defines, for each aggregator, which ports (access points) are provisioned to be assigned to it. The AP_List attributes for all aggregators are disjunct lists.

The system shall assign a unique value for the parameter aAggActorAdminKey for each aggregator in the system. The system shall also assign the value used for each aggregator to the parameter aAggPortActorAdminKey of all ports in its assigned port list (AP_List).

NOTE 4 – This automated AdminKey assignment is a simplification of the IEEE provisioning model, where the keys are provisioned explicitly for each port and aggregator.

NOTE 5 – Automated assignment of PartnerAdminKey attributes is for further study.

ETYn Server:

This process is identical to the “ETYn Server Specific” process defined in clause 10.3.1.

MAC FCS, 802.1AB/X, 802.3:

These processes are as per the definitions of the “MAC FCS generation” in clause 8.8.1, “802.1AB/X processes” in clause 8.8.3 and “802.3 protocols” in clause 8.5.

Aggregation Control:

This process is the source part of the process of the same name in [IEEE 802.1AX].

NOTE 6 – The “Aggregation Control” process is a single process shared between the source and the sink of a pair of source/sink adaptation functions.

NOTE 7 – As per the IEEE model and given the automated key assignment, only ports from each aggregator’s AP_List will be eligible to be selected by that aggregator.

Aggregator:

This process is the source part of the process of the same name in [IEEE 802.1AX]. A coupled mux state machine model is used.

NOTE 8 – Each “Aggregator #k” process is a single process shared between the source and the sink of a pair of source/sink adaptation functions.
Defects



None.
Consequent actions


None.
Defect correlations


None.

Performance monitoring

For each aggregator:

MI_pAggOctetsTxOK[1..Na] per clause 6 of [IEEE 802.1AX].

MI_pAggFramesTxOK[1..Na] per clause 6 of [IEEE 802.1AX].

For each access point:

MI_pOctetsTransmittedOK[1..Np] per clause 6 of [IEEE 802.1AX].

MI_pFramesTransmittedOK[1..Np] per clause 6 of [IEEE 802.1AX].

9.7.1.2
ETH Link Aggregation Adaptation Sink Function (ETYn-Np/ETH-LAG-Na_A_Sk)

Symbol
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Figure 9-55 – ETYn-Np/ETH-LAG-Na_A_Sk symbol

Interfaces

Table 9-21 – ETYn-Np/ETH-LAG-Na_A_Sk interfaces

	Inputs
	Outputs

	ETYn_AP:
ETYn-Np_AI_D=
  ETYn_AI[1..Np]_D
ETYn-Np_AI_P=
  ETYn_AI[1..Np]_P
ETYn-Np_AI_DE=
  ETYn_AI[1..Np]_DE
ETYn-Np_AI_Clock
  ETYn_AI[1..Np]_Clock


ETYn-Np/ETH-LAG-Na _A_Sk_MP:
ETYn-Np/ETH-LAG-Na_A_Sk_
  MI_Active
ETYn-Np/ETH-LAG-Na_A_Sk_
  MI_PLLThr[1..Na]
	ETH-LAG_FP:
ETH-LAG-Na_CI_D=
  ETH-LAG_CI[1..Na]_D
ETH-LAG-Na_CI_P=
  ETH-LAG_CI[1..Na]_P
ETH-LAG-Na_CI_DE=
  ETH-LAG_CI[1..Na]_DE
ETH-LAG-Na_CI_Clock=
  ETH-LAG_CI[1..Na]_Clock
ETH- LAG-Na_CI_aSSF=
  ETH-LAG_CI[1..Na]_aSSF


ETYn-Np/ETH-LAG-Na _A_Sk_MP:
ETYn-Np/ETH-LAG-Na_A_Sk_
  MI_cPLL[1..Na]
ETYn-Np/ETH-LAG-Na_A_Sk_
  MI_cTLL[1..Na]
ETYn-Np/ETH-LAG-Na_A_Sk_
  MI_pAggOctetsRxOK[1..Na]
ETYn-Np/ETH-LAG-Na_A_Sk_
  MI_pAggFramesRxOK[1..Na]
ETYn-Np/ETH-LAG-Na_A_Sk_
  MI_pFramesReceivedOK[1..Np]
ETYn-Np/ETH-LAG-Na_A_Sk_
  MI_pOctetsReceivedOK[1..Np]
ETYn-Np/ETH-LAG-Na_A_Sk_
  MI_pFCSErrors[1..Np.]


Processes

A process diagram of this function is shown in Figure 9-56.
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Figure 9-56 – ETYn-Np/ETH-LAG-Na_A_Sk process

ETYn Server:

This process is identical to the “ETYn Server Specific” process defined in clause 10.3.2.

MAC FCS, 802.1AB/X, 802.3:

These processes are as per the definitions of the “MAC FCS Check” in clause 8.8.2, “802.1AB/X protocols” in clause 8.8.3 and “802.3 protocols” in clause 8.5.

Aggregation Control:

This process is the source part of the process of the same name in [IEEE 802.1AX].

NOTE 1 – The “Aggregation Control” process is a single process shared between the source and the sink of a pair of source/sink adaptation functions. The parameters used by this bidirectional process are defined in the interface section of the source adaptation function.

Aggregator:

This process is the source part of the process of the same name in [IEEE 802.1AX]. A coupled mux state machine model is used.

NOTE 2 – Each “Aggregator #k” process is a single process shared between the source and the sink of a pair of source/sink adaptation functions. The parameters used by this bidirectional process are defined in the interface section of the source adaptation function.
Defects

dMNCD[j] (Member j not Collecting/Distributing): The defect shall be raised if an access point (port) in an aggregator’s AP_List stays outside of the COLLECTING_DISTRIBUTING state for longer than Xraise seconds. The defect shall be cleared if the port enters the COLLECTING_DISTRIBUTING state and stays there for Xclear seconds.

Xraise = Xclear = 1 second.

Consequent actions


[image: image173.wmf][

]

[

]

Õ

Î

¬

k

MI_AP_List

 

j

j

dMNCD

 

aSSF

LAG_CI[k]_

-

ETH


NOTE 3 – In other words, aSSF will be raised at the output ETH-LAG_CI[k] of an aggregator if all ports in its assigned port list (AP_List[k]) have the dMNCD defect active.

Defect correlations

Defining
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i.e., the number of active (no-defect) ports among those in an aggregator’s AP_List,

then:
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NOTE 4 – In other words, a cTLL (Total Link Loss) fault cause will be raised if no ports are active for an aggregator. A cPLL (Partial Link Loss) fault cause shall be raised if the number of active ports is less than the provisioned threshold.

Performance monitoring

For each aggregator:

MI_pAggOctetsRxOK[1..Na] per clause 6 of [IEEE 802.1AX].

MI_pAggFramesRxOK[1..Na] per clause 6 of [IEEE 802.1AX].

For each access point:

MI_pFCSErrors[1..Np] per clause 6 of [IEEE 802.1AX].

MI_pOctetsReceivedOK[1..Np] per clause 6 of [IEEE 802.1AX].

MI_pFramesReceivedOK[1..Np] per clause 6 of [IEEE 802.1AX].

9.7.1.3
ETH Link Aggregation Flow Termination Source Function (ETH-LAG_FT_So)

Symbol
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Figure 9-57 – ETH-LAG_FT_So symbol

Interfaces

Table 9-22 – ETH-LAG_FT_So interfaces

	Inputs
	Outputs

	ETH-LAG_AP:
ETH-LAG_AI_D 
ETH-LAG_AI_P
ETH-LAG_AI_DE
ETH-LAG_AI_ClocK
	ETH-LAG_FP:
ETH-LAG_CI_D
ETH-LAG_CI_P 
ETH-LAG_CI_DE
ETH-LAG_CI_ClocK


Processes

This function just forwards the ETH-LAG_AP information onto the ETH-LAG_FP without manipulation.

Defects





None.

Consequent Actions

None.

Defect Correlations


None.
Performance monitoring
None.
9.7.1.4
ETH Link Aggregation Flow Termination Sink Function (ETH-LAG_FT_Sk)

Symbol
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Figure 9-58 – ETH-LAG_FT_Sk symbol

Interfaces

Table 9-23 – ETH-LAG_FT_Sk interfaces

	Inputs
	Outputs

	ETH-LAG_FP:
ETH-LAG_CI_D
ETH-LAG_CI_P
ETH-LAG_CI_DE
ETH-LAG_CI_ClocK
ETH-LAG_CI_SSF
ETH-LAG_FT_Sk_MP:
ETH-LAG_TT_Sk_MI_SSF_Reported
	ETH-LAG_AP:
ETH-LAG_AI_D
ETH-LAG_AI_P
ETH-LAG_AI_DE
ETH-LAG_AI_ClocK
ETH-LAG_AI_TSF
ETH-LAG_AI_AIS


ETH-LAG_FT_Sk_MP:
ETH-LAG_TT_Sk_MI_cSSF


Processes

This function just forwards the ETH-LAG_FP information onto the ETH-LAG_AP without manipulation.

Defects:



None
Consequent actions

aTSF
(
CI_SSF

Defect correlations

cSSF
(
CI_SSF and SSF_Reported

Performance monitoring
None.
9.7.2
ETH-LAG to ETH Adaptation Function (ETH-LAG/ETH_A)

9.7.2.1
ETH-LAG to ETH Adaptation Source Function (ETH-LAG/ETH_A_So)

Symbol
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Figure 9-59 – ETH-LAG/ETH_A_So symbol

Interfaces

Table 9-24 – ETH-LAG/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_ClocK

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_ClocK
ETH_TP:
ETH_TI_ClocK

ETH-LAG/ETH_A_So_MP:
ETH-LAG/ETH_A_So_MI_Active
	ETH-LAG_AP:
ETH-LAG_AI_D
ETH-LAG_AI_P
ETH-LAG_AI_DE
ETH-LAG_AI_ClocK

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE


Processes

A process diagram of this function is shown in Figure 9-60.
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Figure 9-60 – ETH-LAG/ETH_A_So process

See “Queuing” in clause 8.2 and “Replicate” in clause 8.4.
Defects



None.

Consequent actions


None.

Defect correlations


None.

Performance monitoring
None.
9.7.2.2
ETH-LAG to ETH Adaptation Sink Function (ETH-LAG/ETH_A_Sk)

Symbol
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Figure 9-61 – ETH-LAG/ETH_A_Sk symbol

Interfaces

Table 9-25 – ETH-LAG/ETH_A_Sk interfaces

	Inputs
	Outputs

	ETH-LAG_AP:
ETH-LAG_AI_D
ETH-LAG_AI_P
ETH-LAG_AI_DE
ETH-LAG_AI_ClocK
ETH-LAG-AI_TSF
ETH-LAG-AI_AIS
ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETH-LAG/ETH_A_Sk_MP:
ETH-LAG/ETH_A_Sk_MI_Active

ETH-LAG/ETH_A_Sk_MI_FilterConfig
	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_ClocK
ETH_CI_SSF


ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_ClocK

ETH_CI_SSF


Processes

A process diagram of this function is shown in Figure 9-62.
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Figure 9-62 – ETH-LAG/ETH_A_Sk process

See “Filter” in clause 8.3 and “Replicate” in clause 8.4.
Defects



None.

Consequent actions


None.

Defect correlations


None.

Performance monitoring
None.

9.8
ETH MEP and MIP functions

MEP and MIP compound functions are defined in [ITU-T G.806]. This clause specifies the compositions of those functions with ETH Flow Termination, Adaptation and Diagnostic atomic functions described in clauses 9.2, 9.3 and 9.4, respectively.

9.8.1
ETH NCM MEP function
An ETH NCM (Network Connection Monitoring) MEP function is capable to originate, filter and terminate proactive ETH OAM signals and to originate, respond to and terminate diagnostic ETH OAM signals at the NCM MEG levels. The NCM MEP is composed of ETHx_FT, ETHD/ETH_A and ETHDe_FT atomic functions. This MEP is located at ETH (sub-)layer boundary and connected with ETHx/client_A or ETHx/ETH-m_A. Application with other adaptation functions, and the model for multiple access points are for further study.
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Figure 9-63 – ETH NCM MEP compound functions

9.8.2
ETH TCM MEP function

An ETH TCM (Tandem Connection Monitoring) MEP function is capable to originate, filter and terminate proactive ETH OAM signals and to originate, respond to and terminate diagnostic ETH OAM signals at one of the TCM MEG levels. The TCM MEP is composed of ETHx/ETH_A, ETHx_FT, ETHD/ETH_A and ETHDe_FT atomic functions. In addition, it can be composed of ETHG/ETH_A, ETHG_FT, ETHD/ETH_A and ETDe_FT if ETH Group MEG is configured and multiple access point pools are accommodated. This MEP is located within an ETH (sub-)layer.
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Figure 9-64 – ETH TCM MEP compound functions

9.8.3
ETH MIP function

An ETH MIP function is capable to respond to on-demand ETH OAM signals at one of the MEG levels on the both directions. The MIP combines two back-to-back half-MIP functions. It consists of two pairs of the ETHD/ETH_A and ETHDi_FT atomic functions, each facing in opposite directions. The model for multiple flow points is for further study.
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Figure 9-65 – ETH MIP compound functions

9.8.4
ETH half MIP function

An ETH half MIP function is capable to respond to on-demand ETH OAM signals at one of the MEG levels on a single direction. The half MIP is composed of a pair of ETHD/ETH_A and ETHDi_FT atomic functions. The model for multiple flow points is for further study.
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Figure 9-66 – ETH MIP compound functions

10
Ethernet PHY Layer functions (ETYn)

This Recommendation supports the following full-duplex Ethernet PHYs:

· ETY1: 10BASE-T (twisted pair electrical; full-duplex only)

· ETY2.1: 100BASE-TX (twisted pair electrical; full-duplex only; for further study)

· ETY2.2: 100BASE-FX (optical; full-duplex only; for further study)

· ETY3.1: 1000BASE-T (copper; for further study)

· ETY3.2: 1000BASE-LX/SX (long- and short-haul optical; full duplex only)

· ETY3.3: 1000BASE-CX (short-haul copper; full duplex only; for further study)

· ETY4: 10GBASE-S/L/E (optical; for further study)

10.1
ETYn Connection functions (ETYn_C)

Not applicable; there are no connection functions defined for this layer.

