- 44 -

TD 509 Rev.1 (PLEN/15)

	INTERNATIONAL TELECOMMUNICATION UNION
	STUDY GROUP 15

	TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2009-2012
	TD 509 Rev.1 (PLEN/15)

	
	English only

Original: English

	Question(s):
	9/15
	Geneva, 5-16 December 2011

	TEMPORARY DOCUMENT

	Source:
	Editor G.8021/Y.1341

	Title:
	Draft revised ITU-T Recommendation G.8021/Y.1341 version 4 (for Consent)

This document is the clearn-up version of the latest draft Recommendation ITU-T G.8021/Y.1341 Characteristics of Ethernet transport network equipment functional blocks. All of the contents are technically equlavant with the original TD509/P, but change histories as well as figures with changes in RED are removed.

Figures in this document are produced by powerpint and available at:

http://ifa.itu.int/t/2009/sg15/exchange/wp3/q9/G.8021/figures/G.8021_figures_2011-12r1.ppt
In this revision of WD, the following items agreed in the drafting session are incorporated:
· Proactive PM for ETHG_FT (C1642R1)
· CSF for ETH/ETH-m_A (C1641R1)

· CCM Loss measurement process (C1644R1)
· OAM extraction process (1817R1)

· Compound Functions (C1643R1)
· MI signals for the latest G.803x (C1838)

· 1SL definition (1666R1)
· dLOC Flapping (C1797R1, 1850R1)

· Removal of ETH_RI_RSF signals in ODUkP/ETH_A_So (editorial alignment)
· Removal of ETH_RI_RSF signals in Sn/ETH_A (EDITOR’S NOTE)
Revision history:

	Rev
	Document number
	Date
	Description

	0.1
	WD08

Madeira
	Dec. 4, 2010
	· Initial text - based on pre-published version of
G.8021/Y.1341 (10/2010)

	0.2
	WD08r1

Madeira
	Dec. 16,

2010
	· Adding a term “timing point” in clause 3

· Adding acronyms PI, PP, TP in clause 4

· Correction of written error for MAC length check in clause 8.6

· Adding of MI_Active signals to Adaptation functions (ETYn/ETH, ETY3/ETC3, Sn/ETH, Sn-X-L/ETH, Sm/ETH, Sm-X-L/ETH, Sn-X/ETC3, Pq/ETH, Pq-X-L/ETH) in caluse 10 and 11

· Adding of MI_MAC Length to Adaptation functions (Sn-X-L/ETH_A_Sk, Sm/ETH_A_Sk, Sm-X-L/ETH_A_Sk, Sn-X/ETC3, Pq/ETH_A_Sk, Pq-X-L/ETH_A_Sk, ODU2P-X-L/ETH_A_Sk) in caluse 10 and 11

· Correction of signal name ETH_GTCS_So_MI_Sched_Config in Table 9-19

· Adding a explanation of ETYn/ETH-m_A in clause 10.3

· Adding place holders for ETCn_TT and ETCn/ETC_A in clause 10.5 and 10.6

· Adding a new text for ETY4/ETHPP-OS_A in clause 10.7 (WD42)

· Updating of descriptions in clause 11.5.1 and 11.5.2 (WD40)

· Deletion of ETH_RI_RSF signal for ODUkP/ETH_A in Table 11-15 and 11-16 (WD40)

· Deletion of MI signals (MAC_Length, pFCSErrors, AcSL, AcPFI, pCRC16Errors) in Table 11-x+2, Figure 11-x+4, and clause 11.5.3.2 (WD41r1)

	0.3
	
	Jan. 15,

2011
	· Updating of Figure 1-1

· Adding of acronymTCP in clause 4

· Adding of CSF definitions (WD49 & CD01)

· acronyms CSF, DCI, FDI in clause 4

· dCSF-LOS/RDI/FDI inTables 6-1, 6-2, Figure 6-2, and new clause 6.1.5.4

· CSF insert/extract process in new clauses 8.1.14, 8.1.15

· Related functions including new MI signals in clause 9.3.2 (ETHx/ETH_A)

· Adding of Synthetic Loss Measurement (WD76 & CD02)

· Revised text / figures in clauses 8.1.10 and 8.10.11

· Revised text / figures in clauses 9.2.1 and 9.4.1

· Adding of DM enhancements (WD79 & CD03)

· Adding of a new clause 8.1.14

· Revised text / figures in clause 9.4.1

· Correction of counting conditions of proactive loss monitoring in Figures 9-x+1, and 9-x+3 (ETHG_FT)

· Updating the selection method of representive FPs in clause 9.2.2

· Adding of a text for ETH_GTCS_Sk in clause 9.6.2.2

· Correction of written error for ETYn_AP interfaces in clause 9.7

· Adding of MI_Active signals to Adaptation functions (ETHx/ETH, ETHx/ETH-m, ETHG/ETH, ETHx/ETHG, ETHDi/ETH, ETYn-Np/ETH-LAG-Na,) in caluse 9

· Editorial modifications for figures of Termination and Adaptation symbols in clause 9 to 11
· Useed AP/FP/CP/MP/RP/PP names (removed signal names)
· Aligned with writing methodology in G.806 (only MP has full function names)
· Specified group signals (ETH_APP and ETH_FPP)
· Described ETHTF_PP and ETHF_PP separately (refer to Fig 8-71)

· Editorial modifications for tables of Termination and Adaptation inteface signals in clause 9 to 11

· Aligned with writing methodology in G.806 (only MI has full function names, verbose prefix is removed in RI and PI signal names)
· Described ETHTF_PP and ETHF_PP separately

· Described ETH_CI_Data with D,P,DE signals
· Editorial updating in Figures 11-x+1 and 11-x+4 ODU2P/ETHPP-OS_A

	0.4
	WD15

Geneva
	Feb. 19, 2011
	· Adding of Test ID TLV for DMM,DMR, and 1DM (per C1300)

· Updating of SLM/SLR processes (per C1236,C1290)

	0.5
	WD15r1

Geneva
	Feb. 20, 2011
	· Reflecting the result of review DMM/DMR, 1DM

· Change attribute name for Test ID to Test ID TLV in DMM () and 1DM () for the better consisitency with other TLV.

· Reflecting the result of review SLM/SLR

· Add MI_TestID signal to Proactive/ondemand control process to alignwith DM related processes.

· Missing RxFCl++ in Fig 8-xx+2, and 8-xx+3

· Add Opcode values on Fig 8-xx+5 and 8-x+8

· Reflecting the result of review CSF

· Update of Table 8-zz (CSF period)

· Editorial error “aSSFfdi”in c9.3.2.2 (a couple of similar errors in clause 11)

	0.6
	WD15r2

Geneva
	Feb. 21, 2011
	· Update figures relavant to the change of “Test ID TLV” in clause 8.1.10 and 8.1.11

· Inclusion of “MI_SL_Test_ID” in clause 8.1.14.1 and 8.1.14.2.

· Update figures relavant to the inclusion of “RxFCl++” and “reset (TxTimer)” in Figure 8-xx+2 and 8-xx+3

· Update of ETY3/ETC3_A function (C1332)

· Update text in clause 10.4

· Update text in clause 11.2.1

· Update text in clause 11.5.4

· Remove the clause 11.5.5

· Update of ETY4/ETH-PP-OS_A, ODUkP/ETH_A and PDU2P/ETHPP-OS_A (wd01)

· Update text in clause 10.7.2

· Update text in clause 11.5.1.1 and 11.5.2.1

· Update text in clause 11.5.1.2 and 11.5.2.2

· Update text in clause 11.5.3.2

· Correction of editorial error “aSSFfdi”in clause 9.3.2.2 (a couple of similar errors in clause 11)

· Adding of dFOP-TO (C1328, C1334)

· Update Table 6-1 and 6-2

· Add new clause 6.1.4.3

· Update text in clause 9.1.2 and 9.1.3

· Update of LM process for “in-profile” (C1337)

· Update Figures 8-17, 8-19, 8-36, 8-40

· Update text in clause 8.1.7.2, 8.1.7.3, 8.1.9.2, 8.1.9.3

	0.7
	WD15r3 Geneva
	Feb. 22, 2011
	· Update of ODU2P/ETHPP-OS_A_So

· Update text in clause 11.5.3.1
· Update of ODUkP/ETH_A_Sk

· Update Figures 11-31 and 11-32
· Update Figures 11-37 in clause 11.5.2.2
· Update of ETHx_FT (clause 9.2.1)

· Tables 9-3, 9-4

· Figures 9-14, 9-17

· Text in clause 9.2.1.1 and 9.2.1.2

· Update of ETHDe_FT (clause 9.4.1)

· Tables 9-11, 9-12

· Figures 9-33, 9-35

· Text in clause 9.2.1.1 and 9.2.1.2

· Update figures of SL process diagrams (Fig 8-xx, 8-xx+1)

· Adding of ingress VID filtering

· Add text in clause 9.3.3 ETHx/ETH-m_A

· Include new Appendix VIII
· Adding of a NOTE to explain the release of local resourece in SLM receptionprocess (clause 8.1.14.4)
· Adding of a NOTE to explain the discrimation of the received PDU at ETHDe_FT_A (clause 9.4.1.2)

	0.8
	WD15r4

Geneva
	Feb. 23, 2011
	· Correction of Figures 8-xx and 8-xx+1.

· Edditiorial modification in Clause 8.1.14

· Editorial modification in Figure 9-33

· Add Appdendix VIII

	0.9
	WD41
Chicago
	Jun. 6, 2011
	· Added last call comments for G.8021 amd1

	1.0
	WD41r1

Chicago
	Jun. 16, 2011
	· Updated the description for the timer MI_CC_Period in clause 6.1.2.1and Fig 8-19 (wd45)

· Added ETH_C_MI_PS_BridgeType configuration in clause 9.1.2 (wd46)

· Corrections of editorial & referencing errors:

· Version of G.8001

· Reference point for TFPP in clause 3.1.68

· Added closing curly brackets in pseudo code clauses 9.2.1.2 and 9.4.1.2

· Removed ETHDe_FT_Sk_MI_Active (Table 9-12)

· Reference point for “ETYn Server Specific” process in clauses 9.7.1.1 and 9.7.1.2
· Reference point for Ethernet specific GFP-F source process in clause 11.1.1.1

	1.1
	WD41r2

Chicago
	Jun. 30, 2011
	· Add proactive LM features (wd64) in clause 8.1.9, 9.2.1 and 9.4.1, as the provisional agreement in Chicago meeting

	1.2
	TD509/P
	Nov. 4, 2011
	· Add edition history

· Update References in caluse 2
· Add abbreviations in clause 3
· For modelling conventions: C, CK, D, FS, MP, ETHD, ETHDe, ETHDi, ETH-m, ETHG, ETHx, TCS, GTCS, FF
· For OAM and PM: OPC, REC, OO, CRC, PRBS, TA, TTL, GS, TF, LF, FD, FDV
· For GFP: PT, PTI, PFI, EXI

· For OTN: OTN, OPU, PT, RES, PSI

· For VLAN tag: TPID, TCI, PCP, CFI, VID, DEI, CoS, QoS
· For others: OSSP, OUI, LAG, TCM, CBR, ESMC, svd
· Editiorial changes
· ETH_C_D by ETH_CI_D in c8.1.9.1, 8.1.10.1, 8.1.14.1

· From ETH_TFP/FP by To ETH_TFP/FP in Fig 10-5

· ETYn_AP/AI”by ETY3_AP/AI in Table 10-x

· ETYn_AI” by ETY4_AI in Table 10-x+1

· MI_FCSFenable by MI_CSFenable in Fig 11-16

· In clause 9.2.1.2, plefix character for nB_FD, nB_FDV, nF_FD, nF_FDV, nN_FD and nN_FDV are replaced by pB_FD, pB_FDV, pF_FD, pF_FDV, pN_FD and pN_FDV, respectively.

· LCK Generate Process by LCK Generation Process in clause 9.3

· DE Generate Process by DE Generation Process in clause 9.3

· P Regenerate Process by P Regeneration Process in clause 9.3

· RI_SLR is added in Fig 9-14

· RI_LMM by RI_LM in Fig 9-17

· ETH_AI_SSD by ETH_AI_TSD in Fig 9-21

· RI_DMM by RI_LMM in Fig 9-33

· ETHYn_RP by ETYn_RP in Table 10-2

· Changes in referencing.

· Instead of 802.1ag, Y.1731 is used as a reference for the definition of Ethertype and Multicast Class 1/2 Addresses for OAM (c8.1.1, 8.1.2, 8.1.4, 8.1.5, 8.1.7.2, 8.1.13.3, 8.1.15, 9)

	1.2
	TD509/P
	Nov. 4, 2011
	· Corrections for interface signals

· Added missing ETH_C_MI_PS_BridgeType (Table 9-2)
· Added missing argument data (rTestID) for ETHx_FT_So_RI_DMR (Table 9-3)

· Added missing argument data (rTestID) for ETHx_FT_Sk_RI_DMR (Table 9-4)

· Changed the name of the argument data (LocalTime) in ETHx_FT_Sk_RI_DMR (Table 9-4)

· Added missing ETHx/ETH_A_So_MI_CSF_Period, MI_CSF_Pri signals (Table 9-5)

· Reodered the MI signal (ETHx/ETH-m_A_Sk_ MI_Admin_State) (Table 9-8, 9-aa+1)

· Reodered the MI signal (ETHDe_FT_So_MI_DM_Result) (Table 9-11)

· Changed the signal name MI_RAPS_MEL by MI_MEL (Table 9-y, 9-y+1, Fig 9-x+3)

· Reodered the MI signal (ETHDe_FT_So_MI_DM_Result) (Table 9-11)

	1.3
	WD14
Geneva
	Dec. 11, 2011
	· Cleanup version (change histories, as well as figures with changes in RED are removed)

	1.4
	WD14r1

Geneva
	Dec. 11, 2011
	· Add Proactive PM (DMM/DMR/1DM/LMM/LMR/SLM/
 SLR for clause 9.2.2 ETHG_FT [C1642R1]
· CSF for clause 9.3.3 ETH/ETH-m_A and clause 9.3.4
 ETHG/ETH_A [C1641R1]
· Update of Figure 8-20 CCM Loss measurement process
 [C1644R1]
· Correction of OAM extraction processes in clause 9.2.1.2
 ETHx_FT_Sk, clause 9.4.1.2 ETHDe_FT_Sk and clause
 9.4.2.2 ETHDi_FT_Sk [C1817R1]

· Add a new clause 9.7 and delete Appendix III for
 Compound Functions [C1643R1]
· MI signals for the latest G.803x [C1838]
· 1SL definition [1666R1]
· dLOC Flapping in [C1797R1, 1850R1]
· Update references in caluse 2, and 9

	1.4
	WD14r2

Geneva
	Dec. 13, 2011
	· Update 1SL description in c8.1.15 with further text
 elaboration.

· Remove ETH_RI_RSF signal for ODUkP/ETH_A_So in
 Fig 11-28 in order to align with Table 11-15 updated in
 Amd1.

· Remove ETH_RI_RSF signal for VC-n/ETH_A_So in
 Fig 11-2, Table 11-1, and Table 11-2, according to the
 EDITOR’S NOTE

	1.5
	WD14r3

Geneva
	Dec. 14, 2011
	· Editorial update in Figure 8-xx+16 and 8-xx+6 (for
 1SL/SLM Reception behaviour)

· Editorial update in c8.1.15.5 1SL Control_Sk Process

	1.6
	WD14r4

Geneva
	Dec. 14, 2011
	· Cleannup version of wd14r3.

	Draft Recommendation ITU-T G.8021/Y.1341 (revised)

Characteristics of Ethernet transport network equipment
functional blocks

	Summary

Recommendation ITU-T G.8021/Y.1341 specifies both the functional components and the methodology that should be used in order to specify Ethernet transport network functionality of network elements; it does not specify individual Ethernet transport network equipment as such.

History

	Edition
	Recommendation
	Approval
	Study Group
	

	1.0
	ITU-T G.8021/Y.1341
	2004-08-22
	15
	

	1.1
	ITU-T G.8021/Y.1341 (2004) Amend. 1
	2006-06-06
	15
	

	2.0
	ITU-T G.8021/Y.1341
	2007-12-22
	15
	

	2.1
	ITU-T G.8021/Y.1341 (2007) Amend. 1
	2009-01-13
	15
	

	2.2
	ITU-T G.8021/Y.1341 (2007) Amend. 2
	2010-02-22
	15
	

	3.0
	ITU-T G.8021/Y.1341
	2010-10-22
	15
	

	3.1
	ITU-T G.8021/Y.1341 (2010) Amend. 1
	2011-07-22
	15
	

	4.0
	ITU-T G.8021/Y.1341
	201x-xx-xx
	15
	

	Keywords

Atomic functions, equipment functional blocks, Ethernet transport network.

CONTENTS

Page
201
Scope

2
References
22
3
Terms and definitions
24
4
Acronyms and abbreviations
26
5
Methodology
32
6
Supervision
32
6.1
Defects
32
6.1.1
Summary of Detection and Clearance conditions for defects
32
6.1.2
Continuity Supervision
35
6.1.2.1
Loss of Continuity defect (dLOC[])
35
6.1.3
Connectivity Supervision
36
6.1.3.1
Unexpected MEL defect (dUNL)
37
6.1.3.2
Mismerge defect (dMMG)
37
6.1.3.3
Unexpected MEP defect (dUNM)
37
6.1.3.4
Degraded Signal defect (dDEG)
37
6.1.4
Protocol Supervision
39
6.1.4.1
Unexpected Periodicity defect (dUNP)
39
6.1.4.2
Unexpected Priority defect (dUNPr)
39
6.1.4.3
Protection protocol supervision
39
6.1.5
Maintenance Signal Supervision
40
6.1.5.1
Remote Defect Indicator defect (dRDI[])
40
6.1.5.2
Alarm Indication Signal defect (dAIS)
40
6.1.5.3
Locked defect (dLCK)
40
6.1.5.4
Client Signal Fail defect (dCSF)
41
6.2
Consequent actions
41
6.3
Defect correlations
41
6.4
Performance filters
41
6.4.1
One-second performance monitoring filters associated with counts
41
6.4.2
Performance monitoring filters associated with gauges
41
7
Information flow across reference points
41
8
Generic processes for Ethernet Equipment
41
8.1
OAM related processes
41
8.1.1
OAM MEL Filter
41
8.1.2
LCK Generation Process
42
8.1.3
Selector Process
44
8.1.4
AIS Insert Process
45
8.1.5
APS Insert Process
47
8.1.6
APS Extract Process
49
8.1.7
Continuity Check (CC) Processes
50
8.1.7.1
Overview
50
8.1.7.2
CCM Generation Process
51
8.1.7.3
CCM Reception Process
55
8.1.7.4
ProActive Loss Measurement (LMp) Process
56
8.1.8
Loopback (LB) Processes
57
8.1.8.1
Overview
57
8.1.8.2
LB Control Process
58
8.1.8.3
LBM Generation Process
63
8.1.8.4
MIP LBM Reception Process
64
8.1.8.5
MEP LBM Reception Process
65
8.1.8.6
LBR Generation Process
66
8.1.8.7
LBR Reception Process
67
8.1.9
Loss Measurement (LM) Processes
68
8.1.9.1
Overview
68
8.1.9.2
LM Control Process
70
8.1.9.3
LMx Generation Process
73
8.1.9.4
LMx Reception Process
76
8.1.10
Delay Measurement (DM) Processes
77
8.1.10.1
Overview
77
8.1.10.2
DM Control Process
80
8.1.10.3 DMM Generation Process
83
8.1.10.4
DMM Reception Process
84
8.1.10.5
DMR Generation Process
85
8.1.10.6
DMR Reception Process
87
8.1.11
One Way Delay Measurement (1DM) Processes
88
8.1.11.1
Overview
88
8.1.11.2
1DM Control_So Process
90
8.1.11.3
1DM Generation Process
93
8.1.11.4
1DM Reception Process
94
8.1.11.5
1DM Control_Sk Process
95
8.1.12
Test (TST) Processes
97
8.1.12.1
Overview
97
8.1.12.2
TST Control_So Process
98
8.1.12.3
TST Generation Process
99
8.1.12.4
TST Reception Process
101
8.1.12.5
TST Control_Sk Process
102
8.1.13
Link Trace (LT) Processes
103
8.1.13.1
Overview
103
8.1.13.2
LT Control Process
104
8.1.13.3
LTM Generation Process
105
8.1.13.4
MIP LTM Reception Process
106
8.1.13.5
MEP LTM Reception Process
107
8.1.13.6
LTR Generation Process
108
8.1.13.7
LTR Reception Process
110
8.1.14
Synthetic Loss measurement (SL) Processes
111
8.1.14.1
Overview
111
8.1.14.2
SL Control process
112
8.1.14.3 SLM generation process
115
8.1.14.4
SLM reception process
116
8.1.14.5
SLR generation process
116
8.1.14.6
SLR reception process
118
8.1.15
CSF Insert Process
119
8.1.16
CSF Extract Process
121
8.2
Queuing process
122
8.3
Filter process
123
8.4
Replicate process
123
8.5
802.3 protocols processes
124
8.5.1
MAC control process
124
8.5.1.1
802.3 pause processes
124
8.5.2
802.3 slow protocols processes
125
8.5.2.1
LACP process
125
8.5.2.2
LAMP process
126
8.5.2.3
OAM process
126
8.5.2.4
OSSP Process
126
8.6
MAC Length Check process
127
8.7
MAC Frame Counter process
127
8.8
“Server Specific” Common Processes
128
8.8.1
MAC FCS generation process
128
8.8.2
MAC FCS Check process
128
8.8.3
802.1AB/X Protocols Processes
128
8.8.3.1
802.1X protocol process
128
8.8.3.2
802.1AB protocol process
129
8.8.4
Link quality supervision
129
8.8.5
FDI/BDI generation and detection
129
8.8.6
ETH-specific GFP-F process
130
8.8.6.1
ETH-specific GFP-F source process
130
8.8.6.2
ETH-specific GFP-F sink process
130
8.9
QoS related Processes
131
8.9.1
Queue
131
8.9.2
Priority Splitter
131
8.9.3
Priority Merger
131
8.9.4
Conditioner
132
8.9.5
Scheduler
133
9
Ethernet MAC layer (ETH) functions
133
9.1
ETH Connection Functions (ETH_C)
138
9.1.1
ETH Flow Forwarding process (ETH_FF)
140
9.1.2
Subnetwork Connection Protection Process
143
9.1.3
Ring Protection Control Process
146
9.2
ETH Termination Functions
148
9.2.1
ETHx Flow Termination functions (ETHx_FT)
148
9.2.1.1
ETHx Flow Termination source function (ETHx_FT_So)
148
9.2.1.2
ETHx Flow Termination sink function (ETHx_FT_Sk)
156
9.2.2
ETH Group Flow Termination functions (ETHG_FT)
162
9.2.2.1
ETH Group Flow Termination source function (ETHG_FT_So)
162
9.2.2.2
ETH Group Flow Termination sink function (ETHG_FT_Sk)
165
9.3
ETH Adaptation functions
168
9.3.1
ETH to Client adaptation functions (ETH/<client>_A)
168
9.3.2
ETH to ETH adaptation functions (ETHx/ETH_A)
168
9.3.2.1
ETH to ETH adaptation source function (ETHx/ETH_A_So)
168
9.3.2.2
ETH to ETH adaptation sink function (ETHx/ETH_A_Sk)
171
9.3.3
ETH to ETH multiplexing adaptation functions (ETHx/ETH-m_A)
174
9.3.3.1
ETH to ETH multiplexing adaptation source function (ETHx/ETH-m_A_So)
175
9.3.3.2
ETH to ETH multiplexing adaptation sink function (ETHx/ETH-m_A_Sk)
177
9.3.4
ETH Group to ETH adaptation functions (ETHG/ETH_A)
181
9.3.4.1
ETH Group to ETH adaptation source function (ETHG/ETH_A_So)
181
9.3.4.2
ETH Group to ETH adaptation sink function (ETHG/ETH_A_Sk)
183
9.3.5
ETHx to ETH Group adaptation functions (ETHx/ETHG_A)
186
9.3.5.1
ETHx to ETH Group adaptation source function (ETHx/ETHG_A_So)
186
9.3.5.2
ETHx to ETH Group adaptation sink function (ETHx/ETHG_A_Sk)
189
9.4
ETH Diagnostic Functions
193
9.4.1
ETH Diagnostic Flow Termination Functions for MEPs (ETHDe_FT)
193
9.4.1.1
ETH Diagnostic Flow Termination Source Function for MEPs (ETHDe_FT_So)
193
9.4.1.2
ETH Diagnostic Flow Termination Sink Function for MEPs (ETHDe_FT_Sk)
198
9.4.2
ETH Diagnostic Flow Termination Functions for MIPs (ETHDi_FT)
203
9.4.2.1
ETH Diagnostic Flow Termination Source Function for MIPs (ETHDi_FT_So)
203
9.4.2.2
ETH Diagnostic Flow Termination Sink Function for MIPs (ETHDi_FT_Sk)
205
9.4.3
ETHD to ETH Adaptation functions (ETHD/ETH_A)
208
9.4.3.1
ETHD to ETH Adaptation Source function (ETHD/ETH_A_So)
208
9.4.3.2
ETHD to ETH Adaptation Sink function (ETHD/ETH_A_Sk)
209
9.4.4
ETHDi to ETH adaptation functions (ETHDi/ETH_A)
210
9.4.4.1
ETHDi to ETH adaptation source function (ETHDi/ETH_A_So)
210
9.4.4.2
ETHDi to ETH adaptation sink function (ETHDi/ETH_A_Sk)
212
9.5
Server to ETH Adaptation functions (<server>/ETH_A)
213
9.6
ETH Traffic Conditioning and Shaping functions (ETH_TCS)
214
9.6.1
ETH Traffic Conditioning and Shaping functions (ETH_TCS)
214
9.6.1.1
ETH Traffic Shaping Function (ETH_TCS_So)
214
9.6.1.2
ETH Traffic Conditioning Function (ETH_TCS_Sk)
217
9.6.2
ETH Group Traffic Conditioning and Shaping Functions (ETH_GTCS)
218
9.6.2.1
ETH Group Traffic Shaping Function (ETH_GTCS_So)
218
9.6.2.2
ETH Group Traffic Conditioning Function (ETH_GTCS_Sk)
220
9.7
ETH Link Aggregation Functions
221
9.7.1
ETH Link Aggregation Layer Trail Termination Function (ETH-LAG-Np-Na_TT)
222
9.7.1.1
ETH Link Aggregation Adaptation Source Function (ETYn-Np/ETH-LAG-Na_A_So)
222
9.7.1.2
ETH Link Aggregation Adaptation Sink Function (ETYn-Np/ETH-LAG-Na_A_Sk)
225
9.7.1.3
ETH Link Aggregation Flow Termination Source Function (ETH-LAG_FT_So)
228
9.7.1.4
ETH Link Aggregation Flow Termination Sink Function (ETH-LAG_FT_Sk)
229
9.7.2
ETH-LAG to ETH Adaptation Function (ETH-LAG/ETH_A)
230
9.7.2.1
ETH-LAG to ETH Adaptation Source Function (ETH-LAG/ETH_A_So)
230
9.7.2.2
ETH-LAG to ETH Adaptation Sink Function (ETH-LAG/ETH_A_Sk)
232
10
Ethernet PHY Layer functions (ETYn)
233
10.1
ETYn Connection functions (ETYn_C)
233
10.2
ETYn Trail Termination functions (ETYn_TT)
233
10.2.1
ETYn Trail Termination Source function (ETYn_TT_So)
234
10.2.2
ETYn Trail Termination Sink function (ETYn_TT_Sk)
236
10.3
ETYn to ETH Adaptation functions (ETYn/ETH_A)
237
10.3.1
ETYn to ETH Adaptation Source function (ETYn/ETH_A_So)
238
10.3.2
ETYn to ETH Adaptation Sink function (ETYn/ETH_A_Sk)
241
10.4
1000BASE-(SX/LX/CX) ETY to Coding sub-layer Adaptation functions (ETY3/ETC3_A)
242
10.4.1
ETY3 to ETC3 Adaptation Source function (ETY3/ETC3_A_So)
243
10.4.2
ETY3 to ETC3 Adaptation Sink function (ETY3/ETC3_A_Sk)
244
10.5
ETCn Trail Termination functions (ETCn_TT)
244
10.6
ETCn to ETH Adaptation functions (ETCn/ETH_A)
244
10.7
ETY4 to Ethernet PP-OS adaptation function (ETY4/ETHPP-OS_A)
244
10.7.1
ETY4 to Ethernet PP-OS adaptation source function (ETY4/ETHPP-OS_A_So)
245
10.7.2 ETY4 to Ethernet PP-OS adaptation sink function (ETY4/ETHPP-OS_A_Sk)
246
11
Non-Ethernet server to ETH adaptation functions
247
11.1
SDH to ETH adaptation functions (S/ETH_A)
247
11.1.1
VC-n to ETH adaptation functions (Sn/ETH_A; n = 3, 3-X, 4, 4-X)
247
11.1.1.1
VC-n to ETH adaptation source function (Sn/ETH_A_So)
247
11.1.1.2
VC-n to ETH adaptation sink function (Sn/ETH_A_Sk)
250
11.1.2
LCAS-capable VC-n-Xv to ETH adaptation functions (Sn-X-L/ETH_A; n = 3, 4)
254
11.1.2.1
LCAS-capable VC-n-Xv to ETH adaptation source function (Sn-X-L/ETH_A_So)
254
11.1.2.2
LCAS-capable VC-n-Xv to ETH adaptation sink function (Sn-X-L/ETH_A_Sk)
257
11.1.3
VC-m to ETH adaptation functions (Sm/ETH_A; m = 11, 11-Xv, 12, 12-Xv, 2)
259
11.1.3.1
VC-m to ETH adaptation source function (Sm/ETH_A_So)
259
11.1.3.2
VC-m to ETH adaptation sink function (Sm/ETH_A_Sk)
262
11.1.4
LCAS-capable VC-m-Xv to ETH adaptation functions (Sm-X-L/ETH_A; m = 11, 12)
266
11.1.4.1
LCAS-capable VC-m-Xv to ETH adaptation source function (Sm-X-L/ETH_A_So)
266
11.1.4.2
LCAS-capable VC-m-Xv to ETH adaptation sink function (Sm-X-L/ETH_A_Sk)
269
11.2
SDH to ETC adaptation functions (Sn-X/ETC3_A)
271
11.2.1
VC-n-X to ETC3 Adaptation Source function (Sn-X/ETC3_A_So)
271
11.2.2
VC-n-X to ETC3 Adaptation Sink function (Sn-X/ETC3_A_Sk)
274
11.3
S4-64c to ETH-w adaptation functions
277
11.4
PDH to ETH adaptation functions (P/ETH_A)
278
11.4.1
Pq to ETH Adaptation functions (Pq/ETH_A; q = 11s, 12s, 31s, 32e)
278
11.4.1.1
Pq to ETH Adaptation Source function (Pq/ETH_A_So)
278
11.4.1.2
Pq to ETH Adaptation Sink function (Pq/ETH_A_Sk)
280
11.4.2
LCAS-capable Pq-Xv to ETH Adaptation functions (Pq-X-L/ETH_A; q = 11s, 12s, 31s, 32e)
284
11.4.2.1
LCAS-capable Pq-Xv to ETH Adaptation Source function (Pq-X-L/ETH_A_So)
284
11.4.2.2
LCAS-capable Pq-Xv to ETH Adaptation Sink function (Pq-X-L/ETH_A_Sk)
287
11.5
OTH to ETH adaptation functions (O/ETH_A)
291
11.5.1
ODUk to ETH adaptation functions (ODUkP/ETH_A)
291
11.5.1.1
ODUk to ETH adaptation source function (ODUkP/ETH_A_So)
291
11.5.1.2
ODUk to ETH adaptation sink function (ODUkP/ETH_A_Sk)
295
11.5.2
LCAS-capable ODUk-Xv to ETH adaptation functions (ODUkP-X-L/ETH_A; k = 1, 2, 3)
299
11.5.2.1
LCAS-capable ODUk-Xv to ETH adaptation source function (ODUkP-X-L/ETH_A_So)
299
11.5.2.2
LCAS-capable ODUk-Xv to ETH adaptation sink function (ODUkP-X-L/ETH_A_Sk)
303
11.5.3
ODU2P to Ethernet PP-OS adaptation functions (ODU2P/ETHPP-OS_A)
306
11.5.3.1
ODU2P to Ethernet PP-OS adaptation source function (ODU2P/ETHPP-OS_A_So)
306
11.5.3.2
ODU2P to Ethernet PP-OS adaptation sink function (ODU2P/ETHPP-OS_A_Sk)
309
11.5.4
ODU0P to 1 GbE client adaptation functions (ODU0P/CBRx_A)
312
11.6
MPLS to ETH adaptation functions (MPLS/ETH_A)
312
11.7
ATM VC to ETH adaptation functions (VC/ETH_A)
312
11.8
RPR to ETH adaptation functions (RPR/ETH_A)
312
Appendix I – Applications and functional diagrams
313
Appendix II – AIS/RDI mechanism for an Ethernet Private Line over a single SDH or OTH server layer
1
Appendix III – Compound Functions
5
Appendix IV – Startup conditions
9
Appendix V – SDL descriptions
10
Appendix VI – Calculation methods for frame loss measurement
11
VI.1
Dual-ended loss measurement
11
VI.2
Single-ended loss measurement
11
Appendix VII – Considerations of the support of a rooted multipoint EVC service
13
VII.1
Port group function
13
VII.2
Configuration of asymmetric VLANs
14
Appendix VIII –Configurations for Ingress VID Filtering
17
Bibliography
19

Introduction

This Recommendation forms part of a suite of ITU-T Recommendations covering the full functionality of Ethernet transport network architecture and equipment (e.g., Recommendations ITU-T G.8010/Y.1306 and ITU-T G.8012/Y.1308) and follows the principals defined in Recommendation ITU-T G.805.

This Recommendation specifies a library of basic building blocks and a set of rules by which they may be combined in order to describe equipment used in an Ethernet transport network. The building blocks are based on atomic modelling functions defined in Recommendations ITU-T G.806 and ITU-T G.809. The library comprises the functional building blocks needed to specify completely the generic functional structure of the Ethernet transport network. In order to be compliant with this Recommendation, the Ethernet functionality of any equipment which processes at least one of the Ethernet transport layers needs to be describable as an interconnection of a subset of these functional blocks contained within this Recommendation. The interconnections of these blocks should obey the combination rules given.

The specification method is based on functional decomposition of the equipment into atomic and compound functions. The equipment is then described by its Equipment Functional Specification (EFS) which lists the constituent atomic and compound functions, their interconnection and any overall performance objectives (e.g., transfer delay, availability, etc.).

Draft Recommendation ITU-T G.8021/Y.1341 (revised)

Characteristics of Ethernet transport network equipment
functional blocks
1
Scope

This Recommendation covers the functional requirements of Ethernet functionality within Ethernet transport equipment.

This Recommendation uses the specification methodology defined in [ITU-T G.806] in general for transport network equipment and is based on the architecture of Ethernet layer networks defined in [ITU-T G.8010], the interfaces for Ethernet transport networks defined in [ITU-T G.8012], and in support of services defined in the ITU-T G.8011.x series of Recommendations. It also provides processes for Ethernet OAM based on [ITU-T Y.1731]. The description is generic and no particular physical partitioning of functions is implied. The input/output information flows associated with the functional blocks serve for defining the functions of the blocks and are considered to be conceptual, not physical.

The functionality defined in this Recommendation can be applied at User-to-Network Interfaces (UNIs) and Network-to-Network Interfaces (NNIs) of the Ethernet transport network.

Not every functional block defined in this Recommendation is required for every application. Different subsets of functional blocks from this Recommendation and others (e.g., [ITU-T G.783], [ITU-T G.798], [ITU-T G.806] and [b-ITU-T I.732]) may be assembled in different ways according to the combination rules given in these Recommendations (e.g., [ITU-T G.806]) to provide a variety of different capabilities. Network operators and equipment suppliers may choose which functions must be implemented for each application.

The internal structure of the implementation of this functionality (equipment design) need not be identical to the structure of the functional model, as long as all the details of the externally observable behaviour comply with the Equipment Functional Specification (EFS).

Equipment developed prior to the production of this Recommendation may not comply in all details with this Recommendation.

The equipment requirements described in this Recommendation are generic and no particular physical partitioning of functions is implied. The input/output information flows associated with the functional blocks define the functions of the blocks and are considered to be conceptual, not physical.

Figure 1-1 presents a summary illustration of the set of atomic functions associated with the Ethernet signal transport. These atomic functions may be combined in various ways to support a variety of Ethernet services, some of which are illustrated in Appendix I. The functions for the processing of management communication channels (e.g., SDH DCC or OTH COMMS) are not shown in these figures in order to reduce their complexity. For DCC or COMMS functions, refer to the specific layer network descriptions.