10.2
ETYn Trail Termination functions (ETYn_TT)

In the sink direction, Ethernet PHY Trail Termination functions (ETYn_TT) terminate received optical or electrical Ethernet signals, delivering a conditioned signal to the ETYn/ETH_Sk_A sink adaptation function. In the source direction, ETYn_TT trail termination accepts an electrical signal from the ETYn/ETH_So_A source adaptation function, and outputs an appropriate electrical or optical signal to the Ethernet electrical or optical delivery medium.

NOTE – The ETYn_TT functions are intended to encapsulate the whole functionality of the physical layer in the IEEE 802.3 model. The models in this Recommendation define this functionality just by reference to the IEEE model and intentionally do not provide details on it, as this functionality is well-understood from the IEEE work.

The types of ETYn functions are as defined in Table 10-1:

Table 10-1 – ETYn types

	ETYn Type
	IEEE 802.3 Interface type

	ETY1
	10BASE-T

	ETY2.1
	100BASE-TX

	ETY2.2
	100BASE-FX

	ETY3.1
	1000BASE-T

	ETY3.2
	1000BASE-LX/SX

	ETY3.3
	1000BASE-CX

	ETY4
	10GBASE-S/L/E


Note that the 10G WAN PHY is for further study. 
10.2.1
ETYn Trail Termination Source function (ETYn_TT_So)

Symbol

[image: image187.emf]ETYn_TT_So

ETYn_CI

ETYn_TT_So_MI

ETYn_AI

ETYn_RI


Figure 10-1 – ETYn_TT_So symbol

Interfaces

Table 10-2 – ETYn_TT_So interfaces

	Inputs
	Outputs

	ETYn_AP:
ETYn_AI_Data
ETYn_AI_ClocK
ETYn_AI_SSF
ETYn_AI_SSFrdi
ETYn_AI_SSFfdi
ETYn_RP:
ETYn_RI_RSF
ETYn_TT_So_MP:
ETYn_TT_So_MI_FTSEnable
	ETYn_TCP:
ETYn_CI_Data
ETYn_CI_ClocK

ETYn_RP:
ETYn_RI_FTS
ETYn_TT_So_MP:
ETYn_TT_So_MI_PHYType
ETYn_TT_So_MI_PHYTypeList


Processes

This source function together with the corresponding sink function implements all processes in the physical layer in the IEEE 802.3 model.

“Fault Propagation” process:

When the AI_SSF and the FTSEnable (Forced Transmitter Shutdown) are true and RI_RSF (Remote Signal Fail) is false, this process forces the transmitter shutdown by either turning off the output transmitting device or inserting Error codes (e.g. /V/, 10B_ERR for 1 GbE).

As soon as the transmitter shutdown is forced, the RI_FTS is asserted. The RI_FTS is reset after [for further study] seconds the forcing of transmitter shutdown is removed.

NOTE – Further detail is intentionally left out of this Recommendation.

When the AI_SSFrdi is true and the PHY supports remote fault signalling, this process inserts the PHY-specific remote fault signal.

When the AI_SSFfdi is true and the PHY supports local fault signalling, this process inserts the PHY-specific local fault signal.

ETY2.2 and ETY4 support remote fault signalling. ETY4 supports local fault signalling.

Defects



None.
Consequent actions


None.
Defect correlations


None.
Performance monitoring
None.
10.2.2
ETYn Trail Termination Sink function (ETYn_TT_Sk)

Symbol
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Figure 10-2 – ETYn_TT_Sk symbol

Interfaces

Table 10-3 – ETYn_TT_Sk interfaces

	Inputs
	Outputs

	ETYn_TCP:
ETYn_CI_Data
ETYn_RP:
ETYn_RI_FTS
	ETYn_AP:
ETYn_AI_Data
ETYn_AI_ClocK
ETYn_AI_TSF
ETYn_AI_TSFrdi
ETYn_AI_TSFfdi
ETYn_RP:
ETYn_RI_RSF
ETYn_TT_Sk_MP:
ETYn_TT_Sk_MI_cLOS
ETYn_TT_Sk_MI_cRDI
ETYn_TT_Sk_MI_cFDI


Processes

This sink function together with the corresponding source function implements all processes in the physical layer in the IEEE 802.3 model.

NOTE 1 – Further detail is intentionally left out of this Recommendation.

“Fault Propagation” process:
When the PHY supports remote fault signalling, this process inserts the AI_TSFrdi in response to the PHY-specific remote fault signal.

When the PHY supports local fault signalling, this process inserts the AI_TSFfdi in response to the PHY-specific local fault signal.

ETY2.2 and ETY4 support remote fault signalling. ETY4 supports local fault signalling.

Defects

dLOS: The defect is detected as soon as the aMediaAvailable parameter (as defined in [IEEE 802.3]) gets a value different from “available” and the RI_FTS is false. The defect is cleared as soon as the aMediaAvailable parameter becomes “available”.

NOTE 2 – aRSF is generated and communicated to the ETY_TT_So (RI_RSF) to prevent a Forced Transmitter Shutdown in case of dLOS. This Recommendation does not specify the Remote Fault Indication signalling. 

dRDI: The defect is detected and cleared based on PHY-specific remote fault signalling (as defined in [IEEE 802.3]).

dFDI: The defect is detected and cleared based on PHY-specific local fault signalling (as defined in [IEEE 802.3]).

Consequent actions

aTSF ( dLOS

aRSF ( dLOS

aTSFrdi ( dRDI

aTSFfdi ( dFDI

Defect correlations

cLOS ( dLOS

cRDI ( dRDI

cFDI ( dFDI
Performance monitoring
None.

10.3
ETYn to ETH Adaptation functions (ETYn/ETH_A)

Figures 10-3 and 10-4 illustrate the Ethernet trail termination to ETH adaptation function (ETYn/ETH_A and ETYn/ETH-m_A). Information crossing the ETH flow point (ETH_FP) and ETH termination flow point (ETH_TFP) is referred to as ETH characteristic information (ETH_CI). Information crossing the ETYn access point (ETY_AP) is referred to as ETYn adapted information (ETYn_AI). Note that ETYn/ETH-m_A is a compound function of ETYn/ETH_A and ETHx/ETH-m_A (see clause 9.3.3).
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Figure 10-3 – ETYn Server to ETH Adaptation Function
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Figure 10-4 – ETYn Server to ETH-m Adaptation Function

The ETYn/ETH_A adaptation function shown in Figure 10-3 can be further decomposed into separate source and sink adaptation functions shown in Figure 10-5:

[image: image191.emf]ETYn/ETH_A_So -

ETYn_AI

From

ETH_TFP

ETYn/ETH_A_Sk_MI

ETYn/ETH_A_Sk

ETYn_AI

ETYn/ETH_A_So_MI ETYn/ETH_A_PI

ETH_CI ETH_CI

From

ETH_FP

To

ETH_TFP

To

ETH_FP


Figure 10-5 – ETYn/ETH_A Source and Sink Adaptation Functions
10.3.1
ETYn to ETH Adaptation Source function (ETYn/ETH_A_So)

Symbol

[image: image192.emf]ETYn/ETH_A_So

ETH_TI

ETYn/ETH_A_PI

ETH_CI_ESMC

ETYn/ETH_A_So_MI

ETH_CI_Clock ETH_FP ETH_TFP

ETH_CI

ETYn_AI


Figure 10-6 – ETYn/ETH_A_So symbol

Interfaces

Table 10-4 – ETYn/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_TFP
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi
ETH_A_CI_PauseTrigger
ETH_CI_ClocK
ETH_CI_ESMC

ETH_TP:
ETH_TI_ClocK

ETYn/ETH_A_So_MP:
ETYn/ETH_A_So_MI_Active
ETYn/ETH_A_So_MI_TxPauseEnable
	ETYn_AP:
ETYn_AI_Data
ETYn_AI_ClocK
ETYn_AI_SSF
ETYn_AI_SSFrdi
ETYn_AI_SSFfdi
ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETYn/ETH_A_So_MP:
ETYn/ETH_A_So_MI_pFramesTransmittedOK
ETYn/ETH_A_So_MI_pOctetsTransmittedOK


Processes

A process diagram of this function is shown in Figure 10-7.
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Figure 10-7 – ETYn/ETH_A_So process

Processes

The “Queuing,” “Replicate,” “802.3 protocols” “802.1AB/X protocols” and “MAC FCS Generate” processes are defined in clause 8 (“Generic processes”).

The “ETYn Server Specific” source process pads frames shorter than the minimum frame size (of 64 octets) to the minimum frame size according to clause 3.2.8 of [IEEE 802.3].

NOTE – All source processes related to the Ethernet physical layer are encapsulated in this Recommendation by the ETYn_TT_So function.

MAC Frame counting process location is For Further Study.
Defects



None.
Consequent actions


None.
Defect correlations


None.
Performance monitoring
For Further Study.
10.3.2
ETYn to ETH Adaptation Sink function (ETYn/ETH_A_Sk)

Symbol
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Figure 10-8 – ETYn/ETH_A_Sk symbol

Interfaces

Table 10-5 – ETYn/ETH_A_Sk interfaces

	Inputs
	Outputs

	ETYn_AP:
ETYn_AI_Data
ETYn_AI_ClocK
ETYn_AI_TSF
ETYn_AI_TSFrdi
ETYn_AI_TSFfdi
ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETYn/ETH_A_Sk_MP:
ETYn/ETH_A_Sk_MI_Active
ETYn/ETH_A_Sk_MI_FilterConfig
ETYn/ETH_A_Sk_MI_MAC_Length
	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi
ETH_CI_ClocK

ETH_CI_ESMC

ETYn/ETH_A_Sk_MP:
ETYn/ETH_A_Sk_MI_pErrors
ETYn/ETH_A_Sk_MI_pFramesReceivedOK
ETYn/ETH_A_Sk_MI_pOctetsReceivedOK


Processes

A process diagram of this function is shown in Figure 10-9.
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Figure 10-9 – ETYn/ETH_A_Sk process

The “Filter,” “Replicate,” “802.3 protocols”, “802.1AB/X protocols”, MAC Frame Counting, “MAC FCS Check” and “MAC Length Check” processes are defined in clause 8 (“Generic processes”).

The “ETYn Server Specific” sink process is a null process.

NOTE – All sink processes related to the Ethernet physical layer are encapsulated in this Recommendation by the ETYn_TT_Sk function.

MAC Frame Counting: For Further Study.
Defects



None.
Consequent actions


aSSF ( AI_TSF

Defect correlations


None.
Performance monitoring
For Further Study.
10.4
1000BASE-(SX/LX/CX) ETY to Coding sub-layer Adaptation functions (ETY3/ETC3_A)

This adaptation function adapts 1000BASE-SX, -LX, or -CX physical layer signals from / toGMII data octets. The combination of ETY3_TT and ETY3/ETC3_A represents the functions up to and including the PCS sublayer in the 802.3 model. The GMII data octets may be extracted from or mapped into GFP-T frames, per clause 11.2 SDH to ETC Adaptation functions (Sn-X/ETC3_A). It may also be extracted from and mapped into ODU0, per 14.3.7.1/G.798 (ODU0P/CBRx_A). In the latter case, the ETC3_CP from the ETY3/ETC3_A function is bound to the CBRx_CP of the ODU0P/CBRx_A function.
10.4.1
ETY3 to ETC3 Adaptation Source function (ETY3/ETC3_A_So)

Symbol
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Figure 10-x – ETY3/ETC3_A_So symbol

Interfaces

Table 10-x – ETY3/ETC3_A_So interfaces

	Inputs
	Outputs

	ETC3_TCP:
ETC3_CI_Data_Control
ETC3_CI_ClocK
ETC3_CI_Control_Ind
ETC3_CI_SSF
ETY3/ETC3_A_So_MP:

ETY3/ETC3_A_So_MI_Active
	ETY3_AP:
ETY3_AI_Data
ETY3_AI_ClocK
ETY3_AI_SSF



Processes

The ETY3/ETC3_A_So function adapts 8B/10B codewords to the physical layer signal.
Defects



None.
Consequent actions


None.
Defect correlations


None.
Performance monitoring
For Further Study.
10.4.2
ETY3 to ETC3 Adaptation Sink function (ETY3/ETC3_A_Sk)

Symbol
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Figure 10-x – ETY3/ETC3_A_Sk symbol

Interfaces

Table 10-x – ETY3/ETC3_A_Sk interfaces

	Inputs
	Outputs

	ETY3_AP:
ETY3_AI_Data
ETY3_AI_ClocK
ETY3_AI_TSF
ETY3/ETC3_A_Sk_MP:

ETY3/ETC3_A_So_MI_Active
	ETC3_TCP:
ETC3_CI_Data_Control
ETC3_CI_ClocK
ETC3_CI_Control_Ind
ETC3_CI_SSF


Processes

This function adapts the physical layer signal to 8B/10B codewords.
Defects



None.
Consequent actions


aSSF ( AI_TSF

Defect correlations


None.
Performance monitoring
For Further Study.
10.5
ETCn Trail Termination functions (ETCn_TT)

For further study.
10.6
ETCn to ETH Adaptation functions (ETCn/ETH_A)
For further study.
10.7
ETY4 to Ethernet PP-OS adaptation function (ETY4/ETHPP-OS_A)
The ETY4 to Ethernet PP-OS adaptation function supports transporting preamble and ordered set information of the 10GBASE-R signals over enhanced OPU2 payload area. 