[image: image1.emf]<client>_FP

<client>_CP

ETH_FP

ETCn_TCP

ETCn_AP

ETH_AP

ETH_AP

ETH_TFP

ETH_FP

ETH_TFP

ETH

ODUkP_AP

NOTE

－

ETH_TFP interface of adaptation functions towards the ETH_FT functions connects to logical link control.

See [ITU-T G.8010] and function definition for details.

ETCn

ETCn/ETH ETYn/ETH

ETHx

ETHx/ETH

ETHx

BP_FP

ETHx/BP

ETHx/<client>

Sn/ETH

Sn_AP

ODUkP/ETH

ETH_AP

ETH_TFP

ETHx

ETHx/ETH-m

ETHG_APP

ETHG_TFPP

ETHG

ETHG/ETH

(Note)

ETH-LAG_AP

ETH-LAG

ETYn-Np/

ETH-LAG-Na

ETYn/ETCn

ETYn

ETY_TCP

Sn-X_AP

ETYn_AP

Sn-X/ETC3

Na

Np

ETH-LAG_FP

ETH-LAG/ETH

ETH_AP

ETH_TFP

ETHx

ETHx/ETHG

Pq/ETH

Pq_AP

ETY4/ETHPP-OS ODU2P/ETHPP-OS

ETY3/CBRx ODU0P/CBRx

ODU2P_AP

ODU0P_AP

ETH

ETH_FP

ETH_TFP

(Note)

ETH_FP ETH_FP ETH_FP

ETH_FP

ETH_FP

(Note)

(Note)

(Note) (Note) (Note)

Sn-X-L/ETH

Sn-X-L_AP

ETH_FP

(Note)

Sm-X-L/ETH

Sm-X-L_AP

ETH_FP

(Note)

Sm/ETH

Sm_AP

ETH_FP

(Note)

Pq-X-L/ETH

Pq-X-L_AP

ETH_FP

(Note)

ODUkP-X-L/ETH

ODUkP-X-L_AP

ETH_FP

(Note)

MPLS_AP

MPLS/ETH

ETH_FP

(Note)

VC/ETH

VC_AP

ETH_FP

(Note)

RPR_AP

RPR/ETH

ETH_FP

(Note)

ETH_FP

(Note)

S4-64c/ETHw

S4-64c_AP

ETH_FP

(Note)

<server>_AP

<server>/ETH

ETH_AP

ETH_TFP

ETHDe

ETHD/ETH

ETH_AP

ETH_TFP

ETHDe

ETHD/ETH

ETH_AP

ETH_TFP

ETHDe

ETHD/ETH

ETH_AP

ETH_TFP

ETHDe

ETHD/ETH

ETH_AP

ETH_TFP

ETHDe

ETHD/ETH

ETH_AP

ETH_TFP

ETHDe

ETHD/ETH

ETH_AP

ETH_TFP

ETHDe

ETHD/ETH

ETH_AP

ETH_TFP

ETHDe

ETHD/ETH

n

n

n

n

ETH_AP

ETH_TFPP

ETHDe

ETHD/ETH

n

n

ETH_AP

ETH_TFP

ETHDi

ETHD/ETH

ETH_AP

ETH_TFP

ETHDi

ETHD/ETH

ETH_AP

ETH_TFP

ETHDi

ETHD/ETH

ETH_AP

ETH_TFP

ETHDi

ETHD/ETH

ETH_FP

ETH_TFP

Figure 1-1 – Overview of G.8021/Y.1341 atomic model functions

2
References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T G.707]

Recommendation ITU-T G.707/Y.1322 (2007), Network node interface for the synchronous digital hierarchy (SDH).
[ITU-T G.709]

Recommendation ITU-T G.709/Y.1331 (2009), Interfaces for the optical transport network (OTN).
[ITU-T G.783]

Recommendation ITU-T G.783 (2006), Characteristics of synchronous digital hierarchy (SDH) equipment functional blocks.
[ITU-T G.798]

Recommendation ITU-T G.798 (2010), Characteristics of optical transport network hierarchy equipment functional blocks.
[ITU-T G.805]

Recommendation ITU-T G.805 (2000), Generic functional architecture of transport networks.
[ITU-T G.806]

Recommendation ITU-T G.806 (2009), Characteristics of transport equipment Description methodology and generic functionality.
[ITU-T G.809]

Recommendation ITU-T G.809 (2003), Functional architecture of connectionless layer networks.
[ITU-T G.832]

Recommendation ITU-T G.832 (1998), Transport of SDH elements on PDH
networks –Frame and multiplexing structures.
[ITU-T G.7041]

Recommendation ITU-T G.7041/Y.1303 (2011), Generic framing procedure (GFP).
[ITU-T G.7043]

Recommendation ITU-T G.7043/Y.1343 (2004), Virtual concatenation of plesiochronous digital hierarchy (PDH) signals.

[ITU-T G.8001]

Recommendation ITU-T G.8001/Y.1354 (2008), Terms and definitions for Ethernet frames over Transport.
EDITOR’S NOTE – The new version of G.8001 is to be approved early 2012.
[ITU-T G.8010]

Recommendation ITU-T G.8010/Y.1306 (2004), Architecture of Ethernet layer networks.
[ITU-T G.8011]

Recommendation ITU-T G.8011/Y.1307 (2009), Ethernet service characteristics.
[ITU-T G.8011.1]

Recommendation ITU-T G.8011.1/Y.1307.1 (2009), Ethernet private line service.
[ITU-T G.8011.2]
Recommendation ITU-T G.8011.2/Y.1307.2 (2009), Ethernet virtual private line service.
[ITU-T G.8012]

Recommendation ITU-T G.8012/Y.1308 (2004), Ethernet UNI and Ethernet NNI.
[ITU-T G.8031]

Recommendation ITU-T G.8031/Y.1342 (2011), Ethernet linear protection switching.
[ITU-T G.8032]

Recommendation ITU-T G.8032/Y.1344 (2010), Ethernet ring protection switching.

EDITOR’S NOTE – The new version of G.8032 is to be approved early 2012.
[ITU-T G.8040]

Recommendation ITU-T G.8040/Y.1340 (2005), GFP frame mapping into Plesiochronous Digital Hierarchy (PDH).
[ITU-T G.8251]

Recommendation ITU-T G.8251 (2010), The control of jitter and wander within the optical transport network (OTN).
[ITU-T G.8264]

Recommendation ITU-T G.8264 (2008), Distribution of timing information through packet networks.
[ITU-T Y.1731]

Recommendation ITU-T G.8013/Y.1731 (2011), OAM functions and mechanisms for Ethernet based networks.
[ITU-T Z.100]

Recommendation ITU-T Z.100 (2007), Specification and Description Language (SDL).
[IEEE 802]

IEEE 802 (2001), IEEE Standard for Information technology – Telecommunications and information exchange between systems – Local and Metropolitan Area Networks: IEEE Standard: Overview and Architecture.
[IEEE 802.1AB]
IEEE 802.1AB (2009), IEEE Standard for Information technology – Telecommunications and information exchange between systems – Local and Metropolitan Area Networks: Station and Media Access Control Connectivity Discovery.
[IEEE 802.1AX]
IEEE 802.1AX (2008), IEEE Standard for Information technology – Telecommunications and information exchange between systems – Local and Metropolitan Area Networks: Link Aggregation.
 [IEEE 802.1D]

IEEE 802.1D (2004), IEEE Standard for Information technology – Telecommunications and information exchange between systems – Local and Metropolitan area networks: Media Access Control (MAC) Bridges.
[IEEE 802.1Q]

IEEE 802.1Q (2011), IEEE Standard for Information technology – Telecommunications and information exchange between systems – Local and Metropolitan Area Networks: Media Access Control (MAC) Bridges and Virtual Bridged Local Area Networks.
[IEEE 802.1X]

IEEE 802.1X (2010), IEEE Standard for Information technology – Telecommunications and information exchange between systems – Local and Metropolitan Area Networks: Port-Based Network Access Control.
[IEEE 802.3]

IEEE 802.3 (2008), IEEE Standard for Information technology – Telecommunications and information exchange between systems – Local and Metropolitan Area Networks – Specific requirements Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications.
[MEF 10.2]

Metro Ethernet Forum Technical Specification 10.2 (2009), Ethernet Service Attributes Phase 2.

3
Terms and definitions

This Recommendation uses the following terms defined elsewhere:

3.1.1
8B/10B transmission code: [IEEE 802.3]

3.1.2
10BASE-F: [IEEE 802.3]

3.1.3
10BASE-T: [IEEE 802.3]

3.1.4
100BASE-FX: [IEEE 802.3]

3.1.5
100BASE-T: [IEEE 802.3]

3.1.6
100BASE-TX: [IEEE 802.3]

3.1.7
100BASE-X: [IEEE 802.3]

3.1.8
1000BASE-CX: [IEEE 802.3]

3.1.9
1000BASE-LX: [IEEE 802.3]

3.1.10
1000BASE-SX: [IEEE 802.3]

3.1.11
1000BASE-T: [IEEE 802.3]

3.1.12
1000BASE-X: [IEEE 802.3]

3.1.13
access point: [ITU-T G.805] [ITU-T G.809]
3.1.14
adaptation: [ITU-T G.809]
3.1.15
adapted information: [ITU-T G.809]
3.1.16
auto-negotiation: [IEEE 802.3]
3.1.17
characteristic information: [ITU-T G.809]
3.1.18
client/server relationship: [ITU-T G.809]
3.1.19
code-group: [IEEE 802.3]

3.1.20
comma: [IEEE 802.3]

3.1.21
connection point: [ITU-T G.805]
3.1.22
connectionless trail: [ITU-T G.809]
3.1.23
consequent actions: [ITU-T G.806]
3.1.24
defect correlations: [ITU-T G.806]
3.1.25
defects: [ITU-T G.806]
3.1.26
Ethernet flow replication point (ETHF_PP): [ITU-T G.8001]

3.1.27
Ethernet replicated information (ETH_PI): [ITU-T G.8001]

3.1.28
Ethernet termination flow replication point (ETHTF_PP): [ITU-T G.8001]

3.1.29
flow: [ITU-T G.809]
3.1.30
flow domain: [ITU-T G.809]
3.1.31
flow domain flow: [ITU-T G.809]
3.1.32
flow point: [ITU-T G.809]
3.1.33
flow point pool: [ITU-T G.809]
3.1.34
flow termination: [ITU-T G.809]
3.1.35
flow termination sink: [ITU-T G.809]
3.1.36
flow termination source: [ITU-T G.809]
3.1.37
full duplex: [IEEE 802.3]

3.1.38
generic framing procedure (GFP): [ITU-T G.7041]
3.1.39
jabber: [IEEE 802.3]

3.1.40
layer network: [ITU-T G.809]
3.1.41
link: [ITU-T G.805]
3.1.42
link connection: [ITU-T G.805]
3.1.43
link flow: [ITU-T G.809]
3.1.44
media access control (MAC): [IEEE 802.3]

3.1.45
medium attachment unit (MAU): [IEEE 802.3]

3.1.46
network: [ITU-T G.809]
3.1.47
network connection: [ITU-T G.805]
3.1.48
network flow: [ITU-T G.809]
3.1.49
network operator: [b-ITU-T M.3208.1]
3.1.50
network-to-network interface (NNI): [ITU-T G.8001]
3.1.51
non-return-to-zero, invert on ones (NRZI): [IEEE 802.3]

3.1.52
ordered set: [IEEE 802.3]

3.1.53
performance filters: [ITU-T G.806]
3.1.54
physical coding sublayer (PCS): [IEEE 802.3]

3.1.55
physical layer entity (PHY): [IEEE 802.3]

3.1.56
physical medium attachment (PMA) sublayer: [IEEE 802.3]

3.1.57
physical medium dependent (PMD) sublayer: [IEEE 802.3]

3.1.58
physical signalling sublayer (PLS): [IEEE 802.3]

3.1.59
port: [ITU-T G.809]
3.1.60
QTag prefix: [IEEE 802.3]

3.1.61
reconciliation sublayer (RS): [IEEE 802.3]

3.1.62
reference point: [ITU-T G.805] [ITU-T G.809]
3.1.63
reference points: [ITU-T G.806]
3.1.64
service provider: [b-ITU-T M.3208.1]
3.1.66
termination connection point: [ITU-T G.805]
3.1.67
termination flow point: [ITU-T G.809]
3.1.68
termination flow point pool: Refer to clause 6.3.5.5 of [ITU-T G.8010]
3.1.69
timing point: [ITU-T G.806]
3.1.70
traffic conditioning function: [ITU-T G.8001]
3.1.71
traffic unit: [ITU-T G.809]
3.1.72
trail: [ITU-T G.805]
3.1.73
trail termination: [ITU-T G.805]
3.1.74
transport: [ITU-T G.809]
3.1.75
transport entity: [ITU-T G.809]
3.1.76
transport processing function: [ITU-T G.809]
3.1.77
twisted pair: [IEEE 802.3]

3.1.78
user-to-network interface (UNI): [ITU-T G.8001]

4
Acronyms and abbreviations

This Recommendation uses the following abbreviations:

1DM

1way Delay Measurement

A

Adaptation Function

AI

Adapted Information

AIS

Alarm Indication Signal
AP

Access Point

APP

Access Point Pool

APS

Automatic Protection Switching

ATM

Asynchronous Transfer Mode

BER

Bit Error Ratio

BS

Bad Second

C

Connection Function

CBR

Constant Bit Rate
CC

Continuity Check

CCM

Continuity Check Message

CFI

Canonical Format Identifier

CI

Characteristic Information

CK

Clock
COMMS
Communications channel
CoS

Class of Service
CP

Connection Point

CRC

Cyclic Redundancy Check

CSF

Client Signal Fail
D

Data
DA

Destination Address
DCC

Data Communication Channel
DCI

Defect Clear Indication
DE

Drop Eligibility

DEI

Drop Eligible Identifier

DEG

Degraded

DEGM

Degraded M

DEGTHR
Degraded Threshold

DM

Delay Measurement

DMM

Delay Measurement Message

DMR

Delay Measurement Reply

EC

Ethernet Connection

EFS

Equipment Functional Specification

EPL

Ethernet Private Line

EPLAN

Ethernet Private Local Area Network

ESMC

Ethernet Synchronization Message Channel
ETC

Ethernet Coding

ETH

Ethernet Media Access Control layer network

ETHD
Ethernet MAC layer network Diagnostic function

ETHDe
Ethernet MAC layer network Diagnostic function within MEP

ETHDi
Ethernet MAC layer network Diagnostic function within MIP

ETHG
Ethernet MAC layer network Group

ETH-m
Ethernet MAC layer network - multiplexing
ETHx
Ethernet MAC layer network at level x (x = Path, Tandem Connection, Section)

ETY

Ethernet Physical layer network
ETYn

Ethernet Physical layer network of type n
EVC

Ethernet Virtual Connection

EVPL

Ethernet Virtual Private Line

EVPLAN
Ethernet Virtual Private Local Area Network

EXI

Extension Header Identifier
EXM

Extension Header Mismatch

FCS

Frame Check Sequence

FD

Flow Domain

FD

Frame Delay

FDI

Forward Defect Indication
FDF

Flow Domain Flow

FDV

Frame Delay Variation

FF

Flow Forwarding
FOP

Failure Of Protocol

FP

Flow Point

FPP

Flow Point Pool

FS

Frame Start

FT

Flow Termination

GFP

Generic Framing Procedure

GFP-F

Generic Framing Procedure – Frame mapped

GFP-T

Generic Framing Procedure – Transparent mapped

GS

Good Second

GTCS

Group Traffic Conditioning and Shaping
LAG

Link Aggregation
LAN

Local Area Network

LB

LoopBack

LBM

LoopBack Message

LBR

LoopBack Reply

LCAS

Link Capacity Adjustment Scheme

LCK

Lock

LF

Lost Frames
LFD

Loss of Frame Delineation

LLC

Logical Link Control

LM

Loss Measurement

LMM

Loss Measurement Message

LMR

Loss Measurement Reply

LOC

Loss Of Continuity

LOS

Loss Of Signal

LT

Link Trace

LTM

Link Trace Message

LTR

Link Trace Reply

M_SDU
Media Access Control Service Data Unit

MAC

Media Access Control

MAU

Management Attachment Unit

ME

Maintenance Entity

MEG

Maintenance Entity Group

MEL

Maintenance Entity Group Level

MEP

Maintenance Entity Group End Point

MI

Management Information

MIP

Maintenance Entity Group Intermediate Point

MMG

Mismerge

MP

Manintenance Point

MPLS

Multi-Protocol Label Switching

NNI

Network-to-Network Interface

OAM

Operations, Administration and Maintenance

ODU

Optical Channel Data Unit

ODUj

Optical Channel Data Unit – order j

ODUj-Xv
Virtual concatenated Optical Channel Data Unit – order j

ODUk

Optical Channel Data Unit – order k

ODUk-Xv
Virtual concatenated Optical Channel Data Unit – order k

OO

Out of Order

OPC

OpCode
OPU

Optical channel Payload Unit
OSSP

Organization Specific Slow Protocol

OTH

Optical Transport Hierarchy

OTN

Optical Transport Netowork

OUI

Organizaional Unique Identifier
P

Priority

P11s

1544 kbit/s PDH path layer with synchronous 125 μs frame structure according to [b-ITU-T G.704]
P12s

2048 kbit/s PDH path layer with synchronous 125 μs frame structure according to [b-ITU-T G.704]
P31s

34 368 kbit/s PDH path layer with synchronous 125 μs frame structure according to [ITU-T G.832]

P4s

139 264 kbit/s PDH path layer with synchronous 125 μs frame structure according to [ITU-T G.832]

PA

(Ethernet) Preamble

PCP

Priority Code Point
PCS

Physical Convergence Sublayer

PDH

Plesiochronous Digital Hierarchy

PDU

Protocol Data Unit

PFI

Payload FCS Indicator
PHY

Physical Layer Entity

PI

Replication Information

PLM

Payload Mismatch

PLS

Physical Layer Signalling

PMA

Physical Medium Attachment sublayer

PMD

Physical Medium Dependent sublayer

POH

Path OverHead

PP

Replication Point

PP-OS

Preamble, Payload, and Ordered Set information
PRBS

Pseudo-Random Bit Sequence
PSI

Payload Structure Identifier
PT

Payload Type

PTI

Priority Type Idertifer
QoS

Quality of Service
R-APS

Ring Automatic Protection Switching
REC

Received
RES

Reserved
RDI

Remote Defect Indication

RI

Remote Information

RP

Remote Point

RPR

Resilient Packet Ring

RxFCf

Received Frame Count Far end

RxFCl

Received Frame Count Local

SA

Source Address

SDH

Synchronous Digital Hierarchy

SDU

Service Data Unit

SFD

Start of Frame Delimiter

SL

Synthetic Loss

SLM

Synthetic Loss Message

SLR

Synthetic Loss Reply

SNC

Sub-Network Connection

SSD

Server Signal Degrade

SSF

Server Signal Fail

STM-N

Synchronous Transport Module – level N

svd

saved

TA

Target MAC Address

TCI

Tag Control Information

TCM

Tandem Connection Monitoring

TCP

Trail Connection Point

TCS
Traffic Conditioning and Shaping

TF

Transmitted Frames
TFP

Termination Flow Point

TFPP

Termination Flow Point Pool

TI

Timing Information

TID

Transaction Identifier

TLV

Type, Length Value

TP

Timing Point

TPID

Tag Protocol Identifier

TSD

Trail Signal Degrade

TSF

Trail Signal Fail

TST

Test

TT

Trail Termination

TTL

Time To Live

TxFCf

Transmitted Frame Count Far end

TxFCl

Transmitted Frame Count Local

UNI

User-to-Network Interface

UNL

Unexpected Maintenance Entity Group Level

UNM

Unexpected Maintenance Entity Group End Point
UNP

Unexpected Period

UNPr

Unexpected Priority

UPI

(Generic Framing Procedure) User Payload Identifier

UPM

User Payload Mismatch

VID

Virtual Local Area Network Identifier
VC

Virtual Channel (Asynchronous Transfer Mode) or Virtual Container (Synchronous Digital Hierarchy)

VCAT

Virtual ConCATenation

VC-m

Lower Order Virtual Channel – order m

VC-n

Higher Order Virtual Channel – order n

VC-n-Xc
Contiguous concatenated Virtual Channel – order n

VC-n-Xv
Virtual concatenated Virtual Channel – order n

VLAN

Virtual Local Area Network

5
Methodology

For the basic methodology to describe transport network functionality of network elements, refer to clause 5 of [ITU-T G.806]. For Ethernet-specific extensions to the methodology, see clause 5 of [ITU-T G.8010].

All process descriptions in clauses 6, 8 and 9 use the SDL methodolgy defined in [ITU-T Z.100].

6
Supervision

The generic supervision functions are defined in clause 6 of [ITU-T G.806]. Specific supervision functions for the Ethernet transport network are defined in this clause.

6.1
Defects

6.1.1
Summary of Detection and Clearance conditions for defects

The defect Detection and Clearance conditions are based on events. Occurrence or absence of specific events may detect or clear specific defects.

In the following:

Valid means a received value is equal to the value configured via the MI input interface(s).

Invalid means a received value is not equal to the value configured via the MI input interface(s).

The events defined for this Recommendation are summarized in Table 6-1. Events, other than APS or R-APS events, are generated by processes in the ETHx_FT_Sk function as defined in clause 9.2.1.2. APS events are generated by the subnetwork connection protection process as defined in clause 9.1.2. R-APS events are generated by the ring protection control process as defined in clause 9.1.3. These processes define the exact conditions for these events; Table 6-1 only provides a quick overview.

Table 6-1 – Overview of Events

	Event
	Meaning

	unexpMEL
	Reception of a CCM frame with an invalid MEL value.

	unexpMEG
	Reception of a CCM frame with an invalid MEG value, but with a valid MEL value.

	unexpMEP
	Reception of a CCM frame with an invalid MEP value, but with valid MEL and MEG values.

	unexpPeriod
	Reception of a CCM frame with an invalid Periodicity value, but with valid MEL, MEG and MEP values.

	unexpPriority
	Reception of a CCM frame with an invalid Priority value, but with valid MEL, MEG and MEP values.

	expCCM[i]
	Reception of a CCM frame with valid MEL, MEG, MEP and Periodicity values, where a MEP is indexed by “i”.

	RDI[i]=x
	Reception of a CCM frame for a MEP indexed by ‘i’ with the RDI flag set to x; where x=0 (remote defect clear) and x=1 (remote defect set).

	LCK
	Reception of a LCK frame.

	AIS
	Reception of an AIS frame.

	CSF-LOS
	Reception of a CSF frame that indicates Client Loss of Signal.

	CSF-FDI
	Reception of a CSF frame that indicates Client Forward Defect Indication.

	CSF-RDI
	Reception of a CSF frame that indicates Client Reverse Defect Indication.

	BS
	Bad Second, a second in which the Lost Frame Ratio exceeds the Degraded Threshold (MI_LM_DEGTHR).

	expAPS
	Reception of a valid APS frame.

	expRAPS
	Reception of a valid R-APS frame.

	APSw
	Reception of an APS frame from the working transport entity.

	APSb
	Reception of an APS frame with incompatible “B” bit value.

	APSr
	Reception of an APS frame with incompatible “Requested Signal” value.

	RAPSpm
	Reception by the RPL Owner of an R-APS(NR, RB) frame with a Node ID that differs from its own.

The occurrence or absence of these events may detect or clear a defect. An overview of the conditions is given in Table 6-2. The notation “#event=x (K*period)” is used to indicate the occurrence of x events within the period as specified between the brackets; 3.25≤K≤3.5.

Table 6-2 gives a quick overview of the detection and clearance conditions for the various defects; in the following clauses 6.1.2, 6.1.3, 6.1.4 and 6.1.5 the precise conditions are specified using SDL diagrams.

Table 6-2 – Overview of Defect Detection and Clearance

	Defect
	Defect Detection
	Defect Clearance

	dLOC[]
	#expCCM[] == 0 (K*MI_CC_Period)
	expCCM[]

	dUNL
	unexpMEL
	#unexpMEL == 0 (K*CCM_Period)

	dUNPr
	unexpPriority
	#unexpPriority == 0 (K*CCM_Period)

	dMMG
	unexpMEG
	#unexpMEG == 0 (K*CCM_Period)

	dUNM
	unexpMEP
	#unexpMEP == 0 (K*CCM_Period)

	dUNP
	unexpPeriod
	#unexpPeriod == 0 (K*CCM_Period)

	dRDI[]
	RDI[] == 1
	RDI[] == 0

	dAIS
	AIS
	#AIS == 0 (K*AIS_Period)

	dLCK
	LCK
	#LCK == 0 (K*LCK Period)

	dCSF-LOS
	CSF-LOS
	#CSF-LOS == 0
(K*CSF_Period or CSF-DCI)

	dCSF-FDI
	CSF-FDI
	#CSF-FDI == 0
(K*CSF_Period or CSF-DCI)

	dCSF-RDI
	CSF-RDI
	#CSF-RDI == 0
(K*CSF_Period or CSF-DCI)

	dDEG
	#BadSecond == 1
(MI_LM_DEGM*1second)
	#BadSecond == 0
(MI_LM_M*1second)

	dFOP-CM
	APSw
	#APSw == 0 (K*normal APS Period)

	dFOP-PM
	APSb or RAPSpm
	expAPS or #RAPSpm == 0
(K*long R-APS frame interval)

	dFOP-NR
	APSr continues more than 50ms
	expAPS

	dFOP-TO
	#expAPS==0 (K * long APS interval) or #expRAPS==0 (K * long R-APS frame interval)
	expAPS or expRAPS

Note that for the case of CCM_Period, AIS_Period, LCK_Period, and CSF_Period the values for the CCM, AIS, LCK, and CSF periods are based on the periodicity as indicated in the CCM, AIS, LCK, or CSF frame that triggered the timer to be started.

For dUNL, dMMG, dUNM, dUNP, dUNPr there may be multiple frames received detecting the same defect but carrying a different periodicity. In that case the longest received period will be used, see the detailed descriptions below.

6.1.2
Continuity Supervision

 [image: image2.emf]LOC[i] Cleared

expCCM[i]

Timer

dLOC[i]

dLOC[i] Detected

!dLOC[i]

Set(K*MI_CC_Period, Timer)

Reset(Timer)

Set(K*MI_CC_Period,Timer)

expCCM[i]

Set(K*MI_CC_Period,Timer)

Figure 6-1 – dLOC[] detection and clearance process

6.1.2.1
Loss of Continuity defect (dLOC[])

The Loss of Continuity defect is calculated at the ETH layer. It monitors the presence of continuity in ETH trails.
Its detection and clearance are defined in Figure 6-1. The Timer in Figure 6-1 is set to K*MI_CC_Period, where MI_CC_Period corresponds to the configured CCM Period and K is such that 3.25≤K≤3.5.
NOTE - The dLOC entry/exit criteria defined in this version of the Recommendation are different that those defined in previous versions of this Recommendation (i.e., G.8021(2007) and G.8021(2010)), because they have been aligned those defined in clause 21 of [IEEE 802.1Q]. This change impacts only the conditions for defect detection and therefore does not affect interoperability between equipment compliant with this version of the Recommendation (and/or with clause 21 of [IEEE 802.1Q]) and those compliant with older version of this Recommendation.
6.1.3
Connectivity Supervision

[image: image3.emf]<Defect> Deteced

<Event>(Period)

Timer

<Defect> Cleared

Period<Old_Period

N

Y

Old_Period=Period

Reset(Timer)

<Event>(Period)

<Defect>

Set(K*Period, Timer)

Old_Period=Period

Set(K*Period, Timer) Set(K*Old_Period, Timer)

<Defect> Deteced

<Event>(Period)

<Defect> Cleared

Period<Old_Period

N

Y

Old_Period=Period

Reset(Timer)

<Event>(Period)

<Defect>

Set(K*Period, Timer)

Old_Period=Period

Set(K*Period, Timer) Set(K*Old_Period, Timer)

Timer

!<Defect>

Timer

!<Defect>

<Clear_event>

Reset(Timer) Reset(Timer)

!<Defect> !<Defect>

Figure 6-2 – Defect detection and clearance process for dUNL, dMMG, dUNM, dUNP, dUNPr, dAIS, dLCK, and dCSF
Figure 6-2 shows a generic state diagram that is used to detect and clear the dUNL, dMMG, dUNM, dUNP, dUNPr, dAIS, dLCK defects. In this diagram <Defect> needs to be replaced with the specific defect and <Event> with the specific event related to this defect. Furthermore, in Figure 6-2, 3.25≤K≤3.5.

Figure 6-2 shows that the Timer is set based on the last received period value, unless an earlier CCM frame triggering <Event> (and therefore the detection of <Defect>) carried a longer period. As a consequence clearing certain defects may take more time than necessary.

6.1.3.1
Unexpected MEL defect (dUNL)

The Unexpected MEL defect is calculated at the ETH layer. It monitors the connectivity in a Maintenance Entity Group.

Its detection and clearance are defined Figure 6-2. The <Defect> in Figure 6-2 is dUNL. The <Event> in Figure 6-2 is the unexpMEL event (generated by the CCM reception process in clause 8.1.7.3) and the Period is the Period carried in the CCM frame that triggered this event, unless an earlier CCM frame triggering an unexpMEL event carried a greater period.

6.1.3.2
Mismerge defect (dMMG)

The Mismerge defect is calculated at the ETH layer. It monitors the connectivity in a Maintenance Entity Group.

Its detection and clearance are defined in Figure 6-2. The <Defect> in Figure 6-2 is dMMG. The <Event> in Figure 6-2 is the unexpMEG event (as generated by the CCM reception process in clause 8.1.7.3) and the Period is the Period carried in the CCM frame that triggered the event, unless an earlier CCM frame triggering an unexpMEG event carried a greater period.

6.1.3.3
Unexpected MEP defect (dUNM)

The Unexpected MEP defect is calculated at the ETH layer. It monitors the connectivity in a Maintenance Entity Group.

Its detection and clearance are defined in Figure 6-2. The <Defect> in Figure 6-2 is dUNM. The <Event> in Figure 6-2 is the unexpMEP event (as generated by the CCM reception process in clause 8.1.7.3) and the Period is the Period carried in the CCM frame that triggered the event, unless an earlier CCM frame triggering an unexpMEP event carried a greater period.

6.1.3.4
Degraded Signal defect (dDEG)

This defect is only defined for point-to-point ETH connections.

 [image: image4.emf]BS++

GS=0

If BadSecond

GS++

BS=0

dDEG Cleared

BS==MI_LM_DEGM

dDEG

dDEG detected

GS==MI_LM_M

!dDEG

nN_TF(N_TF)

nN_LF(N_LF)

Yes

Yes

No

BS=GS=0

BadSecond=0

If ((N_TF>MI_LM_TFMIN)

&& (N_LF>=0))

Yes

No

If ((N_LF/N_TF)>

MI_LM_DEGTHR)

Yes

No

BadSecond=1

Yes

BadSecond=0

No

No

Figure 6-3 – dDEG detection and clearance process

The Degraded Signal defect is calculated at the ETH layer. It monitors the connectivity of an ETH Trail.

Its detection and clearance are defined in Figure 6-3.

Every second the state machine receives the one-second counters for near end received and transmitted frames and determines whether the second was a Bad Second. The defect is detected if there are MI_LM_DEGM consecutive Bad Seconds and cleared if there are MI_LM_M consecutive Good Seconds.

In order to declare a Bad Second the number of transmitted frames must exceed a threshold (MI_LM_TFMIN). Furthermore, if the Frame Loss Ratio (lost frames/transmitted frames) is greater than MI_LM_DEGTHR, a Bad Second is declared

6.1.4
Protocol Supervision

6.1.4.1
Unexpected Periodicity defect (dUNP)

The Unexpected Periodicity defect is calculated at the ETH layer. It detects the configuration of different periodicities at different MEPs belonging to the same MEG.

Its detection and clearance are defined in Figure 6-2. The <Defect> in Figure 6-2 is dUNP. The <Event> in Figure 6-2 is the unexpPeriod event (as generated by the CCM reception process in clause 8.1.7.3) and the Period is the Period carried in the CCM frame that triggered the event, unless an earlier CCM frame triggering an unexpPeriod event carried a greater period.
6.1.4.2
Unexpected Priority defect (dUNPr)

The Unexpected Priority defect is calculated at the ETH layer. It detects the configuration of different Priorities for CCM at different MEPs belonging to the same MEG.

Its detection and clearance are defined in Figure 6-2. The <Defect> in Figure 6-2 is dUNPr. The <Event> in Figure 6-2 is the unexpPriority event (as generated by the CCM reception process in clause 8.1.7.3) and the Period is the Period carried in the CCM frame that triggered the event, unless an earlier CCM frame triggering an unexpPriority event carried a greater period.

6.1.4.3
Protection protocol supervision

6.1.4.3.1
Linear or Ring protection Failure of Protocol Provisioning Mismatch (dFOP-PM)
The Failure of Protocol Provisioning Mismatch defect is calculated at the ETH layer. It monitors provisioning mismatch of:

· Linear protection by comparing B bits of the transmitted and the received APS protocol, or

· Ring protection by comparing the Node ID of the RPL Owner and the Node ID in a received R-APS(NR, RB) frame.

Its detection and clearance are defined in Table 6-2. dFOP-PM is detected:

· In the case of linear protection, on receipt of an APSb event and cleared on receipt of an expAPS event. These events are generated by the subnetwork connection protection process (clause 9.1.2), or
· In the case of ring protection, on receipt of an RAPSpm event and cleared on receipt of no RAPSpm event during K times the long R-APS frame intervals defined in [ITU-T G.8032], where 3.25≤K≤3.5. These events are generated by the ring protection control process (clause 9.1.3).

6.1.4.3.2
Linear protection Failure of Protocol No Response (dFOP-NR)
The Failure of Protocol No Response defect is calculated at the ETH layer. It monitors incompletion of protection switching by comparing the transmitted “Requested Signal” values and the received “Requested Signal” in the APS protocol.

Its detection and clearance are defined in Table 6-2. dFOP-NR is detected when APSr event continues more than 50ms and it is cleared on receipt of the expAPS event. These events are generated by the subnetwork connection protection process (clause 9.1.2). This defect is not applied in the case of unidirectional protection switching operation.
6.1.4.3.3
Linear protection Failure of Protocol Configuration Mismatch (dFOP-CM)
The Failure of Protocol Configuration Mismatch defect is calculated at the ETH layer. It monitors working and protection configuration mismatch by detecting the reception of APS protocol from the working transport entity.

Its detection and clearance are defined in Table 6-2. dFOP-CM is detected on receipt of an APSw events and cleared on receipt of no APSw event during K times the normal APS transmission period defined in [ITU-T G.8031], where 3.25≤K≤3.5. These events are generated by the subnetwork connection protection process (clause 9.1.2).
6.1.4.3.4
Linear or Ring protection Failure of Protocol Time Out (dFOP-TO)

The Failure of Protocol Time Out defect is calculated at the ETH layer. It monitors time out defect of:

· Linear protection by detecting the prolonged absence of expected APS frames, or
· Ring protection by detecting the prolonged absence of expected R-APS frames.

Its detection and clearance are defined in Table 6-2.

In the case of linear protection, dFOP-TO is detected on receipt of no expAPS event during K times the long APS interval defined in G.8031/Y.1342 (where K >= 3.5) when neither dLOC nor CI_SSF are reported. dFOP-TO is cleared on receipt of an expAPS event. These events are generated by the subnetwork connection protection process (clause 9.1.2).

In the case of ring protection, dFOP-TO is detected on receipt of no expRAPS event during K times the long R-APS frame intervals defined in G.8032/Y.1344 (where K>=3.5) on a ring port reporting no link level failure and neither administratively disabled, nor blocked from R-APS Message reception. dFOP-TO is cleared on receipt of an expRAPS event. These events are generated by the ring protection control process (clause 9.1.3).
6.1.5
Maintenance Signal Supervision

6.1.5.1
Remote Defect Indicator defect (dRDI[])

The Remote Defect Indicator defect is calculated at the ETH layer. It monitors the presence of an RDI maintenance signal.

dRDI is detected on receipt of the RDI[]=1 event and cleared on receipt of the RDI[]=0 event. These events are generated by the CCM reception process.

6.1.5.2
Alarm Indication Signal defect (dAIS)

The Alarm Indication Signal defect is calculated at the ETH layer. It monitors the presence of an AIS maintenance signal.

Its detection and clearance conditions are defined in Figure 6-2. The <Defect> in Figure 6-2 is dAIS. The <Event> in Figure 6-2 is the AIS event (as generated by the AIS reception process in clause 9.2.1.2) and the Period is the Period carried in the AIS frame that triggered the event, unless an earlier AIS frame carried a greater period.

6.1.5.3
Locked defect (dLCK)

The Locked defect is calculated at the ETH layer. It monitors the presence of a Locked maintenance signal.

Its detection and clearance conditions are defined in Figure 6-2. The <Defect> in Figure 6-2 is dLCK. The <Event> in Figure 6-2 is the LCK event (as generated by the LCK reception process in clause 9.2.1.2) and the Period is the Period carried in the LCK frame that triggered the event, unless an earlier LCK frame carried a greater period.
6.1.5.4 Client Signal Fail defect (dCSF)
The CSF (CSF-LOS, CSF-FDI, and CSF-RDI) defect is calculated at the ETH layer. It monitors the presence of a CSF maintenance signal.
Its detection and clearance conditions are defined in Figure 6-2. The <Defect> in Figure 6-2 is dCSF-LOS, dCSF-FDI, or dCSF-RDI. The <Event> in Figure 6-2 is the CSF event (as generated by the CSF reception process in clause 9.2.1.2) and the Period is the Period carried in the CSF frame that triggered the event, unless an earlier CSF frame carried a greater period.
The <Clear_event> in Figure 6-2 is the CSF event which indicates Detect Clearance Indication (DCI).
6.2
Consequent actions

For consequent actions, see [ITU-T G.806] and the specific atomic functions.

6.3
Defect correlations

For the defect correlations, see the specific atomic functions.

6.4
Performance filters

6.4.1
One-second performance monitoring filters associated with counts

For further study.

6.4.2
Performance monitoring filters associated with gauges

For further study.

7
Information flow across reference points

See clause 7 of [ITU-T G.806] for the generic description of information flow. For Ethernet-specific information flow, see the description of the functions in clause 9.

8
Generic processes for Ethernet Equipment

This clause defines processes specific to equipment supporting the Ethernet transport network.

8.1
OAM related processes

8.1.1
OAM MEL Filter

[image: image5.emf]MI_MEL

P

D

E

D P

D

E

D

P

D

E

D P

D

E

D

P

D

E

D

P

D

E

D

Port

1

2 N

OAM MEL

Filter

Figure 8-1 – OAM MEL Filter process

The OAM MEL Filter process filters incoming ETH OAM traffic units based on the MEL they carry. All traffic units with an MEL equal to or lower than the MEL provided by the MI_MEL signal are discarded.

The criteria for filtering depend on the values of the fields in the M_SDU field of the ETH_CI_D signal.

The ETH OAM Traffic Unit and complementing P and DE signals will be filtered, if

· Length/Type field = OAM Ethertype (89-02 as defined in clause 10 of [ITU-T Y.1731]), and

· MEL field <= MI_MEL

Figure 8-1 shows the OAM MEL Filter Process for multiple ports. Figure 8-2 shows the filtering process that is running per port.

[image: image6.emf]Running

D(D),P(P),DE(DE)

Etype(D)=89-02 &

MEL(D)<=MI_MEL

N

Y

D(D),P(P),DE(DE)

Figure 8-2 – OAM MEL Filter behaviour

8.1.2
LCK Generation Process

[image: image7.emf]MI_LCK_Period

MI_Client_MEL

MI_LCK_Pri

LCK

Generate

P

D

E

D

MI_MEP_MAC

MI_LCK_Period

MI_Client_MEL

MI_LCK_Pri

LCK

Generate

P

D

E

D

MI_MEP_MAC

Figure 8-3 – LCK Generation process

The LCK Generation Process generates ETH_CI traffic units where the ETH_CI_D signal contains the LCK signal. Figure 8-4 defines the behaviour of the LCK Generation Process.

[image: image8.emf]Timer

D(OAM),

P(MI_LCK_Pri),

DE(0)

OAM=LCK(

MI_MEP_MAC,

MI_Client_MEL,

MI_LCK_Period

)

LCK Generate

Set(0, Timer)

Set(MI_LCK_Period, Timer)

Timer

D(OAM),

P(MI_LCK_Pri),

DE(0)

OAM=LCK(

MI_MEP_MAC,

MI_Client_MEL,

MI_LCK_Period

)

LCK Generate

Set(0, Timer)

Set(MI_LCK_Period, Timer)

Figure 8-4 – LCK Generation behaviour

The LCK Generation Process continuously generates LCK Traffic Units; every time the Timer expires a LCK Traffic Unit will be generated. The period between two consecutive traffic units is determined by the MI_LCK_Period input signal. Allowed values are defined in Table 8-1.

Table 8-1 – LCK period values

	3-bits
	Period Value
	Comments

	000-011
	Invalid Value
	Invalid value for LCK PDUs

	100
	1s
	1 frame per second

	101
	Invalid Value
	Invalid value for LCK PDUs

	110
	1 min
	1 frame per minute

	111
	Invalid Value
	Invalid value for LCK PDUs

The ETH_CI_D signal contains a Source and Destination address field and an M_SDU field. The format of the M_SDU field for LCK traffic units is defined in clauses 9.1 and 9.8 of [ITU-T Y.1731]. The MEL in the M_SDU field is determined by the MI_Client_MEL input parameter.

The values of the Source and Destination address fields in the ETH_CI_D signal are determined by the Local MAC address (SA) and the Multicast class 1 DA as described in [ITU-T Y.1731] (DA). The value of the Multicast class 1 DA is 01-80-C2-00-00-3x, where x is equal to MI_Client_MEL as defined in clause 10.1 of [ITU-T Y.1731]. The value of MI_MEP_MAC should be a valid unicast MAC address.

The periodicity (as defined by MI_LCK_Period) is encoded in the three least significant bits of the Flags field in the LCK PDU using the values from Table 8-1.

The LCK (SA, Client_MEL, Period) function generates a LCK Traffic Unit with the SA, MEL and Period fields defined by the values of the parameters. Figure 8-5 below shows the ETH_CI_D signal format, resulting from the function call from Figure 8-4:

OAM=LCK(
MI_MEP_MAC,
MI_Client_MEL,
MI_LCK_Period
)

	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=01-80-C2-00-00-3x, where x=MI_Client_MEL

	5
	
	SA=MI_MEP_MAC

	9
	

	13
	Ethertype=89-02
	MEL=
MI_Client_MEL
	Version=0
	Opcode=35 (LCK)

	17
	0
	0
	0
	0
	0
	Period=
MI_LCK_Period
	TLV Offset = 0
	END TLV=0
	

Figure 8-5 – LCK Traffic Unit

The value of the ETH_CI_P signal associated with the generated LCK traffic units is defined by the MI_LCK_Pri input parameter; valid values are in the range 0-7.

The value of the ETH_CI_DE signal associated with the generated LCK traffic units is always set to drop ineligible.

8.1.3
Selector Process

[image: image9.emf]Selector

Normal LCK

MI_Admin_State

P

D

E

D

P

D

E

D P

D

E

D

Selector

Normal LCK

MI_Admin_State

P

D

E

D

P

D

E

D P

D

E

D

Figure 8-6 – Selector process

The Selector process selects the valid signal from the input of the normal ETH_CI signal or the ETH_CI LCK signal (as generated by the LCK Generation process). The normal signal is blocked if MI_Admin_State is LOCKED. The behaviour is defined in Figure 8-7.

[image: image10.emf]Normal

Locked

D(D),P(P),DE(DE)

Normal.D(D),

Normal.P(P),

Normal.DE(DE)

MI_Admin_State(State)

D(D),P(P),DE(DE)

Lock.D(D),

Lock.P(P),

Lock.DE(DE)

Normal.D(D),

Normal.P(P),

Normal.DE(DE)

MI_Admin_State(State)

Lock.D(D),

Lock.P(P),

Lock.DE(DE)

State=Locked?

State=Normal?

N

Y

Y

N

Figure 8-7 – Selector Behaviour

8.1.4
AIS Insert Process

[image: image11.emf]MI_AIS_Pri

AIS Insert

MI_AIS_Period

P

D

E

D

P

D

E

D

MI_Client_MEL

aAIS

MI_MEP_MAC

MI_AIS_Pri

AIS Insert

MI_AIS_Period

P

D

E

D

P

D

E

D

MI_Client_MEL

aAIS

MI_MEP_MAC

Figure 8-8 – AIS Insert process

Figure 8-8 shows the AIS Insert Process Symbol and Figure 8-9 defines the behaviour. If the aAIS signal is true, the AIS Insert process continuously generates ETH_CI traffic units where the ETH_CI_D signal contains the AIS signal until the aAIS signal is false. The generated AIS traffic units are inserted in the incoming stream, i.e., the output stream contains the incoming traffic units and the generated AIS traffic units.

 [image: image12.emf]AIS Disabled

aAIS(1) Timer

D(OAM),

P(MI_AIS_Pri),

DE(0)

OAM=AIS(

MI_MEP_MAC,

MI_Client_MEL,

MI_AIS_Period

)

AIS Enabled

aAIS(0)

Set(0, Timer)

Set(MI_AIS_Period, Timer)

D(D),P(P),DE(DE)

D(D),P(P),DE(DE)

Figure 8-9 – AIS Insert behaviour

The period between consecutive AIS traffic units is determined by the MI_AIS_Period parameter. Allowed values are once per second and once per minute; the encoding of these values is defined in Table 8-2. Note that these encoding are the same as for the LCK generation process.

Table 8-2 – AIS period values

	3-bits
	Period Value
	Comments

	000-011
	Invalid Value
	Invalid value for AIS PDUs

	100
	1s
	1 frame per second

	101
	Invalid Value
	Invalid value for AIS PDUs

	110
	1 min
	1 frame per minute

	111
	Invalid Value
	Invalid value for AIS PDUs

The ETH_CI_D signal contains a Source and Destination address field and an M_SDU field. The format of the M_SDU field for AIS traffic units is defined in clauses 9.1 and 9.7 of [ITU-T Y.1731]. The MEL in the M_SDU field is determined by the MI_Client_MEL input parameter.

The values of the Source and Destination address fields in the ETH_CI_D signal are determined by the Local MAC address (SA) and the Multicast class 1 DA as described in [ITU-T Y.1731] (DA). The value of the Multicast class 1 DA is 01-80-C2-00-00-3x, where x is equal to MI_Client_MEL as defined in clause 10.1 of [ITU-T Y.1731]. The value of MI_MEP_MAC should be a valid unicast MAC address.

The periodicity (as defined by MI_AIS_Period) is encoded in the three least significant bits of the Flags field in the AIS PDU using the values from Table 8-2.

The AIS (SA, Client_MEL, Period) function generates an AIS Traffic Unit with the SA, MEL and Period fields defined by the values of the parameters. Figure 8-10 below shows the ETH_CI_D signal format resulting from the function call from Figure 8-9:

OAM=AIS(
MI_MEP_MAC,
MI_Client_MEL,
MI_AIS_Period
)

	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=01-80-C2-00-00-3x, where x=MI_Client_MEL

	5
	
	SA=MI_MEP_MAC

	9
	

	13
	Ethertype=89-02
	MEL=
MI_Client_MEL
	Version=0
	Opcode=33 (AIS)

	17
	0
	0
	0
	0
	0
	Period=
MI_AIS_Period
	TLV Offset = 0
	END TLV=0
	

Figure 8-10 – AIS Traffic Unit

The value of the ETH_CI_P signal associated with the generated AIS traffic units is defined by the MI_AIS_Pri input parameter; valid values are in the range 0-7.

The value of the ETH_CI_DE signal associated with the generated AIS traffic units is always set to drop ineligible.
8.1.5
APS Insert Process

[image: image13.emf]APS

Insert

A

P

S

P

D

E

D

MI_APS_Pri

MI_MEL

P D

D

E

MI_MEP_MAC

Figure 8-11 – APS Insert process

The APS Insert process encodes the ETH_CI_APS (APS input signal in Figure 8-11) signal into the ETH_CI_D signal of an ETH_CI traffic unit; the resulting APS traffic unit is inserted into the stream of incoming traffic units, i.e., the outgoing stream consists of the incoming traffic units and the inserted APS traffic units. The ETH_CI_APS signal contains the APS Specific Information as defined in clause 11.1 of [ITU-T G.8031] (APS Format). The behaviour is defined in Figure 8-12.

[image: image14.emf]Waiting

D(D),P(P),DE(DE)

D(D),P(P),DE(DE)

APS(APS)

OAM=APS(

MI_MEP_MAC,

MI_MEL,

APS

)

D(OAM),P(MI_APS_Pri),

DE(0)

Waiting

D(D),P(P),DE(DE)

D(D),P(P),DE(DE)

APS(APS)

OAM=APS(

MI_MEP_MAC,

MI_MEL,

APS

)

D(OAM),P(MI_APS_Pri),

DE(0)

Figure 8-12 – APS Insert Behaviour

The ETH_CI_D signal contains a Source and Destination address field and an M_SDU field. The format of the M_SDU field for APS traffic units is defined in clauses 9.1 and 9.10 of [ITU-T Y.1731]. The MEL in the M_SDU field is determined by the MI_MEL input parameter.

The values of the Source and Destination address fields in the ETH_CI_D signal are determined by the Local MAC address (SA) and the Multicast class 1 DA as described in [ITU-T Y.1731] (DA). The value of the Multicast class 1 DA is 01-80-C2-00-00-3x, where x is equal to MI_MEL as defined in clause 10.1 of [ITU-T Y.1731]. The value of MI_MEP_MAC should be a valid unicast MAC address.
The APS(MEL, APS) function generates an APS Traffic Unit with the MEL and APS fields defined by the values of the parameters. Figure 8-13 below shows the ETH_CI_D signal format, resulting from the function call from Figure 8-12:

OAM=APS(
MI_MEP_MAC,
MI_MEL,
APS
)

	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=01-80-C2-00-00-3x, where x=MI_MEL

	5
	
	SA=MI_MEP_MAC

	9
	

	13
	Ethertype=89-02
	MEL=
MI_MEL
	Version=0
	Opcode=39 (APS)

	17
	0
	0
	0
	0
	0
	0
	0
	0
	TLV Offset = 4
	APS_Specific_Information=APS

	21
	APS_Specific_Information Continued
	END TLV=0
	

Figure 8-13 – APS Traffic Unit

The value of the ETH_CI_P signal associated with the generated APS traffic units is determined by the MI_APS_Pri input parameter; valid values are in the range 0-7.

The value of the ETH_CI_DE signal associated with the generated APS traffic units is always set to drop ineligible.
8.1.6
APS Extract Process

[image: image15.emf]APS Extract

P D

D

E

A

P

S

P D

D

E

MI_MEL

Figure 8-14 – APS Extract process

The APS Extract process extracts ETH_CI_APS signals from the incoming stream of ETH_CI traffic units. ETH_CI_APS signals are only extracted if they belong to the MEL as defined by the MI_MEL input parameter.

If an incoming traffic unit is an APS traffic unit belonging to the MEL defined by MI_MEL, the ETH_CI_APS signal will be extracted from this traffic unit and the traffic unit will be filtered. The ETH_CI_APS is the APS Specific Information contained in the received Traffic Unit. All other traffic units will be transparently forwarded. The encoding of the ETH_CI_D signal for APS frames is defined in clause 9.10 of [ITU-T Y.1731].

The criteria for filtering are based on the values of the fields within the M_SDU field of the ETH_CI_D signal:

•
length/type field equals the OAM Ethertype (89-02), and

•
MEL field equals MI_MEL, and

•
OAM type equals APS (39), as defined in clause 9.1 of [ITU-T Y.1731].

This is defined in Figure 8-15. The function APS(D) extracts the APS specific information from the received Traffic Unit.

[image: image16.emf]Waiting

D(D),P(P),DE(DE)

Etype(D)=89-02 &

MEL(D)==MI_MEL &

OPC(D)=39?

D(D),P(P),DE(DE)

APS(APS(D))

N

Y

Waiting

D(D),P(P),DE(DE)

Etype(D)=89-02 &

MEL(D)==MI_MEL &

OPC(D)=39?

D(D),P(P),DE(DE)

APS(APS(D))

N

Y

Figure 8-15 – APS Extract Behaviour

8.1.7
Continuity Check (CC) Processes

8.1.7.1
Overview

 [image: image17.emf]ProActive-OAM

Extraction

ProActive-OAM

Insertion

CCM

Generation

OnDemand-

OAM

Extraction

OnDemand-

OAM

Extraction

ProActive-OAM

Insertion

ProActive-OAM

Extraction

MEP MIP

MEP

ETH_CI ETH_CI ETH_CI

ETH_CI

ETH_CI ETH_CI

ETH_CI

D,P,DE

D,P,DE

D,P,DE

CCM

Reception

LMp

RI_CC_RxFCl,

RI_CC_TxFCf

RxFCb,

TxFCb

D

a

t

a

D

a

t

a

O

A

M

D

a

t

a

D

a

t

a

O

A

M

D,P,DE

RDI[i]

Events

MI_CC_Period,

MI_CC_Pri,

MI_MEG_ID,

MI_PeerMEP_ID[],

MI_

MEL

,

MI_Get_SvdCCM

MI_SvdCCM

MI_CC_Enable,

MI_LM_Enable,

MI_MEG_ID,

MI_MEP_ID,

MI_CC_Period,

MI_CC_Pri

RI_CC_RDI

C

o

u

n

t

e

r

s

CCM

Reception

CCM

Generation

D

a

t

a

D

a

t

a

O

A

M

D

a

t

a

D

a

t

a

O

A

M

LMp

RxFCb,

TxFCb

RI_CC_RxFCl,

RI_CC_TxFCf

RDI[i]

Events

ETH_CI

RI_CC_RDI

MI_SvdCCM

ETH_CI

M

I

_

L

M

_

E

n

a

b

l

e

C

o

u

n

t

e

r

s

M

I

_

L

M

_

E

n

a

b

l

e

MI_CC_Period,

MI_CC_Pri,

MI_MEG_ID,

MI_PeerMEP_ID[],

MI_

MEL

,

MI_Get_SvdCCM

MI_CC_Enable,

MI_LM_Enable,

MI_MEG_ID,

MI_MEP_ID,

MI_CC_Period,

MI_CC_Pri

ProActive-OAM

Extraction

ProActive-OAM

Insertion

CCM

Generation

OnDemand-

OAM

Extraction

OnDemand-

OAM

Extraction

ProActive-OAM

Insertion

ProActive-OAM

Extraction

MEP MIP

MEP

ETH_CI ETH_CI ETH_CI

ETH_CI

ETH_CI ETH_CI

ETH_CI

D,P,DE

D,P,DE

D,P,DE

CCM

Reception

LMp

RI_CC_RxFCl,

RI_CC_TxFCf

RxFCb,

TxFCb

D

a

t

a

D

a

t

a

O

A

M

D

a

t

a

D

a

t

a

O

A

M

D,P,DE

RDI[i]

Events

MI_CC_Period,

MI_CC_Pri,

MI_MEG_ID,

MI_PeerMEP_ID[],

MI_

MEL

,

MI_Get_SvdCCM

MI_CC_Period,

MI_CC_Pri,

MI_MEG_ID,

MI_PeerMEP_ID[],

MI_

MEL

,

MI_Get_SvdCCM

MI_SvdCCM

MI_CC_Enable,

MI_LM_Enable,

MI_MEG_ID,

MI_MEP_ID,

MI_CC_Period,

MI_CC_Pri

MI_CC_Enable,

MI_LM_Enable,

MI_MEG_ID,

MI_MEP_ID,

MI_CC_Period,

MI_CC_Pri

RI_CC_RDI

C

o

u

n

t

e

r

s

CCM

Reception

CCM

Generation

D

a

t

a

D

a

t

a

O

A

M

D

a

t

a

D

a

t

a

O

A

M

LMp

RxFCb,

TxFCb

RI_CC_RxFCl,

RI_CC_TxFCf

RDI[i]

Events

ETH_CI

RI_CC_RDI

MI_SvdCCM

ETH_CI

M

I

_

L

M

_

E

n

a

b

l

e

C

o

u

n

t

e

r

s

M

I

_

L

M

_

E

n

a

b

l

e

MI_CC_Period,

MI_CC_Pri,

MI_MEG_ID,

MI_PeerMEP_ID[],

MI_

MEL

,

MI_Get_SvdCCM

MI_CC_Period,

MI_CC_Pri,

MI_MEG_ID,

MI_PeerMEP_ID[],

MI_

MEL

,

MI_Get_SvdCCM

MI_CC_Enable,

MI_LM_Enable,

MI_MEG_ID,

MI_MEP_ID,

MI_CC_Period,

MI_CC_Pri

MI_CC_Enable,

MI_LM_Enable,

MI_MEG_ID,

MI_MEP_ID,

MI_CC_Period,

MI_CC_Pri

Figure 8-16 – Overview of Processes involved with Continuity Check
Figure 8-16 gives an overview of the processes involved in the CC. The CCM Generation process generates the CCM frames if MI_CC_Enable is true. The MI_MEG_ID and MI_MEP_ID are the MEG and MEP IDs of the MEP itself and these IDs are carried in the CCM frame. The CCM frames are generated with a periodicity determined by MI_CC_Period and with a priority determined by MI_CC_Pri. If MI_LM_Enable is set the CCM frames will also carry Loss Measurement information. The Generated CCM Traffic Units are inserted in the flow of ETH_CI by the OAM MEP Source Insertion Process.

The CCM frames pass transparently through MIPs.

The OAM MEP Sink Extraction process extracts the CCM Unit from the flow of ETH_CI and the CCM Reception process processes the received CCM Traffic Unit. It compares the received MEG ID with the provisioned MI_MEG_ID, and the received MEP_ID with the provisioned MI_PeerMEP_ID[], that contains the list of all expected peer MEPs in the MEG. Based on the processing of this frame one or more events may be generated that serve as input for the Defect Detection Process (not shown in Figure 8-16).

RDI information is carried in the CCM frame based upon the RI_CC_RDI input. It is extracted in the CCM Reception Process.

8.1.7.2
CCM Generation Process

 [image: image18.emf]Enabled

Timer

D(OAM), P(MI_CC_Pri),

DE(0)

Disabled

MI_CC_Enable

!MI_CC_Enable

CCM Generation

Set(MI_CC_Period, Timer)

Stop(Timer)

Set(MI_CC_Period, Timer)

D(D),P(P),DE

(DE)

D(D),P(P),DE

(DE)

P==MI_CC_Pri

Y

N

Counter

TxFCl++

MI_LM_Enable?

OAM=CCM(

MI_CC_MEG,

MI_CC_MEP,

MI_CC_Period,

RI_CC_RDI,

,

RI_CC_RxFCl,

)

OAM=CCM(

MI_CC_MEG,

MI_CC_MEP,

MI_CC_Period,

RI_CC_RDI,

0,

0,

0

)

N

Y

TxFCl

RI_CC_TxFCf

& DE==<false>

Figure 8-17 – CCM Generation Behaviour

Figure 8-17 shows the state diagram for the CCM Generation process. The CCM Generation Process can be enabled and disabled using the MI_CC_Enable signal, where the default value is FALSE.

In the Enabled state there are two main parts:

· Counter part that is triggered by the receipt of a data frame;

· CCM Generation part that is triggered by the expiration of the timer.

Counter Part

The counter part of the CCM Generation process forwards data frames and counts all ETH_AI frames with Priority (P) (i.e. ETH_AI_P) equal to MI_CC_Pri and Drop Eligibility (DE) (i.e. ETH_AI_DE) equal to <false (0)>. The D, P and DE signals are forwarded unchanged as indicated by the dotted lines in Figure 8-16.

CCM Generation Part

The CCM Generation part of the CCM Generation process generates and transmits an OAM frame every MI_CC_Period. The allowed values for MI_CC_Period are defined in Table 8-3.

Table 8-3 – CCM Period Values
	3-bits
	Period Value
	Comments

	000
	Invalid Value
	Invalid value for CCM PDUs

	001
	3.33ms
	300 frames per second

	010
	10ms
	100 frames per second

	011
	100ms
	10 frames per second

	100
	1s
	1 frame per second

	101
	10s
	6 frames per minute

	110
	1 min
	1 frame per minute

	111
	10 min
	6 frame per hour

The ETH_CI_D signal contains a Source and Destination address field and an M_SDU field. The format of the M_SDU field is defined in clauses 9.1 and 9.8 of [ITU-T Y.1731].

The value of the Destination address field (DA) is the Multicast class 1 DA as described in [ITU-T Y.1731]. The value of the Multicast class 1 DA is 01-80-C2-00-00-3x, where x is equal to MI_MEL as defined in clause 10.1 of [ITU-T Y.1731]. This x will be filled in later by the OAM MEP insertion process and will be undefined in this process.
The value of the Source Address will be filled in later by the OAM MEP insertion process and will be undefined in this process.

The M_SDU field contains a CCM PDU. Figure 8-18 below shows the M_SDU field where the CCM specific values are shown. It shows the Traffic Unit resulting from the function call in Figure 8-17 (CCM Generation Part):

OAM=CCM(
 MI_CC_MEG,
 MI_CC_MEP,
 MI_CC_Period,
 RI_CC_RDI,
 TxFCl,
 RI_CC_RxFCl,
 RI_CC_TxFCf
)

, or if !MI_LM_Enable:

OAM=CCM(
 MI_CC_MEG,
 MI_CC_MEP,
 MI_CC_Period,
 RI_CC_RDI,
 0,
 0,
 0
)

The value of the ETH_CI_P signal associated with the generated CCM traffic unit is defined by the MI_CC_Pri input parameter; valid values are in the range 0-7.

The value of the ETH_CI_DE signal associated with the generated CCM traffic units is always set to drop ineligible (0).

	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=01-80-C2-00-00-3x, where x is changed to MI_MEL by the OAM MEP insertion process

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=
undef
	Version=0
	Opcode=01 (CCM)

	17
	RDI
	0
	0
	0
	0
	MI_CC_
Period
	TLV Offset =70
	Sequence Number=0

	21
	Sequence Number Continued
	0
	0
	0
	MEP ID=MI_MEP_ID

	25
	

	29
	

	33
	

	37
	

	41
	MEG ID=MI_MEG_ID

	45
	

	49
	

	53
	

	57
	

	61
	

	65
	

	73
	

	77
	TxFCf=TxFCl, if MI_LM_Enable else 0

	81
	RxFCb=RI_CC_RxFCl, if MI_LM_Enable else 0

	85
	TxFCb=RI_CC_TxFCf, if MI_LM_Enable else 0

	89
	Reserved (0)

	93
	END TLV (0)
	
	
	

Figure 8-18 – CCM Traffic Unit

8.1.7.3
CCM Reception Process

 [image: image19.emf]Waiting

D(OAM),

P(P), DE(DE)

MEL(OAM)==

MI_MEL

unexpMEL (

Period(OAM))

MEG(OAM)==

MI_MEG_ID

unexpMEG (

Period(OAM))

MEP(OAM) in

MI_PeerMEP _ID[]

unexpMEP (

Period(OAM))

Period(OAM)==

MI_CC_Period

unexpPeriod (

Period(OAM))

P==

MI_CC_Pri

unexpPriority (

Periiod(OAM))

RxFCl(RxFCl)

TxFCf(TxFCf(OAM))

TxFCb(TxFCb(OAM))

RxFCb(RxFCb(OAM))

N

N

N

N

N

Y

Y

Y

Y

Y

expCCM[Index(OAM.MEP)]

SvdCCM:=(D,P,DE)

SvdCCM:=(D,P,DE)

MI_Get_SvdCCm

MI_SvdCCM(Svd

CCM)

Period(OAM)=000

Y

N

D(D),P(P),DE

(DE)

D(D),P(P),DE

(DE)

Y

N

RxFCl++

CCM Reception Counter

RDI[Index(MEP(OAM))](RDI(OAM))

RI_CC_RxFCl(RxFCl)

RI_CC_TxFCf(TxFCf(OAM))

P==MI_CC_Pri

& DE==<false>

Figure 8-19 – CCM Reception behaviour

The CCM reception process consists of two parts: Counter and CCM Reception.

Counter Part

The counter part of the CCM reception process receives ETH_CI, extracts pro-active ETH OAM frames and forwards remainder as ETH_AI traffic units. It counts this number of ETH_AI traffic units that have priority (P) (i.e. ETH_AI_P) equal to MI_CC_Pri and Drop Eligibility (DE) (i.e. ETH_AI_DE) equal to <false (0)>.

 CCM Reception Part

The CCM reception part of the CCM reception process processes CCM OAM frames. It checks the various fields of the frames and generates the corresponding events (as defined in clause 6). If the Version, MEL, MEG and MEP are valid the values of the frame counters are sent to the performance counter process.

Note that unexpPriority and unexpPeriod events do not prevent the CCM from being processed, since the MEL, MEG and MEP are as expected.

8.1.7.4
ProActive Loss Measurement (LMp) Process

This process calculates the number of transmitted and lost frames per second.

[image: image20.emf]Timer

Enabled

nN_TF(N_TF)

nN_LF(N_LF)

nF_TF(F_TF)

nF_LF(F_LF)

N_TF=0

N_LF=0

F_TF=0

F_LF=0

MI_LM_enable

Disabled

!MI_LM_enable

Set(1s, Timer)

Set(1s, Timer)

TxFCf(TxFCf)

RxFCb(RxFCb)

TxFCb(TxFCb)

RxFCl(RxFCl)

N_TF=N_LF=0

F_TF=F_LF=0

TxFCf_svd=TxFCb_svd=0

RxFCb_svd=RxFCl_svd=0

saved=false

IF saved THEN

{

}

TxFCb_svd=TxFCb TxFCb_svd=TxFCb

TxFCf_svd=TxFCf

RxFCf_svd =RxFCf

TxFCf_svd=TxFCf

RxFCb _svd =RxFCb

RxFCl_svd=RxFCl

saved = true

N_TF+=|TxFCf -TxFCf_svd |

N_LF+=|TxFCf -TxFCf_svd | - |RxFCl-RxFCl_svd|

F_TF+=|TxFCb -TxFCb_svd|

F_LF+=|TxFCb -TxFCb_svd| - |RxFCb -RxFCb_svd |

Timer

Enabled

nN_TF(N_TF)

nN_LF(N_LF)

nF_TF(F_TF)

nF_LF(F_LF)

N_TF=0

N_LF=0

F_TF=0

F_LF=0

MI_LM_enable

Disabled

!MI_LM_enable

Set(1s, Timer)

Set(1s, Timer)

TxFCf(TxFCf)

RxFCb(RxFCb)

TxFCb(TxFCb)

RxFCl(RxFCl)

N_TF=N_LF=0

F_TF=F_LF=0

TxFCf_svd=TxFCb_svd=0

RxFCb_svd=RxFCl_svd=0

saved=false

IF saved THEN

{

}

TxFCb_svd=TxFCb TxFCb_svd=TxFCb

TxFCf_svd=TxFCf

RxFCf_svd =RxFCf

TxFCf_svd=TxFCf

RxFCb _svd =RxFCb

RxFCl_svd=RxFCl

saved = true

N_TF+=|TxFCf -TxFCf_svd |

N_LF+=|TxFCf -TxFCf_svd | - |RxFCl-RxFCl_svd|

F_TF+=|TxFCb -TxFCb_svd|

F_LF+=|TxFCb -TxFCb_svd| - |RxFCb -RxFCb_svd |

Figure 8-20 – LM Process behaviour
It processes the TxFCf, RxFCb, TxFCb, RxFCl values and determines the number of transmitted frames and the number of lost frames. Every second the number of transmitted and lost frames, in that second, are sent to the Performance Monitoring and Defect Generation Processes.

8.1.8
Loopback (LB) Processes

8.1.8.1
Overview

Figure 8-21 shows the different processes inside MEPs and MIPs that are involved in the Loopback Protocol.

The MEP OnDemand-OAM Source insertion process is defined in clause 9.4.1.1, the MEP OnDemand-OAM Sink extraction process in clause 9.4.1.2, the MIP OnDemand-OAM Sink Extraction process in clause 9.4.2.2, and the MIP OnDemand-OAM Source insertion process in clause 9.4.2.1. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D Traffic Units and the complementing P and D signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values in the OAM Traffic Units. The other processes are defined into this clause.

 [image: image21.emf]OnDemand-OAM

Extraction

OnDemand-OAM

Insertion

LBM

Generation

LBR

Reception

OnDemand-OAM

Insertion

OnDemand-OAM

Extraction

LBM MIP

Reception

LBR

Generation

OnDemand-OAM

Insertion

OnDemand-OAM

Extraction

LBM MEP

Reception

LBR

Generation

MEP MIP MEP

ETH_CI

ETH_CI

ETH_CI ETH_CI

ETH_CI ETH_CI ETH_CI ETH_CI

D,P,DE

D,P,DE

D,P,DE

D,P,DE

D,P,DE

D,P,DE

RI_LBM(

D,P,DE)

LB

Control

LBM(DA,P,DE,TLV,TID)

MI_LB_Discover(P)

RI_LBR(SA,rTLV,TID)

RI_LBM(

D,P,DE)

M

I

_

M

I

P

_

M

A

C

M

I

_

M

E

P

_

M

A

C

MI_MEP_MAC

MI_LB_Discover_Result(MACs)

MI_LB_Series(DA,DE,P,N, Period)

MI_LB_Series_Result(REC,ERR,OO)

MI_LB_Test(DA,DE,P,Pattern, Length, Period)

MI_LB_Test_Result(Sent,REC,CRC,BER,OO)

MI_LB_Test_Terminate

Length,

Figure 8-21 – Overview of Processes involved with Loopback

The LBM Protocol is controlled by the LB Control Process. There are three possible MI signals that can trigger the LB protocol:

· MI_LB_Discover(P): To discover the MAC addresses of the other MEPs in the same MEG;

· MI_LB_Series(DA,DE,P,N,Length,Period): To send a series of N LB messages to a particular MEP/MIP; these LB messages are generated every ‘Period’.
· MI_LB_Test(DA,DE,P,Pattern,Length,Period): To send a series of LB messages carrying a Test Pattern to a particular MEP; these LB messages are generated every ‘Period’ until the MI_LB_Test_Terminate signal is received.

The details are described later in this clause.

The LBM Control Protocol triggers the LBM Generation Process to generate an LBM Traffic Unit that is received and forwarded by MIPs and received by MEPs in the same MEG. The LBM Control process controls the number of LBM generated and the period between consecutive LBM Traffic Units.

The LBM MIP/MEP reception processes process the received LBM Traffic Units and as a result the LBR Generation Process may generate an LBR Traffic Unit in response. The LBR Reception Process receives and processes the LBR Traffic Units. The Source Address (SA), Transaction ID (TID) and TLV values are given to the LBM Control Process.

The LBM Control Process processes these received values to determine the result of the requested LB operation. The result is communicated back using the following MI signals:

· MI_LB_Discover_Result(MACs): Reports back the MACs that have responded with a valid LBR.

· MI_LB_Series_Result(REC,OO): Reports back the total number of received LBR frames (REC), as well as counts of specific errors:

· OO: Number of LBR Traffic Units that were received out of order (OO).

· MI_LB_Test_Result(Sent, REC, CRC, BER, OO): Reports back the total number of LBM frames sent (Sent) as well as the total number of LBR frames received (REC); for the latter counts of specific errors are reported:

· CRC: Number of LBR frames where the CRC in the pattern failed.
· BER: Number of LBR frames where there was a bit error in the pattern.
· OO: Number of LBR frames that were received out of order.
The detailed functionality of the various processes is defined below.

8.1.8.2
LB Control Process

The LB Control Process can receive several MI signals to trigger the LB protocol; this is shown in Figure 8-22.

 [image: image22.emf]Init

MI_LB_Discover(

P)

MI_LB_Series(

DA,DE,P, N, Length, Period)

MI_LB_Test(

DA,DE,P,Pattern, Length, Period)

Discover Discover Series Series Test Test

Figure 8-22 –LB Control Behaviour

Figure 8-23 shows the behaviour if the MI_LB_Discover signal is received.

Figure 8-24 shows the behaviour if the MI_LB_Series signal is received.

Figure 8-25 shows the behaviour if the MI_LB_Test signal is received.

NOTE – The state machine (Figure 8-22 combined with Figures 8-23, 8-24 and 8-25) shows that the LB_Discover, LB_Series and LB_Test actions are mutually exclusive. Furthermore, a ‘new’ instantiation of any of these actions cannot be initiated until the current action is finished.

MI_LB_Discover behaviour

 [image: image23.emf]Discover

LBM(01-80-C2-00-00-3x,

P,0,Null, TID)

Waiting Discover

RI_LBR(SA,rTLV,TID)

MACs=MACs+SA

set Timer 5

TID++

MACs={}

Timer

MI_LB_Discover_Result

(MACs)

Init Init

Figure 8-23 – LB Control Discover Behaviour

Figure 8-23 shows the behaviour when an MI_LB_Discover(DE,P) signal is received.