It adapts 10GBASE-R signals from/to data frames which include the preamble and start-of-frame delimiter and ordered sets from the inter-frame gap into ETHPP-OS_CI for subsequent mapping into an OPU2 with extended payload area as described in clause 11.5.3.

Note that there is no Ethernet MAC termination function. Consequently, since no error checking is performed on the Ethernet MAC frames, errored MAC frames are forwarded in both ingress and egress directions.
10.7.1
ETY4 to Ethernet PP-OS adaptation source function (ETY4/ETHPP-OS_A_So) 

Symbol
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Figure 10-x – ETY4/ETHPP-OS_A_So symbol

Interfaces

Table 10-x – ETY4/ETHPP-OS_A_So interfaces

	Inputs
	Outputs

	ETHPP-OS_FP:
ETHPP-OS_CI_D
ETHPP-OS_CI_SSF
ETY4/ETHPP-OS_A_So_MP:
ETY4/ETHPP-OS_A_So_MI_Active
	ETY4_AP:
ETY4_AI_Data
ETY4_AI_ClocK
ETY4_AI_SSF


NOTE – ETHPP-OS_CI_D is composed of Preamble, Payload and Order Set information in [ITU-T G.7041].

Processes

A process diagram of this function is shown in Figure 10-x+1.

 [image: image199.emf]ETY4 Server-specific 

processes

ETY4_AI

ETHPP-OS_CI_D


Figure 10-x+1 – ETY4/ETHPP-OS_A_So process diagram

Activation: The ETY4/ETHPP-OS_A_So function shall access the ETY4 access point and perform the processes specified below when it is activated (MI_Active is true). Otherwise, it shall not access the ETY4 access point.

ETY4 Server-specific processes: None.

NOTE – All source processes related to the Ethernet physical layer are encapsulated in this Recommendation by the ETYn_TT_So function.

Defects





None.

Consequent actions              None.
Defect correlations


None.

Performance monitoring
For further study.

10.7.2 ETY4 to Ethernet PP-OS adaptation sink function (ETY4/ETHPP-OS_A_Sk) 

Symbol
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Figure 10-x+2 – ETY4/ETHPP-OS_A_Sk symbol

Interfaces

Table 10-x+1 – ETY4/ETHPP-OS_A_Sk interfaces

	Inputs
	Outputs

	ETY4_AP:
ETY4_AI_Data
ETY4_AI_ClocK
ETY4_AI_TSF
ETY4/ETHPP-OS_A_Sk_MP:
ETY4/ETHPP-OS_A_Sk_MI_Active
	ETHPP-OS_FP:
ETHPP-OS_CI_D
ETHPP-OS_CI_SSF



Processes

A process diagram of this function is shown in Figure 10-x.
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Figure 10-x+3 – ETY4/ETHPP-OS_A_Sk process diagram

Activation: The ETY4/ETHPP-OS_A_Sk function shall access the ETY4 access point and perform the processes specified below when it is activated (MI_Active is true). Otherwise, it shall activate the SSF signal and not report its status via the management point.

ETY4 Server-specific processes: None

NOTE – All sink processes related to the Ethernet physical layer are encapsulated in this Recommendation by the ETYn_TT_Sk function.

Defects





None.

Consequent actions

aSSF ( AI_TSF

Note that the replacement signal is generated in the subsequent adaptation source function ODU2P/ETHPP-OS_A_So.

Defect correlations


None.

Performance monitoring
For further study.
11
Non-Ethernet server to ETH adaptation functions

11.1
SDH to ETH adaptation functions (S/ETH_A)

11.1.1
VC-n to ETH adaptation functions (Sn/ETH_A; n = 3, 3-X, 4, 4-X)

This covers non-concatenated, contiguously concatenated, and non-LCAS VCAT. See clause 11.1.2 for LCAS-capable VC-n-Xv/ETH adaptation functions.

11.1.1.1
VC-n to ETH adaptation source function (Sn/ETH_A_So)

This function maps ETH_CI information onto an Sn_AI signal (n = 3, 3-X, 4, 4-X). 

Data at the Sn_AP is a VC-n (n = 3, 3-X, 4, 4-X), having a payload as described in [ITU-T G.707], but with indeterminate POH bytes: J1, B3, G1.
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Figure 11-1 – Sn/ETH_A_So symbol

Interfaces

Table 11-1 – Sn/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sn_TP:

Sn_TI_Clock
Sn_TI_FrameStart


Sn/ETH_A_So_MP:

Sn/ETH_A_So_MI_Active
Sn/ETH_A_So_MI_CSFEnable
Sn/ETH_A_So_MI_CSFrdifdiEnable
	Sn_AP:

Sn_AI_Data
Sn_AI_ClocK
Sn_AI_FrameStart

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE




Processes

A process diagram of this function is shown in Figure 11-2.
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Figure 11-2 – Sn/ETH_A_So process

"Queuing" process:

See clause 8.2.

"Replicate" process:

See clause 8.4.

802.3 MAC FCS generation:

See clause 8.8.1.

Ethernet specific GFP-F source process:

See clause 8.8.6.1.
Common GFP source process:

See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

VC-n specific GFP source process:
See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the VC-n payload area according to clause 10.6 of [ITU-T G.707].

VC-n specific source process:

C2: Signal label information is derived directly from the Adaptation function type. The value for "GFP mapping" in Table 9-11 of [ITU-T G.707] is placed in the C2 byte position.

H4: For Sn/ETH_A_So with n = 3, 4, the H4 byte is sourced as all-zeros.

NOTE 1 – For Sn/ETH_A_So with n = 3-X, 4-X, the H4 byte is undefined at the Sn-X_AP output of this function (as per clause 12 of [ITU-T G.783]).

NOTE 2 – For Sn/ETH_A_So with n = 3, 4, 3-X, 4-X, the K3, F2, F3 bytes are undefined at the Sn-X_AP output of this function (as per clause 12 of [ITU-T G.783]).

Counter processes:

For Further Study.
Defects





None.

Consequent actions

aCSF-RDI ( CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI ( CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS ( CI_SSF and CSFEnable

Defect correlations


None.

Performance monitoring
For further study.
11.1.1.2
VC-n to ETH adaptation sink function (Sn/ETH_A_Sk)

This function extracts ETH_CI information from the Sn_AI signal (n = 3, 3-X, 4, 4-X), delivering ETH_CI to ETH_TFP and ETH_FP.

Data at the Sn_AP is as described in [ITU-T G.707].
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Figure 11-3 – Sn/ETH_A_Sk symbol

Interfaces

Table 11-2 – Sn/ETH_A_Sk interfaces

	Inputs
	Outputs

	Sn_AP:

Sn_AI_Data
Sn_AI_ClocK
Sn_AI_FrameStart
Sn_AI_TSF

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
Sn/ETH_A_Sk_MP:

Sn/ETH_A_Sk_MI_Active
Sn/ETH_A_Sk_MI_FilterConfig
Sn/ETH_A_Sk_MI_CSF_Reported
Sn/ETH_A_Sk_MI_MAC_Length
Sn/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sn/ETH_A_Sk_MP:

Sn/ETH_A_Sk_MI_AcSL
Sn/ETH_A_Sk_MI_AcEXI
Sn/ETH_A_Sk_MI_AcUPI
Sn/ETH_A_Sk_MI_cPLM
Sn/ETH_A_Sk_MI_cLFD
Sn/ETH_A_Sk_MI_cUPM
Sn/ETH_A_Sk_MI_cEXM
Sn/ETH_A_Sk_MI_cCSF
Sn/ETH_A_Sk_MI_pFCSError


Processes

A process diagram of this function is shown in Figure 11-4.
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Figure 11-4 – Sn/ETH_A_Sk process

"Filter" process:

See clause 8.3.

"Replicate" process:

See clause 8.4.

"802.3 MAC FCS Check" process:

See clause 8.8.2.

Ethernet specific GFP-F sink process:

See clause 8.8.6.2.

Common GFP sink process:

See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported (MI_CMuxActive=false).

VC-n specific GFP sink process:

See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the VC-n payload area according to clause 10.6 of [ITU-T G.707].

VC-n specific sink process:

C2: The signal label is recovered from the C2 byte as per clause 6.2.4.2 of [ITU-T G.806]. The signal label for  "GFP mapping" in Table 9-11 of [ITU-T G.707] shall be expected. The accepted value of the signal label is also available at the Sn/ETH_A_Sk_MP.
Defects

dPLM – See clause 6.2.4.2 of [ITU-T G.806].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF-LOS – See clause 8.8.6.2.

dCSF-RDI – See clause 8.8.6.2.

dCSF-FDI – See clause 8.8.6.2.

Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM
(
dPLM and (not AI_TSF);

cLFD
(
dLFD and (not dPLM) and (not AI_TSF);

cUPM
(
dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);

cEXM
(
dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cCSF 
(
(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported

Performance monitoring

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pFCSErrors: count of FrameCheckSequenceErrors per second.

NOTE – This primitive is calculated by the MAC FCS Check process.
11.1.2
LCAS-capable VC-n-Xv to ETH adaptation functions (Sn-X-L/ETH_A; n = 3, 4)

11.1.2.1
LCAS-capable VC-n-Xv to ETH adaptation source function (Sn-X-L/ETH_A_So)
This function maps ETH_CI information onto an Sn-X-L_AI signal (n = 3 or 4). 

Data at the Sn-X-L_AP is a VC-n-X (n = 3 or 4), having a payload as described in [ITU-T G.707], but with indeterminate POH bytes: J1, B3, G1.

Symbol
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Figure 11-5 – Sn-X-L/ETH_A_So symbol

Interfaces

Table 11-3 – Sn-X-L/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sn-X-L_AP:

Sn-X-L_AI_XAT
Sn-X-L_TP:

Sn-X-L_TI_ClocK
Sn-X-L_TI_FrameStart

Sn-X-L/ETH_A_So_MP:

Sn-X-L/ETH_A_So_MI_Active
Sn-X-L/ETH_A_So_MI_CSFEnable
Sn-X-L/ETH_A_So_MI_CSFrdifdiEnable
	Sn-X-L_AP:

Sn-X-L_AI_Data
Sn-X-L_AI_ClocK
Sn-X-L_AI_FrameStart

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE


Processes

A process diagram of this function is shown in Figure 11-6.
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Figure 11-6 – Sn-X-L/ETH_A_So process

See clause 11.1.1.1 for a description of Sn-X-L/ETH_A processes.
Defects





None.
Consequent actions

aCSF-RDI ( CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI ( CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS ( CI_SSF and CSFEnable

Defect correlations


None.

Performance monitoring
For further study.
11.1.2.2
LCAS-capable VC-n-Xv to ETH adaptation sink function (Sn-X-L/ETH_A_Sk)
This function extracts ETH_CI information from a VC-n-Xv server signal (n = 3 or 4), delivering ETH_CI to ETH_TFP and ETH_FP.

Data at the Sn-X-L_AP is a VC-n-Xv (n = 3 or 4), having a payload as described in [ITU-T G.707].