First the LBM Generation process is requested to generate an LBM frame by sending the LBM(01-80-c2-00-00-3x, P, 0, Null, TID) signal to the LBM Generation process. The DA is set to the Class 1 Multicast Address as defined in [ITU-T Y.1731], where the last part (x) will be overwritten with MEL by the OAM MEP insertion process. There are no TLVs included, hence the TLV parameter is set to Null.

After triggering the transmission of the LBM frame, received RI_LBR is processed for 5 seconds (as governed by the timer). Every time the RI_LBR(SA,rTLV,TID) is received the SA is stored in the set of received MACs.

After 5 seconds all the received SAs are reported back using the MI_LB_Discover_Result(MACs) signal and the LBM Control process returns to the Init state.

MI_LB_Series behaviour
[image: image24.emf]Series

set(0, TxTimer)

OLD_TID=Undef

REC=0

OO=0

Waiting Series

TxTimer

LBM(DA,P,DE,TLV, TID)

TID++

IF N>1

THEN

set(Period, TxTimer)

N-

ELSE

set(5s, Timer)

RI_LBR(SA,rTLV,TID)

REC++

IF OLD_TID!=Undef

THEN

IF TID!=OLD_TID+1

THEN OO++

OLD_TID=TID

Timer

MI_LB_Series_Result(

REC,OO)

-

TLV=Generate(Length)

Init Init

Figure 8-24 – LB Control Series Behaviour

Figure 8-24 defines the behaviour of the LB Control Process after the reception of the MI_LB_Series(DA,DE,P,N,Length,Period) signal.

The TLV field of the LBM frames is determined by the Generate(Length) function. Generate(Length) generates a Data TLV with length ‘Length’ of arbitrary bit pattern to be included in the LBM frame.

After the receipt of the MI_LB_Series signal, the LBM Generation Process is requested N times to generate an LBM frame (where Period determines the interval between two LBM frames); this is done by issuing the LBM(DA,P,DE,TLV,TID) signal.

Whenever an RI_LBR(SA, rTLV, TID) signal is received, the number of received LBR frames is increased (REC++). If the TID value from the RI_LBR signal does not consecutively follow the last received TID value, the counter for out of order frames is incremented by one (OO++).

Five seconds after sending the last LBM frame (i.e., after sending the Nth LBM frame) the REC and OO counters are reported back in the MI_LB_Series_Result signal.

MI_LB_Test Behaviour

[image: image25.emf]Test

set(0, TxTimer)

OLD_TID=Undef

Sent=0

REC=0

CRC=0

BER=0

OO=0

Waiting Test

TxTimer

LBM(DA,P,DE,TLV,TID)

TLV=Generate(Pattern,Length)

RI_LBR(DA,rTLV,TID)

REC++

IF (Pattern=1 or Pattern=3) &&

(CheckCRC(TLV)==Fail)

THEN CRC++

IF Check(Pattern,TLV)==FAIL

THEN BER++

IF OLD_TID!=Undef

THEN

IF TID!=OLD_TID+1

THEN OO++

OLD_TID=TID

MI_LB_TEST_Terminate

MI_LB_Test_Result(

Sent,REC,CRC,BER,OO)

Sent++

TID++

Set(Period,TxTimer)

Timer

set(5s, Timer)

Init Init

Figure 8-25 – LB Control Test Behaviour

Figure 8-25 defines the behaviour of the LB Control Process after the reception of the MI_LB_Test(DA,DE,P,Pattern,Length,Period) signal.

Every Period an LBM frame is generated, until the MI_LB_Test_Terminate signal is received. Five seconds after receiving this MI_LB_Test_Terminate signal the Sent, REC, CRC, BER and OO counters are reported back using the MI_LB_Test_Result signal.

The TLV field of the LBM frames is determined by the Generate(Pattern, Length) function. For Pattern the following types are defined:

0: “Null signal without CRC-32”

1: “Null signal with CRC-32”

2: “PRBS 2^31-1 without CRC-32”

3: “PRBS 2^31-1 with CRC-32”

The Length parameter determines the length of the generated TLV.

Generate(Pattern, Length) generates a Test TLV with length ‘Length’ to be included in the LBM frame. Therefore, this TLV is passed using the LBM(DA,P,DE,TLV,TID) signal to the LBM Generation Process.

Upon receipt of the RI_LBR(SA,rTLV,TID) remote information the received LBR counter is incremented by one (REC++).
If the TLV contains a CRC (Pattern 1 or 3) the CRC counter is incremented by one if the CRC check fails.
The function Check(Pattern, TLV) compares the received Test Pattern with the expected Test Pattern. If there is a mismatch, the BER counter is increased.
If the TID value from the RI_LBR signal does not follow the last received TID value, the counter for out of order frames is incremented by one (OO++).

8.1.8.3
LBM Generation Process

[image: image26.emf]LBM(DA,P,DE,TLV,TID)

OAM=LBM(

DA,TLV,TID)

D(OAM), P(P),

DE(DE)

Figure 8-26 – LBM Generation Behaviour

The LBM Generation process generates a single LBM OAM Traffic Unit (ETH_CI_D) complemented with ETH_CI_P and ETH_CI_DE signals on receipt of the LBM(DA,P,DE,TLV,TID) signal. The process is defined in Figure 8-26.

From the LBM(DA,P,DE,TLV,TID) signal the P field determines the value of the ETH_CI_P signal, the DE field determines the value of the ETH_CI_DE signal. The DA, TLV and TID fields are used in the construction of the ETH_CI_D signal that carries the LBM Traffic Unit.

The format of the LBM Traffic Unit and the values are shown in Figure 8-27.

The values of the SA and MEL fields will be determined by the OAM MEP insertion process, as well as the last part (x) of the DA if the DA is set to 01-80-c2-00-00-3x.

	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=LBM(DA)

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=
undef
	Version=0
	Opcode=03 (LBM)

	17
	Flags=0
	TLV Offset = 4
	Transaction ID= LBM(TID)

	21
	Transaction ID Continued
	TLV=LBM(TLV)

	25
	

	29
	

	33
	

	:
	

	last
	
	END TLV (0)

Figure 8-27 – LBM Traffic Unit

8.1.8.4
MIP LBM Reception Process

[image: image27.emf]DA(D)=MI_MIP_MAC

RI_LBM(D,P,DE)

D(D),P(P),DE(DE)

Y

N

Figure 8-28 – MIP LBM Reception Behaviour

The MIP LBM Reception Process receives ETH_CI Traffic Units containing LBM PDUs complemented by the P and D signals.

The behaviour is defined in Figure 8-28. If the DA field in the Traffic Unit (D signal) equals the Local MAC address (MI_MIP_MAC), the Loopback is intended for this MIP and the information is forwarded to the Loopback Reply Generation Process using the RI_LBM(D,P,DE) signal; otherwise the information is ignored and no action is taken.

Note that a MIP therefore does not reply to LBM Traffic Units that have a class 1 Multicast address.

8.1.8.5
MEP LBM Reception Process

[image: image28.emf]DA(D)=MI_MEP_MAC

RI_LBM(D,P,DE)

D(D),P(P),DE(DE)

DA(D)=Multicast

Address?

Send_MC_LBR(

D,P,DE)

Waiting

Timer

RI_LBM(D,P,DE)

Process Send_MC_LBR(D,P,DE)

Wait_Time=Random(0..1s)

Set(Wait_Time,Timer)

Yes

No

Yes No

Figure 8-29 – MEP LBM Reception Behaviour

The MEP LBM Reception Process receives ETH_CI Traffic Units containing LBM PDUs complemented by the P and D signals.

The behaviour is defined in Figure 8-29.

If the DA field in the LBM Traffic Unit (D signal) equals the Local MAC address (MI_MEP_MAC), the Loopback is intended for this MEP, and the information is forwarded to the Loopback Reply Generation Process (RI_LBM(D,P,DE)).

If the DA field in the LBM Traffic Unit (D signal) is a multicast address, an LBR Traffic Unit must be generated after a random delay between 0 and 1 second. This is specified by instantiating a separate process, the Send_MC_LBR process. This process chooses a random waiting time between 0 and 1 second and, after waiting for the chosen period of time, the D, P and DE information is forwarded to the Loopback Reply Generation Process (RI_LBM(D,P,DE)). Finally, this process instance is terminated.

Since the 0 to 1 second waiting time is performed in a separate process, it does not block the reception and processing of other LBM frames within that waiting period.

8.1.8.6
LBR Generation Process

[image: image29.emf]RI_LBM(D,P,DE)

RI_LBM(D,P,DE)

DA(D)=SA(D)

OPC(D)=02

Figure 8-30 – LBR Generation Behaviour

Note that the LBR Generation Process is the same for MEPs and MIPs.

Upon receipt of the LBM Traffic Unit and accompanying signals (RI_LBM(D,P,DE)) from the LBM reception process the LBR Generation Process generates an LBR Traffic Unit together with the complementing P and DE signals.

The behaviour is specified in Figure 8-30. The generated traffic unit is the same as the received RI_LBM(D) Traffic Unit except:

· the DA of the generated LBR Traffic Unit is the SA of the received LBM Traffic Unit, and

· the Opcode is set to LBR opcode.

NOTE – In the generated LBR, in the OAM (MEP) Insertion process, the SA will be overwritten with the Local MAC address, and the MEL will be overwritten with MI_MEL.

The resulting LBR Traffic Unit format is shown in Figure 8-31.

	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=SA(RI_LBM(D))

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=
Undef
	Version=Version
(RI_LBM(D))
	Opcode=02 (LBR)

	17
	Flags=
Flags(RI_LBM(D))
	TLV Offset=
TLV Offset(RI_LBM(D))
	Transaction ID=Transaction ID(RI_LBM(D))

	21
	Transaction ID Continued
	TLV=TLV(RI_LBM(D))

	25
	

	29
	

	33
	

	:
	

	Last
	
	END TLV=
END TLV(RI_LBM(D))

Figure 8-31 – LBR Traffic Unit

8.1.8.7
LBR Reception Process

[image: image30.emf]DA(D)=MI_MEP_MAC

D(D),P(P),DE(DE)

SA=SA(D)

TID=TID(D)

TLV=TLV(D)

RI_LBR(SA,TID,TLV)

Yes No

Figure 8-32 – LBR Reception Behaviour

The LBR Reception Process receives LBR Traffic Units (D signal) together with the complementing P and DE signals. The LBR Reception process will inspect the DA field in the received Traffic Unit; if the DA equals the Local MAC address (MI_MEP_MAC) the SA, TID and TLV values will be extracted from the LBR PDU and signalled to the LB Control Process using the RI_LBR(SA,TID,TLV) signal. The behaviour is defined in Figure 8-32.

8.1.9
Loss Measurement (LM) Processes
8.1.9.1
Overview

Figure 8-33 shows the different processes inside MEPs and MIPs that are involved in the on-demand Loss Measurement Protocol.

The MEP OnDemand-OAM Source insertion process is defined in clause 9.4.1.1, the MEP OnDemand-OAM Sink extraction process in clause 9.4.1.2, the MIP OnDemand-OAM Sink Extraction process in clause 9.4.2.2, and the MIP OnDemand-OAM Source insertion process in clause 9.4.2.1. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D Traffic Units together with the complementing P and D signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM Traffic Units.

[image: image31.emf]Ondemand

OAM

Extraction

Ondemand

OAM

Insertion

OnDemand

OAM

Insertion

OnDemand

OAM

Extraction

Ondemand

OAM

Insertion

Ondemand

OAM

Extraction

MEP MIP MEP

ETH_CI

ETH _

CI

ETH _CI

ETH_CI

ETH _CI

ETH _CI

ETH_CI

ETH_CI

D,P,DE

D,P,DE

RI_LMM(D,P,DE)

MI_MEP _MAC

LMM

Generation

D

a

t

a

D

a

t

a

L

M

M

LMR

Reception

D

a

t

a

D

a

t

a

L

M

R

LMM

Reception

D

a

t

a

D

a

t

a

L

M

M

LMR

Generation

D

a

t

a

D

a

t

a

L

M

R

MI _MEP _MAC

LM

Control

LMM (DA,P

RI_LMR (

TxFCf, RxFCf,

TxFCb,

RxFCl)

MI_LM_Enable

MI_LM_Enable

D,P,DE

D,P,DE

MI_LM_Enable

MI_LM_Enable

,0)

Ondemand

MI_LM_Start(

DA,P,Period)

MI _LM_Terminate

MI_LM_Result

(

N_TF, N_LF, F_TF, F_LF)

Figure 8-33 – Overview of Processes involved with on-demand Loss Measurement

The on-demand LM control process controls the on-demand LM protocol. The protocol is activated upon receipt of the MI_LM_Start(DA,P,Period) signal and remains activated until the MI_LM_Terminate signal is received.

The result is communicated via the MI_LM_Result(N_TF, N_LF, F_TF, F_LF) signal. If the on-demand LM control process activates the multiple monitoring on different CoS levels simultaneously, each result is independently managed per CoS level.
The LMM Generation process generates an LMM Traffic Unit that passes transparently through MIPs, but that will be processed by the LMM Reception Process in MEPs. The LMR Generation Process generates an LMR Traffic Unit in response to the receipt of an LMM Traffic Unit. The LMR Reception process receives and processes the LMR Traffic Units.

The behaviour of the processes is defined below.

Note that the LMM Generation and LMR Generation Process are both part of the LMx Generation Process. Similarly the LMM Reception and the LMR Reception Process are both part of the LMx Reception Process.
Figure 8-33+yy shows the different processes inside MEPs and MIPs that are involved in the proactive Loss Measurement Protocol.
The MEP proactive OAM insertion process is defined in clause 9.2.1.1, the MEP OAM proactive extraction process in clause 9.2.1.2, the MIP OAM extraction process in clause 9.4.2.1, and the MIP OAM insertion process in clause 9.4.2.2. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D traffic units and the complementing P and D signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM traffic units.
[image: image32.emf]Proactive

OAM

Extraction

Proactive

OAM

Insertion

OnDemand

OAM

Insertion

OnDemand

OAM

Extraction

Proactive

OAM

Insertion

Proactive

OAM

Extraction

MEP MIP MEP

ETH_CI

ETH _

CI

ETH _CI

ETH_CI

ETH _CI

ETH _CI

ETH_CI

ETH_CI

D,P,DE

D,P,DE

RI_LMM(D,P,DE)

MI_MEP _MAC

LMM

Generation

D

a

t

a

D

a

t

a

L

M

M

LMR

Reception

D

a

t

a

D

a

t

a

L

M

R

LMM

Reception

D

a

t

a

D

a

t

a

L

M

M

LMR

Generation

D

a

t

a

D

a

t

a

L

M

R

MI _MEP _MAC

MI_LM_Enable

MI_LM_Enable

D,P,DE

D,P,DE

MI_LM_Enable

MI_LM_Enable

LM

Control

LMM (DA,P,1)

MI_LM_Enable (single)

MI_LM_Period

MI_LM_MAC_DA

Proactive

LM_Result

RI_LMR (

TxFCf, RxFCf,

TxFCb,

RxFCl)

MI_LM_Pri

Figure 8-33+yy – Overview of Processes involved with proactive Loss Measurement

The MEP Proactive-OAM Source insertion process is defined in clause 9.2.1.1, the MEP Proactive-OAM Sink extraction process in clause 9.2.1.2.
The proactive LM control process controls the proactive LM protocol. If MI_LM_Enable is set the LMM frames are sent periodically. The LMM frames are generated with a periodicity determined by MI_LM_Period and with a priority determined by MI_LM_Pri. The result (N_TF, N_LF, F_TF, F_LF) is reported per a LMR reception. If the proactive LM control process activates the multiple monitoring on different CoS levels simultaneously, each result is independently managed per CoS level.
8.1.9.2
LM Control Process

The behaviour of the on-demand LM Control Process is defined in Figure 8-34.

[image: image33.emf]Init

MI_LM_Start(DA,P,Period)

MI_LM_Terminate

Running

Timer

LMM(DA,P)

IF saved THEN

{

}

TxFCb_svd=TxFCb TxFCb_svd=TxFCb

TxFCf_svd=TxFCf

RxFCf_svd =RxFCf

TxFCf_svd=TxFCf

RxFCf_svd =RxFCf

RxFCl_svd=RxFCl

saved=true

MI_LM_Result(

N_TF,N_LF, F_TF, F_LF)

Set(0,Timer)

Set(Period,Timer)

N_TF+=|TxFCb-TxFCb_svd|

N_LF+=|TxFCb-TxFCb_svd| - |RxFCl-RxFCl_svd|

F_TF+=|TxFCf-TxFCf_svd|

F_LF+=|TxFCf-TxFCf_svd| - |RxFCf-RxFCf_svd|

RI_LMR(TxFCf,RxFCf,

TxFCb,RxFCl)

,0

N_TF=N_LF=0

F_TF=F_LF=0

TxFCf_svd=TxFCb_svd=0

RxFCf_svd=RxFCl_svd=0

saved=false

Figure 8-34 – On-demand LM Control Behaviour

Upon receipt of the MI_LM_Start(DA,P,Period), the LM protocol is started. Every Period the generation of an LMM frame is triggered (using the LMM(DA,P,0) signal), until the MI_LM_Terminate signal is received.

The received counters are used to count the near end and far end transmitted and lost frames. This result is reported using the MI_LM_Result(N_TF, N_LF, F_TF, F_LF) signal after the receipt of the MI_LM_Terminate signal.
[image: image34.emf]Disabled

MI_LM_Enable (single)

Enabled

Timer

LMM(MI_LM_MAC_DA,

Running

Running

Set(0,Timer)

Set(MI_LM_Period,Timer)

!MI_LM_Enable (single)

MI_LM_Pri, 1)

TxFCb_svd=TxFCb TxFCb_svd=TxFCb

TxFCf_svd=TxFCf

RxFCf_svd =RxFCf

TxFCf_svd=TxFCf

RxFCf_svd =RxFCf

RxFCl_svd=RxFCl

saved=true

RI_LM_Result(

N_TF,N_LF, F_TF, F_LF)

N_TF= | TxFCb-TxFCb_svd|

N_LF= | TxFCb-TxFCb_svd| - |RxFCl-RxFCl_svd|

F_TF= | TxFCf-TxFCf_svd|

F_LF= | TxFCf-TxFCf_svd| - |RxFCf-RxFCf_svd|

RI_LMR(TxFCf,RxFCf,

TxFCb,RxFCl)

N_TF=N_LF=0

F_TF=F_LF=0

TxFCf_svd=TxFCb_svd=0

RxFCf_svd=RxFCl_svd=0

saved=false

Y

N

saved

Figure 8-34+yy – Proactive LM Control Behaviour

The behaviour of the proactive LM Control Process is defined in Figure 8-34+yy. If the MI_LM_Enable is asserted, the process starts to generate LMM frames (using the LMM(MI_LM_MAC_DA, MI_LM_Pri, 0) signal). The result (N_TF, N_LF, F_TF, F_LF) is reported per an LMR reception.

8.1.9.3
LMx Generation Process

The LMx Generation Process contains both the LMM Generation and LMR Generation functionality. Figure 8-35 shows the LMx Generation Process.

[image: image35.emf]ETH_AI_D/P/DE

D P DE

LMM LMR

LMM (DA,P,Type)

Data

Data

D P DE D P

RI_LMM (D,P,DE)

DE

Counter

Part

LMM

Generation

Part

LMR

Generation

Part

MI_LM_Enable

TxFC[]

Figure 8-35 – LMx Generation Process

Figure 8-36 defines the behaviour of the LMx Process. The behaviour consists of three parts:

· LMM Generation part that is triggered by the receipt of the LMM(DA,P,Type) signal;

· LMR Generation part that is triggered by the receipt of RI_LMM(D,P,DE) signals;

· Counter part that is triggered by the receipt of a normal data signal.

 [image: image36.emf]LMM(DA,P)

Data.D(D),

Data.P(P),

Data.DE(DE)

Data.D(D),

Data.P(P),

Data.DE(DE)

LMM.D(OAM),

LMM.P(P),

LMM.DE(0)

MI_LM_Enable

Y

N

RI_LMM(OAM,P,DE)

LMR.D(OAM),

LMR.P(P),

LMR.DE(DE)

OAM =LMM(

DA,

TxFC[P]

)

DA(OAM)=SA(OAM)

SA(OAM)=Undefined

OPC(OAM)=LMR

TxFCb=TxFC[P]

TxFC[P]++

LMM Generation LMR Generation

Counter

Waiting

& DE==<false>

,Type

Type,

Figure 8-36 – LMx Generation Behaviour

Counter Part

This part receives ETH_AI and forwards it. It counts the number of ETH_AI traffic units received with ETH_AI_DE to <false (0)>.

LMM Generation Part

This part generates an LMM Traffic Unit on receipt of the LMM(DA,P,Type) signal.

The LMM Traffic Unit contains a Source and Destination address field and an M_SDU field. The format of the M_SDU field for LMM traffic units is defined in clauses 9.1 and 9.12 of [ITU-T Y.1731].

The LMM Traffic Unit is generated by the LMM generate function in Figure 8-36. Figure 8-37 shows the resultant LMM Traffic Unit. The Type signal is set to 1 if it is the proactive OAM, or set to 0 if it is the on-demand OAM operation.

	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=LMM(DA)

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=
Undef
	Version=1
	Opcode=43 (LMM)

	17
	0
	0
	0
	0
	0
	0
	0
	Type
	TLV Offset =12
	TxFCf=LMM(Tx)

	21
	TxFCf Continued
	Reserved for RxFCf in LMR=0

	25
	Reserved Continued
	Reserved for TxFCb in LMR=0

	29
	Reserved Continued
	END TLV=0
	

Figure 8-37 – LMM Traffic Unit

LMR Generation Part

The LMR Generate part generates an LMR Traffic Unit on receipt of RI_LMM signals. The LMR Traffic Unit is based on the received LMM Traffic Unit (as conveyed in the RI_LMM_D signal), however:

· the SA of the LMM Traffic Unit becomes the DA of the LMR Traffic Unit;

· the Opcode is set to LMR;

· the TxFCb field is assigned the value of the Tx counter.

NOTE – In the generated LMR, in the OAM (MEP) Insertion process, the SA will be overwritten with the Local MAC address, and the MEL will be over written with MI_MEL.

Note that the RxFCf field is already assigned a value by the LMM reception process.

Figure 8-38 shows the resultant LMR Traffic Unit.

	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=SA(RI_LMM(D))

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=
Undef
	Version=Version
(RI_LMM(D))
	Opcode=42 (LMR)

	17
	Flags=
Flags(RI_LMM(D))
	TLV Offset=
TLV Offset(RI_LMM(D))
	TxFCf=TxFCf(RI_LMM(D))

	21
	TxFCf Continued
	RxFCf=RxFCf(RI_LMM(D))

	25
	RxFCf Continued
	TxFCb=Tx Counter

	29
	TxFCb Continued
	END TLV=
END TLV(RI_LMM(D))
	

Figure 8-38 – LMR Traffic Unit

8.1.9.4
LMx Reception Process

The LMx Reception Process contains both the LMM Reception and LMR Reception functionality. Figure 8-39 shows the LMx Reception Process.

[image: image37.emf]ETH_AI_D/P/DE

LMM LMR

RI_LMM (D,P,DE)

Data

Data

RI_LMR(

TxFCf,RxFCf,

TxFCb,RxFCl)

Counter

Part

LMM

Reception

Part

LMR

Reception

Part

MI_LM_Enable

RxFC[]

D P DE

P DE P DE D D

MI_MEP_MAC

Figure 8-39 – LMx Reception Process

Figure 8-40 defines the behaviour of the LMx Reception Process. The behaviour consists of three parts:

· LMM Reception part that is triggered by the receipt of an LMM Traffic Unit;

· LMR Reception part that is triggered by the receipt of an LMR Traffic Unit;

· Counter part that is triggered by the receipt of a normal data signal.

 [image: image38.emf]LMR_D(OAM),

LMR_P(P),

LMR_DE(DE)

Data.D(D),

Data.P(P),

Data.DE(DE)

Data.D(D),

Data.P(P),

Data.DE(DE)

MI_LM_Enable

Y

N

LMM_D(OAM),

LMM_P(P),

LMM_DE(DE)

RI_LMM(OAM,P,DE)

RxFC[P]++

LMR Reception LMM Reception Counter

DA(OAM)=MI_MEP_MAC or

DA(OAM)=MC Class1

RxFCf(OAM)=RxFC[P]

Y

N

DA(OAM)=MI_MEP_MAC

Y

N

Waiting

RI_LMR (

TxFCf(OAM),

RxFCf(OAM),

TxFCb(OAM),

RxFC[P])

& DE==<false>

Figure 8-40 – LMx Reception Behaviour

Counter Part

This part receives ETH_CI, extracts on-demand ETH OAM frames and forwards the remainder as ETH_AI traffic units. It counts this number of ETH_AI instances with ETH_AI_DE equal to <false (0)>.

LMM Reception Part

This part processes received LMM Traffic Units. It checks the destination address, the DA must be either the Local MAC address or it should be a Multicast Class 1 Destination Address. If this is the case the LMM Reception process writes the Rx Counter value to the received Traffic Unit in the RxFCf field, and forwards the received Traffic Unit and complementing P and DE signals as Remote Information to the LMR Generation Process.

LMR Reception Part

This part process received LMR Traffic Units. If the DA equals the Local MAC address, it extracts the counter values TxFCf, RxFCf, TxFCb from the received Traffic Unit as well as the SA field. These values together with the value of the Rx counter(RxFCl) are forwarded as RI signals.

8.1.10
Delay Measurement (DM) Processes
8.1.10.1
Overview

Figure 8-41 shows the different processes inside MEPs and MIPs that are involved in the on-demand Delay Measurement Protocol.

The MEP OnDemand-OAM Source insertion process is defined in clause 9.4.1.1, the MEP OnDemand-OAM Sink extraction process in clause 9.4.1.2, the MIP OnDemand-OAM Sink Extraction process in clause 9.4.2.2, and the MIP OnDemand-OAM Source insertion process in clause 9.4.2.1. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D Traffic Units and the complementing P and D signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM Traffic Units.

[image: image39.emf]OnDemand-OAM

Extraction

OnDemand-OAM

Insertion

DMM

Generation

DMR

Reception

OnDemand-OAM

Insertion

OnDemand-OAM

Extraction

OnDemand-OAM

Insertion

OnDemand-OAM

Extraction

DMM Reception

DMR Generation

MEP MIP MEP

ETH_CI ETH_CI ETH_CI ETH_CI

ETH_CI ETH_CI ETH_CI ETH_CI

D,P,DE

D,P,DE

RI_DMM(D,P,DE)

D,P,DE

D,P,DE

DM

Control

MI_DM_Start(DA,P,

Test ID, Length, Period)

MI_DM_Terminate

DMM(DA,P,0,Test ID TLV,TLV)

RI_DMR(

TxTimeStampf,

RxTimeStampf,

TxTimeStampb,

RxTimeb,

rTestID)

MI_MEP _MAC

MI_MEP _MAC

rSA,

MI_DM_Result(

count, B_FD[], F_FD[] ,N_FD[])

On-demand

Figure 8-41 – Overview of Processes involved with on-demand Delay Measurement

The MEP on-demand-OAM Source insertion process is defined in clause 9.4.1.1, the MEP on-demand-OAM Sink extraction process in clause 9.4.1.2.
The on-demand DM control process controls the on-demand DM protocol. The protocol is activated upon receipt of the MI_DM_Start(DA,P,Test ID,Length,Period) signal and remains activated until the MI_DM_Terminate signal is received. The result is communicated via the MI_DM_Result(count, B_FD[], F_FD[] ,N_FD[]) signal. If the on-demand DM control process activates the multiple monitoring on different CoS levels simultaneously, each result is independently managed per CoS level. Optional Test ID TLV can be utilized to distinguish each measurement if multiple measurements are simultaneously activated in an ME. If the protocol is used in multipoint-to-multipoint environments, the multicast class 1 address is used for DA and the test result is independently managed per peer node.
The DMM generation process generates DMM Traffic Units that pass through MIPs transparently, but are received and processed by DMM Reception processes in MEPs. The DMR Generation process may generate a DMR Traffic Unit in response. This DMR Traffic Unit also passes transparently through MIPs, but is received and processed by DMR Reception processes in MEPs.

At the Source MEP side, the DMM generation process stamps the value of the Local Time to the TxTimeStampf field in the DMM message when the first bit of the frame is transmitted. Note well that at the sink MEP side, the DMM reception process stamps the value of the Local Time to the RxTimeStampf field in the DMM message when the last bit of the frame is received.

The DMR generation and reception process stamps with the same way as the DMM generation and reception process.
Figure 8-41+yy shows the different processes inside MEPs and MIPs that are involved in the proactive Delay Measurement Protocol.
The MEP proactive OAM insertion process is defined in clause 9.2.1.1, the MEP OAM proactive extraction process in clause 9.2.1.2, the MIP OAM extraction process in clause 9.4.2.1, and the MIP OAM insertion process in clause 9.4.2.2. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D traffic units and the complementing P and D signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM traffic units.
[image: image40.emf]Extraction

Insertion

DMM

Generation

DMR

Reception

OnDemand-OAM

Insertion

OnDemand-OAM

Extraction

Insertion

Proactive-OAM

Extraction

DMM Reception

DMR Generation

MEP MIP MEP

ETH_CI ETH_CI ETH_CI ETH_CI

ETH_CI ETH_CI ETH_CI ETH_CI

D,P,DE

D,P,DE

RI_DMM(D,P,DE)

D,P,DE

D,P,DE

DM

Control

MI_DM_Enable

DMM(DA,P,1,Test ID TLV,TLV)

RI_DMR(

TxTimeStampf,

RxTimeStampf,

TxTimeStampb,

RxTimeb,

MI_MEP _MAC

MI_MEP _MAC

rSA,

Proactive-OAM

Proactive-OAM

Proactive-OAM

MI_DM_Period

MI_DM_Pri

DM_Result

Proactive

MI_DM_MAC_DA

MI_DM_Length

MI_DM_Test_ID

rTestID)

Figure 8-41+yy – Overview of Processes involved with proactive Delay Measurement

The MEP Proactive OAM Source insertion process is defined in clause 9.2.1.1, the MEP Proactive-OAM Sink extraction process in clause 9.2.1.2.
The proactive DM control process controls the proactive DM protocol. If MI_DM_Enable is set the DMM frames are sent periodically. The DMM frames are generated with a periodicity determined by MI_DM_Period and with a priority determined by MI_DM_Pri. The result (B_FD, F_FD, N_FD) is reported per a DMR reception. If the proactive DM control process activates the multiple monitoring on different CoS levels simultaneously, each result is independently managed per CoS level. Optional Test ID TLV can be utilized to distinguish each measurement if multiple measurements are simultaneously activated in an ME. If the protocol is used in multipoint-to-multipoint environments, the multicast class 1 address is used for DA and the test result is independently managed per peer node.
8.1.10.2
DM Control Process

The behaviour of the on-demand DM Control Process is defined in Figure 8-42.

[image: image41.emf]Init

MI_DM_Terminate

Running

Timer

DMM(DA,P,0,Test ID TLV,TLV)

Running

RI_DMR(

TxTimeStampf,

RxTimeStampf,

TxTimeStampb,

RxTimeb,

rTestID)

B_FD[count] = (RxTimeb – TxTimeStampf)

Init

Running

Set(0,Timer)

Set(Period,Timer)

– (TxTimeStampb – RxTimeStampf)

Y

N

rSA,

rSA=DA?

MI_DM_Result(

count, B_FD[], F_FD[] ,N_FD[])

F_FD[count] = RxTimeStampf – TxTimeStampf

N_FD[count] = RxTimeb – TxTimeStampb

Y

N

TxTimeStampb=

RxTimeStampf=0?

F_FD[count] = Invalid

N_FD[count] = Invalid

count=0

count++

MI_DM_Start(

DA,P,Test ID,Length,Period)

N

Y

TestID!=NULL and

rTestID!=TestID

TLV=Generate(Length)

Test ID TLV=GenID (Test ID)

Figure 8-42 – On-demand DM Control Behaviour

Upon receipt of the MI_DM_Start(DA,P,Test ID,Length,Period), the DM protocol is started. Every Period the generation of a DMM frame is triggered (using the DMM(DA,P,0,Test ID TLV,TLV) signal), until the MI_DM_Terminate signal is received. The TLV field of the DMM frames can have two types of TLVs. The first one is the Test ID TLV, which is optionally used for a discriminator of each test and the value ‘Test ID’ is included in the TLV. The second one is the Data TLV, which is determined by the Generate(Length) function. Generate(Length) generates a Data TLV with length ‘Length’ of arbitrary bit pattern to be included in the DMM frame.

Upon receipt of a DMR Traffic Unit the Delay value recorded by this particular DMR Traffic Unit is calculated. This result is reported using the MI_DM_Result(count, B_FD[], F_FD[] ,N_FD[]) signal after the receipt of the MI_DM_Terminate signal. Note that the measurements of F_FD and N_FD are not supported by peer MEP if both TxTimeStampb and TxTimeStampf are zero.
[image: image42.emf]Disabled

MI_DM_Enable

Enabled

Timer

DMM(MI_DM_MAC_DA,

Running

B_FD = (RxTimeb – TxTimeStampf)

Running

Set(0,Timer)

Set(MI_DM_Period,Timer)

DM_Result(B_FD, F_FD, N_FD)

– (TxTimeStampb – RxTimeStampf)

Y

N

rSA=DA?

F_FD = RxTimeStampf – TxTimeStampf

N_FD = RxTimeb – TxTimeStampb

Y

N

TxTimeStampb=

RxTimeStampf=0?

F_FD = Invalid

N_FD = Invalid

!MI_DM_Enable

TLV=Generate(

MI_DM_Length)

MI_DM_Pri,

1,

Test ID TLV,

TLV)

N

Y

MI_DM_TestID!=NULL and

rTestID!=MI_DM_TestID

RI_DMR(

TxTimeStampf,

RxTimeStampf,

TxTimeStampb,

RxTimeb,

rTestID)

rSA,

Test ID TLV=GenID (

MI_DM_Test ID)

Figure 8-42+yy – Proactive DM Control Behaviour

The behaviour of the proactive DM Control Process is defined in Figure 8-42+yy. If the MI_DM_Enable is asserted, the process starts to generate DMM frames (using the DMM(MI_DM_MAC_DA,MI_DM_Pri,1, Test ID TLV,TLV) signal). The result (B_FD, F_FD, N_FD) is reported per a DMR reception.

8.1.10.3 DMM Generation Process

The behaviour of the DMM Generation Process is defined in Figure 8-43

 [image: image43.emf]DMM(DA,P

OAM=DMM(DA,P,

Type,Test ID TLV,TLV)

D(OAM), P(P),

DE(0)

TxTimeStampf(OAM)=

Local Time

Type,Test ID TLV,TLV)

Figure 8-43 – DMM Generation Behaviour

Upon receiving the DMM(DA,P,Type,Test ID TLV,TLV), a single DMM Traffic Unit is generated together with the complementing P and DE signals. The DA of the generated Traffic Unit is determined by the DMM(DA) signal. The TxTimeStampf field is assigned the value of the local time.

The P signal value is defined by DMM(P). The DE signal is set to 0. The Type signal is set to 1 if it is the proactive OAM, or set to 0 if it is the on-demand OAM operation. The Test ID signal is determined by the DMM(Test ID TLV) signal. The TLV signal is determined by the DMM(TLV) signal.If both Test ID TLV and Data TLV are included in the DMM PDU, it is recommended that Test ID TLV be located at the beginning of the optional TLV field. It makes for the easier classification of the Test ID in the received PDUs.
	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=DMM(DA)

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=
Undef
	Version=1
	Opcode=47 (DMM)

	17
	0
	0
	0
	0
	0
	0
	0
	Type
	TLV Offset =32
	TxTimeStampf=Local Time

	21
	
	

	25
	
	0 (Reserved for DMM receiving equipment)

	29
	
	

	33
	
	0 (Reserved for DMR)

	37
	
	

	41
	
	0 (Reserved for DMR receiving equipment)

	45
	

	49
	
	Test ID TLV=DMM(Test ID TLV) if exists

	53
	Test ID TLV Continued
	Data TLV= DMM (TLV) if exists

	57
	

	61
	

	:
	

	last
	
	END TLV (0)

Figure 8-44 – DMM Traffic Unit

8.1.10.4
DMM Reception Process

The DMM Reception Process processes the received DMM Traffic Units and the complementing P and DE signals. The behaviour is defined in Figure 8-45.

[image: image44.emf]D(OAM),

P(P),

DE(DE)

RI_DMM(OAM, P, DE)

DA(OAM)=MI_MEP_MAC or

DA(OAM)=MC Class1

RxTimeStampf(OAM)=

Local_Time

Y

N

Waiting

Figure 8-45 – DMM Reception Behaviour

First the DA is checked, it should be the Local MAC address or a Multicast Class 1 address, otherwise the frame is ignored.