Symbol
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Figure 11-7 – Sn-X-L/ETH_A_Sk symbol

Interfaces

Table 11-4 – Sn-X-L/ETH_A_Sk interfaces

	Inputs
	Outputs

	Sn-X-L_AP:

Sn-X-L_AI_Data
Sn-X-L_AI_ClocK
Sn-X-L_AI_FrameStart
Sn-X-L_AI_TSF
Sn-X-L_AI_XAR
ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
Sn-X-L/ETH_A_Sk_MP:

Sn-X-L/ETH_A_Sk_MI_Active
Sn-X-L/ETH_A_Sk_MI_FilterConfig
Sn-X-L/ETH_A_Sk_MI_CSF_Reported
Sn-X-L/ETH_A_Sk_MI_MAC_Length
Sn-X-L/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sn-X-L/ETH_A_Sk_MP:

Sn-X-L/ETH_A_Sk_MI_AcSL
Sn-X-L/ETH_A_Sk_MI_AcEXI
Sn-X-L/ETH_A_Sk_MI_AcUPI
Sn-X-L/ETH_A_Sk_MI_cPLM
Sn-X-L/ETH_A_Sk_MI_cLFD
Sn-X-L/ETH_A_Sk_MI_cUPM
Sn-X-L/ETH_A_Sk_MI_cEXM
Sn-X-L/ETH_A_Sk_MI_cCSF
Sn-X-L/ETH_A_Sk_MI_pFCSError


Processes

See process diagram and process description in clause 11.1.1.2. The additional Sn-X-L_AI_XAR interface is not connected to any of the internal processes.
Defects

dPLM – See clause 6.2.4.2 of [ITU-T G.806].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF-LOS – See clause 8.8.6.2.

dCSF-RDI – See clause 8.8.6.2.

dCSF-FDI – See clause 8.8.6.2.
Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

NOTE 1 – XAR = 0 results in AI_TSF being asserted, so there is no need to include it as additional contributor to aSSF.

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM
(
dPLM and (not AI_TSF);

cLFD
(
dLFD and (not dPLM) and (not AI_TSF);

cUPM
(
dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);

cEXM
(
dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cCSF 
(
(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported

Performance monitoring

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pFCSError: count of FrameCheckSequenceErrors per second.

NOTE 2 – This primitive is calculated by the MAC FCS Check process.
11.1.3
VC-m to ETH adaptation functions (Sm/ETH_A; m = 11, 11-Xv, 12, 12-Xv, 2)

11.1.3.1
VC-m to ETH adaptation source function (Sm/ETH_A_So)

This function maps ETH_CI information onto a VC-m server signal (m = 11, 11-X, 12, 12-X, 2) and sources the Sm_AP signal.

Data at the Sm_AP is a VC-m (m = 11, 11-X, 12, 12-X, 2), having a payload as described in [ITU-T G.707], but with indeterminate POH bytes: J2, V5[1-4], V5[8].

Symbol
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Figure 11-8 – Sm/ETH_A_So symbol

Interfaces

Table 11-5 – Sm/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sm_AP:

Sm_AI_XAT
Sm_TP:

Sm_TI_ClocK
Sm_TI_FrameStart

Sm/ETH_A_So_MP:

Sm/ETH_A_So_MI_Active
Sm/ETH_A_So_MI_CSFEnable
Sm/ETH_A_So_MI_CSFrdifdiEnable
	Sm_AP:

Sm_AI_Data
Sm_AI_ClocK
Sm_AI_FrameStart

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE


Processes

A process diagram of this function is shown in Figure 11-9.
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Figure 11-9 – Sm/ETH_A_So process

"Queuing" process:

See clause 8.2.

"Replicate" process:

See clause 8.4.

802.3 MAC FCS generation:

See clause 8.8.1.

Ethernet specific GFP-F source process:

See clause 8.5.4.1.1 of [ITU-T G.806]. GFP pFCS generation is disabled (FCSenable=false). The UPI value for Frame-Mapped Ethernet shall be inserted (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are inserted into the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].

Response to ETH_CI_SSF asserted is for further study.

Common GFP source process:

See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

VC-m specific GFP source process:

See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the VC-m payload area according to clause 10.6 of [ITU-T G.707].

VC-m specific source process:

V5[5-7] and K4[1]: Signal label information is derived directly from the adaptation function type. The value for "GFP mapping" in Table 9-13 of [ITU-T G.707] is placed in the K4[1] Extended Signal Label field as described in clause 8.2.3.2 of [ITU-T G.783].

K4[2]: For Sm/ETH_A_So with m = 11, 12, 2, the K4[2] bit is sourced as all-zeros.

NOTE 1 – For Sm/ETH_A_So with m = 11-X, 12-X, the K4[2] bit is undefined at the Sm-X_AP output of this function (as per clause 13 of [ITU-T G.783]).

NOTE 2 – For Sm/ETH_A_So with m = 11, 11-X, 12, 12-X, 2, the K4[3-8], V5[1-4] and V5[8] bits are undefined at the Sm-X_AP output of this function (as per clause 13 of [ITU-T G.783]).
Defects





None.

Consequent actions

aCSF-RDI ( CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI ( CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS ( CI_SSF and CSFEnable

Defect correlations


None.

Performance monitoring
For further study.
11.1.3.2
VC-m to ETH adaptation sink function (Sm/ETH_A_Sk)

This function extracts ETH_CI information from the Sm_AI signal (m = 11, 11-X, 12, 12-X, 2), delivering ETH_CI to ETH_TFP and ETH_FP.

Data at the Sm_AP is as described in [ITU-T G.707].

Symbol
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Figure 11-10 – Sm/ETH_A_Sk symbol

Interfaces

Table 11-6 – Sm/ETH_A_Sk interfaces

	Inputs
	Outputs

	Sm_AP:

Sm_AI_Data
Sm_AI_ClocK
Sm_AI_FrameStart
Sm_AI_TSF

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
Sm/ETH_A_Sk_MP:

Sm/ETH_A_Sk_MI_Active
Sm/ETH_A_Sk_MI_FilterConfig
Sm/ETH_A_Sk_MI_CSF_Reported
Sm/ETH_A_Sk_MI_MAC_Length
Sm/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sm/ETH_A_Sk_MP:

Sm/ETH_A_Sk_MI_AcSL
Sm/ETH_A_Sk_MI_AcEXI
Sm/ETH_A_Sk_MI_AcUPI
Sm/ETH_A_Sk_MI_cPLM
Sm/ETH_A_Sk_MI_cLFD
Sm/ETH_A_Sk_MI_cUPM
Sm/ETH_A_Sk_MI_cEXM
Sm/ETH_A_Sk_MI_cCSF
Sm/ETH_A_Sk_MI_pFCSError


Processes

A process diagram of this function is shown in Figure 11-11.
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Figure 11-11 – Sm/ETH_A_Sk process

"Filter" process:

See clause 8.3.

"Replicate" process:

See clause 8.4.

"802.3 MAC FCS Check" process:

See clause 8.8.2.

Ethernet specific GFP-F sink process:

See clause 8.5.4.1.2 of [ITU-T G.806]. GFP pFCS checking, GFP p_FCSError, p_FDis are not supported (FCSdiscard=false). The UPI value for Frame-Mapped Ethernet shall be expected (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are extracted from the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].

Common GFP sink process:

See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

VC-m specific GFP sink process:

See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the VC-m payload area according to clause 10.6 of [ITU-T G.707].

VC-m specific sink process:

V5[5-7] and K4[1]: The signal label is recovered from the extended signal label position as described in clause 8.2.3.2 of [ITU-T G.783] and clause 6.2.4.2 of [ITU-T G.806]. The signal label for "GFP mapping" in Table 9-13 of [ITU-T G.707] shall be expected. The accepted value of the signal label is also available at the Sm/ETH_A_Sk_MP.
Defects

dPLM – See clause 6.2.4.2 of [ITU-T G.806].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF-LOS – See clause 8.8.6.2.

dCSF-RDI – See clause 8.8.6.2.

dCSF-FDI – See clause 8.8.6.2.
Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM
(
dPLM and (not AI_TSF);

cLFD
(
dLFD and (not dPLM) and (not AI_TSF);

cUPM
(
dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);

cEXM
(
dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cCSF 
(
(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported

Performance monitoring

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pFCSError: count of FrameCheckSequenceErrors per second.

NOTE – This primitive is calculated by the MAC FCS Check process.
11.1.4
LCAS-capable VC-m-Xv to ETH adaptation functions (Sm-X-L/ETH_A; m = 11, 12)

11.1.4.1
LCAS-capable VC-m-Xv to ETH adaptation source function (Sm-X-L/ETH_A_So)

This function maps ETH_CI information onto an Sm-X-L_AI signal (m = 11 or 12). 

Data at the Sm-X-L_AP is a VC-m-X (m = 11 or 12), having a payload as described in [ITU-T G.707], but with indeterminate POH bytes: J2, V5[1-4], V5[8].
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Figure 11-12 – Sm-X-L/ETH_A_So symbol

Interfaces

Table 11-7 – Sm-X-L/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sm-X-L_AP:

Sm-X-L_AI_XAT
Sm _TP:

Sm_TI_ClocK
Sm_TI_FrameStart

Sm-X-L/ETH_A_So_MP:

Sm-X-L/ETH_A_So_MI_Active
Sm-X-L/ETH_A_So_MI_CSFEnable
Sm-X-L/ETH_A_So_MI_CSFrdifdiEnable
	Sm-X-L_AP:

Sm-X-L_AI_Data
Sm-X-L_AI_ClocK
Sm-X-L_AI_FrameStart

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE




Processes

A process diagram of this function is shown in Figure 11-13.
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Figure 11-13 – Sm-X-L/ETH_A_So process

See clause 11.1.3.1 for a description of Sm-X-L/ETH_A processes.
Defects





None.

Consequent actions

aCSF-RDI ( CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI ( CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS ( CI_SSF and CSFEnable

Defect correlations


None.

Performance monitoring
For further study.
11.1.4.2
LCAS-capable VC-m-Xv to ETH adaptation sink function (Sm-X-L/ETH_A_Sk)

This function extracts ETH_CI information from the Sm-X-L_AI signal (m = 11 or 12), delivering ETH_CI to ETH_TFP and ETH_FP.

Data at the Sm_AP is as described in [ITU-T G.707].

Symbol
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Figure 11-14 – Sm-X-L/ETH_A_Sk symbol

Interfaces

Table 11-8 – Sm-X-L/ETH_A_Sk interfaces

	Inputs
	Outputs

	Sm-X-L_AP:

Sm-X-L_AI_Data
Sm-X-L_AI_ClocK
Sm-X-L_AI_FrameStart
Sm-X-L_AI_TSF
Sm-X-L_AI_XAR
ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
Sm-X-L/ETH_A_Sk_MP:

Sm-X-L/ETH_A_Sk_MI_Active
Sm-X-L/ETH_A_Sk_MI_FilterConfig
Sm-X-L/ETH_A_Sk_MI_CSF_Reported
Sm-X-L/ETH_A_Sk_MI_MAC_Length
Sm-X-L/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sm-X-L/ETH_A_Sk_MP:

Sm-X-L/ETH_A_Sk_MI_AcSL
Sm-X-L/ETH_A_Sk_MI_AcEXI
Sm-X-L/ETH_A_Sk_MI_AcUPI
Sm-X-L/ETH_A_Sk_MI_cPLM
Sm-X-L/ETH_A_Sk_MI_cLFD
Sm-X-L/ETH_A_Sk_MI_cUPM
Sm-X-L/ETH_A_Sk_MI_cEXM
Sm-X-L/ETH_A_Sk_MI_cCSF
Sm-X-L/ETH_A_Sk_MI_pFCSError


Processes

See process diagram and process description in clause 11.1.1.2. The additional Sm-X-L_AI_XAR interface is not connected to any of the internal processes.
Defects

dPLM – See clause 6.2.4.2 of [ITU-T G.806].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF-LOS – See clause 8.8.6.2.

dCSF-RDI – See clause 8.8.6.2.

dCSF-FDI – See clause 8.8.6.2.
Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

NOTE 1 – XAR = 0 results in AI_TSF being asserted, so there is no need to include it as additional contributor to aSSF.

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM
(
dPLM and (not AI_TSF);

cLFD
(
dLFD and (not dPLM) and (not AI_TSF);

cUPM
(
dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);

cEXM
(
dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cCSF 
(
(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported

Performance monitoring

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pFCSError: count of FrameCheckSequenceErrors per second.

NOTE 2 – This primitive is calculated by the MAC FCS process.
11.2
SDH to ETC adaptation functions (Sn-X/ETC3_A)

11.2.1
VC-n-X to ETC3 Adaptation Source function (Sn-X/ETC3_A_So)

This function maps ETC_CI information from an ETC3 onto an Sn-X_AI signal (n=3, 4). This mapping is currently only defined for X=7 for VC-4 and X=22 for VC-3. 

Data at the Sn-X_AP is a VC-n-Xv, having a payload as described in [ITU-T G.707], but with indeterminate POH bytes: J1, B3, G1.
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Figure 11-15 – Sn-X/ETC3_A_So symbol

Interfaces

Table 11-9 – Sn-X/ETC3_A_So interfaces

	Inputs
	Outputs

	ETC3_TCP:
ETC3_CI_Data_Control
ETC3_CI_ClocK
ETC3_CI_Control_Ind
ETC3_CI_SSF


Sn-X_TP:
Sn-X _TI_ClocK
Sn-X _TI_FrameStart


Sn-X/ETC3_A_So_MP:
Sn-X/ETC3_A_So_MI_Active
Sn-X/ETC3_A_So_MI_CSFEnable
	Sn-X_AP:
Sn-X_AI_Data
Sn-X_AI_ClocK
Sn-X_AI_FrameStart




Processes

A process diagram of this function is shown in Figure 11-16.
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Figure 11-16 – Sn-X/ETC3_A_So process

Ethernet specific GFP-T source process:

See clause 8.5.4.2.1 of [ITU-T G.806]. GFP pFCS generation is disabled (FCSenable=false). The UPI value for Transparent Gb Ethernet shall be inserted (Table 6-3 of [ITU-T G.7041]). The Ethernet codeword information is inserted into the client payload information field of the GFP-T frames according to clause 8 of [ITU-T G.7041]. 65B rate adaptation is enabled (RAdisable=false).
NOTE - Equipment designed prior to this Amendment may not support configuration of RAdisable; in such equipment the use of 65B rate adaptation is implicitly enabled.
Response to ETC3_CI_SSF is according to the principles in clauses 8.3 and 8.3.4 of [ITU-T G.7041] and Appendix VIII of [ITU-T G.806]. Details are ffs. 

Common GFP source process:

See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

VC-n-X specific GFP source process:

See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the VC-n-X (n=3,4) payload area according to clause 10.6 of [ITU-T G.707].

VC-n-X specific source process:

C2: Signal label information is derived directly from the Adaptation function type. The value for “GFP mapping” in Table 9-11 of [ITU-T G.707] is placed in the C2 byte position.

NOTE – For Sn-X/ETC3_A_So, the H4, K3, F2, and F3 bytes are undefined at the Sn-X_AP output of this function (as per clause 12 of [ITU-T G.783]).
Defects



None.

Consequent actions

aCSF-RDI ( CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI ( CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS ( CI_SSF and CSFEnable

Defect correlations


None.

Performance monitoring
For further study.

11.2.2
VC-n-X to ETC3 Adaptation Sink function (Sn-X/ETC3_A_Sk)

This function extracts ETC3_CI information from the Sn-X_AI signal (n=3, 4), delivering ETC3_CI to the ETC3_TCP.

Data at the Sn-X_AP is as described in [ITU-T G.707]. This mapping is currently only defined for X=7 for VC-4 and X=22 for VC-3.
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Figure 11-17 – Sn-X/ETC3_A_Sk symbol

Interfaces

Table 11-10 – Sn-X/ETC3_A_Sk interfaces

	Inputs
	Outputs

	Sn-X_AP:
Sn-X_AI_Data
Sn-X_AI_ClocK
Sn-X_AI_FrameStart
Sn-X_AI_TSF


Sn-X/ETC3_A_Sk_MP:
Sn-X/ETC3_A_Sk_MI_Active
Sn-X/ETC3_A_Sk_MI_CSF_Reported

	ETC3_TCP:
ETC3_CI_Data_Control
ETC3_CI_ClocK
ETC3_CI_Control_Ind
ETC3_CI_SSF
Sn-X / ETC3_A_Sk_MP:
Sn-X / ETC3_A_Sk_MI_AcSL
Sn-X / ETC3_A_Sk_MI_AcEXI
Sn-X / ETC3_A_Sk_MI_AcPFI
Sn-X / ETC3_A_Sk_MI_AcUPI
Sn-X / ETC3_A_Sk_MI_cPLM
Sn-X / ETC3_A_Sk_MI_cLFD
Sn-X / ETC3_A_Sk_MI_cUPM
Sn-X / ETC3_A_Sk_MI_cEXM
Sn-X / ETC3_A_Sk_MI_cCSF
Sn-X / ETC3_A_Sk_MI_pCRC16Errors


Processes

A process diagram of this function is shown in Figure 11-18.
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Figure 11-18 – Sn-X/ETC3_A_Sk process

Ethernet specific GFP-T sink process:

See clause 8.5.4.2.2 of [ITU-T G.806]. GFP pFCS checking and GFP p_FCSError, are not supported (FCSdiscard=false). The UPI value for Transparent Gb Ethernet shall be expected (Table 6-3 of [ITU-T G.7041]). Frames discarded due to incorrect PFI or UPI values shall be counted in _pFDis. Errors detected in a received superblock are reported as a _pCRC16Error. If ECenable=true, then single transmission channel errors in the superblock shall be corrected using the superblock CRC-16. The Ethernet codeword information is extracted from the client payload information field of the GFP-F frames according to clause 8 of [ITU-T G.7041].

Common GFP sink process:

See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported (MI_CMuxActive=false). Frames discarded due to EXI mismatch or errors detected by the tHEC shall be counted in _pFDis. 

VC-n-X specific GFP sink process:

See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the VC-n-X payload area according to clause 10.6 of [ITU-T G.707].

VC-n-X specific sink process:

C2: The signal label is recovered from the C2 byte as per clause 6.2.4.2 of [ITU-T G.806]. The signal label for “GFP mapping” in Table 9-11 of [ITU-T G.707] shall be expected. The accepted value of the signal label is also available at the Sn-X/ETC3_A_Sk_MP.
Defects

dPLM – See clause 6.2.4.2 of [ITU-T G.806].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF – See clause 6.2.6.4 of [ITU-T G.806].

Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM
(
dPLM and (not AI_TSF)

cLFD
(
dLFD and (not dPLM) and (not AI_TSF)

cUPM
(
dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);

cEXM
(
dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cCSF per clause 8.5.4.2.2 of [ITU-T G.806].

Performance monitoring

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pCRC16Errors: count of superblock CRC-16 errors per second

_pFDis = sum (n_FDis_tHEC + n_FDis_eHEC_EXI + n_FDis_PTI_UPI)
11.3
S4-64c to ETH-w adaptation functions

This covers 64B/66B-encoded mapping of Ethernet frames into VC-4-64c.

For further study.
11.4
PDH to ETH adaptation functions (P/ETH_A)

11.4.1
Pq to ETH Adaptation functions (Pq/ETH_A; q = 11s, 12s, 31s, 32e)

11.4.1.1
Pq to ETH Adaptation Source function (Pq/ETH_A_So)

This function maps ETH_CI information onto an Pq_AI signal (q = 11s, 12s, 31s, 32e). 

Data at the Pq_AP is a Pq (q = 11s, 12s, 31s, 32e), having a payload as described in [ITU-T G.7043] with a value of N=1. The VLI byte is reserved and not used for payload data.
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Figure 11-19 – Pq/ETH_A_So symbol

Interfaces

Table 11-11 – Pq/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Pq_TP:

Pq_TI_ClocK
Pq_TI_FrameStart

Pq/ETH_A_So_MP:

Pq/ETH_A_So_MI_Active
Pq/ETH_A_So_MI_CSFEnable
Pq/ETH_A_So_MI_CSFrdifdiEnable
	Pq_AP:

Pq_AI_Data
Pq_AI_ClocK
Pq_AI_FrameStart

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE




Processes

A process diagram of this function is shown in Figure 11-20.
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Figure 11-20 – Pq/ETH_A_So process

“Queuing” process:

See clause 8.2.

“Replicate” process:

See clause 8.4.

802.3 MAC FCS generation:

See clause 8.8.1.

Ethernet specific GFP-F source process:

See clause 8.5.4.1.1 of [ITU-T G.806]. GFP pFCS generation is disabled (FCSenable=false). The UPI value for Frame-Mapped Ethernet shall be inserted (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are inserted into the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].

Response to ETH_CI_SSF asserted is for further study.

Common GFP source process:

See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

Pq specific GFP source process:

See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the Pq payload area according to [ITU-T G.8040].

Pq specific source process:

NOTE – the VLI byte is fixed stuff equal to 0x00 at the Pq_AP output of this function.

P31s specific:

MA: Signal label information is derived directly from the Adaptation function type. The value for “GFP mapping” in clause 2.1 of [ITU-T G.832] is placed in the Payload Type field of the MA byte.
Defects



None.
Consequent actions

aCSF-RDI ( CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI ( CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS ( CI_SSF and CSFEnable
Defect correlations


None.

Performance monitoring
For further study.

11.4.1.2
Pq to ETH Adaptation Sink function (Pq/ETH_A_Sk)

This function extracts ETH_CI information from a Pq_AI signal (q = 11s, 12s, 31s, 32e), delivering ETH_CI to ETH_TFP and ETH_FP. 

Data at the Pq_AP is a Pq (q = 11s, 12s, 31s, 32e), having a payload as described in [ITU-T G.7043] with a value of N=1. The VLI byte is reserved and not used for payload data.
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Figure 11-21 – Pq/ETH_A_Sk symbol

Interfaces

Table 11-12 – Pq/ETH_A_Sk interfaces 

	Inputs
	Outputs

	Pq_AP:

Pq_AI_Data
Pq_AI_ClocK
Pq_AI_FrameStart
Pq_AI_TSF
 

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
Pq/ETH_A_Sk_MP:

Pq/ETH_A_Sk_MI_Active
Pq/ETH_A_Sk_MI_FilterConfig
Pq/ETH_A_Sk_MI_CSF_Reported
Pq/ETH_A_Sk_MI_MAC_Length
Pq/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:

ETH_CI_D

ETH_CI_P

ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Pq/ETH_A_Sk_MP:

Pq/ETH_A_Sk_MI_AcSL
Pq/ETH_A_Sk_MI_AcEXI
Pq/ETH_A_Sk_MI_AcUPI
Pq/ETH_A_Sk_MI_cPLM
Pq/ETH_A_Sk_MI_cLFD
Pq/ETH_A_Sk_MI_cUPM
Pq/ETH_A_Sk_MI_cEXM
Pq/ETH_A_Sk_MI_cCSF
Pq/ETH_A_Sk_MI_pFCSError


Processes

A process diagram of this function is shown in Figure 11-22.
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Figure 11-22 – Pq/ETH_A_Sk process

“Filter” process:

See clause 8.3.

“Replicate” process:

See clause 8.4.

“802.3 MAC FCS Check” process:

See clause 8.8.2.

Ethernet specific GFP-F sink process:

See clause 8.5.4.1.2 of [ITU-T G.806]. GFP pFCS checking, GFP p_FCSError, p_FDis are not supported (FCSdiscard=false). The UPI value for Frame-Mapped Ethernet shall be expected (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are extracted from the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].

Common GFP sink process:

See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported (MI_CMuxActive=false).

Pq specific GFP sink process:

See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the Pq payload area according to [ITU-T G.8040].

Pq specific sink process:

NOTE 1 – the VLI byte at the Pq_AP input of this function is ignored.

P31s specific:

MA: The signal label is recovered from the Payload Type field in the MA byte as per clause 6.2.4.2 of [ITU-T G.806]. The signal label for “GFP mapping” in clause 2.1 of [ITU-T G.832] shall be expected. The accepted value of the signal label is also available at the P31s/ETH_A_Sk_MP.

Defects

dPLM – See clause 6.2.4.2 of [ITU-T G.806].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF-LOS – See clause 8.8.6.2.

dCSF-RDI – See clause 8.8.6.2.

dCSF-FDI – See clause 8.8.6.2.
NOTE 2 – dPLM is only defined for q = 31s. dPLM is assumed to be false for q = 11s, 12s, 32e.

Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM
(
dPLM and (not AI_TSF)

cLFD
(
dLFD and (not dPLM) and (not AI_TSF)

cUPM
(
dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);

cEXM
(
dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cCSF 
(
(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported

Performance monitoring

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pFCSError: count of FrameCheckSequenceErrors per second.

NOTE 3 – This primitive is calculated by the MAC FCS Check process.
11.4.2
LCAS-capable Pq-Xv to ETH Adaptation functions (Pq-X-L/ETH_A; q = 11s, 12s, 31s, 32e)

11.4.2.1
LCAS-capable Pq-Xv to ETH Adaptation Source function (Pq-X-L/ETH_A_So)

This function maps ETH_CI information onto an Pq-X-L_AI signal (q = 11s, 12s, 31s, 32e). 

Data at the Pq-X-L_AP is a Pq-X-L (q = 11s, 12s, 31s, 32e), having a payload as described in [ITU-T G.7043].

Symbol
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Figure 11-23 – Pq-X-L/ETH_A_So symbol

Interfaces

Table 11-13 – Pq-X-L/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Pq-X-L_AP:

Pq-X-L_AI_XAT
Pq-X-L_TP:

Pq-X-L_TI_ClocK
Pq-X-L_TI_FrameStart

Pq-X-L/ETH_A_So_MP:

Pq-X-L/ETH_A_So_MI_Active
Pq-X-L/ETH_A_So_MI_CSFEnable
Pq-X-L/ETH_A_So_MI_CSFrdifdiEnable
	Pq-X-L_AP:

Pq-X-L_AI_Data
Pq-X-L_AI_ClocK
Pq-X-L_AI_FrameStart

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE




Processes

A process diagram of this function is shown in Figure 11-24.