If the DA is the Local MAC or a Multicast Class 1 address the RxTimeStampf field is assigned the value of the Local Time and Traffic Unit and the complementing P and DE signals are forwarded as Remote Information to the DMR Generation Process.

8.1.10.5
DMR Generation Process

The DMR Generation Process generates a DMR Traffic Unit and its complementing P and DE signals. The behaviour is defined in Figure 8-46.

[image: image45.emf]Waiting

RI_DMM(OAM, P, DE)

D(OAM),

D.P(P),

D.DE(DE)

DA(OAM)=SA(OAM)

SA(OAM)=Undefined

OPC(OAM)=DMR

TxTimeStampb(OAM)=Local Time

Figure 8-46 – DMR Generation Behaviour

Upon the receipt of Remote Information containing a DMM Traffic Unit, the DMR generation process generates a DMR Traffic Unit and forwards it to the OAM insertion Process.

As part of the DMR generation the:

· DA of the DMR Traffic Unit is the SA of the original DMM Traffic Unit;

· The Opcode is changed into DMR Opcode;

· The TxTimeStampb field is assigned the value of the Local Time.
· All the other fields (including TLVs and padding after the End TLV) are copied from the Remote Information containing the original DMM Traffic Unit.

The resulting DMR Traffic Unit is shown in Figure 8-47.

NOTE – In the generated DMR, in the OAM (MEP) Insertion process, the SA will be overwritten with the Local MAC address, and the MEL will be over written with MI_MEL.
The TLVs are copied from the Remote Information containing the original DMM Traffic Unit. If multiple TLVs exist, the order of the TLVs is unchanged.
	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=SA(RI_DMM(D))

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=
Undef
	Version= Version
(RI_DMM(D))
	Opcode=46 (DMR)

	17
	Flags=
Flags(RI_DMM(D))
	TLV Offset=
TLV Offset(RI_DMM(D))
	TxTimeStampf=TxTimeStampf(RI_DMM(D))

	21
	
	

	25
	
	RxTimeStampf=RxTimeStampf(RI_DMM(D))

	29
	
	

	33
	
	TxTimeStampb=Local Time

	37
	
	

	41
	
	0 (Reserved for DMR reception process)

	45
	

	49
	
	Test ID TLV=Test ID(RI_DMM(D)) if exists

	53
	Test ID TLV Continued
	Data TLV= TLV (RI_DMM(D)) if exists

	57
	

	61
	

	:
	

	last
	
	END TLV=
END TLV(RI_DMM(D))

Figure 8-47 – DMR Traffic Unit

8.1.10.6
DMR Reception Process

The DMR Reception Process processes the received DMR Traffic Units and the complementing P and DE signals. The behaviour is defined in Figure 8-48.

 [image: image46.emf]D(OAM),

P(P),

DE(DE)

RI_DMR(

TxTimeStampf(OAM),

Local Time,

Test ID(OAM))

DA(OAM)=MI_MEP_MAC

Y

N

Waiting

RxTimeStampf(OAM),

TxTimeStampb(OAM),

SA(OAM),

Figure 8-48 – DMR Reception Behaviour

Upon receipt of a DMR Traffic Unit the DA field of the Traffic Unit is checked. If the DA field equals the Local MAC address, the DMR Traffic Unit is processed further, otherwise it is ignored.

If the DMR Traffic Unit is processed, the TxTimeStampf, RxTimeStampf, TxTimeStampb and Test ID are extracted from the Traffic Unit and signalled together with the Local Time.

8.1.11
One Way Delay Measurement (1DM) Processes
8.1.11.1
Overview

Figure 8-49 shows the different processes inside MEPs and MIPs that are involved in the on-demand One Way Delay Measurement Protocol.

The MEP OnDemand-OAM Source insertion process is defined in clause 9.4.1.1, the MEP OnDemand-OAM Sink extraction process in clause 9.4.1.2, the MIP OnDemand-OAM Sink Extraction process in clause 9.4.2.2, and the MIP OnDemand-OAM Source insertion process in clause 9.4.2.1. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D Traffic Units and the complementing P and DE signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM Traffic Units.

 [image: image47.emf]Insertion

1DM

Generation

OnDemand-OAM

Extraction Extraction

1DM

Reception

MEP MIP MEP

ETH_CI ETH_CI ETH_CI ETH_CI

D,P,DE D,P,DE

1DM

Control_So

MI_1DM_Start(DA,P,

Test ID,Length,Period)

MI_1DM_Terminate

1DM(DA,P,0,Test ID TLV,TLV)

1DM

Control_Sk

MI_1DM_Start(SA,Test ID)

MI_MEP _MAC

MI_1DM_Result

(count, N_FD[])

OnDemand-OAM OnDemand-OAM

MI_1DM_Terminate

OnDemand

OnDemand

1DM(rSA,TxTimeStampf,

RxTimef,rTestID)

Figure 8-49 – Overview of Processes involved with on-demand One Way Delay Measurement

The on-demand 1DM protocol is controlled by the on-demand 1DM Control_So and 1DM Control_Sk processes. The on-demand 1DM Control_So process triggers the generation of 1DM Traffic Units upon the receipt of an MI_1DM_Start(DA,P,Test ID,Length,Period) signal. The on-demand 1DM Control_Sk process processes the information from received 1DM Traffic Units after receiving the MI_1DM_Start(SA,Test ID) signal.

The 1DM generation process generates 1DM messages that pass transparently through MIPs and are received and processed by the 1DM Reception Process in MEPs.

At the Source MEP side, the 1DM generation process stamps the value of the Local Time to the TxTimeStampf field in the 1DM message when the first bit of the frame is transmitted. Note well that at the sink MEP side, the 1DM reception process records the value of the Local Time when the last bit of the frame is received.
Figure 8-49+yy shows the different processes inside MEPs and MIPs that are involved in the proactive Delay Measurement Protocol.
 [image: image48.emf]Insertion

1DM

Generation

OnDemand-OAM

Extraction Extraction

1DM

Reception

MEP MIP MEP

ETH_CI ETH_CI ETH_CI ETH_CI

D,P,DE D,P,DE

1DM

Control_So

1DM(DA,P,1,Test ID TLV,TLV)

1DM

Control_Sk

1DM(rSA,TxTimeStampf,

RxTimef,rTestID)

MI_1DM_MAC_SA

MI_1DM_Enable

MI_MEP _MAC

1DM_Result

Proactive-OAM

Proactive-OAM

MI_1DM_Enable

MI_1DM_Period

MI_1DM_Pri

MI_1DM_MAC_DA

MI_1DM_Length

Proactive

Proactive

MI_1DM_TestID

MI_1DM_TestID

Figure 8-49+yy – Overview of Processes involved with proactive One Way Delay Measurement

The MEP Proatcive-OAM Source insertion process is defined in clause 9.2.1.1, the MEP Proactive-OAM Sink extraction process in clause 9.2.1.2.
The proactive 1DM Control_So process triggers the generation of 1DM Traffic Units if MI_1DM_Enable signal is set. The 1DM frames are generated with a periodicity determined by MI_1DM_Period and with a priority determined by MI_1DM_Pri. The result (N_FD) is reported per a 1DM reception by the 1DM Control_Sk process.

8.1.11.2
1DM Control_So Process

Figure 8-50 shows the behaviour of the on-demand 1DM Control_So Process. Upon receipt of the MI_1DM_Start(DA,P,Test ID,Length,Period) signal the 1DM protocol is started. The protocol will run until the receipt of the MI_1DM_Terminate signal.

If the DM protocol is running every Period (as specified in the MI_1DM_Start signal) the generation of a 1DM message is triggered by generating the 1DM(DA,P,0,Test ID TLV,TLV) signal towards the 1DM Generation Process. The TLV field of the 1DM frames can have two types of TLVs. The first one is the Test ID TLV, which is optionally used for a discriminator of each test and the value ‘Test ID’ is included in the TLV. The second one is the Data TLV, which is determined by the Generate(Length) function. Generate(Length) generates a Data TLV with length ‘Length’ of arbitrary bit pattern to be included in the 1DM frame.
 [image: image49.emf]Init

MI_1DM_Start(DA

MI_1DM_Terminate

Running

Timer

Set(0,Timer)

Set(Period,Timer)

Init

MI_1DM_Start(

DA,P,Test ID,Length,Period)

MI_1DM_Terminate

Running

Timer

Set(0,Timer)

Set(Period,Timer)

TLV=Generate(Length)

Test ID TLV=GenID (Test ID)

1DM(DA,P) 1DM(DA,P

Test ID TLV,TLV)

,0,

Figure 8-50 – On-demand 1DM Control_So Behaviour
 [image: image50.emf]Init

MI_1DM_Start(DA

MI_1DM_Terminate

Running

Timer

Set(0,Timer)

Disabled

MI_1DM_Enable

!MI_1DM_Enable

Enabled

Timer

Set(0,Timer)

TLV=Generate(

MI_1DM_Length)

1DM(MI_1DM_MAC_DA,

Set(MI_1DM_Period,Timer)

MI_1DM_Pri,

1,

TLV)

Test ID TLV,

Test ID TLV=GenID (

MI_1DM_Test ID)

Figure 8-50+yy – Proactive 1DM Control_So Behaviour

The behaviour of the proactive 1DM Control Process is defined in Figure 8-50+yy.
If the MI_1DM_Enable is asserted, the process starts to generate 1DM frames (using the 1DM(MI_1DM_MAC_DA,MI_1DM_Pri,1, Test ID TLV,TLV) signal.
8.1.11.3
1DM Generation Process

 [image: image51.emf]1DM(DA,P,

Type,Test ID TLV,TLV)

Waiting

OAM=1DM(

DA,

P,

LocalTime,

)

D(OAM), P(P), DE(0)

Type,

TLV

Test ID TLV,

Figure 8-51 – 1DM Generation Behaviour

Figure 8-51 shows the 1DM Generation Process. Upon receiving the 1DM(DA,P,Type,Test ID TLV,TLV) signal a single 1DM Traffic Unit is generated by the OAM=1DM (DA,P,Type, LocalTime, Test ID TLV, TLV) call.

Together with this 1DM Traffic Unit the complementing P and DE signals are generated. The DA of the generated 1DM Traffic Unit is determined by the 1DM(DA) signal. The TxTimeStampf field is assigned the value of the Local Time. The value of the P signal is determined by the 1DM(P) signal. The DE signal is set to 0. The Type signal is set to 1 if it is the proactive OAM, or set to 0 if it is the on-demand OAM operation. The Test ID signal is determined by the 1DM(Test ID TLV) signal. The TLV signal is determined by the 1DM(TLV) signal.
The resulting Traffic Unit is shown in Figure 8-52.

NOTE – In the generated 1DM Traffic Unit, in the OAM (MEP) Insertion process, the SA will be assigned the Local MAC address, and the MEL will be assigned by MI_MEL.

If both Test ID TLV and Data TLV are included in the 1DM PDU, it is recommended that Test ID TLV be located at the beginning of the optional TLV field. It makes for the easier classification of the Test ID in the received PDUs.
	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=1DM(DA)

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=
Undef
	Version=1
	Opcode=45 (1DM)

	17
	0
	0
	0
	0
	0
	0
	Type
	TLV Offset =16
	TxTimeStampf=Local Time

	21
	
	

	25
	
	0 (Reserved for 1DM receiving equipment)

	29
	
	

	33
	
	Test ID TLV=1DM(Test ID TLV) if exists

	37
	Test ID TLV Continued
	Data TLV=1DM(TLV) if exists

	41
	

	45
	

	:
	

	last
	
	END TLV (0)

Figure 8-52 – 1DM Traffic Unit
8.1.11.4
1DM Reception Process

The 1DM Reception Process processes the received 1DM Traffic Units and the complementing P and DE signals. The behaviour is defined in Figure 8-53.

 [image: image52.emf]D(OAM),

P(P),

DE(DE)

1DM(SA(OAM),

TxTimeStampf(OAM),

Local Time,

TestID(OAM))

DA(OAM)=MI_MEP_MAC

Y

N

Waiting

DA(OAM)=MC Class1

or

Figure 8-53 – 1DM Reception Behaviour

Upon receipt of a 1DM Traffic Unit the DA field is checked. The 1DM Traffic Unit is processed if the DA is equal to the Local MAC address or Multicast Class 1 MAC address. Otherwise, the Traffic Unit is ignored.

If the 1DM Traffic Unit is processed the SA and TxTimeStampf fields are extracted and forwarded to the 1DM Control_Sk process together with the Local Time using the 1DM(rSA,TxTimeStampf,RxTimef,rTestID) signal.
8.1.11.5
1DM Control_Sk Process

Figure 8-54 shows the behaviour of the on-demand 1DM Control_Sk process. The MI_1DM_Start(SA) signal starts the processing of 1DM messages coming from a MEP with SA as MAC address. The protocol runs until the receipt of the MI_1DM_Terminate signal.

While running the process processes the received 1DM(rSA,TxTimeStampf,RxTimef,rTestID) information. First the rSA is compared with the SA from the MI_1DM_Start (SA) signal. If the rSA is not equal to this SA, the information is ignored. Next the rTestID is compared with the TestID from the MI_1DM_Start (Test ID) signal. If the MI_1DM_Start (Test ID) signal is configured and rTestID is available but both values are different, the information is ignored. Otherwise the Delay from the single received 1DM Traffic Unit is calculated. This result is reported using the MI_1DM_Result(count, N_FD[]) signal after the receipt of the MI_1DM_Terminate signal.

 [image: image53.emf]Init

MI_1DM_Start(SA,Test ID)

MI_1DM_Terminate

Running

1DM(rSA,TxTimeStampf,

RxTimef,rTestID)

N_FD[count] = RxTimef – TxTimeStampf

rSA=SA?

Y

N

Count=0 Count=0

count++

MI_1DM_Result (count, N_FD[])

N

Y

Test ID!=NULL and

rTestID!=TestID

Figure 8-54 – On-demand 1DM Control_Sk Process

 [image: image54.emf]Disabled

MI_1DM_Enable

!MI_1DM_Enable

Enabled

N_FD = RxTimef – TxTimeStampf

rSA=

MI_1DM_MAC_SA?

Y

N

1DM_Result(N_FD)

N

Y

MI_1DM_TestID!=NULL and

rTestID!=MI_1DM_TestID

1DM(rSA,TxTimeStampf,

RxTimef,rTestID)

Figure 8-54+yy – Proactive 1DM Control_Sk Process

The behaviour of the proactive 1DM Control_Sk Process is defined in Figure 8-54+yy. If the MI_1DM_Enable is asserted, the result (N_FD) is reported per a 1DM reception.
8.1.12
Test (TST) Processes
8.1.12.1
Overview

Figure 8-55 shows the different processes inside MEPs and MIPs that are involved in the Test Protocol.

The MEP OnDemand-OAM Source insertion process is defined in clause 9.4.1.1, the MEP OnDemand-OAM Sink extraction process in clause 9.4.1.2, the MIP OnDemand-OAM Sink Extraction process in clause 9.4.2.2, and the MIP OnDemand-OAM Source insertion process in clause 9.4.2.1. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D Traffic Units together with the complementing P and DE signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM Traffic Units.

[image: image55.emf]OnDemand-OAM

Insertion

TST

Generation

OnDemand-OAM

Extraction

OnDemand-OAM

Extraction

TST

Reception

MEP MIP MEP

ETH_CI

ETH_CI ETH_CI ETH_CI

D,P,DE D,P,DE

TST

Control_So

TST

Control_Sk

MI_TST_Start(SA,pattern)

MI_TST_Terminate

MI_Test(DA,DE,P,Pattern, Length, Period)

MI_Test_Terminate

MI_Test_Result(REC,CRC,BER,OO)

TST(SA,TID,TLV)

TST(DA,P,DE,TLV,TID)

MI_Test_Result(Sent)

Figure 8-55 – Overview of Processes involved with Test Protocol

The TST protocol is controlled by the TST Control_So and TST Control_Sk processes. The TST Control_So process triggers the generation of TST Traffic Units after the receipt of an MI_TST_Start(DA,DE,P,Pattern,Length,Period) signal. The TST Control_Sk process processes the information from received TST Traffic Units after receiving the MI_TST_Start(SA,Pattern) signal.

The TST generation process generates TST messages that pass transparently through MIPs and are received and processed by the TST Reception Process in MEPs.

The processes are defined below.

8.1.12.2
TST Control_So Process

Figure 8-56 defines the behaviour of the TST Control_So Process. This process triggers the transmission of TST Traffic Units after receiving the MI_Test(DA,DE,P,Pattern,Length,Period) signal. The transmission of TST Traffic Units is triggered by the generation of the TST(DA,P,DE,TLV,TID) signal. This is continued until the receipt of the MI_Test_Terminate signal. After receiving this signal the number of triggered TST Traffic Units is reported back using the MI_Test_Result(Sent) signal.

The TLV field of the TST frames is determined by the Generate(Pattern, Length) function. For Pattern the following types are defined:

0: “Null signal without CRC-32”

1: “Null signal with CRC-32”

2: “PRBS 2^31-1 without CRC-32”

3: “PRBS 2^31-1 with CRC-32”

The Length parameter determines the length of the generated TLV.

Generate(Pattern, Length) generates a Test TLV with length ‘Length’ to be included in the TST frame. Therefore, this TLV is passed using the TST(DA,P,DE,TLV,TID) signal to the TST Generation Process.

[image: image56.emf]Set(0,TxTimer)

Sent=0

Waiting Test

TxTimer

TST(DA,P,DE,TLV,TID)

TLV=Generate(Pattern,Length)

MI_TST_Terminate

MI_TST_Result(

Sent)

Sent++

TID++

Init

MI_Test(

DA,DE,P,Pattern, Length, Period)

set(Period,TxTimer)

Figure 8-56 – TST Control_So Behaviour

8.1.12.3
TST Generation Process

Figure 8-57 defines the behaviour of the TST Generation Process.

[image: image57.emf]TST(DA,P,DE,TLV,TID)

Waiting

OAM=TST(

DA,

TLV,

TID

)

D(OAM), P(P), DE(DE)

Figure 8-57 – TST Generation Behaviour

Upon receiving the TST(DA,P,DE,TLV,TID), a single TST Traffic Unit is generated together with the complementing P and DE signals. The TST Traffic Unit is generated by:

OAM=TST(DA,TLV,TID).

The DA of the generated TST Traffic Unit is determined by the TST(DA) signal. The Transaction Identifier field gets the value of TST(TID); the TLV field is populated with TST(TLV). The resulting TST Traffic Unit is shown in Figure 8-58.

NOTE – In the generated TST Traffic Unit, in the OAM (MEP) Insertion process, the SA will be assigned the Local MAC address, and the MEL will be assigned by MI_MEL.

The P signal is determined by the TST(P) signal.

The DE signal is determined by the TST(DE) signal.

	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=TST(DA)

	2
	
	SA=Undefined

	3
	

	4
	Ethertype=89-02
	MEL=
Undef
	Version=0
	Opcode=37(TST)

	5
	Flags=0
	TLV Offset =4
	Transaction Identifier=TST(TID)

	6
	Transaction Identifier Continued
	TST(TLV)

	7
	
	

	8
	
	

	9
	
	END TLV=0
	

Figure 8-58 – TST Traffic Unit

8.1.12.4
TST Reception Process

Figure 8-59 defines the behaviour of the TST Reception Process.

[image: image58.emf]D(OAM),

P(P),

DE(DE)

TST(

SA(OAM),

TID(OAM),

TLV(OAM))

DA(OAM)=MI_MEP_MAC or

DA(OAM)=MC Class1

Y

N

Waiting

Figure 8-59 – TST Reception Behaviour

First the DA is checked, it should be the Local MAC address (as configured via MI_MEP_MAC) or a Multicast Class 1 address, otherwise the frame is ignored.

If the DA is the Local MAC or a Multicast Class 1 address the SA, TID and TLV fields from the TST Traffic Unit are forwarded using the TST signal.

8.1.12.5
TST Control_Sk Process

Figure 8-60 shows the behaviour of the TST Control_Sk process. The MI_TST_Start (SA) signal starts the processing of TST messages coming from a MEP with SA as MAC address. The protocol is running until the receipt of the MI_TST_Terminate signal.

While running, the process processes the received TST(rSA,rTLV,TID) information. First the rSA is compared with the SA from the MI_TST_Start (SA) signal. If the rSA is not equal to this SA, the information is ignored. Otherwise the received information is processed.

First, the received TST counter is incremented by one (REC++).
Furthermore, if the TLV contains a CRC (Pattern 1 or 3), the CRC counter is incremented by one (CRC++) if the CRC check fails.
The function Check(Pattern, TLV) compares the received Test Pattern with the expected Test Pattern. If there is a mismatch the BERR counter is incremented by one.
If the TID value from the RI_LBR signal does not follow the last received TID value the counter for out of order frames is incremented by one (OO++).

[image: image59.emf]Init

MI_TST_Start(SA,Pattern)

OLD_TID=Undef

REC=0

CRC=0

BER=0

OO=0

Waiting Test

TST(rSA,rTLV,TID)

REC++

IF (Pattern=1 or Pattern=3) &&

(CheckCRC(TLV)==Fail)

THEN CRC++

IF Check(Pattern,TLV)==FAIL

THEN BER++

IF OLD_TID!=Undef

THEN

IF TID!=OLD_TID+1

THEN OO++

OLD_TID=TID

MI_TST_Terminate

MI_TST_Result(

REC,CRC,BER,OO)

Timer

Set(5s,Timer)

rSA=SA?

Y

N

Init

MI_TST_Start(SA,Pattern)

OLD_TID=Undef

REC=0

CRC=0

BER=0

OO=0

Waiting Test

TST(rSA,rTLV,TID)

REC++

IF (Pattern=1 or Pattern=3) &&

(CheckCRC(TLV)==Fail)

THEN CRC++

IF Check(Pattern,TLV)==FAIL

THEN BER++

IF OLD_TID!=Undef

THEN

IF TID!=OLD_TID+1

THEN OO++

OLD_TID=TID

MI_TST_Terminate

MI_TST_Result(

REC,CRC,BER,OO)

Timer

Set(5s,Timer)

rSA=SA?

Y

N

Figure 8-60 – TST Control_Sk Behaviour

8.1.13
Link Trace (LT) Processes
8.1.13.1
Overview

Figure 8-61 shows the different processes involved in the Link Trace Protocol.

 [image: image60.emf]OnDemand-OAM

Extraction

OnDemand-OAM

Insertion

LTM

Generation

LTR

Reception

OnDemand-OAM

Insertion

OnDemand

OAM

Extraction

OnDemand

OAM

Extraction

MIPLTM

Reception

LTR

Generation

MEP

MIP

ETH_CI ETH_CI

ETH_CI

ETH_CI

LM

Control

OnDemand-OAM

Insertion

OnDemand-OAM

Extraction

LTR Generation

MEP

ETH_CI

ETH_CI

MI_LT(TA, P)

MI_LT_Result(Results)

M

I

_

M

I

P

_

M

A

C

M

I

_

M

E

P

_

M

A

C

RI_LTM(

D,P,DE)

RI_LTM(

D,P,DE)

D,P,DE D,P,DE D,P,DE

D,P,DE

D,P,DE

D,P,DE

RI_LTR(SA,TTL,

TID,TLV)

LTM(TA, P , TID)

MI_MEP_MAC

TTL,

TTL,

D,P,DE

OnDemand

OAM

Insertion

OnDemand

OAM

Insertion

MEPLTM

Reception

Figure 8-61 – LT Protocol Overview

The Link Trace Protocol is started upon receipt of an MI_LT(TA, TTL, P) signal. The result of the process will be communicated back via the MI_LT_Result(Results) signal.

The LM Control will trigger the transmission of an LTM Traffic Unit and then wait for the LTR Traffic Units that are sent in reply to this LTM Traffic Unit.

The LTM Traffic Unit is processed by MIP LTM Reception Processes and by MEP LTM Reception Processes. Depending on the DA given in the MI_LT(TA, TTL, P) signal these processes may decide to trigger the transmission of an LTR Traffic Unit back to the source of the LTM Traffic Unit.

NOTE – In the 2008 version of [ITU-T Y.1731], the LTM Traffic Unit is received by an ETH-LT Responder process which solely resides in a network element and acts as an alternative process for LTM MIP reception. Similarly, the trigger of sending an LTR Traffic Unit is decided by the ETH-LT Responder.

8.1.13.2
LT Control Process

Figure 8-62 shows the behaviour of the LT Control Process.

 [image: image61.emf]Iinit

MI_LT(TA, P)

LTM(TA, P , TID)

Waiting for LTR

TID++

LTR(SA,TTL,

rTID,TLV)

Timer

Results=Results+{(SA,TTL,TLV)}

MI_LT_Result(Results) rTID==TID?

Yes

No

TTL,

TTL,

Set(5s,Timer)

Results={}

Figure 8-62 – LT Control Behaviour

After receiving the MI_LT(TA, TTL, P) input signal, the transmission of an LTM Traffic Unit is triggered. In the “Waiting for LTR” state, the LTM Control Process waits for the LTR Traffic Units that will be sent in response. The waiting period is five seconds. For each received LTR Traffic Unit the TID value in the received LTM Traffic Unit is compared with the one that was sent in the LTM Traffic Unit. If they are equal, the SA, TTL and TLV values are stored in the results. These results are communicated back using the MI_LT_Results signal after the five second waiting period is over.

8.1.13.3
LTM Generation Process

Figure 8-63 shows the behaviour of the LTM Generation Process.

 [image: image62.emf]LTM(TA, P , TID)

OAM=LTM(

TA,TTL,TID)

D(OAM), P(P),

DE(0)

TTL,

Figure 8-63 – LTM Generation Behaviour

The LTM Generation Process generates an LTM Traffic Unit with the function:

OAM=LTM(TA, TTL, TID) and the result is shown in Figure 8-64.

NOTE – In the generated LTM Traffic Unit, in the OAM (MEP) Insertion process, the SA will be assigned the Local MAC address, and the MEL will be assigned by MI_MEL. The value of the Multicast class 2 DA is 01-80-C2-00-00-3y, where y is equal to {MI_MEL + 8} as defined in clause 10.1 of [ITU-T Y.1731]. The usage of Flags is specified in clause 9.5.2 of [ITU-T Y.1731].
	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA = 01-80-C2-00-00-3y where y is changed to MI_MEL by the OAM insertion process.
SA=Undefined

Ethertype=89-02

MEL=
Undef

Version=0

Opcode=05 (LTM)

	5
	

	9
	

	13
	

	17
	Flags
	TLV Offset =17
	Transaction ID=LTM(TID)

	21
	Transaction ID continued
	TTL= LTM(TTL)
	

	25
	Originating MAC = MI_MEP_MAC

	29
	
	Target MAC = LTM(TA)

	33
	
	[TLV starts here]

	:
	

	last
	
	END TLV=0

Figure 8-64 – LTM Traffic Unit

8.1.13.4
MIP LTM Reception Process

Figure 8-65 shows the behaviour of the MIP LTM Reception Process.

 [image: image63.emf]Init

D(D),P(P),DE(DE)

TTL(D)>0

TMAC(D)=MI_MIP_MAC

|| Forward(TMAC(D))

TTL(D)--

D(D),P(P),DE(DE)

RI_LTM(D,P,DE)

Yes

Yes

TMAC(D)!=MI_MIP_MAC

&& TTL>0

Init

D(D),P(P),DE(DE)

TTL(D)>0

TMAC(D)=MI_MIP_MAC

|| Forward(TMAC(D))

TTL(D)--

D(D),P(P),DE(DE)

RI_LTM(D,P,DE)

Yes

Yes

TMAC(D)!=MI_MIP_MAC

&& TTL>0

Figure 8-65 – MIP LTM Reception Behaviour

Upon receipt of an LTM Traffic Unit, first the TTL is checked, only LTM Traffic Units with a TTL>0 are processed. Thereafter, the Target MAC (TMAC) of the LTM Traffic Unit is checked.

There are two reasons to send back an LTR Traffic Unit. The first is if the TMAC in the LTM Traffic Unit is the MAC address of the MIP itself.

The second reason is summarized in Figure 8-65 as Forward(TMAC(D)). This function returns true if:

· the network element that the MIP LTM reception process resides in would forward a normal data traffic unit with its DA equal to the TMAC to a single port (forwarding port), and

· the MIP LTM Reception Process resides in the egress port which equals to the “forwarding port” (LTM in egress port), or the MIP LTM Reception Process resides in the ingress port which does not equal to the “forwarding port” (LTM in ingress port)

Furthermore, after triggering the transmission of an LTR Traffic Unit, the LTM Traffic Unit is forwarded if the TMAC was not the MAC of the MIP and if the TTL>0.

8.1.13.5
MEP LTM Reception Process
Figure 8-65+x shows the behaviour of the MEP LTM Reception Process.

[image: image64.emf]Init

D(D),P(P),DE(DE)

TTL(D)>0

TMAC(D)=MI_MEP_MAC

|| Forward(TMAC(D))

TTL(D)--

RI_LTM(D,P,DE)

Yes

Yes

Figure 8-65+x – MEP LTM Reception Behaviour

Upon receipt of an LTM Traffic Unit first the TTL is checked, only LTM Traffic Units with a TTL>0 are processed. Thereafter the Target MAC (TMAC) of the LTM Traffic Unit is checked. Conditions to send back an LTR Traffic Unit are similar with ones for MIP LTM Reception Process. The first is if the TMAC in the LTM Traffic Unit is the MAC address of the MEP itself. The second is summarized in Figure 8-65+x as Forward(TMAC(D)). This function returns true if:

· the network element the MEP LTM reception process resides in would forward a normal data traffic unit with its DA equal to the TMAC to a single port (forwarding port), and

· the MEP LTM Reception Process resides in the egress port which equals to the “forwarding port” (LTM in egress port), or the MEP LTM Reception Process resides in the ingress port which does not equal to the “forwarding port” (LTM in ingress port)

Note that the LTM Traffic Unit is not forwarded anymore regardless of the value of TMAC.

8.1.13.6
LTR Generation Process

Figure 8-66 shows the behaviour of the LTR Generation Process.

[image: image65.emf]RI_LTM(D,P,DE)

DA(D)=OrigMAC(D)

OPC(D)= 04

Send_LTR(

D,P,DE)

Waiting

Timer

D(D),P(P),DE(DE)

Process Send_LTR(D,P,DE)

Wait_Time=Random(0..1s)

Set(Wait_Time,Timer)

Figure 8-66 – LTR Generation Behaviour

The LTR Generation process generates the LTR Traffic Unit to be sent back, based on the LTM Traffic Unit. The DA of the LTR Traffic Unit is the Originating MAC (Orig MAC) as contained in the LTM Traffic Unit. The opcode is the LTR Opcode. The resulting LTR Traffic Unit is shown in Figure 8-67. The SA and MEL will be overwritten by the OAM insertion process. The LTR Traffic Unit is sent back, after a random delay between 0 and 1 second. The usage of Flags is specified in clause 9.6.2 of [ITU-T Y.1731].
The resulting frame is shown in Figure 8-67.

NOTE – In the generated LTR, in the OAM (MEP) Insertion process, the SA will be overwritten with the Local MAC address, and the MEL will be over written with MI_MEL.

	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA = Orig MAC(RI_LTM(D))

SA=Undefined

Ethertype=89-02

MEL=
Undef

Version=0

Opcode=04 (LTR)

	5
	

	9
	

	13
	

	17
	Flags
	TLV Offset =6
	Transaction ID=Transaction ID(RI_LTM(D))

	21
	Transaction ID continued
	TTL=TTL(RI_LTM(D))
	Relay Action
(reserved for IEEE)

	25
	END TLV=0
	
	
	

Figure 8-67 – LTR Traffic Unit

8.1.13.7
LTR Reception Process

Figure 8-68 shows the behaviour of the LTR Reception Process.

[image: image66.emf]DA(D)=MI_MEP_MAC

D(D),P(P),DE(DE)

SA=SA(D)

TID=TID(D)

TLV=TLV(D)

LTR(SA, TID, TTL,

TLV)

Yes No

TTL=TTL(D)

Figure 8-68 – LTR Reception Behaviour

The LTR reception process checks the DA of the received LTR Traffic Unit and passes the SA, TTL, TID and TLV fields from the LTR Traffic Unit to the LT Control Process.
8.1.14
Synthetic Loss measurement (SL) Processes
8.1.14.1
Overview

Figure 8-xx shows the different processes inside MEPs and MIPs that are involved in the on-demand synthetic loss measurement protocol.

The MEP On-demand OAM insertion process is defined in clause 9.4.1.1, the MEP OAM on-demand extraction process in clause 9.4.1.2, the MIP OAM extraction process in clause 9.4.2.1, and the MIP OAM insertion process in clause 9.4.2.2. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D traffic units and the complementing P and D signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM traffic units.
 [image: image67.emf]OnDemand-OAM

Extraction

OnDemand-OAM

Insertion

SLM

Generation

SLR

Reception

OnDemand-OAM

Insertion

OnDemand-OAM

Extraction

OnDemand-OAM

Insertion

OnDemand-OAM

Extraction

SLM Reception

SLR Generation

MEP MIP MEP

ETH_CI ETH_CI ETH_CI ETH_CI

ETH_CI ETH_CI ETH_CI ETH_CI

D,P,DE

D,P,DE

D,P,DE

D,P,DE

SL

Control

MI_SL_Start(DA,P,

Test_ID,Length,Period)

MI_SL_Terminate

SLM (DA, P, MEP_ID,

RI_SLR (

rTest_ID

TxFCf,

TxFCb)

MI_MEP _MAC

MI _MEP _MAC MI _MEP _MAC

rMEP_ID,

MI_SL_Result(

N_TF,N_LF,F_TF,F_LF)

Test_ID, TxFCl, TLV)

MI_MEP_ID

RI_SLM (

OAM, P, DE,

TxFCb)

MI_MEP_ID

OnDemand

Figure 8-xx – Overview of processes involved with on-demand synthetic loss measurement protocol

The SL protocol is controlled by the SL Control process.

The On-demand SL Control process is activated upon receipt of the MI_SL_Start(DA,P,Test_ID,Length,Period) signal and remains activated until the MI_SL_Terminate signal is received. The measured synthetic loss values are output after the MI_SL_Terminate signal via the MI_SL_Result(N_TF,N_LF,F_TF,F_LF) signal
The SLM generation process generates SLM traffic units that pass through MIPs transparently, but are received and processed by SLM reception processes in MEPs. The SLR generation process may generate an SLR traffic unit in response. This SLR traffic unit also passes transparently through MIPs, but is received and processed by SLR reception processes in MEPs.

Figure 8-xx+1 shows the different processes inside MEPs and MIPs that are involved in the proactive synthetic loss measurement protocol.
The MEP proactive OAM insertion process is defined in clause 9.2.1.1, the MEP OAM proactive extraction process in clause 9.2.1.2, the MIP OAM extraction process in clause 9.4.2.1, and the MIP OAM insertion process in clause 9.4.2.2. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D traffic units and the complementing P and D signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM traffic units.
[image: image68.emf]Extraction

OAM

Insertion

SLM

Generation

SLR

Reception

OnDemand-OAM

Insertion

OnDemand-OAM

Extraction

Insertion

Extraction

SLM Reception

SLR Generation

MEP MIP MEP

ETH_CI ETH_CI ETH_CI ETH_CI

ETH_CI ETH_CI ETH_CI ETH_CI

D,P,DE

D,P,DE

D,P,DE

D,P,DE

SLM (DA, P, MEP_ID,

RI_SLR (

TxFCf, TxFCb)

MI_MEP _MAC

MI _MEP _MAC MI _MEP _MAC

rMEP_ID, rTest ID,

RI_SL_Result(

N_TF,N_LF,F_TF,F_LF)

Test_ID, TxFCl, TLV)

MI_MEP_ID

RI_SLM (

OAM, P, DE,

TxFCb)

MI_MEP_ID

SL

Control

Proactive

Proactive OAM

Proactive

OAM

Proactive

OAM

Proactive

MI_SL_Enable

MI_SL_Period

MI_SL_Pri

MI_SL_MAC_DA

MI_SL_Length

MI_SL_Test_ID

Figure 8-xx+1 – Overview of processes involved with proactive synthetic loss measurement protocol

The SL protocol is controlled by the Proactive SL Control processes.

The Proactive SL Control process is activated upon receipt of the MI_SL_Enable signal and remains activated until the signal is deactivated. The measured results are output every 1s using the RI_SL_Result (N_TF, N_LF, F_TF, F_LF) signal.
8.1.14.2
SL Control Process
The behaviour of the on-demand SL Control process is defined in Figure 8-xx+2. There are multiple instances of the on-demand SL Control process, each handling an independent stream of SLM frames.