[image: image225.emf] 

Pq - X - L specific  proc esses  

GFP_Frame  

GFP_FS  

CMuxConfig  

CmuxActive=false  

Pq - X - L specific   GFP - F processes  

Pq - X - L_TI_FS  

Pq - X - L_TI_CK  

  Common   GFP - F processes  

GFP_Frame  

GFP_FS  

ETH specific   GFP - F processes  

FCSenable=false  

ETH_Frame  

Queueing  

ETH_CI_D   (ETH_TFP)  

802.3 MAC FCS  

ETH_Frame+FCS  

  ETH_PI_D   (ETHTF_PP)  

Replicate  

ETH_CI_D   (ETH_FP)  

 ETH_PI_D   (ETHF_PP)  

MI_CSFenable 

Pq - X - L_AI_X AT  

ETH_CI_SSF   (ETH_FP)  

Pq - X - L_AI_D/CK/FS  

Pq - X - L_AI_D/CK/FS  

MI_CSFrdifdiEnable


Figure 11-24 – Pq-X-L/ETH_A_So process

“Queuing” process:

See clause 8.2.

“Replicate” process:

See clause 8.4.

802.3 MAC FCS generation:

See clause 8.8.1.

Ethernet specific GFP-F source process:

See clause 8.5.4.1.1 of [ITU-T G.806].  GFP pFCS generation is disabled (FCSenable=false).  The UPI value for Frame-Mapped Ethernet shall be inserted (Table 6-3 of [ITU-T G.7041]).  The Ethernet frames are inserted into the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].

Response to ETH_CI_SSF asserted is for further study.

Common GFP source process:

See clause 8.5.3.1 of [ITU-T G.806].  GFP channel multiplexing is not supported (CMuxActive=false).

Pq-X-L specific GFP source process:

See clause 8.5.2.1 of [ITU-T G.806].  The GFP frames are mapped into the Pq-X-L payload area according to [ITU-T G.8040].

Pq-X-L specific source process:

P31s-X-L specific:

MA:  Signal label information is derived directly from the Adaptation function type. The value for “GFP mapping” in clause 2.1 of [ITU-T G.832] is placed in the Payload Type field of the MA byte.

NOTE – the VLI byte is undefined at the Pq-X-L_AP output of this function.
Defects



None.

Consequent actions

aCSF-RDI ( CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI ( CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS ( CI_SSF and CSFEnable
Defect correlations


None.

Performance monitoring
For further study.

11.4.2.2
LCAS-capable Pq-Xv to ETH Adaptation Sink function (Pq-X-L/ETH_A_Sk)

This function extracts ETH_CI information from a Pq-X-L_AI signal (q = 11s, 12s, 31s, 32e), delivering ETH_CI to ETH_TFP and ETH_FP. 

Data at the Pq-X-L_AP is a Pq-X-L (q = 11s, 12s, 31s, 32e), having a payload as described in [ITU-T G.7043].
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Figure 11-25 – Pq-X-L/ETH_A_Sk symbol

Interfaces

Table 11-14 – Pq-X-L/ETH_A_Sk interfaces

	Inputs
	Outputs

	Pq-X-L_AP:

Pq-X-L_AI_Data
Pq-X-L_AI_ClocK
Pq-X-L_AI_FrameStart
Pq-X-L_AI_TSF
Pq-X-L_AI_XAR
ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

Pq-X-L/ETH_A_Sk_MP:

Pq-X-L/ETH_A_Sk_MI_Active
Pq-X-L/ETH_A_Sk_MI_FilterConfig
Pq-X-L/ETH_A_Sk_MI_CSF_Reported
Pq-X-L/ETH_A_Sk_MI_MAC_Length
Pq-X-L/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Pq-X-L/ETH_A_Sk_MP:

Pq-X-L/ETH_A_Sk_MI_AcSL
Pq-X-L/ETH_A_Sk_MI_AcEXI
Pq-X-L/ETH_A_Sk_MI_AcUPI
Pq-X-L/ETH_A_Sk_MI_cPLM
Pq-X-L/ETH_A_Sk_MI_cLFD
Pq-X-L/ETH_A_Sk_MI_cUPM
Pq-X-L/ETH_A_Sk_MI_cEXM
Pq-X-L/ETH_A_Sk_MI_cCSF
Pq-X-L/ETH_A_Sk_MI_pFCSError


Processes

A process diagram of this function is shown in Figure 11-26.
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Figure 11-26 – Pq-X-L/ETH_A_Sk process

“Filter” process:

See clause 8.3.

“Replicate” process:

See clause 8.4.

“802.3 MAC FCS Check” process:

See clause 8.8.2.

Ethernet specific GFP-F sink process:

See clause 8.5.4.1.2 of [ITU-T G.806].  GFP pFCS checking, GFP p_FCSError, p_FDis are not supported (FCSdiscard=false).  The UPI value for Frame-Mapped Ethernet shall be expected (Table 6-3 of [ITU-T G.7041]).  The Ethernet frames are extracted from the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].

Common GFP sink process:

See clause 8.5.3.2 of [ITU-T G.806].  GFP channel multiplexing is not supported (MI_CMuxActive=false).

Pq-X-L specific GFP sink process:

See clause 8.5.2.2 of [ITU-T G.806].  The GFP frames are demapped from the Pq-X-L payload area according to [ITU-T G.8040].

Pq-X-L specific sink process:

P31s-X-L specific:

MA:  The signal label is recovered from the Payload Type field in the MA byte as per clause 6.2.4.2 of [ITU-T G.806].  The signal label for “GFP mapping” in clause 2.1 of [ITU-T G.832] shall be expected.  The accepted value of the signal label is also available at the P31s-X-L/ETH_A_Sk_MP.

NOTE 1 – The Pq-X-L_AI_XAR interface is not connected to any of the internal processes.
Defects

dPLM – See clause 6.2.4.2 of [ITU-T G.806].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF-LOS – See clause 8.8.6.2.

dCSF-RDI – See clause 8.8.6.2.

dCSF-FDI – See clause 8.8.6.2.
NOTE 2 – dPLM is only defined for q = 31s. dPLM is assumed to be false for q = 11s, 12s, 32e.

Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

NOTE 3 – XAR=0 results in AI_TSF being asserted, so there is no need to include it as additional contributor to aSSF.

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]).  This fault cause shall be reported to the EMF.

cPLM
(
dPLM and (not AI_TSF)

cLFD
(
dLFD and (not dPLM) and (not AI_TSF)

cUPM
(
dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);

cEXM
(
dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cCSF 
(
(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported

Performance monitoring

The function shall perform the following performance monitoring primitives processing.  The performance monitoring primitives shall be reported to the EMF.

pFCSError:  count of FrameCheckSequenceErrors per second.

NOTE 4 – This primitive is calculated by the MAC FCS Check process.

11.5 OTH to ETH adaptation functions (O/ETH_A)

11.5.1
ODUk to ETH adaptation functions (ODUkP/ETH_A)

11.5.1.1
ODUk to ETH adaptation source function (ODUkP/ETH_A_So)

The ODUkP/ETH_A_So function creates the ODUk signal from a free running clock. It maps the ETH_CI information into the payload of the OPUk, adds OPUk Overhead (RES, PT) and default ODUk Overhead.

Symbol
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Figure 11-27 – ODUkP/ETH_A_So symbol

Interfaces

Table 11-15 – ODUkP/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi


ODUkP/ETH_A_So_MP:

ODUkP/ETH_A_So_MI_Active
ODUkP/ETH_A_So_MI_CSFEnable
ODUkP/ETH_A_So_MI_CSFrdifdiEnable
	ODUkP_AP:

ODUkP_AI_Data
ODUkP_AI_ClocK
ODUkP_AI_FrameStart
ODUkP_AI_MultiframeStart

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE



Processes

A process diagram of this function is shown in Figure 11-28.
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Figure 11-28 – ODUkP/ETH_A_So process

"Queuing" process:

See clause 8.2.

"Replicate" process:

See clause 8.4.

802.3 MAC FCS generation:

See clause 8.8.1.

Ethernet specific GFP-F source process:

See clause 8.5.4.1.1 of [ITU-T G.806]. GFP pFCS generation is disabled (FCSenable=false). The UPI value for frame-mapped Ethernet shall be inserted (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are inserted into the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].

Common GFP source process:

See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

ODUkP specific GFP source process:
See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the ODUk payload area according to clause 17.4 of [ITU-T G.709].

ODUkP specific source process:
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Figure 11-29 – ODUkP specific source process

Clock and (Multi)Frame Start signal generation: 
The function shall generate a local ODUk clock (ODUkP_AI_CK) with a clock rate within the minimum to maximum clock rate of the specified ODU signal as given in Table 14-2/G.798 . The jitter and wander requirements as defined in Annex A of [ITU-T G.8251] (ODCa clock) apply.

The function shall generate the (multi)frame start reference signals AI_FS and AI_MFS for the ODUk signal. The AI_FS signal shall be active once per 122 368 clock cycles. AI_MFS shall be active once every 256 frames.
PT: The payload type information is derived directly from the Adaptation function type. The value for “GFP mapping” shall be inserted into the PT byte position of the PSI overhead as defined in clause 15.9.2.1.1 of [ITU-T G.709].
RES: The function shall insert all-0's into the RES bytes.
CSF: The function shall signal the failure of the client signal to the far end by use of the Bit 1 of the PSI[2] byte of the Payload Structure Identifier as defined in clause 17.1 of [ITU-T G.709].
All other bits of the ODUk overhead should be sourced as "0"s, except the ODUk-PM STAT field which should be set to the value "normal path signal" (001).
Counter processes:
For Further Study.
Defects





None.

Consequent actions

aCSF-RDI ( CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI ( CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS ( CI_SSF and CSFEnable

aCSF-OPU ( CI_SSF and CSFEnable

Defect correlations


None.

Performance monitoring
For further study.
11.5.1.2
ODUk to ETH adaptation sink function (ODUkP/ETH_A_Sk)

The ODUkP/ETH_A_Sk extracts ETH_CI information from the ODUkP payload area, delivering ETH_CI to ETH_TFP and ETH_FP. It extracts the OPUk Overhead (PT and RES) and monitors the reception of the correct payload type.

Symbol


[image: image231.wmf]
Figure 11-30 – ODUkP/ETH_A_Sk symbol

Interfaces

Table 11-16 – ODUkP/ETH_A_Sk interfaces

	Inputs
	Outputs

	ODUkP_AP:

ODUkP_AI_Data
ODUkP_AI_ClocK
ODUkP_AI_FrameStart
ODUkP_AI_MultiframeStart
ODUkP_AI_TSF

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ODUkP/ETH_A_Sk_MP:

ODUkP/ETH_A_Sk_MI_Active
ODUkP/ETH_A_Sk_MI_FilterConfig
ODUkP/ETH_A_Sk_MI_CSF_Reported
ODUkP/ETH_A_Sk_MI_MAC_Length
ODUkP/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi


ODUkP/ETH_A_Sk_MP:

ODUkP/ETH_A_Sk_MI_AcPT
ODUkP/ETH_A_Sk_MI_AcEXI
ODUkP/ETH_A_Sk_MI_AcUPI
ODUkP/ETH_A_Sk_MI_cPLM
ODUkP/ETH_A_Sk_MI_cLFD
ODUkP/ETH_A_Sk_MI_cUPM
ODUkP/ETH_A_Sk_MI_cEXM
ODUkP/ETH_A_Sk_MI_cCSF
ODUkP/ETH_A_Sk_MI_pFCSError


Processes

A process diagram of this function is shown in Figure 11-31.
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Figure 11-31 – ODUkP/ETH_A_Sk process

"Filter" process:

See clause 8.3.

"Replicate" process:

See clause 8.4.

"802.3 MAC FCS Check" process:

See clause 8.8.2.

Ethernet specific GFP-F sink process:

See clause 8.5.4.1.2 of [ITU-T G.806]. GFP pFCS checking, GFP p_FCSError, p_FDis are not supported (FCSdiscard=false). The UPI value for Frame-Mapped Ethernet shall be expected (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are extracted from the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].

Common GFP sink process:

See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported (MI_CMuxActive=false).

ODUkP specific GFP sink process:

See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the ODUk payload area according to clause 17.4 of [ITU-T G.709].

ODUkP specific sink process:
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Figure 11-32 – ODUkP specific sink process

PT: The function shall extract the PT byte from the PSI overhead as defined in clause 8.7.1 of [ITU-T G.798]. The payload type value for "GFP mapping" in clause 15.9.2.1.1 of [ITU-T G.709] shall be expected. The accepted PT value is available at the MP (MI_AcPT) and is used for PLM defect detection.

RES: The value in the RES bytes shall be ignored. 
CSF: The function shall extract the CSF signal indicating the failure of the client signal out of the Bit 1 of the PSI[2] byte of the Payload Structure Identifier as defined in clause 17.1 of [ITU-T G.709].
Defects

dPLM – See clause 6.2.4.1 of [ITU-T G.798].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF-LOS – See clause 8.8.6.2.

dCSF-RDI – See clause 8.8.6.2.

dCSF-FDI – See clause 8.8.6.2.
Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM
(
dPLM and (not AI_TSF);

cLFD
(
dLFD and (not dPLM) and (not AI_TSF);

cUPM
(
dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);

cEXM
(
dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cCSF 
(
(dCSF-LOS or dCSF-OPU or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported

Performance monitoring

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pFCSErrors: count of FrameCheckSequenceErrors per second.

NOTE – This primitive is calculated by the MAC FCS Check process.
11.5.2
LCAS-capable ODUk-Xv to ETH adaptation functions (ODUkP-X-L/ETH_A; k = 1, 2, 3)

11.5.2.1
LCAS-capable ODUk-Xv to ETH adaptation source function (ODUkP-X-L/ETH_A_So)

The ODUkP-X-L/ETH_A_So function creates the ODUk-X-L signal from a free running clock. It maps the ETH_CI information into the payload of the OPUk-Xv (k = 1, 2, 3), adds OPUk-Xv Overhead (RES, vcPT).

Symbol


[image: image234.wmf]
Figure 11-33 – ODUkP-X-L/ETH_A_So symbol

Interfaces

Table 11-17 – ODUkP-X-L/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

ODUkP-X-L_AP:

ODUkP-X-L_AI_XAT
ODUkP-X-L/ETH_A_So_MP:

ODUkP-X-L/ETH_A_So_MI_Active
ODUkP-X-L/ETH_A_So_MI_CSFEnable
ODUkP-X-L/ETH_A_So_MI_CSFrdifdiEnable
	ODUkP-X-L_AP:

ODUkP-X-L_AI_Data
ODUkP-X-L_AI_ClocK
ODUkP-X-L_AI_FrameStart
ODUkP-X-L_AI_MultiframeStart

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE


Processes

A process diagram of this function is shown in Figure 11-34.
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Figure 11-34 – ODUkP-X-L/ETH_A_So process

See clause 11.5.1.1 for a description of ODUkP-X-L/ETH_A processes.

ODUkP-X-L specific source process:
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Figure 11-35 – ODUkP-X-L specific source process

Clock and (Multi)Frame Start signal generation: 
The function shall generate a local ODUk clock (ODUkP_AI_CK) with a clock rate within the minimum to maximum clock rate of the specified ODU signal as given in Table 14-2/G.798 . The jitter and wander requirements as defined in Annex A of [ITU-T G.8251] (ODCa clock) apply.

The function shall generate the (multi)frame start reference signals AI_FS and AI_MFS for the ODUk signal. The AI_FS signal shall be active once per XAT * 122 368 clock cycles. AI_MFS shall be active once every 256 frames.

vcPT: The payload type information is derived directly from the Adaptation function type. The value for “GFP mapping” shall be inserted into the vcPT byte position of the PSI overhead as defined in clause 18.1.2.2 of [ITU-T G.709].

RES: The function shall insert all-0's into the RES bytes.
CSF: The function shall signal the failure of the client signal to the far end by use of the Bit 1 of the PSI[2] byte of the Payload Structure Identifier as defined in clause 18.1.2.2.1.3 of [ITU-T G.709].

All other bits of the ODUk overhead should be sourced as "0"s, except the ODUk-PM STAT field which should be set to the value "normal path signal" (001).
Counter processes:
For Further Study.
Defects





None.

Consequent actions

aCSF-RDI ( CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI ( CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS ( CI_SSF and CSFEnable

aCSF-OPU ( CI_SSF and CSFEnable

Defect correlations


None.

Performance monitoring
For further study.
11.5.2.2
LCAS-capable ODUk-Xv to ETH adaptation sink function (ODUkP-X-L/ETH_A_Sk)

The ODUkP-X-L/ETH_A_Sk extracts ETH_CI information from the ODUkP-Xv payload area, delivering ETH_CI to ETH_TFP and ETH_FP. It extracts the OPUk-Xv Overhead (vcPT and RES) and monitors the reception of the correct payload type.

Symbol


[image: image237.wmf]
Figure 11-36 – ODUkP-X-L/ETH_A_Sk symbol

Interfaces

Table 11-18 – ODUkP-X-L/ETH_A_Sk interfaces

	Inputs
	Outputs

	ODUkP-X-L_AP:

ODUkP-X-L_AI_Data
ODUkP-X-L_AI_ClocK
ODUkP-X-L_AI_FrameStart

ODUkP-X-L_AI_MultiframeStart
ODUkP-X-L_AI_TSF
ODUkP-X-L_AI_XAR
ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ODUkP-X-L/ETH_A_Sk_MP:

ODUkP-X-L/ETH_A_Sk_MI_Active
ODUkP-X-L/ETH_A_Sk_MI_FilterConfig
ODUkP-X-L/ETH_A_Sk_MI_CSF_Reported
ODUkP-X-L/ETH_A_Sk_MI_MAC_Length
ODUkP-X-L/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

ODUkP-X-L/ETH_A_Sk_MP:

ODUkP-X-L/ETH_A_Sk_MI_AcVcPT
ODUkP-X-L/ETH_A_Sk_MI_AcEXI
ODUkP-X-L/ETH_A_Sk_MI_AcUPI
ODUkP-X-L/ETH_A_Sk_MI_cVcPLM
ODUkP-X-L/ETH_A_Sk_MI_cLFD
ODUkP-X-L/ETH_A_Sk_MI_cUPM
ODUkP-X-L/ETH_A_Sk_MI_cEXM
ODUkP-X-L/ETH_A_Sk_MI_cCSF
ODUkP-X-L/ETH_A_Sk_MI_pFCSError


Processes

See process diagram and process description in clause 11.5.1.2. The additional ODUkP-X-L_AI_XAR interface is not connected to any of the internal processes.

ODUkP-X-L specific sink process:
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Figure 11-37 – ODUkP-X-L specific sink process

PT: The function shall extract the vcPT byte from the PSI overhead as defined in clause 8.7.3 of [ITU-T G.798]. The payload type value for "GFP mapping" in clause 18.1.2.2 of [ITU-T G.709] shall be expected. The accepted PT value is available at the MP (MI_AcPT) and is used for PLM defect detection.

RES: The value in the RES bytes shall be ignored.
CSF: The function shall extract the CSF signal indicating the failure of the client signal out of the Bit 1 of the PSI[2] byte of the Payload Structure Identifier as defined in clause 18.1.2.2.1.3 of [ITU-T G.709].
Defects

dVcPLM – See clause 6.2.4.2 of [ITU-T G.798].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF-LOS – See clause 8.8.6.2.

dCSF-RDI – See clause 8.8.6.2.

dCSF-FDI – See clause 8.8.6.2.
Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dVcPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

NOTE 1 – XAR = 0 results in AI_TSF being asserted, so there is no need to include it as additional contributor to aSSF.

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cVcPLM
(
dVcPLM and (not AI_TSF);

cLFD
(
dLFD and (not dVcPLM) and (not AI_TSF);

cCSF 
(
(dCSF-LOS or dCSF-OPU or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported

Performance monitoring

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pFCSError: count of FrameCheckSequenceErrors per second.

NOTE 2 – This primitive is calculated by the MAC FCS Check process.

11.5.3
ODU2P to Ethernet PP-OS adaptation functions (ODU2P/ETHPP-OS_A) 

The ODU2P to Ethernet PP-OS adaptation function supports transporting Preamble and Ordered Set information of the 10GBASE-R signals over enhanced OPU2 payload area.

It provides XGMII service over ODU2 with extended OPU2 payload area.

As shown in Figure 46-3 of [IEEE 802.3], the Ethernet data stream at the XGMII consists of:  <inter-frame><preamble><sfd><data><efd>.  For the purposes of these mappings, the client data frames include the <preamble><sfd><data> information, and the Ordered Sets include specific information carried in the <inter-frame> characters.  The mapping of both client data frames and Ordered Sets into ODU2 using GFP-F frames is described in this clause.  
Note that there is no Ethernet MAC termination function.  Consequently, since no error checking is performed on the Ethernet MAC frames, errored MAC frames are forwarded at both the ingress and egress to the GFP adaptation functions.
11.5.3.1
ODU2P to Ethernet PP-OS adaptation source function (ODU2P/ETHPP-OS_A_So)

The ODU2P/ETHPP-OS_A_So function creates the ODU2P signal from a free running clock. It maps the ETHPP-OS_CI information into the payload of the OPU2P, adds OPU2P Overhead (RES, PT) and default ODU2P Overhead.

Symbol
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Figure 11-x – ODU2P/ETHPP-OS_A_So symbol

Interfaces
Table 11-x – ODU2P/ETHPP-OS_A_So interfaces

	Inputs
	Outputs

	ETHPP-OS_CP:
ETHPP-OS_CI_D
ETHPP-OS_CI_SSF

ODU2P/ETHPP-OS_A_So_MP:
ODU2P/ETHPP-OS_A_So_MI_Active
ODU2P/ETHPP-OS_A_So_MI_CSFEnable
	ODU2P_AP:
ODU2P_AI_Data
ODU2P_AI_ClocK
ODU2P_AI_FrameStart
ODU2P_AI_MultiframeStart



NOTE – ETHPP-OS_CI_D is composed of Preamble, Payload and Order Set information in [ITU-T G.7041].

Processes
A process diagram of this function is shown in Figure 11-x+1.
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Figure 11-x+1 – ODU2P/ETHPP-OS_A_So process


Ethernet specific GFP-F source process:

The Ethernet frames are inserted into the client payload information field of the GFP-F frames according to clause 7.9.2 of [ITU-T G.7041].
The UPI values for frame-mapped Ethernet shall be inserted for data or Ordered Sets respectively. (Table 6-3 of [ITU-T G.7041]).  The rest of the fields but UPI field in Type Header are static as:

· PTI = 000 (Client Data)

· PFI = 0 (No FCS)

· EXI = 0000 (Null Extension Header)
GFP client management frames (PTI = 100) are inserted if CI_SSF is input and GFP pFCS generation is disabled (FCSenable=false). 

Common GFP source process:

See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

ODU2P specific GFP source process:
See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the ODU2 payload area according to clause 17.4.1 of [ITU-T G.709]. OPU CSF may be generated if CI_SSF is input.

ODU2P specific source process:
See clause 11.5.1.1 (k=2).

Defects





None.
Consequent actions

aCSF-LOS ( CI_SSF and CSFEnable







aCSF-OPU ( CI_SSF and CSFEnable
Defect correlations


None.
Performance monitoring
For further study.
11.5.3.2
ODU2P to Ethernet PP-OS adaptation sink function (ODU2P/ETHPP-OS_A_Sk)

The ODU2P/ETHPP-OS_A_Sk extracts ETHPP-OS_CI information from the ODU2P payload area, delivering ETHPP-OS_CI to ETHPP-OS_TCP. It extracts the OPU2P Overhead (PT and RES) and monitors the reception of the correct payload type.

Symbol
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Figure 11-x+3 – ODU2P/ETHPP-OS_A_Sk symbol

Interfaces
Table 11-x+2 – ODU2P/ETHPP-OS_A_Sk interfaces

	Inputs
	Outputs

	ODU2P_AP:
ODU2P_AI_Data
ODU2P_AI_ClocK
ODU2P_AI_FrameStart
ODU2P_AI_MultiframeStart
ODU2P_AI_TSF
ODU2P/ETHPP-OS_A_Sk_MP:
ODU2P/ETHPP-OS_A_Sk_MI_Active
ODU2P/ETHPP-OS_A_Sk_MI_CSF_Reported
	ETHPP-OS_CP:
ETHPP-OS_CI_D
ODU2P/ETHPP-OS_A_Sk_MP:
ODU2P/ETHPP-OS_A_Sk_MI_AcPT
ODU2P/ETHPP-OS_A_Sk_MI_AcEXI
ODU2P/ETHPP-OS_A_Sk_MI_AcUPI
ODU2P/ETHPP-OS_A_Sk_MI_cPLM
ODU2P/ETHPP-OS_A_Sk_MI_cLFD
ODU2P/ETHPP-OS_A_Sk_MI_cUPM
ODU2P/ETHPP-OS_A_Sk_MI_cEXM
ODU2P/ETHPP-OS_A_Sk_MI_cCSF


Processes
A process diagram of this function is shown in Figure 11-x+4.
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Figure 11-x+4 – ODU2P/ETHPP-OS_A_Sk process
Ethernet specific GFP-F sink process:

The Ethernet frames are extracted from the client payload information field of the GFP-F frames according to clause 7.9 of [ITU-T G.7041].
See clause 8.5.4.1.2 of [ITU-T G.806]. GFP pFCS checking, GFP p_FCSError, p_FDis are not supported (FCSdiscard=false). The UPI value for Frame-Mapped Ethernet shall be expected for data or Ordered Sets respectively (Table 6-3 of [ITU-T G.7041]). 
Client signal fail from GFP-F or OPU may generate LF as included ETHPP-OS_CI_D.

Common GFP sink process:

See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported (MI_CMuxActive=false).

ODU2 specific GFP sink process:

See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the ODU2 payload area according to clause 17.4.1 of [ITU-T G.709].

ODU2P specific sink process:
See clause 11.5.1.2 (k=2).

Defects
dPLM – See clause 6.2.4.1 of [ITU-T G.798].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].
dCSF-LOS – See clause 8.8.6.2.

dCSF-OPU – For further study.