 [image: image69.emf]Init

MI_SL_Start (

DA, P, Test_ID, Length, Period)

Set (0, TxTimer)

N_TF = N_LF = F_TF = F_LF = 0

saved = false

TxTimer

RI_SLR (rMEP_ID, rTest_ID,

TxFCf, TxFCb)

TimeoutTimer MI_SL_Terminate

TLV = Generate

(Length)

TxFCl++

SLM (DA, P,

MEP_ID,

Test_ID,

TxFCl, TLV)

MI_SL_Result (

N_TF, N_LF, F_TF, F_LF)

Set (5s,

TimeoutTimer)

Running

Set (Period,

TxTimer)

If saved THEN {

 N_TF += |TxFCb – TxFCb_svd|

 N_LF += |TxFCb – TxFCb_svd| -|RxFCl – RxFCl_svd|

 F_TF += |TxFCf – TxFCf_svd|

 F_LF += |TxFCf – TxFCf_svd| -|TxFCb – TxFCb_svd|

}

TxFCf_svd = TxFCf

TxFCb_svd = TxFCb

RxFCl_svd = RxFCl

RxFCl++

saved = true

Reset (TxTimer)

Figure 8-xx+2 – On-demand SL Control behaviour
Upon receipt of the MI_SL_Start(DA,P,Test ID,Length,Period), the SL protocol is started. Every designated ‘period’ the generation of an SLM frame is triggered (using the SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) signal), until the MI_SL_Terminate signal is received. The MEP_ID is the MI_MEP_ID of the MEP itself. The TLV field of the SLM frames is determined by the Generate(Length) function. Generate(Length) generates a Data TLV with length ‘Length’ of arbitrary bit pattern, as described in section 8.1.8.2. If the Length is 0, the TLV is set to NULL.

Upon receipt of an SLR traffic unit, the received counter values are used to count the near-end and far-end transmitted and lost synthetic frames. This result is reported using the MI_SL_Result(N_TF,N_LF,F_TF,F_LF) signal after the receipt of the MI_SL_Terminate signal.
The behaviour of the Proactive SL Control process is defined in Figure 8-xx+3. There are multiple instances of the Proactive SL Control process, each handling an independent stream of SLM frames.

 [image: image70.emf]Init

MI_SL_Enable

Set (0, TxTimer)

N_TF = N_LF = F_TF = F_LF = 0

Saved = false

TxTimer

RI_SLR (rMEP_ID, rTest_ID,

TxFCf, TxFCb)

ReportTimer !MI_SL_Enable

TLV = Generate

(MI_SL_Length)

TxFCl++

If saved THEN {

 N_TF += |TxFCb – TxFCb_svd|

 N_LF += |TxFCb – TxFCb_svd| -|RxFCl – RxFCl_svd|

 F_TF += |TxFCf – TxFCf_svd|

 F_LF += |TxFCf – TxFCf_svd| -|TxFCb – TxFCb_svd|

}

SLM (MI_SL_MAC_DA,

MI_SL_Pri,

MI_SL_MEP_ID,

MI_SL_Test_ID,

TxFCl,TLV)

RI_SL_Result(

N_TF,N_LF,

F_TF,F_LF)

Set (1s,

ReportTimer)

Running

Set (1s,

ReportTimer)

Set (MI_SL_Period,

TxTimer)

TxFCf_svd = TxFCf

TxFCb_svd = TxFCb

RxFCl_svd = RxFCl

RxFCl++

saved = true

N_TF = 0

N_LF = 0

F_TF = 0

F_LF = 0

Figure 8-xx+3 – Proactive SL Control behaviour
Upon receipt of the MI_SL_Enable, the SL protocol is started. Every designated MI_SL_Period the generation of an SLM frame is triggered (using the SLM(MI_SL_MAC_DA,MI_SL_Pri,MI_MEP_ID,MI_SL_Test_ID,TxFCl,TLV) signal). The TLV field of the SLM frames is determined by the Generate(MI_SL_Length) function. Generate(MI_SL_Length) generates a Data TLV with MI_SL_ Length of arbitrary bit pattern, as described in section 8.1.8.2. If the MI_SL_Length is 0, the TLV is set to NULL.

Upon receipt of an SLR traffic unit, the received counter values are used to count the near-end and far-end transmitted and lost synthetic frames. The calculation is performed every 1s and the RI_SL_Result(N_TF, N_LF, F_TF, N_LF) signal is generated.
8.1.14.3 SLM Generation Process
The behaviour of the SLM generation process is defined in Figure 8-xx+4.
[image: image71.emf]SLM(DA,P,MEP_ID,

OAM=SLM(DA,P,MEP_ID,

Test_ID,TxFCl,TLV)

D(OAM), P(P),

DE(0)

Test_ID,TxFCl,TLV)

Figure 8-xx+4 – SLM generation behaviour
Upon receiving the SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV), a single SLM traffic unit is generated together with the complementing P and DE signals. The DA, Source MEP_ID, Test_ID and TxFCf of the generated traffic unit are determined by the DA, MEP_ID, Test_ID and TxFCl respectively in the SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) signal. If not NULL, the specified TLV is appended to the traffic unit as shown in Figure 8-xx+5.
The P signal value is defined by SLM(P). The DE signal is set to 0.
	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=SLM(DA)

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=Undef
	Version=0
	Opcode=55 (SLM)

	17
	Flags=0
	TLV Offset = 16
	Source_MEP_ID = SLM(MI_MEP_ID)

	21
	0 (reserved for Responder_MEP_ID)
	Test_ID = SLM(Test_ID)

	25
	Test_ID Continued
	TxFCf = SLM(TxFCl)

	29
	TxFCf Continued
	Reserved for TxFCb

	33
	Reserved Continued
	TLV = SLM(TLV) if exists

	37
	

	41
	

	45
	

	:
	

	last
	
	END TLV (0)

Figure 8-xx+5 – SLM traffic unit
8.1.14.4
SLM Reception Process
The SLM reception process processes the received SLM traffic units and the complementing P and DE signals. The behaviour is defined in Figure 8-xx+6.
 [image: image72.emf]D(OAM),

P(P),

DE(DE)

DA(OAM)=MI_MEP_MAC or

DA(OAM)=MC Class1

RxFCl(MEP_ID(OAM), Test_ID(OAM)) ++

Y

N

Waiting

TxFCb= RxFCl(MEP_ID(OAM), Test_ID(OAM))

RI_SLM(OAM, P, DE,

TxFCb)

Figure 8-xx+6 – SLM reception behavior
First the DA is checked, it should be the local MAC address or a Multicast Class 1 address, otherwise the frame is ignored.

If the DA is the local MAC or a Multicast Class 1 address, the MEP_ID and the Test_ID fields are extracted from the traffic unit. The local received counter RxFCl maintained per MEP_ID and Test_ID values, is incremented. The received OAM information, P and DE signals, as well as local TxFCb value are forwarded as remote information to the SLR generation process using the RI_SLM(OAM,P,DE, TxFCb) signal.
NOTE – The SLM reception process allocates and maintains local resources for the counter RxFCl per MEP_ID and Test_ID. To facilicate the automatic release of local resources, a timer for monitoring no receipt of SLM can be utilized. The SLM reception process must ensure there’s no discontinuity in RxFCl for given MEP ID and Test ID for some interval (e.g, 5 minutes) after the last received SLM for that MEP ID and Test ID. Detail mechanism for the release is out of scope of this recommendation.
8.1.14.5
SLR Generation Process
The SLR generation process generates an SLR traffic unit and its complementing P and DE signals. The behaviour is defined in Figure 8-xx+7.

 [image: image73.emf]Waiting

RI_SLM (OAM,P,DE,

TxFCb)

D(OAM),

D.P(P),

D.DE(DE)

DA(OAM)=SA(OAM)

SA(OAM)=Undefined

OPC(OAM)=SLR

Responder_MEP_ID(OAM)=MI_MEP_ID

TxFCb(OAM)=TxFCb

Figure 8-xx+7 – SLR generation behaviour
Upon the receipt of the RI_SLM (P,DE,OAM, TxFCb) signal containing an SLM traffic unit, the SLR generation process generates an SLR traffic unit and forwards it to the MEP OAM insertion process.

As part of the SLR generation:

–
The DA of the SLR traffic unit is the SA of the original SLM traffic unit;
–
The Opcode is changed into SLR Opcode;
–
The Responder MEP_ID is set to MI_MEP_ID;

–
TxFCb field is assigned the TxFCb value passed in the SLR(TxFCb).
–
The other fields and optional TLVs are copied from the SLM.

The resulting SLR traffic unit is shown in Figure 8-xx+8.

NOTE – In the generated SLR, in the OAM (MEP) insertion process, the SA will be overwritten with the local MAC address, and the MEL will be overwritten with MI_MEL.

	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=SA(RI_SLM (OAM))

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=Undef
	Version=0
	Opcode=54(SLR)

	17
	Flags=Flags
(RI_SLM(OAM))
	TLV Offset =
TLV Offset((RI_SLM(OAM))
	Source_MEP_ID = Source_MEP_ID((RI_SLM(OAM))

	21
	Responder_MEP_ID = MI_MEP_ID
	Test_ID = Test_ID((RI_SLM(OAM))

	25
	Test_ID Continued
	TxFCf = TxFCf((RI_SLM(OAM))

	29
	TxFCf Continued
	TxFCb = (RI_SLM(TxFCb))

	33
	TxFCb Continued
	TLV = TLV((RI_SLM(OAM)) if exists

	37
	

	41
	

	45
	

	:
	

	last
	
	END TLV =
END TLV(RI_SLM(OAM))

Figure 8-xx+8 – SLR traffic unit
8.1.14.6
SLR Reception Process
The SLR reception process processes the received SLR traffic units and the complementing P and DE signals. The behaviour is defined in Figure 8-xx+9.
[image: image74.emf]D(OAM),

P(P),

DE(DE)

RI_SLR(

Test ID(OAM),

DA(OAM)=MI_MEP_MAC

Y

N

Waiting

TxFCf(OAM),

TxFCb(OAM))

MEP_ID(OAM),

Figure 8-xx+9 – SLR reception behavior
Upon receipt of an SLR traffic unit, the DA field of the traffic unit is checked. If the DA field equals the local MAC address, the SLR traffic unit is processed further, otherwise it is ignored.

If the SLR traffic unit is processed, Test_ID, TxFCf, TxFCb, Responder MEP_ID,are extracted from the traffic unit and signaled, using the RI_SLR(MEP_ID, Test_ID,TxFCf,TxFCb) signal.
8.1.15
One Way Synthetic Loss measurement (1SL) Processes
8.1.15.1
Overview
Figure 8-xx+10 shows the different processes inside MEPs and MIPs that are involved in the on-demand One Way Synthetic Loss measurement protocol.

The MEP OnDemand-OAM source insertion process is defined in clause 9.4.1.1, the MEP OnDemand-OAM sink extraction process in clause 9.4.1.2, the MIP OnDemand-OAM sink extraction process in clause 9.4.2.2, and the MIP OnDemand-OAM source insertion process in clause 9.4.2.1. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D traffic units and the complementing P and DE signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM traffic units.
[image: image75.emf]OnDemand-OAM

Insertion

1SL

Generation

OnDemand-OAM

Extraction

OnDemand-OAM

Extraction

1SL Reception

MEP MIP MEP

ETH_CI ETH_CI ETH_CI ETH_CI

D,P,DE

D,P,DE

1SL

Control_So

MI_1SL_Start(DA,P ,

Test_ID,Length,Period)

MI_1SL_Terminate

1SL (DA, P, MEP_ID,

MI_MEP_MAC MI_MEP_MAC

MI_1SL_Result (

N_TF,N_LF)

Test_ID, TxFCl, TLV)

MI_MEP_ID

OnDemand

1SL

Control_Sk

OnDemand

MI_1SL_Start (SA, MEPID, TestID)

MI_1SL_Terminate

1SL_(rSA, r MEPID, rTestID,

TxFCf, RxFCl)

Figure 8-xx+10 – Overview of processes involved with on-demand One Way Synthetic Loss measurement
The on-demand 1SL protocol is controlled by the on-demand 1SL Control_So and 1SL Control_Sk processes. The on-demand 1SL Control_So process triggers the generation of 1SL Traffic Units upon the receipt of an MI_1SL_Start(DA,P,MEP_ID,Test ID,Length,Period) signal. The on-demand 1SL Control_Sk process processes the information from received 1SL Traffic Units after receiving the MI_1SL_Start(SA,Test ID) signal.

The 1SL generation process generates 1SL messages that pass transparently through MIPs and are received and processed by the 1SL Reception Process in MEPs.

Figure 8-xx+11 shows the different processes inside MEPs and MIPs that are involved in the proactive One Way Synthetic Loss measurement protocol.

[image: image76.emf]OAM

Insertion

1SL

Generation

OnDemand-OAM

Extraction Extraction

1SL Reception

MEP MIP MEP

ETH_CI ETH_CI ETH_CI ETH_CI

D,P,DE

D,P,DE

1SL (DA, P, MEP_ID,

MI_MEP_MAC MI_MEP_MAC

Test_ID, TxFCl, TLV)

MI_MEP_ID

1SL

Control_So

Proactive

Proactive OAM Proactive

MI_1SL_Enable

MI_1SL_Period

MI_1SL_Pri

MI_1SL_MAC_DA

MI_1SL_Length

MI_1SL_Test_ID

1SL

Control_Sk

Proactive

MI_1SL_Enable

MI_1SL_Test_ID

MI_1SL_MAC_SA

1SL_(rSA, r MEP_ID, rTest_ID,

TxFCf, RxFCl)

1SL_Result

MI_1SL_MEP_ID

Figure 8-xx+11 – Overview of processes involved with proactive One Way Synthetic Loss measurement
The MEP Proatcive-OAM Source insertion process is defined in clause 9.2.1.1, the MEP Proactive-OAM Sink extraction process in clause 9.2.1.2.
The proactive 1SL protocol is controlled by the Proactive 1SL Control_So and 1SL Control_Sk processes. The proactive 1SL Control_So process triggers the generation of 1SL Traffic Units if MI_1SL_Enable signal is set. The 1SL frames are generated with a periodicity determined by MI_1SL_Period and with a priority determined by MI_1SL_Pri. The result is reported every one second by the 1SL Control_Sk process.

8.1.15.2
1SL Control_So Process
Figure 8-xx+12 shows the behaviour of the on-demand 1SL Control_So Process. Upon receipt of the MI_1SL_Start(DA,P,Test _ID, Length, Period) signal the 1SL protocol is started. The protocol will run until the receipt of the MI_1SL_Terminate signal.

If the 1SL protocol is running, every period (as specified in the MI_1SL_Start signal) the generation of a 1SL message is triggered by generating the 1SL(DA,P,MEP_ID,Test_ID,TxFCl,TLV) signal towards the 1SL Generation Process. The MEP_ID is the MI_MEP_ID of the MEP itself. The TLV is determined by the Generate(Length) function. Generate(Length) generates a Data TLV with length ‘Length’ of arbitrary bit pattern, as described in section 8.1.8.2. If the Length is 0, the TLV is set to NULL.

[image: image77.emf]Init

MI_1DM _Start(DA

MI_1DM _Terminate

Running

Timer

Set(0,Timer)

Set(Period,Timer)

Init

MI_1SL_Start(

DA,P,Test ID,Length,Period)

MI_1SL_Terminate

Running

Timer

Set(0,Timer)

Set(Period,Timer)

TxFCl++

1DM(DA,P) 1SL (DA,P, MEPID,

Test ID,TxFCl,TLV)

TLV=Generate(Length)

Figure 8-xx+12 – On-demand 1SL Control_So Behaviour

The behaviour of the proactive 1SL Control Process is defined in Figure 8xx+13.
If the MI_1SL_Enable is asserted, the process starts to generate 1SL frames (using the 1SL (MI_1SL_MAC_DA, MI_1SL_Pri, MI_MEP_ID, MI_1SL_Test ID, TxFCl, TLV) signal.

[image: image78.emf]Init

MI_1DM _Start(DA

MI_1DM _Terminate

Running

Timer

Set(0,Timer)

Disabled

MI_1SL_Enable

!MI_1SL_Enable

Enabled

Timer

Set(0,Timer)

1SL(MI_1SL_MAC_DA,

Set(MI_1SL_Period,Timer)

MI_1SL_Pri,

MI_MEP_ID,

TLV)

MI_1SL_Test_ID,

TxFCl,

TLV=Generate(

MI_1SL_Length)

TxFCl++

Figure 8-xx+13 – Proactive 1SL Control_So Behaviour
8.1.15.3
1SL Generation Process
[image: image79.emf]1SL (DA, P, MEP_ID,

Test_ID, TxFCl, TLV)

Waiting

OAM=1SL (

DA,

P,

MEP_ID,

Test_ID,

TxFCl,

TLV)

D(OAM), P(P), DE(0)

Figure 8-xx+14 – 1SL Generation Behaviour

Figure 8-xx+14 shows the 1SL generation process. Upon receiving the 1SL(DA, P, MEP_ID, Test_ID, TxTCl, TLV) signal, a single 1SL traffic unit is generated, along with the complementing P and DE signals.

The DA, Source MEP ID, TestID and TxFCl of the generated traffic unit are determined by the DA, MEP_ID, Test_ID and TxFCl respectively in the 1SL(DA,P,MEP_ID,Test_ID,TxTCl,TLV) signal. If not NULL, the specified TLV is appended to the traffic unit as shown.

The value of the P signal is determined by the 1SL(P) signal. The DE signal is set to 0.

The resulting traffic unit is shown in Figure 8-xx+15.

NOTE – In the generated 1SL traffic unit, in the OAM (MEP) insertion process, the SA will be assigned the local MAC address, and the MEL will be assigned by MI_MEL.

	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=1SL(DA)

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=Undef
	Version=0
	Opcode=53 (1SL)

	17
	Flags=0
	TLV Offset = 16
	Source_MEP_ID = 1SL(MI_MEP_ID)

	21
	0 (not used)
	Test_ID = 1SL(Test_ID)

	25
	Test_ID Continued
	TxFCf = 1SL(TxFCl)

	29
	TxFCf Continued
	0 (Reserved)

	33
	0 (Reserved)
	TLV = 1SL(TLV) if exists

	37
	

	41
	

	45
	

	:
	

	last
	
	END TLV (0)

Figure 8-xx+15 – 1SL traffic unit

8.1.15.4
1SL Reception Process
The 1SL reception process processes the received 1SL traffic units and the complementing P and DE signals. The behaviour is defined in Figure 8-xx+16.
[image: image80.emf]D(OAM),

P(P),

DE(DE)

DA(OAM)=MI_MEP_MAC

Y

N

Waiting

DA(OAM)=MC Class1

or

1SL(SA(OAM),

MEP_ID(OAM),

Test_ID(OAM),

TxFCf(OAM),

RxFCl)

RxFCl(MEP_ID(OAM), Test_ID(OAM)) ++

Figure 8-xx+16 – 1SL Reception Behavior

Upon receipt of a 1SL traffic unit, the DA field is checked. The 1SL traffic unit is processed if the DA is equal to the local MAC address or a multicast class 1 address and ignored otherwise.

If the 1SL traffic unit is processed, the SA, Source MEP ID, Test ID and TxFCf fields are extracted and the appropriate RxFCl counter is incremented. The values are forwarded to the 1SL Control_Sk Process using the 1SL(rSA, rMEP_ID, rTest_ID, TxFCf, RxFCl) signal.
8.1.15.5
1SL Control_Sk Process
Figure 8-xx+17 shows the behaviour of the on-demand 1SL Control_Sk process. The MI_1SL_Start(SA,Test ID) signal starts the processing of 1SL messages coming from a MEP with SA as MAC address. The protocol runs until the receipt of the MI_1SL_Terminate signal.

While running the process processes the received 1SL(rSA, rMEP_ID, rTest_ID, TxTCf, RxTCl) information. First the rSA is compared with the SA from the MI_1SL_Start (SA,Test ID) signal. If the rSA is not equal to this SA, the information is ignored. Next the rTestID is compared with the TestID from the MI_1SL_Start (SA,Test_ID) signal. If the Test_ID signal is configured and rTest_ID is available but both values are different, the information is ignored. Otherwise the loss from the single received 1SL Traffic Unit is calculated. This result is reported using the MI_1SL_Result(N_TF, N_LF) signal after the receipt of the MI_1SL_Terminate signal.
[image: image81.emf]Init

MI_1SL _Start(SA,Test ID)

MI_1SL _Terminate

Running

1SL(rSA, rMEP_ID, rTest_ID

TxFCf, RxFCl)

rSA=SA?

Y

N

MI_1SL_Result (N_TF,N_LF)

N

Y

Test_ID!=NULL and

rTest_ID!=Test_ID

N_TF=0, N_LF=0

saved = false

If saved THEN {

N_TF+ = |TxFCf – TxFCf_svd|

N_LF+ = |TxFCf – TxFCf_svd| - |RxFCl – RxFCl_svd|

}

TxFCf _svd =TxFCf

RxFCl _svd = RxFCl

saved = true

Figure 8-xx+17 – On-demand 1SL Control_Sk Process

The behaviour of the proactive 1SL Control_Sk Process is defined in Figure 8-xx+18. If the MI_1SL_Enable is asserted, the result (N_TF, N_LF) is reported every one second.
[image: image82.emf]Disabled

MI_1SL _Enable

!MI_1SL _Enable

Enabled

rSA=

MI_1DM_MAC_SA?

Y

N

1SL_Result(N_TF,N_LF)

N_TF=0, N_LF=0

saved = false

ReportTimer

N_TF=0,

N_LF=0

Set(1s,

ReportTimer)

Set(1s,

ReportTimer)

1SL(rSA, rMEP_ID, rTest_ID

TxFCf, RxFCl)

Y

MI_1SL_Test_ID!=NULL and

rTest_ID!=MI_1SL_Test_ID

N

If saved THEN {

N_TF+ = |TxFCf – TxFCf_svd|

N_LF+ = |TxFCf – TxFCf_svd| - |RxFCl – RxFCl_svd|

}

TxFCf _svd =TxFCf

RxFCl _svd = RxFCl

saved = true

Figure 8-xx+18 – Proactive 1SL Control_Sk Process

8.1.16
CSF Insert Process

[image: image83.emf]D

DE P

CSF

Insert

MI_MEP_MAC

MI_MEL

MI_CSF_Period

MI_CSF_Pri

D

DE P

aCSF-RDI

aCSF-FDI

aCSF-LOS

Figure 8-zz – CSF Insert process

Figure 8-zz shows the CSF Insert Process Symbol and Figure 8-zz+1 defines the behaviour. If the aCSF signal is true, the CSF Insert process continuously generates ETH_CI traffic units where the ETH_CI_D signal contains the CSF signal until the aCSF signal is false. The generated CSF traffic units are inserted in the incoming stream, i.e., the output stream contains the incoming traffic units and the generated CSF traffic units.

[image: image84.emf]CSF Disabled

aCSF(1) Timer

D(OAM),

P(MI_CSF_Pri),

DE(0)

OAM=CSF(

MI_MEP_MAC,

MI_MEL,

MI_CSF_Period

)

CSF Enabled

aCSF(0)

Set(0,Timer)

Set(MI_CSF_Period, Timer)

D(D), P(P), DE(DE)

D(D), P(P), DE(DE)

CSF_Type

Figure 8-zz+1 – CSF Insert behaviour

The period between consecutive CSF traffic units is determined by the MI_CSF_Period parameter. Allowed values are once per second and once per minute; the encoding of these values is defined in Table 8-zz. Note that these encoding are the same as for the LCK/AIS generation process.
Table 8-zz – CSF period values

	3-bits
	Period Value
	Comments

	000
	Invalid Value
	Invalid value for CSF PDUs

	001
	FFS
	FFS

	010
	FFS
	FFS

	011
	FFS
	FFS

	100
	1s
	1 frame per second

	101
	FFS
	FFS

	110
	1 min
	1 frame per minute

	111
	FFS
	FFS

The ETH_CI_D signal contains a Source and Destination address field and an M_SDU field. The format of the M_SDU field for CSF traffic units is defined in clauses 9.1 and 9.12 of [ITU-T Y.1731]. The MEL in the M_SDU field is determined by the MI_ MEL input parameter.
The values of the Source and Destination address fields in the ETH_CI_D signal are determined by the Local MAC address (SA) and the Multicast class 1 DA as described in [ITU-T Y.1731] (DA). The value of the Multicast class 1 DA is 01-80-C2-00-00-3x, where x is equal to MI_MEL as defined in clause 10.1 of [ITU-T Y.1731]. The value of MI_MEP_MAC should be a valid unicast MAC address.

The CSF_Type is encoded in the three bits of the Flags field in the CSF PDU using the values from Table 8-xx+1.
Table 8-zz+1 – CSF type values
	Value
	Type
	Comments

	000
	LOS
	Client Loss of Signal

	001
	FDI/AIS
	Client Forward Defect Indication

	010
	RDI
	Client Reverse Defect Indication

	011
	DCI
	Client Defect Clear Indication

The periodicity (as defined by MI_CSF_Period) is encoded in the three least significant bits of the Flags field in the CSF PDU using the values from Table 8-zz.

The CSF (SA, MEL, Type, Period) function generates a CSF Traffic Unit with the SA, MEL, Type and Period fields defined by the values of the parameters. Figure 8-zz+2 below shows the ETH_CI_D signal format resulting from the function call from Figure 8-zz+1:

OAM=CSF(
MI_MEP_MAC,
MI_MEL,
CSF_Type,
MI_CSF_Period
)

	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=01-80-C2-00-00-3x, where x=MI_MEL

	5
	
	SA=MI_MEP_MAC

	9
	

	13
	Ethertype=89-02
	MEL=
MI_ MEL
	Version=0
	Opcode=52 (CSF)

	17
	0
	0
	CSF
Type
	Period=
MI_CSF_Period
	TLV Offset = 0
	END TLV=0
	

Figure 8-zz+2 – CSF Traffic Unit
8.1.17
CSF Extract Process
[image: image85.emf]CSF Extract

P D

D

E

P D

D

E

MI_MEL

C

S

F

Figure 8-zz+3 – CSF Extract process

The CSF Extract process extracts ETH_CI_CSF signals from the incoming stream of ETH_CI traffic units. ETH_CI_CSF signals are only extracted if they belong to the MEL as defined by the MI_MEL input parameter.

If an incoming traffic unit is a CSF traffic unit belonging to the MEL defined by MI_MEL, the ETH_CI_CSF signal will be extracted from this traffic unit and the traffic unit will be filtered. The ETH_CI_CSF is the CSF Specific Information contained in the received Traffic Unit. All other traffic units will be transparently forwarded. The encoding of the ETH_CI_D signal for CSF frames is defined in clause 9.12 of [ITU-T Y.1731].

The criteria for filtering are based on the values of the fields within the M_SDU field of the ETH_CI_D signal:

•
length/type field equals the OAM Ethertype (89-02), and

•
MEL field equals MI_MEL, and

•
OAM type equals CSF (52), as defined in clause 9.12 of [ITU-T Y.1731].

This is defined in Figure 8-zz+3. The function CSF(D) extracts the CSF specific information from the received Traffic Unit.

[image: image86.emf]Waiting

D(D),P(P),DE(DE)

Etype(D)=89-02 &

MEL(D)==MI_MEL &

OPC(D)=52?

D(D),P(P),DE(DE)

CSF(CSF(D))

N

Y

Waiting

D(D),P(P),DE(DE)

Etype(D)=89-02 &

MEL(D)==MI_MEL &

OPC(D)=52?

D(D),P(P),DE(DE)

CSF(CSF(D))

N

Y

Figure 8- zz+4 – CSF Extract Behaviour

8.2 Queuing process

The queuing process buffers the received ETH_CI_D for output (see Figure 8-69). The queuing process is also responsible for discarding frames if their rate at the ETH_CI_D is higher than the <server>_AI_D can accommodate, as well as maintaining PM counters for discarded frames. Additional performance monitor counters (MI_PM_count) per [IEEE 802.1Q] are for further study.

[image: image87.emf]Queueing

MI_Queue_Config

ETH_CI

ETH_CI

MI_PM_count

Figure 8-69 – Queuing process

The Queueing process is configured using the MI_Queue_Config input parameter. This parameter specifies the mapping of ETH_CI_D into the available queues based on the value of the ETH_CI_P signal.

Furthermore, it specifies whether the value of the ETH_CI_DE signal should be taken into account when discarding frames. If this needs to be taken into account, ETH_CI with ETH_CI_DE set to drop eligible should have a higher probability of being discarded than ETH_CI with ETH_CI_DE set to drop ineligible.

8.3
Filter process

[image: image88.wmf]
Figure 8-70 – Filter process

The filter process maintains the filter action for each of the 33 group MAC addresses indicating control frames as defined in clause 6.3 of [ITU-T G.8012]. Valid filter actions are "pass" and "block". The filter action for these 33 MAC addresses can be configured separately. If the destination address of the incoming ETH_CI_D matches one of the above addresses, the filter process shall perform the corresponding configured filter action:

•
Block: The frame is discarded by the filter process;

•
Pass: The frame is passed unchanged through the filter process.

If none of the above addresses match, the ETH_CI_D is passed.

Valid filter actions for specific services are indicated in the ITU-T G.8011.x series of Recommendations for services supported by those Recommendations. The default filter action value shall be "pass" for all frames with the exception of MAC control frames for which the default value shall be "block".

8.4
Replicate process

See Figure 8-71.

[image: image89.wmf]
Figure 8-71 – Replicate processes

The <Srv>/ETH_A_So replicate process shall:

•
replicate ETH_CI traffic units received on the input from the queuing process and deliver them as ETH_PI to the ETHF_PP interface and the 802.3 protocols process;
•
replicate ETH_CI traffic units received on the input from the ETH_TFP and deliver them as ETH_PI to the ETHTF_PP interface and the 802.3 protocols process.
The <Srv>/ETH_A_Sk replicate process shall:

•
replicate ETH_CI traffic units received on the input from the 802.3 protocols process and deliver them to the ETH_TFP and to the filter process;
•
deliver ETH_PI traffic units received on the input from the ETHF_PP interface to the ETH_TFP;
•
deliver ETH_PI traffic units received on the input from the ETHTF_PP to the filter process.
8.5
802.3 protocols processes

802.3 protocols processes include source and sink handling of MAC Control and optionally IEEE 802.3 slow protocols, as shown in Figure 8-72. The following subclauses specify processes for each of the illustrated process blocks.

[image: image90.emf]Pause

OSSP

LACP

LAMP

OAM

ITU-T

802.3 Protocols

MAC Control

Slow Protocols

ESMC

Figure 8-72 – 802.3 protocols processes

8.5.1
MAC control process

The Ethernet MAC control function specified in clause 31 of [IEEE 802.3] shall be implemented in all interfaces conforming to this Recommendation.

The process intercepts all MAC control frames, other frames are passed through unchanged. MAC control frames are characterized by the length/type value that is used (88-08). Every MAC control frame contains an Opcode. MAC control frames are handled based on the value of the Opcode. If the Opcode is not supported, the frame is discarded. If the Opcode is supported, the frame is processed by the corresponding MAC control function. In Annex 31A of [IEEE 802.3], the Opcode assignment is defined.

8.5.1.1
802.3 pause processes

The pause process handles MAC control frames with the Opcode value 00-01, as described in Annex 31B of [IEEE 802.3]. There are two kinds of pause processes: Pause Transmit Process and Pause Receive Process.

8.5.1.1.1
Pause transmit process

[image: image91.wmf]
Figure 8-73 – Transmit pause process

If enabled (MI_TxPauseEnable = true), this optional process generates pause frames according to clause 31 and Annexes 31A and 31B of [IEEE 802.3].

The generation of the pause frame is triggered as soon as a CI_PauseTrigger is received. The CI_PauseTrigger primitive that has triggered the Pause frame generation conveys the pause_time parameter used in the generated pause frame.

The CI_PauseTrigger is generated as a result of the IEEE 802.3 service interface signal MA_CONTROL.request described in clause 31.3.1 of [IEEE 802.3]. The generation of the MA_CONTROL.request is outside of the scope of this Recommendation.

8.5.1.1.2
Pause receive process

[image: image92.wmf]

Pause Receive

Pause Request Control Frame

Figure 8-74 – Receive pause process

On receipt of a pause request control frame, no action shall be performed (i.e., the pause request control frame shall be silently discarded).

8.5.2
802.3 slow protocols processes

This optional process inspects all slow protocol frames, other frames are passed through unchanged. Slow protocol frames are characterized by the length/type value that is used (88-09). Every slow protocol frame contains a subtype field that distinguishes between different slow protocols. Table 57A-3 of [IEEE 802.3] defines the assignment of subtypes to protocols. The processing of the slow protocol frames depends on the value of the subtype field. There are three options:

•
Illegal: The subtype field contains an illegal value (>10) and is discarded;

•
Unsupported: The subtype field indicates a protocol that is not supported and the frame is passed through.

•
Supported: The subtype field indicates a protocol that is supported, the frame is processed by the corresponding protocol function.

8.5.2.1
LACP process

The LACP process inserts and extracts LACP PDUs. LACP PDUs have a subtype=1. The LACP PDUs are processed and generated by the Aggregation Control Process in the ETY-Np/ETH-LAG-Na_A adaptation function (clause 9.7.1.1, see Figures 9-53 and 9-55).

8.5.2.2
LAMP process

The LAMP process inserts and extracts LAMP PDUs. LAMP PDUs have a subtype=2. The LAMP PDUs are processed and generated by the Aggregation Control Process in the ETY-Np/ETH-LAG-Na_A adaptation function (clause 9.7.1.1, see Figures 9-53 and 9-55).

8.5.2.3
OAM process

The OAM process generates and processes OAM frames according to clause 57 of [IEEE 802.3]. The OAM PDUs have subtype=3.

8.5.2.4
OSSP Process

The Organization Specific Slow Protocol (OSSP) process inserts and extracts OSSP PDUs. The OSSP PDUs have subtype=10. The OSSP process provides a messaging channel for other protocols. The OSSP multiplexes multiple protocols using an Organizational Unique Identifier (OUI).

The OSSP Source process encodes input PDU signals into OSSP frames. An OSSP PDU has:

DA=01-80-C2-00-00-02(hex)
SA=Local MAC address

Ethertype=88-09 (hex)
Slow Protocol Type=0A(hex)

OUI= Identifying Specific Protocol
PDU=PDU for the protocol

The OSSP Sink process will decode the OUI and PDU information from the incoming frame. The PDU will be forwarded to the protocol function identified by the decoded OUI. If there is no protocol process associated with the OUI the PDU is discarded.

The supported OUI’s are defined below.

8.5.2.4.1
ITU Slow Protocols

The ITU Slow protocols use OUI=0x0019A7. The ITU-T Slow protocol process allows for multiplexing multiple ITU defined protocols by using an ITU-T subtype.

The ITU Slow Protocols Source Process takes an incoming PDU and will create an ITU-T Slow Protocol PDU by prepending the incoming PDU with an ITU-T subtype. The resulting ITU-T Slow Protocol PDU is forwarded to the OSSP process.

ITU Slow Protocols Sink Process takes an incoming ITU-T Slow Protocol PDU and removes the ITU-T subtype from it. The resulting PDU is forwarded to the protocol process identified by the removed ITU-T subtype. If there is no protocol process associated with the ITU-T subtype the PDU is discarded.

Supported ITU-T subtypes:

01: Ethernet Synchronization Message Channel (ESMC) as defined in [ITU-T G.8264]

8.6
MAC Length Check process

[image: image93.emf]MAC length check

MI_MAC_Length

ETYn_AI

ETYn_AI

Figure 8-75 – MAC Length Check function

This process checks whether the length of the MAC frame is allowed. When the processed signal is ETYn_AI frames shorter than 64 bytes are discarded. Frames longer than MI_MAC_Length are discarded.

Note that frames shorter than 64 bytes are only foreseen on non-ETYn interfaces in connection with removal of VLAN tags. Such frames must be padded to a length of 64-bytes according to clause 4 of [IEEE 802.3].

Table 8-4 shows the values corresponding to the IEEE defined frame lengths.

Table 8-4 – IEEE 802.3 MI_MAC_Length values

	Frame type
	MI_MAC_Length

	Basic
	1518

	Q-tagged
	1522

	Envelope
	
2000

8.7
MAC Frame Counter process

[image: image94.emf]MI_FramesTransmittedOK

MI_OctetsTransmittedOK

MAC Frame Count

ETYn-AI

ETYn-AI

MI_FramesTransmittedOK

MI_OctetsTransmittedOK

MAC Frame Count

ETYn-AI

ETYn-AI

Figure 8-76 – MAC Frame Count function

This process passes MAC frames and counts the number of frames that are passed.
MI_pOctetsTransmittedOK[1..Np] per clause 30 of [IEEE 802.3].

MI_pFramesTransmittedOK[1..Np] per clause 30 of [IEEE 802.3].