Consequent actions
The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS
Defect correlations
The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM
(
dPLM and (not AI_TSF);

cLFD
(
dLFD and (not dPLM) and (not AI_TSF);

cUPM
(
dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);

cEXM
(
dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cCSF 
(
(dCSF-LOS or dCSF-OPU) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported
Performance monitoring
For further study.
11.5.4
ODU0P to 1 GbE client adaptation functions (ODU0P/CBRx_A)
The adaptation function that supports the transport of 1GbE signals in the OTN is the ODU0P to Client adaptation function (ODU0P/CBRx_A) (0≤x≤1.25G) described in [ITU-T G.798]. When the client is 1 GbE, the CBRx and ETC3 signals are equivalent; as such the ETY3/ETC3_A functions are bound to the ODU0P/CBRx_A functions.
11.6
MPLS to ETH adaptation functions (MPLS/ETH_A)

For further study.
11.7
ATM VC to ETH adaptation functions (VC/ETH_A)

For further study.
11.8
RPR to ETH adaptation functions (RPR/ETH_A)

For further study.
Appendix I – Applications and functional diagrams


(This Appendix does not form an integral part of this Recommendation.)

Figure I.1 presents the set of atomic functions associated with the Ethernet signal transport, shown in several example applications.

•
Ethernet UNI/NNI interface port on EoT equipment.

•
Ethernet over SDH NNI interface port on EoT equipment.

•
Ethernet UNI interface port supporting multiplexed access on EoT equipment.


[image: image243.wmf]
Figure I.1 – Ethernet atomic functions in some possible application

Appendix II – AIS/RDI mechanism for an Ethernet Private Line over a single SDH or OTH server layer


(This Appendix does not form an integral part of this Recommendation.)

In order to address fault notification for failures in either the access links or within the SDH / OTH server layer, the following functionality is required:

a) Convey fault notification for an access link failure from one side of the network to the other.

b) Convey fault notification for an SDH / OTH server layer failure to the access links.

[ITU-T G.7041] defines Client Management Frames (CMFs) for conveying information about the client signal from an ingress edge NE to the egress edge NE. Defined CMF Signals are Client Signal Fail (CSF), Client Forward Defect Indication (FDI) and Client  Reverse Defect Indication (RDI) implementing the Remote Fail Indication Mechanism.

[ITU-T G.806] defines the equipment functional details of the CSF and RFI mechanisms.

This Recommendation defines the Ethernet specific equipment functional details for the CSF and RFI mechanisms.

The combination of the above three Recommendations provides the functionality required by (a) and (b).

In addition, this basic functionality can be further enhanced to support fault notification for the Ethernet client by using Ethernet Physical Layer Defect Signals shown in Appendix VI of [ITU-T G.7041] by means of Ethernet OAM. For example, use of the Link Fault flag defined in clause 57 of [IEEE 802.3] (EFM OAM), in conjunction with the GFP-F CMF CSF and RFI indications. This is illustrated below. 

A simplifying assumption can be made regarding the conditioning of the Ethernet access links on either side of the SDH / OTH transport network. For an EPL application, the access link is specific to a single service, and since an Ethernet service is bi-directional, a fault in either direction should result in the access link being conditioned as “failed”.

The following fault scenarios and accompanying figures illustrate this example of interworking of the EFM OAM Link Fault flag with the GFP-F CMF CSF and RFI indications to appropriately condition the Ethernet access links. Only uni-directional faults are considered, the scenarios can be combined per the superposition principle to describe bi-directional faults. Further, only an SDH server layer is shown in the examples. CE = Customer Edge. PE = Provider Edge.

Scenario 1

In Figure II.1, a uni-directional fault occurs on the east access link on ingress to the carrier network.
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Figure II.1 – Fault on Ingress

· The east PE detects loss of signal on the ingress access link:

· 802.3 EFM OAM sends Link Fault upstream, interspersed with Idles

· GFP-F CMF CSF indication is sent into the network.

· The east CE detects Link Fault:

·  Idles are sent towards the network and towards the enterprise

· The west PE detects the GFP-F CMF CSF indication:

· If there is no network_ETH_AIS indication available, the laser (or electrical driver) is shutdown.

· The west CE detects loss of signal:

· 802.3 EFM OAM sends Link Fault upstream, interspersed with Idles

· Idles are sent towards the enterprise

Scenario 2

In Figure II.2, a uni-directional fault occurs westbound on the server layer within the carrier network.
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Figure II.2 – Fault within Carrier Network

· An NE in the carrier network detects the failure of one of the member paths of a VCAT group:

· SDH Path AIS is generated downstream on the affected path

· The west PE detects SDH Path AIS:

· SDH Path RDI is generated back into the network on the associated path

· GFP-F CMF RDI is generated back into the network

· If there is no network_ETH_AIS indication available, the laser (or electrical driver) is shut down

· The west CE detects loss of signal:

· 802.3 EFM OAM sends Link Fault upstream, interspersed with Idles

· Idles are sent towards the enterprise

· The east PE detects the GFP-F CMF RDI indication :

· If there is no network_ETH_RDI indication available, the laser (or electrical driver) is shut down

· The east CE detects loss of signal:

· 802.3 EFM OAM sends Link Fault upstream, interspersed with Idles

· Idles are sent towards the enterprise

Note that for a network failure affecting all member paths of a VCAT group (where LCAS is not supported) the same steps above apply, with the addition of SDH Path AIS and RDI being sent on all the member paths.

Scenario 3

In Figure II.3, a uni-directional fault occurs on the west access link towards the enterprise network.
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Figure II.3 – Fault on Egress

· The west CE detects loss of signal:

· 802.3 EFM OAM sends Link Fault upstream, interspersed with Idles

· Idles are sent towards the enterprise

· The west PE detects the Link Fault indication:

· GFP-F CMF RDI indication is sent into the network

· Idles are sent towards the CE

· The east PE detects the GFP-F CMF RDI indication:

· If there is no network_ETH_RDI indication available, the laser (or electrical driver) is shutdown

· The east CE detects loss of signal:

· 802.3 EFM OAM sends Link Fault upstream, interspersed with Idles

· Idles are sent towards the enterprise

Note that a PE only reacts to the reception of a Link Fault indication when there are no other conditioning alarms (i.e., the PE takes no further conditioning action when it receives a Link Fault indication in response to having shutdown its own egress laser). 

Appendix III – Compound Functions 

(This Appendix does not form an integral part of this Recommendation.)

ETH MEP and MIP compound functions are defined in clause 9.8 of this recommendation.

Appendix IV – Startup conditions 


(This Appendix does not form an integral part of this Recommendation.)

The set of interconnected ETH_FF processes must be loop-free, since otherwise the integrity of the network may be compromised. This requirement implies that one can only include ports of the ETH_FF process in the ETH_C function if it is known that this will not create a loop. 

In [IEEE 802.1D] and [IEEE 802.1Q], this is secured by starting in a state without connectivity, except for the exchange of BPDUs. Consequently, the Spanning Tree Protocol extends the connectivity while making sure that this does not create any loops. 

This means that the ETH_C function as defined in this Recommendation, on startup of the equipment may not contain an ETH_FF that includes more than one port of its enclosing ETH_FF process. After startup, ports may be added to ETH_FF process under control of the Spanning Tree Protocol. Alternatively this may be done under control of a management system, as long as the management system can guarantee that there are no loops created. 
Appendix V – SDL descriptions 

(This Appendix does not form an integral part of this Recommendation.)

In this recommendation, detail characteristics of equipment functional blocks are described with SDL diagrams specified in [ITU-T Z.100]. The SDL diagrams use the following conventions.
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Figure V.1 – SDL symbols
Appendix VI – Calculation methods for frame loss measurement 

(This Appendix does not form an integral part of this Recommendation.)

Frame loss measurement is performed by the collection of counter values for ingress and egress service frames and exchange of OAM frames with the local counter value between a pair of MEPs. In this recommendation, two different mechanisms are defined for frame loss measurement and both mechanisms have the different calculation methods.

VI.1
Dual-ended loss measurement
This is performed by proactive OAM and both MEPs send dual-ended CCM frames to its peer MEP periodically. The calculation method specified in the Proactive Loss Measurement Process is depicted as the following Figure VI.1.
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Figure VI.1 – Dual-ended ETH LM
VI.2
Single-ended loss measurement
This is performed by on-demand OAM and a MEP sends LMM frames to its peer MEP and receives LMR frames from its peer MEP. The calculation method specified in the LM Control Process is depicted as the following Figure VI.2.
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Figure VI.2 – Single-ended ETH LM
Appendix VII – Considerations of the support of a rooted multipoint EVC service

(This Appendix does not form an integral part of this Recommendation.)

This Appendix considers the support of a rooted multipoint service defined in [ITU-T G.8011]. Connectivity of a rooted multipoint service is established between one or more rooted points and zero or more leaf points. Each leaf point can only exchange data with the root point, while a root point can exchange data with each leaf point and other root points. Consequently, some extended mechanisms on ETH layer is required to disable the connectivity between particular pair of the points. 

Two potential models are introduced in this Appendix. The first model is achieved by the enhancement of “port group” functionality to ETH Flow Forwarding function. The second model is composed of the usage of “asymmetric VLANs” configuration described in clause B.1.3 of [IEEE 802.1Q]. The subclasses below describe a principle of the operation for each model.

NOTE1 – The asymmetric VLAN model will be included in the main body of the later version of this recommendation after the development of the functional modeling and the study of interworking between the asymmetric VLAN model and the port group model.
NOTE2 – Both the port group and the asymmetric VLAN models are also applicable to other network scenarios such as multipoint-to-multipoint service defined in [ITU-T G.8011] while this Appendix addresses the rooted multipoint service only. Application examples to other scenarios will be considered in the later version of this recommendation.
VII.1
Port group function
The port group function is achieved by the enhancement to ETH Flow Forwarding function defined in clause 9.1.1. Figure VII.1 shows a principle of the operation for port group function. A port group is configured to the ports {A, B, C} for which the split horizon behaviour are applied in an ETH Flow Forwarding function. Frames arriving via an input port in the port group can be forwarded to one or more output ports, with the exception of the output ports that are members of the port group. Frames arriving on an input port which is not a member of the port group can be forwarded to any output ports, with exception of the port over which the frame arrived. As a result, the direct communication between members of the port group can be disabled.
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Figure VII.1 – Principle of the port group function
Figure VII.2 shows an example of port group function composing a rooted-multipoint EVC. The node X in this figure is configured to disable forwarding ETH_CI traffic signal between members of the port group {X2, X3, X4}.
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Figure VII.2 – Application example of the port group function
VII.2
Configuration of asymmetric VLANs
The clause B.1.3 of [IEEE 802.1Q] describes a configuration example of asymmetric VLANs to support a rooted multipoint service. The configuration allocates two different VLANs to the traffic generated by a root and a leaf (leaves) respectively. As a result, it can disable the direct communication between any pair of leaves. To facilitate an appropriate MAC learning over the different VLANs, this configuration uses Shared VLAN Learning (SVL) mode described in clause 9.1.1.

The following figure VII.3 shows an example of the operation. In this figure, the ports A, B, and C are attached to leaf nodes while the port X is attached to a root node. The VID M allocated to the traffic from the root node to leaf nodes is configured on the ports A, B and C. The VID N allocated to the traffic from the leaf nodes to a root node is configured on the port X only. As a result, asymmetric VLANs are configured and the appropriate connectivity between the ports A, B, C and X is established.
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Figure VII.3 – Principle of the asymmetric VLANs
Figure VII.4 shows an application example of the asymmetric VLANs to a rooted multipoint service. Note that both a root node and leaf nodes can use the single VID or untagged frames on the client ports (depicted as yellow bidirectional arrows in this figure), while multiple VIDs are required within the EVC. This VID configuration on the client ports can be achieved by the VID translation and/or untagging on the output interfaces.
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Figure VII.4 – Application example of the asymmetric VLANs
NOTE3 – This Appendix only describes a scenario of the single rooted multipoint environment as a basic example. However, the asymmetric VLAN model can also support multiple root nodes and/or grouping of leaf nodes as advanced rooted multipoint scenarios.

Appendix VIII –Configurations for Ingress VID Filtering

(This Appendix does not form an integral part of this Recommendation.)

This Appendix describes an example of the configuration for ingress VID filtering described in [IEEE 802.1Q]. 
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Figure VIII.1 –Example of configuration for ingress VID filtering
Table VIII-1 – VID Configuration
	VID
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	Port C
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Figure VIII.1 and Table VIII-1 show an example of the configuration. For the ingress configuration, MI_Vlan_Config[] signal is set to ETHx/ETH-m_A_Sk function and ETH_CI signals corresponding VIDs are connected to ETH_FF processes in ETH_C function. For the egress configuration, MI_Vlan_Config[] signal is set to ETHx/ETH-m_A_So function and ETH_CI signals corresponding VIDs are connected to ETH_FF processes in ETH_C function.

On ports A and B in this example, MI_Vlan_Config[1…4094] are set to ETHx/ETH-m_A_Sk in order to disable the Ingress VID filtering. In this case, incoming all VIDs traffic is once forwarded to ETH_C. Since ETH_FF is connected to configured ingress and egress ports only, the traffic is forwarded to the approproate ports.
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