8.8
“Server Specific” Common Processes

For some server signals MAC FCS generation is not supported. This will be defined in the server-specific adaptation functions.

8.8.1
MAC FCS generation process

[image: image95.wmf]

MAC FCS generation

ETH

-

CI

ETH

-

CI

Figure 8-77 – MAC FCS Generation Process

The MAC FCS is calculated over the ETH_CI traffic unit and is inserted into the MAC FCS fields of the frame as defined in clause 4.2.3 of [IEEE 802.3].
8.8.2
MAC FCS Check process

[image: image96.wmf]MAC FCS

Supervision

Performance

Monitoring

FrameCheckSequenceErrors

pFCSErrors

ETH

_

CI

ETH

_

CI

Figure 8-78 – MAC FCS Check Process

The MAC FCS is calculated over the ETH_CI traffic unit and checked as specified in clause 4.2.4.1.2 of [IEEE 802.3]. If errors are detected, the frame is discarded. Errored frames are indicated by FrameCheckSequenceErrors.

8.8.3
802.1AB/X Protocols Processes

802.1AB/X Protocols processes include source and sink handling of 802.1AB and 802.1X protocols, as shown in Figures 8-79 and 8-80. These processes are used in ETYn/ETH_A functions.

The following clauses specify processes for each of the illustrated process blocks.

8.8.3.1
802.1X protocol process

The 802.1X protocol block implements the port-based network access control as per [IEEE 802.1X].

[image: image97.emf]Multiplexer

802.1X process

802.1X protocol

802.1X

other

ETH_CI

ETH_CI

Figure 8-79 – 802.1X Protocols Processes

In the sink direction, the multiplexer separates the 802.1X PDUs from the rest of the frames based on MAC address 01-80-C2-00-00-03. The former are delivered to the 802.1X process, the latter are passed on in the sink direction. In the source direction, 802.1X PDUs are multiplexed with the rest of the frames.

In the function descriptions in which it appears, the 802.1X process is optional.

8.8.3.2
802.1AB protocol process

The 802.1AB protocol block implements the Link Layer Discovery Protocol as per [IEEE 802.1AB].

[image: image98.emf]Multiplexer

802.1AB process

802.1AB protocol

802.1AB

other

ETH_CI

ETH_CI

Figure 8-80 – 802.1AB Protocols Processes

In the sink direction, the multiplexer separates the 802.1AB PDUs from the rest of the frames. The former are delivered to the 802.1AB process, the latter are passed on in the sink direction. In the source direction, 802.1AB PDUs are multiplexed with the rest of the frames. Frames are defined by: MAC address 01-80-C2-00-00-0E, Ethertype 88-CC.

In the function description in which it appears, the 802.1AB process is optional.

8.8.4
Link quality supervision

Counts of transmitted and received octets and frames are maintained in <Srv>/ETH_A functions per the requirements of clause 30 of [IEEE 802.3]. Discarded jabber frames are counted in ETYn/ETH_A_So functions.

Additional link quality performance monitors per clause 30 of [IEEE 802.3] are for further study.

8.8.5
FDI/BDI generation and detection

For further study.

8.8.6
ETH-specific GFP-F process

8.8.6.1
ETH-specific GFP-F source process

See clause 8.5.4.1.1 of [ITU-T G.806]. GFP pFCS generation is disabled (FCSenable=false). The UPI value for Frame-Mapped Ethernet shall be inserted (as defined in Table 6-3 of [ITU-T G.7041]). The Ethernet frames are inserted into the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041]. Client management frame insertion is governed by the consequent actions.

Consequent actions:

aCSF-RDI (CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI (CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS (CI_SSF and CSFEnable

8.8.6.2
ETH-specific GFP-F sink process

See clause 8.5.4.1.2 of [ITU-T G.806]. GFP pFCS checking, GFP p_FCSError, p_FDis are not supported (FCSdiscard=false). The UPI value for Frame-Mapped Ethernet shall be expected (as defined in Table 6-3 of [ITU-T G.7041]). The Ethernet frames are extracted from the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041]. The generic defects and consequent actions are extended as follows.

Defects:

dCSF-RDI: GFP Client Signal Fail-Remote Defect Indication (dCSF-RDI) is raised when a GFP client management frame with the RDI UPI (as defined in Table 6-4 of [ITU-T G.7041]) is received. dCSF-RDI is cleared when no such GFP client management frame is received in N x 1000 ms (a value of 3 is suggested for N), a valid GFP client data frame is received, or a GFP client management frame with the DCI UPI is received.

dCSF-FDI: GFP Client Signal Fail-Forward Defect Indication (dCSF-FDI) is raised when a GFP client management frame with the FDI UPI (as defined in Table 6-4 of [ITU-T G.7041]) is received. dCSF-FDI is cleared when no such GFP client management frame is received in N x 1000 ms (a value of 3 is suggested for N), a valid GFP client data frame is received, or a GFP client management frame with the DCI UPI is received.

dCSF-LOS: GFP Client Signal Fail-Loss of Signal (dCSF-LOS) is raised when a GFP client management frame with the LOS UPI (as defined in Table 6-4 of [ITU-T G.7041]) is received. dCSF-LOS is cleared when no such GFP client management frame is received in N x 1000 ms (a value of 3 is suggested for N), a valid GFP client data frame is received, or a GFP client management frame with the DCI UPI is received.

Consequent actions:

aSSFrdi (dCSF-RDI and CSFrdifdiEnable

aSSFfdi (dCSF-FDI and CSFrdifdiEnable

aSSF (GFP_SF or dUPM or dCSF-LOS

Defect correlations:

cCSF ((dCSF-RDI or dCSF-FDI or dCSF-LOS) and (not dUPM) and (not GFP_SF) and CSF_Reported
The GFP_SF term refers collectively to the set of defects detected in the Common GFP-F sink process (see clause 8.5.3.2 of [ITU-T G.806]), the server-specific GFP-F sink process (see clause 8.5.2.2 of [ITU-T G.806]), or the server-specific process (see clause 11) with the consequent action of aGFP_SF. This includes dEXM, dLFD, any server-specific defects related to the GFP-F mapping, and server layer TSF.

8.9
QoS related Processes

8.9.1
Queue

The queue process stores received ETH_CI Traffic Units and associated signals, and forwards a Traffic Unit if requested to do so by the connected process.

[image: image99.emf] Queue

Figure 8-81 – Queue Process

There are several parameters on the queue:

· Queue depth: The maximum size of the queue in bytes. An incoming ETH_CI traffic unit is dropped if there is insufficient space to hold the whole unit

· Dropping Threshold: If the queue is filled beyond this threshold, incoming ETH_CI traffic units accompanied by the ETH_CI_DE signal set are dropped.

8.9.2
Priority Splitter

The Priority Splitter Process forwards received ETH_CI onto different output ports depending on the value of the ETH_CI_P signal.

[image: image100.emf]Priority

Splitter

Figure 8-82 – Priority Splitter Function

The mapping of ETH_CI_P values to output ports of the Priority Splitter function need to be configured.

8.9.3
Priority Merger

The Priority Merger Process forwards received ETH_CI on one of its input ports to a single output port.

[image: image101.emf]Priority

Merger

Figure 8-83 – Priority Merger Function

Nothing has to be configured on this process.

8.9.4
Conditioner

The conditioner determines the conformance of the incoming ETH_CI Traffic Units. The level of conformance is expressed as one of three colours; Green, Yellow or Red.

[image: image102.emf]C

o

n

d

i

t

i

o

n

e

r

Figure 8-84 – Conditioner Process

Red Conformance means that the ETH_CI Traffic Unit is discarded; Yellow conformance means that for the ETH_CI Traffic Units the associated ETH_CI_DE signal is set to True; Green conformance means that the ETH_CI Traffic Unit is forwarded unchanged and the ETH_CI_DE signal is set to False.

Compliance for a Bandwidth Profile is described by 4 parameters. The parameters are:

1. Committed Information Rate (CIR) expressed as bits per second. CIR must be (0.

2. Committed Burst Size (CBS) expressed as bytes. When CIR > 0, CBS must be ≥ Maximum Transmission Unit size allowed to enter the function.

3. Excess Information Rate (EIR) expressed as bits per second. EIR must be (0

4. Excess Burst Size (EBS) expressed as bytes. When EIR > 0, EBS must be ≥ Maximum Ethernet frame allowed to enter the network.

Two additional parameters are used to determine the behaviour of the Bandwidth Profile algorithm. The algorithm is said to be in colour aware mode when each incoming Ethernet Frame already has a level of conformance colour associated with it and that colour is taken into account in determining the level of conformance to the bandwidth profile parameters. The Bandwidth Profile algorithm is said to be in colour blind mode when level of conformance colour (if any), already associated with each incoming Ethernet Frame, is ignored in determining the level of conformance. Colour blind mode support is required at the UNI. Colour aware mode is optional at the UNI.

1. Coupling Flag (CF) must have only one of two possible values, 0 or 1.

2. Colour Mode (CM) must have only one of two possible values, “color-blind” and “color-aware”

All these parameters have to be configured at the conditioner function. The Conformance Algorithm is defined in [MEF 10.2].

8.9.5
Scheduler

The Scheduler Process forwards ETH_CI from its input ports to the corresponding output ports of the Scheduler function according to a specified scheduling algorithm.

[image: image103.emf]Sched

uler

Figure 8-85 – Scheduler Process

The Scheduling algorithm and its parameters must be configured.

The Scheduling Algorithms are for further study.

9
Ethernet MAC layer (ETH) functions

Figure 1-1 illustrates all the ETH layer network, server and client adaptation functions. The information crossing the ETH flow point (ETH_FP) is referred to as the ETH Characteristic Information (ETH_CI). The information crossing the ETH access point (ETH_AP) is referred to as ETH adapted information (ETH_AI).

ETH sublayers can be created by expanding an ETH_FP as illustrated in Figure 9-1.

[image: image104.emf]ETHx

ETHx/Client

ETHx

ETHx

6x

SRV

<SRV>/ETH

ETHx

Sublayer

ETHx/ETH-m

ETHG/ETH

ETHG

ETHx

ETHx

6x

ETHx/ETH-m

ETHG/ETH

ETHG

ETHx/ETH

ETHx

6x

ETHx/ETH

ETHx

Sublayer

ETHx

Sublayer

ETHx/ETH

Figure 9-1 – ETH sublayering

Figure 9-1 illustrates the basic flow termination and adaptation functions involved and the possible ordering of these functions. The ETHx/ETH-m functions multiplex ETH_CI streams. The ETHx and ETHG flow termination functions insert and extract the pro-active Y.1731 OAM information (e.g., CCM). The ETHDy flow termination functions insert and extract the on-demand Y.1731 OAM information (e.g., LBM, LTM). The ETHx/ETH and ETHG/ETH adaptation functions insert and extract the administrative and control Y.1731 OAM information (e.g., LCK, APS).
Any combination that can be constructed by following the directions in the figure is allowed. Some recursion is allowed as indicated by the arrows upwards; the number next to the arrow defines the number of recursions allowed.

Note that the ETHx Sublayers in Figure 9-1 correspond to the ETH0 (top), ETH1 (middle) and ETH2 (bottom) in Figure 7-5 of [ITU-T G.8010].

ETH Characteristic Information

The ETH_CI is a stream of ETH_CI traffic units complemented with ETH_CI_P, ETH_CI_DE, ETH_CI_SSF and ETH_CI_SSD signals. An ETH_CI traffic unit defines the ETH_CI_D signal as illustrated in Figure 9-2. Each ETH_CI Traffic Unit contains a Source Address (SA) field, a Destination Address (DA) field and an M_SDU field, this can be further decomposed into a Length/Type field and a Payload field; the Payload field may be padded.

[image: image105.emf]ETH_CI Traffic Unit

L/T PAD Payload

M_SDU

ETH_CI Traffic Unit ETH_CI Traffic Unit ETH_CI Traffic Unit

OAM Etype Opcode Specific Fields MEL Ver Opc

ETH_CI Data

Traffic Unit

ETH_CI OAM

Traffic Unit

ETH_CI_D

SA DA

F Offs

PAD

ETH_CI Traffic Unit

L/T PAD Payload

M_SDU

ETH_CI Traffic Unit ETH_CI Traffic Unit ETH_CI Traffic Unit

OAM Etype Opcode Specific Fields MEL Ver Opc

ETH_CI Data

Traffic Unit

ETH_CI OAM

Traffic Unit

ETH_CI_D

SA DA

F Offs

PAD

Figure 9-2 – ETH Characteristic Information

The SA and DA field contain 48 byte MAC addresses as defined in [IEEE 802.3].

There are two types of ETH_CI Traffic Units: Data Traffic Units and OAM Traffic Units. If the L/T field equals the OAM Etype value (89-02 as defined in clause 10 of [ITU-T Y.1731]) the ETH_CI Traffic Unit is an ETH_CI OAM Traffic Unit, otherwise it is an ETH_CI Data Traffic Unit.

The Payload field of an ETH_CI OAM Traffic Unit can be decomposed into the Maintenance Entity Group Level field (MEL), the Version field (Ver), the Opcode field (Opc), the Flags field (F), the TLV Offset field (Offs) and Opcode Specific Fields. This structure of ETH_CI OAM Traffic Units is defined in clause 9 of [ITU-T Y.1731].

Functions for Traffic Units

The following functions are used in this Recommendation to indicate the various fields of a Traffic Unit:

SA(Traffic_Unit): Returns the value of the SA field in the Traffic Unit.

DA(Traffic_Unit): Returns the value of the DA field in the Traffic Unit.

Etype(Traffic_Unit): Returns the value of the Ethertype field in the Traffic Unit

OPC(OAM Traffic_Unit): Returns the value of the Opcode field in the OAM Traffic Unit; returns undefined value if the Traffic Unit is not an OAM Traffic Unit.

MEL(OAM Traffic_Unit): Returns the value of the Maintenance Entity Group Level field in the OAM Traffic Unit; returns undefined value if the Traffic Unit is not an OAM Traffic Unit.

Flags(OAM Traffic_Unit): Returns the value of Flags field in the OAM Traffic Unit; returns an undefined value if the Traffic Unit is not an OAM Traffic Unit.

NOTE – The ETH_CI contains no VID field as the ETH_CI is defined per VLAN.

ETH Adapted Information

The ETH_AI is a stream of ETH_AI traffic units complemented with the following signals: ETH_AI_P, ETH_AI_DE, ETH_AI_TSF and ETH_AI_TSD. The ETH_AI Traffic Units define the ETH_AI_D signal. The ETH_AI Traffic Unit structure is shown in Figure 9-3.

[image: image106.emf]ETH_AI Traffic Unit

Payload L/T PAD

M_SDU

ETH_AI Traffic Unit ETH_AI Traffic Unit ETH_AI Traffic Unit

TPID PAD Payload TCI L/T

Untagged ETH_AI

Data Traffic Unit

Tagged ETH_AI

PCP

C

F

I

VID

PCP

D

E

I

VID

C-VLAN tag format CFI = 0 (fixed)

S-VLAN tag format

81-00

88-a8

ETH_AI_D

OAM Etype

OpcodeSpecific

Fields

MEL Ver Opc

Tagged ETH_AI

SA DA

F Offs PAD TPID TCI

OAM Etype OpcodeSpecific Fields MEL Ver Opc F Offs PAD

Untagged

OAM Traffic Unit

PCP

C

F

I

VID

PCP

D

E

I

VID

C-VLAN tag format CFI = 0 (fixed)

S-VLAN tag format

81-00

88-a8

ETH_AI Traffic Unit

Payload L/T PAD

M_SDU

ETH_AI Traffic Unit ETH_AI Traffic Unit ETH_AI Traffic Unit

TPID PAD Payload TCI L/T

Untagged ETH_AI

Tagged ETH_AI

PCP

C

F

I

VID

PCP

D

E

I

VID

C-VLAN tag format CFI = 0 (fixed)

S-VLAN tag format

81-00

88-a8

ETH_AI_D

OAM Etype

OpcodeSpecific

Fields

MEL Ver Opc

Tagged

SA DA

F Offs PAD TPID TCI

OAM Etype OpcodeSpecific Fields MEL Ver Opc F Offs PAD

UntaggedETH_AI

PCP

C

F

I

VID

PCP

D

E

I

VID

C-VLAN tag format CFI = 0 (fixed)

S-VLAN tag format

81-00

88-a8

Data Traffic Unit

OAM Traffic Unit

ETH_AI Traffic Unit

Payload L/T PAD

M_SDU

ETH_AI Traffic Unit ETH_AI Traffic Unit ETH_AI Traffic Unit

TPID PAD Payload TCI L/T

Untagged ETH_AI

Data Traffic Unit

Tagged ETH_AI

PCP

C

F

I

VID

PCP

D

E

I

VID

C-VLAN tag format CFI = 0 (fixed)

S-VLAN tag format

81-00

88-a8

ETH_AI_D

OAM Etype

OpcodeSpecific

Fields

MEL Ver Opc

Tagged ETH_AI

SA DA

F Offs PAD TPID TCI

OAM Etype OpcodeSpecific Fields MEL Ver Opc F Offs PAD

Untagged

OAM Traffic Unit

PCP

C

F

I

VID

PCP

D

E

I

VID

C-VLAN tag format CFI = 0 (fixed)

S-VLAN tag format

81-00

88-a8

ETH_AI Traffic Unit

Payload L/T PAD

M_SDU

ETH_AI Traffic Unit ETH_AI Traffic Unit ETH_AI Traffic Unit

TPID PAD Payload TCI L/T

Untagged ETH_AI

Tagged ETH_AI

PCP

C

F

I

VID

PCP

D

E

I

VID

C-VLAN tag format CFI = 0 (fixed)

S-VLAN tag format

81-00

88-a8

ETH_AI_D

OAM Etype

OpcodeSpecific

Fields

MEL Ver Opc

Tagged

SA DA

F Offs PAD TPID TCI

OAM Etype OpcodeSpecific Fields MEL Ver Opc F Offs PAD

UntaggedETH_AI

PCP

C

F

I

VID

PCP

D

E

I

VID

C-VLAN tag format CFI = 0 (fixed)

S-VLAN tag format

81-00

88-a8

Data Traffic Unit

OAM Traffic Unit

Figure 9-3 – ETH Adapted Information

The ETH_AI Traffic Unit contains the M_SDU and the DA and SA fields. The M_SDU field can be further decomposed into L/T, Payload and PAD fields. These fields are the same as in ETH_CI Traffic Units.

There are four types of ETH_AI Traffic Units: Untagged Data, Tagged Tada, Untagged OAM and Tagged OAM traffic units. The untagged and tagged types are defined in [IEEE 802.1Q]. The OAM traffic units are defined in [ITU-T Y.1731].

The L/T field determines the type of the ETH_AI Traffic Unit:

· If the L/T field contains the OAM Ethertype value, the Traffic Unit is an Untagged OAM Traffic Unit, otherwise

· If the L/T field contains one of the Tag Protocol Identifier (TPID) values indicated in Figure 9-3, and the succeeding field to the Tag Control Information (TCI) value corresponds to the OAM Ethertype value, the Traffic Unit is a Tagged OAM Traffic Unit, otherwise

· If the L/T field contains neither the OAM Ethertype value nor the TPID values, the Traffic Unit is an Untagged Data Traffic Unit, otherwise

· The Traffic Unit is a Tagged Data Traffic Unit.

The Payload field of an ETH_AI OAM Traffic Unit can be decomposed into the Maintenance Entity Group Level field (MEL), the Version field (Ver), the Opcode field (Opc), the Flags field (F), TLV Offset field (Offs) and Opcode Specific Fields. This structure of ETH_AI OAM Traffic Units is the same as ETH_CI OAM Traffic Units defined in clause 9 of [ITU-T Y.1731].

There are two types of Tagged Traffic Units: C-VLAN tagged and S-VLAN tagged. Each of these types has its own TPID value, 81-00 for C-VLAN tagged and 88-a8 for S-VLAN tagged as defined in clause 9.5 of [IEEE 802.1Q].

In a tagged frame (C-VLAN and S-VLAN tagged) a Tag Control Information (TCI) field follows the TPID field. This field consists of a Priority Code Point (PCP), VLAN ID (VID) and Canonical Format Identifier (CFI) for C-VLAN tagged, or Drop Eligible Indicator (DEI) field for S-VLAN tagged Traffic Units.

The PCP field may be used to carry the ETH_CI_P and ETH_CI_DE signal values from an ETH_FP. The DEI field may be used to carry the ETH_CI_DE signal from an ETH_FP.

All ETH_AI traffic units may come from one ETH_FP or different ETH_FPs (in the case of multiplexing in ETHx/ETH-m_A function). In the latter case the VID field value is used to identify the ETH_FP where the Traffic Unit is associated.

Note that because of the stacking of ETH sublayers, ETH_CI of a client ETH sublayer is encapsulated in ETH_AI to be transferred via a server ETH sublayer. Figure 9-4 shows an ETH_CI OAM Traffic Unit encapsulated in an ETH_AI Data Traffic Unit. The grey fields constitute the original ETH_CI OAM Traffic Unit. The encapsulating Traffic Unit is no longer an OAM Traffic Unit, but a Tagged Traffic Units. Adding a VLAN Tag hides the OAM information, and transforms an ETH_CI OAM Traffic Units into a Tagged ETH_AI Data Traffic Unit.

[image: image107.emf]OAM Etype PAD

OpcodeSpecific OAM

information

SA DA MEL Ver Opc TPID TCI F Offs OAM Etype PAD

OpcodeSpecific OAM

information

SA DA MEL Ver Opc TPID TCI F Offs

Figure 9-4 – Tagged ETH_AI carrying ETH_CI OAM

This ETH_AI Tagged Traffic Unit will be transformed into an ETH_CI data Traffic Unit by the ETHx_FT source function, resulting in an ETH_CI data Traffic Unit carrying a client layer ETH_CI OAM Traffic Unit.
9.1
ETH Connection Functions (ETH_C)

The information flow and processing of the ETH_C function is defined with reference to Figures 9-5 and 9-6. The ETH_C function connects ETH characteristic information from its input ports to its output ports. As the process does not affect the nature of characteristic information, the reference points on either side of the ETH_C function are the same as illustrated in Figure 9-5.

The connection process is unidirectional and as such no differentiation in sink and source is required.

In addition, the ETH_C function supports the following protection schemes:

–
1+1 unidirectional SNC/S protection without APS protocol.

–
1+1 unidirectional SNC/S protection with an APS protocol.

–
1+1 bidirectional SNC/S protection with an APS protocol.

–
1:1 bidirectional SNC/S protection with an APS protocol.
–
Ring protection with an APS protocol.
The protection functionality is described in clauses 9.1.2 and 9.1.3.

NOTE 1 – The SNC/S protection processes have a dedicated sink and source behaviour.
Symbol

The ETH Connection Function, as shown in Figure 9-5, forwards ETH_CI signals at its input ports to its output ports.

 [image: image108.emf]ETH

ETH_FP

ETH_FP

ETH_FP

ETH_FP

ETH_FP

ETH_FP

ETH_C_MP

Figure 9-5 – ETH_C symbol

The actual forwarding is performed using Flow Forwarding processes ETH_FF interconnecting the input and output ports.

Interfaces

Table 9-2 – ETH_C Interfaces

	Inputs
	Outputs

	Per ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_APS
ETH_CI_SSF
ETH_CI_SSD

ETH_C_MP:
ETH_C_MI_Create_FF
ETH_C_MI_Modify_FF
ETH_C_MI_Delete_FF
ETH_C_MP per flow forwarding process:
ETH_C_MI_FF_Set_PortIds
ETH_C_MI_FF_ConnectionType
ETH_C_MI_FF_Flush_Learned
ETH_C_MI_FF_Flush_Config
ETH_C_MI_FF_Group_Default
ETH_C_MI_FF_ETH_FF
ETH_C_MI_FF_Ageing
ETH_C_MI_FF_Learning
ETH_C_MI_FF_STP_Learning_State[i]

ETH_C_MP per SNC/S protection process:
ETH_C_MI_PS_WorkingPortId
ETH_C_MI_PS_ProtectionPortId
ETH_C_MI_PS_ProtType
ETH_C_MI_PS_OperType
ETH_C_MI_PS_HoTime
ETH_C_MI_PS_WTR
ETH_C_MI_PS_ExtCMD ETH_C_MI_PS_BridgeType
ETH_C_MI_PS_SD_Protection
ETH_C_MP per Ring protection process:
ETH_C_MI_RAPS_RPL_Owner_Node
ETH_C_MI_RAPS_RPL_Neighbour_Node
ETH_C_MI_RAPS_Propagate_TC[1…M]
ETH_C_MI_RAPS_Compatible_Version
ETH_C_MI_RAPS_Revertive
ETH_C_MI_RAPS_Sub_Ring_Without_
 Virtual_Channel
ETH_C_MI_RAPS_HoTime
ETH_C_MI_RAPS_WTR
ETH_C_MI_RAPS_GuardTime
ETH_C_MI_RAPS_ExtCMD
ETH_C_MI_RAPS_RingID
	Per ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_APS

Processes
The processes associated with the ETH_C function are as depicted in Figure 9-6.

ETH_CI traffic units are forwarded between input and output ETH flow points by means of an ETH flow forwarding process. ETH flow points may be allocated within a protection group.

NOTE 2 – Neither the number of input / output signals to the connection function, nor the connectivity, is specified in this Recommendation. That is a property of individual network elements.
[image: image109.emf] ETH Connection ETH_FF ETH_FF

ETH_CI ETH_CI ETH_CI

ETH_CI ETH_CI

ETH_CI

ETH_CI ETH_CI

. . .

. . .

ETH_C_MI

Figure 9-6 – ETH Connection function with ETH_FF processes

The flow forwarding process ETH_FF is described in sub-clause 9.1.1.

Defects

None.
Consequent Actions

None.
Defect Correlations

None.
Performance Monitoring
None.
9.1.1
ETH Flow Forwarding process (ETH_FF)
The ETH Flow Forwarding process, as shown in Figure 9-6, forwards ETH_CI signals at its input ports to its output ports. The forwarding may take into account the value of the DA field of the ETH_CI Traffic Unit.

 [image: image110.emf]Learning Forwarding

Address Table

ETH_CI

(Address, port)

Address

(Address, {port})

ETH_FF

0

1

2

n

0

1

2

n

0

1

2

n

0

1

2

n

Ageing

Group_Default

Flush_Config

Flush_Learned

ETH_CI

MI_

FF_

MI_

FF_

MI_

FF_

MI_

FF_

MI_FF_ MI_FF_

MI_

FF_

MI_

FF_

MI_

FF_

MI_

FF_

Learning

Address Table

ETH_CI

(Address, port)

Address

(Address, {port})

ETH_FF

0

1

2

n

0

1

2

n

0

1

2

n

0

1

2

n

Ageing

Group_Default

Flush_Config

Flush_Learned

ETH_CI

Learning STP_LearningState[] MI_FF_ MI_

FF_

Learning STP_LearningState[] MI_FF_ MI_FF_ MI_ MI_ Learning STP_LearningState[] MI_FF_ MI_FF_ MI_

FF_

MI_

FF_

Learning STP_LearningState[] MI_FF_ MI_FF_ MI_ MI_

MI_

FF_

MI_

FF_

MI_

FF_

MI_

FF_

MI_FF_ MI_FF_

MI_

FF_

MI_

FF_

MI_

FF_

MI_

FF_

Forwarding

Figure 9-7 – ETH Flow Forwarding Process

Figure 9-7 shows the ETH_FF in case of Individual VLAN Learning (IVL) mode. In this mode each ETH_FF has its own Address Table. Figure 9-8 shows the process for the case of Shared VLAN Learning (SVL) mode. In this mode two or more ETH_FF share the Address Table process.

 [image: image111.emf]Learning Forwarding

Address Table

ETH_CI

ETH_CI

ETH_CI

(Address, port) Address

(Address, {port})

ETH_FF

0

1

2

n

0

1

2

n

0

1

2

n

0

1

2

n

Learning Forwarding

ETH_CI

ETH_CI

0

1

2

n

0

1

2

n

0

1

2

n

0

1

2

n

Address

(Address, {port})

(Address, port)

Learning STP_LearningState[]

Learning

STP_LearningState[]

Ageing

ETH_CI

Group_Default

Flush_Learned

Flush_Config

MI_FF_ MI_FF_

MI_

FF_

MI_

FF_

MI_FF_ MI_FF_

MI_

FF_

MI_

FF_

MI_

FF_

MI_

FF_

MI_FF_ MI_FF_

MI_

FF_

MI_

FF_

MI_

FF_

MI_

FF_

MI_

FF_

MI_

FF_

Figure 9-8 – ETH Flow Forwarding Process in SVL mode

Address Table process:

The Address Table process maintains a list of tuples (Address, {ports}). This list may be configured using MI_FF_ETH_FF input signal and by the Learning process.

A tuple received from the Learning process is only stored in the Address Table process if there is no entry present for that MAC address that has been configured by the MI_FF_ETH_FF input signal.

The MI_FF_Ageing is used to provision the Ageing time period for entries configured from the Learning Process. Entries received from the Learning process are removed from the Address Table Ageing Time period after it was received. If, before the Ageing Time Period has expired, a new entry for the same MAC address is received, the Ageing Time Period starts again.

There is one specific value of MI_FF_Ageing: “never”. This means that the entries received from the Learning process are never removed.

All the tuples received from the Learning Process can be cleared using the MI_FF_Flush_Learned command.

All the tuples that are entered via the MI_FF_ETH_FF can be cleared using the MI_FF_Flush_Config command. Individual entries are removed via the MI_FF_ETH_FF signal.

The Address Table process processes Address requests from the Forwarding process, and responds with the tuple (Address, {port}) for the specified address. For unicast MAC addresses, if the tuple does not exist the port set ({port}) is empty. For Multicast MAC addresses, if the tuple does not exist the port set ({port}) contains the ports as configured using the MI_FF_Group_Default input signal.
Learning process:

If the value of MI_FF_Learning is enabled, the Learning process reads the SA field of the incoming ETH_CI Traffic Unit, and forwards a tuple (Address, {port}) to the Address Table process. The Address contains the value of the SA field of the ETH_CI Traffic Unit, and the port is the port on which the Traffic Unit was received.

If the value of MI_FF_Learning is disabled, the Learning process does not submit information to the AddressTable Process.

In both cases the ETH_CI itself is forwarded unchanged to the output of the learning process.

Forwarding process:

The parameters of MI_Create_FF, MI_Modify_FF, and MI_Delete_FF are used to provision the flow forwarding process.
The MI_FF_Set_PortIds parameter is used to provision TBD.

The MI_FF_ConnectionType parameter is used to provision TBD.

The MI_FF_STP_LearningState[i] input signal is provisioned per port [i]; it can be used to configure a specific port to be in the learning state. If a port is in the learning state this means that all frames received on that port will be discarded by the learning process, and therefore not forwarded to the forwarding process; however the (Address, {port}) tuple may be submitted to the Address Table process before the frame is dropped (depending on the value of MI_FF_Learning).

The Forwarding Process reads the DA field of the incoming ETH_CI Traffic Unit and sends this to the AddressTable process, the AddressTable will send a tuple (Address, {port}) back in response. It will forward the ETH_CI on all ports listed in the port set field of the tuple. If the port set is empty, the ETH_CI will be forwarded on all ports (flooding). In all cases the ETH_CI is never forwarded on the same port as it was received on.
9.1.2
Subnetwork Connection Protection Process

SNC Protection with Sublayer monitoring based on TCM is supported.

Figure 9-9 shows the involved atomic functions in SNC/S. The ETH_FT_Sk provides the TSF/TSD protection switching criterion via the ETH/ETH_A_Sk function (SSF/SSD) to the ETH_C function.

[image: image112.emf]ETH_C

ETH/ETH

ETH

ETH_CI_

SSF/SSD

ETH_CI_

SSF/SSD

ETH_CI_

D/P/DE

ETH_AI_

D/P/DE

ETH_AI

_

TSF/TSD

ETH/ETH

ETH

ETH_CI_

D/P/DE

ETH_AI_

D/P/DE

ETH_AI

_

TSF/TSD

ETH/ETH

ETH

ETH_CI_

D/P/DE

ETH_AI_

D/P/DE

ETH/ETH

ETH

ETH_CI_

D/P/DE

ETH_AI_

D/P/DE

ETH_CI_D/P/DE

Working Protection

ETH_CI_

SSF/SSD/

APS

ETH_CI_

SSF/SSD/

APS

Normal

ETH_CI_

APS

ETH_CI_

APS

Figure 9-9 – SNC/S Atomic Functions

The protection functions at both ends operate the same way, by monitoring the working and protection subnetwork connections for defects, evaluating the system status taking into consideration the priorities of defect conditions and of external switch requests, and switching the appropriate subnetwork flow point (i.e., working or protection) to the protected (sub)network flow point.

The signal flows associated with the ETH_C SNC protection process are described with reference to Figure 9-10. The protection process receives control parameters and external switch requests at the MP reference point. The report of status information at the MP reference point is for further study.

[image: image113.emf]ETH_CI_D/P/DE

ETH_CI_D/P/DE

ETH_CI_D/P/DE/APS

working protection

ETH_CI_SSF/SSD ETH_CI_SSF/SSD

Selector

W P

Bridge

W P

Normal

SNC Protection Process

E

TH_

C_

MI

_PS

ETH_CI_D/P/DE

ETH_CI_D/P/DE

ETH_CI_D/P/DE/APS

working protection

ETH_CI_SSF/SSD ETH_CI_SSF/SSD

Selector

W P

Bridge

W P

Normal

SNC Protection Process

E

TH_

C_

MI

_PS

Figure 9-10 – SNC/S Protection Process

Source direction:

For a 1+1 architecture, the CI coming from the normal (protected) ETH_FP is bridged permanently to both the working and protection ETH_FP.

For a 1:1 architecture, the CI coming from the normal (protected) ETH_FP is switched to either the working or the protection ETH_FP. A switch-over from working to protection ETH_FP or vice versa is initiated by the switch initiation criteria defined below.

Sink direction:

For a 1+1 or 1:1 architecture, the CI coming from either the working or protection ETH_FP is switched to the normal (protected) ETH_FP. A switch-over from working to protection ETH_FP or vice versa is initiated by the switch initiation criteria defined below.

Switch initiation criteria:

Automatic protection switching is based on the defect conditions of the working and protection (sub)network connections, for SNC/S protection server signal fail (SSF) and server signal degrade (SSD).

In order to allow interworking between nested protection schemes, a hold-off timer is provided. The hold-off timer delays switch initiation, in case of signal fail, in order to allow a nested protection to react and clear the fault condition. The hold-off timer is started by the activation of signal fail and runs for the hold-off time. Protection switching is only initiated if signal fail is still present at the end of the hold-off time. The hold-off time shall be provisionable between 0 and 10 s in steps of 100 ms; this is defined in clause 11.12 of [ITU-T G.8031].

Protection switching can also be initiated by external switch commands received via the MP or a request from the far end via the received ETH_CI_APS. Depending on the mode of operation, internal states (e.g. wait-to-restore) may also affect a switch-over.

See the switching algorithm described in [ITU-T G.8031].

Switching time:

Refer to [ITU-T G.8031].

Switch restoration:

In the revertive mode of operation, the protected signal shall be switched back from the protection (sub)network connection to the working (sub)network connection when the working (sub)network connection has recovered from the fault.

To prevent frequent operation of the protection switch due to an intermittent fault, a failed working (sub)network connection must become fault-free for a certain period of time before it is used again. This period, called the wait-to-restore (WTR) period, should be of the order of 5-12 minutes and should be capable of being set. The WTR is defined in clause 11.13 of [ITU-T G.8031].

In the non-revertive mode of operation no switch back to the working (sub)network connection is

performed when it has recovered from the fault.

Configuration:
The following configuration parameters are defined in [ITU-T G.8031]:
ETH_C_MI_PS_WorkingPortId configures the Working Port.
ETH_C_MI_PS_ProtectionPortId configures the Protection Port.

ETH_C_MI_PS_ProtType configures the protection Type.

ETH_C_MI_PS_OperType configures to be in revertive mode.

ETH_C_MI_PS_HoTime configures the Hold Off Timer.

ETH_C_MI_PS_WTR configures the Wait-To-Restore Timer.

ETH_C_MI_PS_ExtCMD configures the protection group command.

ETH_C_MI_PS_BridgeType configures the type of bridge used for 1:1 SNC protection switching.

ETH_C_MI_PS_SD_Protection configures the ability of a SNC protection switching process to trigger protection switching upon SD.
Defects:

The function detects dFOP-PM, dFOP-CM, dFOP-NR and dFOP-TO defects in case the APS protocol is used.
Consequent Actions:

None.

Defect correlations:

cFOP-TO (dFOP-TO and (not dFOP-CM)

9.1.3
Ring Protection Control Process

Ring Protection with Inherent, Sub-Layer, or Test Trail monitoring is supported.

Figure 9-11 shows a subset of the atomic functions involved, and the signal flows associated with the ring protection control process. This is only an overview of the Ethernet Ring Protection Control Process as specified in [ITU-T G.8032]. The ETH_FT_Sk provides the TSF protection switching criterion via the ETH/ETH_A_Sk function (SSF). [ITU-T G.8032] specifies the requirements, options and the ring protection protocol supported by the ring protection control process.
 [image: image114.emf]Ring Protection

Control Process

ETH_CI_RAPS

ETH_CI_SSF

Control

Topology_Change

ETH_CI_SSF

ETH_CI_RAPS

Topology_Change

ETHx

ETHx/ETH-m

ETHDe

ETHD/ETHx

ETHDi

ETHDi/ETH

ETH_CI_SSF

ETH_AI_TSF

ETH_C

ETH_C_MI_RAPS

Figure 9-11 – Ring Protection Atomic Functions and Control Process
Configuration:
The following configuration parameters are defined in [ITU-T G.8032]:
ETH_C_MI_RAPS_RPL_Owner_Node configures the node type.

ETH_C_MI_RAPS_RPL_Neighbour_Node configures the adjacency of a node to the RPL Owner.
ETH_C_MI_RAPS_Propagate_TC[1…M] configures the flush logic of an interconnection node.

ETH_C_MI_RAPS_Compatible_Version configures the Backward compatibility logic.

ETH_C_MI_RAPS_Revertive configures the revertive mode.

ETH_C_MI_RAPS_Sub_Ring_Without_Virtual_Channel configures the sub-ring type.

ETH_C_MI_RAPS_HoTime configures the Hold Off Timer.

ETH_C_MI_RAPS_WTR configures the Wait To Restore Timer.

ETH_C_MI_RAPS_GuardTime configures the Guard Timer.

ETH_C_MI_RAPS_ExtCMD configures the protection command.
ETH_C_MI_RAPS_RingID configures the Ring ID.

Defects:

The function detects dFOP-PM and dFOP-TO in case the R-APS protocol is used.

Consequent Actions:

None.

Defect correlations:

cFOP-PM (dFOP-PM

cFOP-TO (dFOP-TO

9.2 ETH Termination Functions

9.2.1
ETHx Flow Termination functions (ETHx_FT)

The bidirectional ETH Flow Termination (ETHx_FT) function is performed by a co-located pair of ETH flow termination source (ETHx_FT_So) and sink (ETHx_FT_Sk) functions.

9.2.1.1
ETHx Flow Termination source function (ETHx_FT_So)

Symbol

[image: image115.emf]ETHx_FT

ETH_AP

ETH_FP

ETH_MP ETH_RP

Figure 9-13 – ETHx_FT_So symbol

Interfaces

Table 9-3 – ETHx_FT_So interfaces

	Inputs
	Outputs

	ETH_AP:

ETH_AI_D
ETH_AI_P
ETH_AI_DE

ETH_RP:

ETH_RI_CC_RxFCl
ETH_RI_CC_TxFCf
ETH_RI_CC_RDI
ETH_RI_CC_Blk
ETH_RI_LMM(OAM,P,DE)
ETH_RI_LMR(TxFCf,RxFCf,TxFCb,RxFCl)
ETH_RI_DMM(OAM,P,DE)
ETH_RI_DMR(rSA,TxTimeStampf,
 RxTimeStampf,TxTimeStampb,RxTimeb,
 rTestID)
ETH_RI_SLM(OAM,P,DE,TxFCb)
ETH_RI_SLR(rMEP_ID,rTest_ID,
 TxFCf, TxFCb)
ETHx_FT_So_MP:

ETHx_FT_So_MI_MEL
ETHx_FT_So_MI_MEP_MAC
ETHx_FT_So_MI_CC_Enable
ETHx_FT_So_MI_LM_Enable
ETHx_FT_So_MI_MEG_ID
ETHx_FT_So_MI_MEP_ID
ETHx_FT_So_MI_CC_Period
ETHx_FT_So_MI_CC_Pri
ETHx_FT_So_MI_LM_MAC_DA
ETHx_FT_So_MI_LM_Period
ETHx_FT_So_MI_LM_Pri ETHx_FT_So_MI_DM_Enable
ETHx_FT_So_MI_DM_MAC_DA
ETHx_FT_So_MI_DM_Test_ID
ETHx_FT_So_MI_DM_Length
ETHx_FT_So_MI_DM_Period
ETHx_FT_So_MI_DM_Pri
ETHx_FT_So_MI_1DM_Enable
ETHx_FT_So_MI_1DM_MAC_DA
ETHx_FT_So_MI_1DM_Test_ID
ETHx_FT_So_MI_1DM_Length
ETHx_FT_So_MI_1DM_Period
ETHx_FT_So_MI_1DM_Pri
ETHx_FT_So_MI_SL_Enable
ETHx_FT_So_MI_SL_MAC_DA
ETHx_FT_So_MI_SL_Test_ID
ETHx_FT_So_MI_SL_Length
ETHx_FT_So_MI_SL_Period
ETHx_FT_So_MI_SL_Pri
ETHx_FT_So_MI_1SL_Enable
ETHx_FT_So_MI_1SL_MAC_DA
ETHx_FT_So_MI_1SL_Test_ID
ETHx_FT_So_MI_1SL_Length
ETHx_FT_So_MI_1SL_Period
ETHx_FT_So_MI_1SL_Pri
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_RP:

ETH_RI_LM_Result(N_TF,N_LF,F_TF,F_LF)
ETH_RI_DM_Result(B_FD,F_FD,N_FD)
ETH_RI_SL_Result(N_TF,N_LF,F_TF,F_LF)

Processes

 [image: image116.emf]ETH_AI_D/P/DE

RI_CC_RxFCl

RI_CC_TxFCf

RI_CC_RDI

MI_CC_Enable

Data

Data

Block

RI_CC_Blk

ETH_AI_D/P/DE

RI_CC_RxFCl

RI_CC_TxFCf

RI_CC_RDI

MI_CC_Enable

Data

Data

Block

RI_CC_Blk

M

E

P

P

r

o

A

c

t

i

v

e

-

O

A

M

I

n

s

e

r

t

i

o

n

MI_MEL

MI_MEP_MAC

M

E

P

P

r

o

A

c

t

i

v

e

-

O

A

M

I

n

s

e

r

t

i

o

n

MI_MEL

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

MI_MEP_MAC

P DE

Data

DE

Data

D

O

A

M

D

P

DE

D

M

R

DMR

Generation

RI_DMM(OAM,P,DE)

DMM

Generation

D

P

DE

D

M

M

DMM(

DA,P,1,

Test ID TLV,

TLV)

DMM

Z

Y

X

Mux

Proactive DM

Control

MI_DM_Length

MI_DM_Period

MI_DM_Pri

RI_DM_Result

(B_FD,F_FD,N_FD)

MI_DM_MAC_DA

MI_DM_Enable

RI_DMR

(rSA, TxTimeStampf,

RxTimeStampf, TxTimeStampb,

RxTimeb,rTestID)

MI_DM_Test_ID

O

A

M

D

P

DE

D

M

R

DMR

Generation

RI_DMM(OAM,P,DE)

DMM

Generation

D

P

DE

D

M

M

DMM(

DA,P,1,

Test ID TLV,

TLV)

DMM

Z

Y

X

Mux

Proactive DM

Control

MI_DM_Length

MI_DM_Period

MI_DM_Pri

RI_DM_Result

(B_FD,F_FD,N_FD)

MI_DM_MAC_DA

MI_DM_Enable

RI_DMR

(rSA, TxTimeStampf,

RxTimeStampf, TxTimeStampb,

RxTimeb,rTestID)

MI_DM_Test_ID

1DM

Generation

D

P

DE

1

D

M

1DM(

DA,P,1,

Test ID TLV,

TLV)

1DM

Z

Y

X

Mux

Proactive 1DM

Control_So

MI_1DM_Length

MI_1DM_Period

MI_1DM_Pri

MI_1DM_MAC_DA

MI_1DM_Enable

MI_1DM_Test_ID

1DM

Generation

D

P

DE

1

D

M

1DM(

DA,P,1,

Test ID TLV,

TLV)

1DM

Z

Y

X

Mux

Proactive 1DM

Control_So

MI_1DM_Length

MI_1DM_Period

MI_1DM_Pri

MI_1DM_MAC_DA

MI_1DM_Enable

MI_1DM_Test_ID

D

P

DE

L

M

R

LMR

Generation

RI_LMM(OAM,P,DE)

LMM

Generation

D

P

DE

L

M

M

LMM(

DA,P,1)

LMM

Z

Y

X

Mux

Proactive LM

Control

MI_LM_Period

MI_LM_Pri

MI_LM_MAC_DA

CCM Generation

D

DE

P

O

A

M

C

C

M

MI_CC_

Pri

MI_CC_

Period

MI_MEG_ID

MI_MEP_ID

MI_CC_

Pri

MI_CC_

Period

MI_MEG_ID

MI_MEP_ID

RI_LM_Result

(N_TF,N_LF,F_TF,F_LF)

RI_LMR

(TxFCf,RxFCf,TxFCb,RxFCl)

Pri

MI_LM_

Enable

MI_ _

Pri

MI_LM_

Enable

MI_ _

TxFC[]

MI_LM_Enable MI_ _Enable

Counter

SLM

Generation

D

P

DE

S

L

M

SLM(

DA,P,

MEP_ID,

Test _ID,

TxFCl,

TLV)

SLM

Z

Y

X

Mux

Proactive SL

Control

MI_SL_Length

MI_SL_Period

MI_SL_Pri

MI_SL_MAC_DA

MI_SL_Enable

MI_SL_Test_ID

D

P

DE

S

L

R

SLR

Generation

RI_SL_Result

(N_TF,N_LF,F_TF,F_LF)

RI_SLM(OAM,P,DE,TxFCb)

RI_SLR

(rMEP_ID,rTest_ID,TxFCf,TxFCb)

SLM

Generation

D

P

DE

S

L

M

SLM(

DA,P,

MEP_ID,

Test _ID,

TxFCl,

TLV)

SLM

Z

Y

X

Mux

Proactive SL

Control

MI_SL_Length

MI_SL_Period

MI_SL_Pri

MI_SL_MAC_DA

MI_SL_Enable

MI_SL_Test_ID

D

P

DE

S

L

R

SLR

Generation

RI_SL_Result

(N_TF,N_LF,F_TF,F_LF)

RI_SLM(OAM,P,DE,TxFCb)

RI_SLR

(rMEP_ID,rTest_ID,TxFCf,TxFCb)

1SL

Generation

D

P

DE

1

S

L

1SL(

DA,P,

MEP_ID,

Test_ID,

TxFCl,

TLV)

1SL

Z

Y

X

Mux

Proactive 1SL

Control_So

MI_1SL_Length

MI_1SL_Period

MI_1SL_Pri

MI_1SL_MAC_DA

MI_1SL_Enable

MI_1SL_Test_ID

1SL

Generation

D

P

DE

1

S

L

1SL(

DA,P,

MEP_ID,

Test_ID,

TxFCl,

TLV)

1SL

Z

Y

X

Mux

Proactive 1SL

Control_So

MI_1SL_Length

MI_1SL_Period

MI_1SL_Pri

MI_1SL_MAC_DA

MI_1SL_Enable

MI_1SL_Test_ID

Figure 9-14 – ETHx_FT_So Process
MEP ProActive-OAM Insertion process:

This process inserts the OAM Traffic Units in the stream of ETH_CI, sets the MEL field to MI_MEL and sets the SA field to MI_MEP_MAC.

If the DA of the OAM Traffic Unit is a Class 1 Multicast DA, the OAM insertion process updates the DA to reflect the correct MEL.

[image: image117.emf]Data.D(D),

Data.P(P),

Data.DE(DE)

D(D),

P(P),

DE(DE)

Waiting

OAM.D(D),

OAM.P(P),

OAM.DE(DE)

D(D),

P(P),

DE(DE)

MEL(D)=MI_MEL

IF(DA(D)==01-80-C2-00-00-3*)

{

x=MI_MEL

DA(D)=01-80-C2-00-00-3x

}

SA(D)=MI_MEP_MAC

Data.D(D),

Data.P(P),

Data.DE(DE)

D(D),

P(P),

DE(DE)

Waiting

OAM.D(D),

OAM.P(P),

OAM.DE(DE)

D(D),

P(P),

DE(DE)

MEL(D)=MI_MEL

IF(DA(D)==01-80-C2-00-00-3*)

{

x=MI_MEL

DA(D)=01-80-C2-00-00-3x

}

SA(D)=MI_MEP_MAC

Figure 9-15 – OAM MEP Insertion Behaviour
CCM Generation process:

This Process is defined in clause 8.1.7 where the CC protocol is defined. Clause 8.1.7.2 defines the CCM Generation Process.

Block process:

When RI_CC_Blk is raised, the Block process will discard all ETH_CI information it receives. If RI_CC_Blk is cleared, the received ETH_CI information will be passed to the output port.

Proactive LM Control:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.2 defines the proactive LM Control Process.

LMM Generation:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.3 defines the LMM Generation part in LMx Generation Process.

LMR Generation:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.3 defines the LMR Generation part in LMx Generation Process.

LMM Mux:

The LMM Mux process interleaves the signal sets LMM(DA,P,1) from the input ports (X, Y, Z).
Proactive DM Control:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.2 defines the DM Control Process.

DMM Generation:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.3 defines the DMM Generation Process.

DMR Generation:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.5 defines the DMR Generation Process.

DMM Mux:

The DMM Mux process interleaves the signal sets DMM(DA,P,1,Test ID TLV, TLV) from the input ports (X, Y, Z).
Proactive1DM Control_So:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.2 defines the 1DM Control_So Process.

1DM Generation:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.3 defines the 1DM Generation Process.
1DM Mux:

The 1DM Mux process interleaves the signal sets 1DM(DA,P,1,Test ID TLV, TLV) from the input ports (X, Y, Z).
Proactive SL Control:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.2 defines the SL Control process.

SLM Generation:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.3 defines the SLM Generation Process.

SLR Generation:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.5 defines the SLR Generation Process.
SLM Mux:

The SLM Mux process interleaves the signal sets SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) from the input ports (X, Y, Z).
Proactive1SL Control_So:

This Process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.2 defines the 1SL Control_So Process.

1SL Generation:

This Process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.3 defines the 1SL Generation Process.

1SL Mux:

The 1SL Mux process interleaves the signal sets 1SL(DA,P, MEP_ID,Test _ID, TxFCl, TLV) from the input ports (X, Y, Z).
Defects

None.
Consequent Actions

None.

Defect correlations

None.

Performance Monitoring
None.
9.2.1.2
ETHx Flow Termination sink function (ETHx_FT_Sk)

The ETHx_FT_Sk Process diagram is shown in Figure 9-16.

Symbol

[image: image118.emf]ETHx_FT

ETH_AP

ETH_FP

ETH_MP ETH_RP

Figure 9-16 – ETHx_FT_Sk symbol

Interfaces

Table 9-4 – ETHx_FT_Sk interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_RP:

ETH_RI_LM_Result(
N_TF,N_LF,F_TF,F_LF)
ETH_RI_DM_Result(B_FD,F_FD,N_FD)
ETH_RI_SL_Result(
N_TF,N_LF,F_TF,F_LF)
ETHx_FT_Sk_MP:

ETHx_FT_Sk_MI_CC_Enable
ETHx_FT_Sk_MI_LM_Enable
ETHx_FT_Sk_MI_1Second
ETHx_FT_Sk_MI_LM_DEGM
ETHx_FT_Sk_MI_LM_M
ETHx_FT_Sk_MI_LM_DEGTHR
ETHx_FT_Sk_MI_LM_TFMIN
ETHx_FT_Sk_MI_MEL
ETHx_FT_Sk_MI_MEG_ID
ETHx_FT_Sk_MI_PeerMEP_ID[i]
ETHx_FT_Sk_MI_CC_Period
ETHx_FT_Sk_MI_CC_Pri
ETHx_FT_Sk_MI_GetSvdCCM
ETHx_FT_Sk_MI_1DM_Enable
ETHx_FT_Sk_MI_1DM_MAC_SA
ETHx_FT_Sk_MI_1DM_Test_ID
ETHx_FT_Sk_MI_1SL_Enable
ETHx_FT_Sk_MI_1SL_MAC_SA
ETHx_FT_Sk_MI_1SL_MEP_ID
ETHx_FT_Sk_MI_1SL_Test_ID

	ETH_AP:

ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH_AI_TSF
ETH_AI_TSD
ETH_AI_AIS

ETH_RP:

ETH_RI_CC_RxFCl
ETH_RI_CC_TxFCf
ETH_RI_CC_RDI
ETH_RI_CC_Blk
ETH_RI_LMM(OAM,P,DE)
ETH_RI_LMR(TxFCf,RxFCf,TxFCb,RxFCl)

ETH_RI_DMM(OAM,P,DE)
ETH_RI_DMR(rSA,TxTimeStampf,
 RxTimeStampf,TxTimeStampb,RxTimeb,
 rTestID)
ETH_RI_SLM(OAM,P,DE,TxFCb)
ETH_RI_SLR(rMEP_ID,rTest_ID,TxFCf, TxFCb)
ETHx_FT_Sk_MP:

ETHx_FT_Sk_MI_cLOC[i]
ETHx_FT_Sk_MI_cUNL
ETHx_FT_Sk_MI_cMMG
ETHx_FT_Sk_MI_cUNM
ETHx_FT_Sk_MI_cDEG
ETHx_FT_Sk_MI_cUNP
ETHx_FT_Sk_MI_cUNPr
ETHx_FT_Sk_MI_cRDI
ETHx_FT_Sk_MI_cSSF
ETHx_FT_Sk_MI_cLCK
ETHx_FT_Sk_MI_pN_TF
ETHx_FT_Sk_MI_pN_LF
ETHx_FT_Sk_MI_pF_TF
ETHx_FT_Sk_MI_pF_LF
ETHx_FT_Sk_MI_pF_DS
ETHx_FT_Sk_MI_pN_DS
ETHx_FT_Sk_MI_pB_FD
ETHx_FT_Sk_MI_pB_FDV
ETHx_FT_Sk_MI_pF_FD
ETHx_FT_Sk_MI_pF_FDV
ETHx_FT_Sk_MI_pN_FD
ETHx_FT_Sk_MI_pN_FDV
ETHx_FT_Sk_MI_SvdCCM

Processes

 [image: image119.emf]ETH_CI_D/P/DE ETH_CI_SSF ETH_CI_D/P/DE ETH_CI_SSF

M

E

P

P

r

o

a

c

t

i

v

e

-

M

E

P

P

r

o

a

c

t

i

v

e

-

O

A

M

e

x

t

r

a

c

t

i

o

n

O

A

M

e

x

t

r

a

c

t

i

o

n

O

A

M

e

x

t

r

a

c

t

i

o

n

O

A

M

e

x

t

r

a

c

t

i

o

n

MI_MEL

D

DE

P

A

I

S

D

DE

P

A

I

S

D

D

E

D

DE

P

C

C

M

D

DE

P

C

C

M

data

D

DE

P

C

C

M

D

DE

P

C

C

M

RxFCl

TxFCf

RxFCb

TxFCb

RxFCl

TxFCf

RxFCb

TxFCb

MI_LM_Enable

RI_CC_RxFCl

RI_CC_TxFCf

RI_CC_RxFCl

RI_CC_TxFCf

MI_LM_Enable

LCK

Reception

P

L

C

K

D

DE

D

e

f

e

c

t

C

o

r

r

e

l

a

t

i

o

n

dLOC[i]

dUNL

dMMG

dUNM

CI_SSF

dDEG[1]

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cRDI

MI_cLCK

MI_cSSF

MI_cDEG

dUNP

dRDI[i]

dAIS

dLCK

dUNPr

MI_cUNP

MI_cUNPr

D

e

f

e

c

t

C

o

r

r

e

l

a

t

i

o

n

dLOC[i]

dUNL

dMMG

dUNM

CI_SSF CI_SSF

dDEG[1] dDEG[1]

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cRDI MI_cRDI

MI_cLCK

MI_cSSF

MI_cDEG MI_cDEG

dUNP

dRDI[i]

dAIS

dLCK

dUNPr

MI_cUNP

MI_cUNPr

MI_cUNP

MI_cUNPr MI_cUNPr

MI_CC_Enable

D

e

f

e

c

t

C

o

r

r

e

l

a

t

i

o

n

dLOC[i]

dUNL

dMMG

dUNM

CI_SSF CI_SSF

dDEG[1] dDEG[1]

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cRDI MI_cRDI

MI_cLCK

MI_cSSF

MI_cDEG MI_cDEG

dUNP

dRDI[i]

dAIS

dLCK

dUNPr

MI_cUNP

MI_cUNPr

MI_cUNP

MI_cUNPr

D

e

f

e

c

t

C

o

r

r

e

l

a

t

i

o

n

dLOC[i]

dUNL

dMMG

dUNM

CI_SSF CI_SSF

dDEG[1] dDEG[1]

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cRDI MI_cRDI

MI_cLCK

MI_cSSF

MI_cDEG MI_cDEG

dUNP

dRDI[i]

dAIS

dLCK

dUNPr

MI_cUNP

MI_cUNPr MI_cUNPr

MI_cUNP

MI_cUNPr MI_cUNPr

MI_CC_Enable

AIS

Reception

DE

P

DE

P DMM

Reception

DE

P

DE

P DMR

Reception

DE

P

DE

P 1DM

Reception

DMM

DMR

D

RI_DMR

D

D

Proactive

1DM

Control_Sk

1DM

RI_DMM

1DM_Result

DE

P

DE

P SLM

Reception

DE

P

DE

P

SLR

Reception

SLM

SLR

D

D

RI_SLM

RI_DMM

RI_DMR

RI_DM_Result

RI_SLM

RI_SLR

RI_SL_Result

Block

aBLK

RI_CC_RDI

ETH_AI_D/P/DE

D

P

D

E

RI_CC_Blk

Block

RI_CC_RDI

ETH_AI_D/P/DE

RI_CC_Blk

Consequent

Action

aTSF

aTSD aAIS

ETH_AI_TSF / TSD / AIS

Consequent

Action

ETH_AI_TSF / TSD / AIS

d

L

O

C

[

i

]

d

U

N

L

d

M

M

G

d

U

N

M

d

R

D

I

[

i

]

d

A

I

S

d

L

C

K

C

I

_

S

S

F

d

D

E

G

[

1

]

d

U

N

P

r

d

U

N

P

d

L

O

C

[

i

]

d

U

N

L

d

M

M

G

d

U

N

M

d

R

D

I

[

i

]

d

A

I

S

d

L

C

K

d

R

D

I

[

i

]

d

A

I

S

d

L

C

K

C

I

_

S

S

F

C

I

_

S

S

F

d

D

E

G

[

1

E

G

[

1

d

U

N

P

r

d

U

N

P

d

U

N

P

r

d

U

N

P

d

L

O

C

[

i

]

d

U

N

L

d

M

M

G

d

U

N

M

d

R

D

I

[

i

]

d

A

I

S

d

L

C

K

d

R

D

I

[

i

]

d

A

I

S

d

L

C

K

C

I

_

S

S

F

C

I

_

S

S

F

d

D

E

G

[

1

]

d

D

E

G

[

1

]

d

U

N

P

r

d

U

N

P

d

U

N

P

r

d

U

N

P

d

L

O

C

[

i

]

d

U

N

L

d

M

M

G

d

U

N

M

d

R

D

I

[

i

]

d

A

I

S

d

L

C

K

d

R

D

I

[

i

]

d

A

I

S

d

L

C

K

C

I

_

S

S

F

C

I

_

S

S

F

d

D

E

G

[

1

E

G

[

1

d

U

N

P

r

d

U

N

P

d

U

N

P

r

d

U

N

P

X

Y

Z

1DM

Dmux

X

Y

Z

1DM

Dmux

X

Y

Z

DMR

Dmux

X

Y

Z

DMR

Dmux

RI_SLR

X

Y

Z

SLR

Dmux

X

Y

Z

SLR

Dmux

Defect Generation Defect Generation

n

N

_

T

F

n

N

_

L

F

n

F

_

T

F

n

F

_

L

F

n

N

_

T

F

n

N

_

L

F

n

F

_

T

F

n

F

_

L

F

n

N

_

T

F

n

N

_

L

F

n

F

_

T

F

n

F

_

L

F

n

N

_

T

F

n

N

_

L

F

n

F

_

T

F

n

F

_

L

F

n

N

_

T

F

n

N

_

L

F

n

F

_

T

F

n

F

_

L

F

n

N

_

T

F

n

N

_

L

F

n

F

_

T

F

n

F

_

L

F

n

N

_

T

F

n

N

_

L

F

n

F

_

T

F

n

F

_

L

F

u

n

e

x

p

M

E

P

u

n

e

x

p

M

E

G

u

n

e

x

p

M

E

L

u

n

e

x

p

P

e

r

i

o

d

u

n

e

x

p

P

r

i

o

r

i

t

y

R

D

I

[

i

]

e

x

p

CCM

[

i

]

u

n

e

x

p

M

E

P

u

n

e

x

p

M

E

P

u

n

e

x

p

M

E

G

u

n

e

x

p

M

E

G

u

n

e

x

p

M

E

L

u

n

e

x

p

M

E

L

u

n

e

x

p

P

e

r

i

o

d

u

n

e

x

p

P

e

r

i

o

d

u

n

e

x

p

P

r

i

o

r

i

t

y

u

n

e

x

p

P

r

i

o

r

i

t

y

R

D

I

[

i

]

R

D

I

[

i

]

e

x

p

CCM

[

i

]

e

x

p

CCM

[

i

]

u

n

e

x

p

M

E

P

u

n

e

x

p

M

E

P

u

n

e

x

p

M

E

G

u

n

e

x

p

M

E

G

u

n

e

x

p

M

E

L

u

n

e

x

p

M

E

L

u

n

e

x

p

P

e

r

i

o

d

u

n

e

x

p

P

e

r

i

o

d

u

n

e

x

p

P

r

i

o

r

i

t

y

u

n

e

x

p

P

r

i

o

r

i

t

y

R

D

I

[

i

]

R

D

I

[

i

]

e

x

p

CCM

[

i

]

e

x

p

CCM

[

i

]

u

n

e

x

p

M

E

P

u

n

e

x

p

M

E

P

u

n

e

x

p

M

E

G

u

n

e

x

p

M

E

G

u

n

e

x

p

M

E

L

u

n

e

x

p

M

E

L

u

n

e

x

p

P

e

r

i

o

d

u

n

e

x

p

P

e

r

i

o

d

u

n

e

x

p

P

r

i

o

r

i

t

y

u

n

e

x

p

P

r

i

o

r

i

t

y

R

D

I

[

i

]

R

D

I

[

i

]

e

x

p

CCM

[

i

]

e

x

p

CCM

[

i

]

MI_LM_DEGM

MI_LM_M

MI_LM_DEGTHR

MI_LM_TFMIN

MI_LM_DEGM

MI_LM_M

MI_LM_DEGTHR

MI_LM_TFMIN

aRDI[1]

aTSF

P

e

r

f

o

r

m

a

n

c

e

M

o

n

i

t

o

r

i

n

g

P

e

r

f

o

r

m

a

n

c

e

M

o

n

i

t

o

r

i

n

g

MI_1Second

MI_pN_TF

MI_pN_LF

MI_pF _TF

MI_pF _LF

MI_pN_DS

MI_pF_DS

MI_1Second

MI_pN_TF

MI_pN_LF

MI_pF _TF

MI_pF _LF

MI_pN_DS

MI_pF_DS

MI_pB_FD

MI_pB_FDV

MI_pF_FD

MI_pF_FDV

MI_pN_FD

MI_pN_FDV

RI_DM_Result

1DM_Result

RI_SL_Result

AIS AIS

LCK LCK

AIS

LCK

Counter

data

data

P

DE

P

DE

P

LMM

Reception

DE

P

DE

P LMR

Reception

LMM

LMR

D

RI_LMR

D

RI_LMM

X

Y

Z

LMR

Dmux

DE

P

DE

P

LMM

Reception

DE

P

DE

P LMR

Reception

LMM

LMR

D

RI_LMR

D

RI_LMM

X

Y

Z

LMR

Dmux

X

Y

Z

LMR

Dmux

RxFC[]

RI_LMM

RI_LMR

RI_LM_Result

MI_LM_

Enable

MI_CC_Period

MI_CC_Pri

MI_MEG_ID MI_PeerMEP_ID

[]

MI_Get_SvdCCM MI_SvdCCM

MI_MEL

MI_CC_Period

MI_CC_Pri

MI_MEG_ID MI_PeerMEP_ID

[]

MI_Get_SvdCCM MI_SvdCCM

MI_MEL

MI_CC_Enable

MI_1DM_Enable

MI_1DM_MAC_SA

MI_1DM_Test_ID

aBLK

aRDI

MI_CC_Period

MI_CC_Pri

MI_MEG_ID

MI_PeerMEP_ID[]

MI_Get_SvdCCM

MI_SvdCCM

LMp

CCM

Reception

CCM

Reception

DE

P

DE

P 1SL

Reception

D

Proactive

1SL

Control_Sk

1SL

1SL_Result

X

Y

Z

1SL

Dmux

MI_1SL_Enable

MI_1SL_MAC_SA

MI_1SL_MEP_ID

MI_1SL_Test_ID

DE

P

DE

P 1SL

Reception

D

Proactive

1SL

Control_Sk

1SL

1SL_Result

X

Y

Z

1SL

Dmux

X

Y

Z

1SL

Dmux

MI_1SL_Enable

MI_1SL_MAC_SA

MI_1SL_MEP_ID

MI_1SL_Test_ID

1SL_Result

Figure 9-17 – ETHx_FT_Sk Process

MEP Proactive-OAM Extraction process:
The MEP Proactive-OAM Extraction process extracts OAM Traffic Units that are processed in the ETHx_FT_Sk process from the stream of Traffic Units according to the following pseudo code:

if (TYPE=<ETHOAM>) and (MEL=MI_MEL) then
 switch(OPC) {
 case <CCM>: extract ETH-CCM OAM traffic unit and forward to CCM Port
 case <AIS>: extract ETH-AIS OAM traffic unit and forward to AIS Port
 case <LCK>: extract ETH-LCK OAM traffic unit and forward to LCK Port
 case <LMM>: extract ETH-LMM OAM traffic unit and forward to LMM Port
 case <LMR>: extract ETH-LMR OAM traffic unit and forward to LMR Port
 case <DMM>: extract ETH-DMM OAM traffic unit and forward to DMM Port
 case <DMR>: extract ETH-DMR OAM traffic unit and forward to DMR Port
 case <1DM>: extract ETH-1DM OAM traffic unit and forward to 1DM Port
 case <SLM>: extract ETH-SLM OAM traffic unit and forward to SLM port
 case <SLR>: extract ETH-SLR OAM traffic unit and forward to SLR port
 case <1SL>: extract ETH-1SL OAM traffic unit and forward to 1SL Port
 default: forward ETH_CI traffic unit to Data port

}

elseif (TYPE=<ETH0AM>) and (MEL<MI_MEL) and (OPC=CCM) then
 extract ETH-CCM OAM traffic unit and forward to CCM Port
else

forward ETH CI traffic unit to Data Port

endif
NOTE - Further filtering of OAM Traffic Units is performed by the OAM MEL Filter Process which forms part of the ETH Adaptation functions specified in clause 9.3.
ETH_AIS Reception process:

This process generates the AIS event upon the receipt of the AIS Traffic Unit from the OAM MEP Extraction Process.

ETH_LCK Reception process:

This process generates the LCK event upon the receipt of the LCK Traffic Unit from the OAM MEP Extraction Process.

LMM Reception:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.4 defines the LMM Reception part in LMx Reception Process.

LMR Reception:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.4 defines the LMR Reception part in LMx Receiption Process.

LMR Demux:

The LMR Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P signal can be used for the selection of the port.
DMM Reception:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.4 defines the DMM Reception Process.

DMR Reception:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.6 defines the DMR Reception Process.

DMR Demux:

The DMR Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1DM Reception:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.4 defines the 1DM Reception Process.

1DM Demux:

The 1DM Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
Proactive 1DM Control_Sk:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.5 defines the 1DM Control_Sk Process.

SLM Reception:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.4 defines the SLM reception process.

SLR Reception:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.6 defines the SLR reception process.

SLR Demux:

The SLR Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1SL Reception:

This Process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.4 defines the 1SL Reception Process.

1SL Demux:

The 1SL Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.

Proactive 1SL Control_Sk:

This Process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.5 defines the 1SL Control_Sk Process.
Block process:

When aBlk is raised, the Block process will discard all ETH_CI information it receives. If aBLK is cleared, the received ETH_CI information will be passed to the output port.

LMp process:

This process is defined in clause 8.1.7.4.

Defect Generation process:

This process detects and clears the defects (dLOC[i], dUNL, dMMG, dUNM, dDEG, dUNP, dUNPr, dRDI[i], dAIS, dLCK) as defined in clause 6, where [i] = maintenance entity.

CCM Reception process:

This process is defined in clause 8.1.7.3.

Defects

This function detects dLOC[i], dUNL, dMMG, dUNM, dDEG, dUNP, dUNPr, dRDI[i], dAIS, dLCK.
Consequent actions

aBLK

(
(dUNL or dMMG or dUNM)

Note that dUNP and dUNPr does not contribute to aBLK, because a mismatch of periodicity is not considered to be a security issue.

aTSF

(
(dLOC[1..n] and MI_CC_Enable) or (dAIS and not(MI_CC_Enable)) or (dLCK and not(MI_CC_Enable)) or dUNL or dMMG or dUNM or CI_SSF

aTSD

(
dDEG[1] and (not aTSF)
aAIS

(
aTSF

aRDI

(
aTSF
Defect correlations

cLOC[i]
(
dLOC[i] and (not dAIS) and (not dLCK) and (not CI_SSF) and (MI_CC_Enable)

cUNL

(
dUNL

cMMG

(
dMMG
cUNM

(
dUNM
cDEG[1]
(
dDEG[1] and (not dAIS) and (not dLCK) and (not CI_SSF) and (not (dLOC[1..n] or dUNL or dMMG or dUNM)) and (MI_CC_Enable))

cUNP

(
dUNP
cUNPr

(
dUNPr
cRDI

(
(dRDI[1..n]) and (MI_CC_Enable)

cSSF

(
CI_SSF or dAIS

cLCK

(
dLCK and (not dAIS)

Performance monitoring

pN_TF

(
N_TF

pN_LF

(
N_LF

pF_TF

(
F_TF

pF_LF

(
F_LF

pN_DS

(
aTSF

pF_DS

(
aRDI[1]

pB_FD

(
B_FD
pB_FDV
(
B_FDV
pF_FD

(
F_FD
pF_FDV
(
F_FDV
pN_FD

(
N_FD
pN_FDV
(
N_FDV
NOTE- A detail calculation formula for FDV is for further study.
9.2.2
ETH Group Flow Termination functions (ETHG_FT)

The bidirectional ETH Group Flow Termination (ETHG_FT) function is performed by a co-located pair of ETH Group flow termination source (ETHG_FT_So) and sink (ETHG_FT_Sk) functions.

9.2.2.1
ETH Group Flow Termination source function (ETHG_FT_So)

Symbol
[image: image120.emf]ETHG_FT

ETH_AP

ETH_FP

ETHG_MP ETHG_RP

ETHG_FT

ETH_AP

ETH_FP

ETHG_MP ETHG_RP

Figure 9-x – ETHG_FT_So symbol

Interfaces

Table 9-y – ETHG_FT_So interfaces

	Inputs
	Outputs

	ETH_AP:

ETH_AI_D[1...M]
ETH_AI_P[1...M]
ETH_AI_DE[1...M]
ETH_RP:
ETH_RI_CC_RxFCl
ETH_RI_CC_TxFCf
ETH_RI_CC_RDI
ETH_RI_CC_Blk
ETH_RI_LMM(OAM,P,DE)
ETH_RI_LMR(TxFCf,RxFCf,TxFCb,RxFCl)
ETH_RI_DMM(OAM,P,DE)
ETH_RI_DMR(rSA,TxTimeStampf,
 RxTimeStampf,TxTimeStampb,RxTimeb,
 rTestID)
ETH_RI_SLM(OAM,P,DE,TxFCb)
ETH_RI_SLR(rMEP_ID,rTest_ID,
 TxFCf, TxFCb)
ETHG_FT_So_MP:

ETHG_FT_So_MI_MEL
ETHG_FT_So_MI_MEP_MAC
ETHG_FT_So_MI_CC_Enable
ETHG_FT_So_MI_LM_Enable
ETHG_FT_So_MI_MEG_ID
ETHG_FT_So_MI_MEP_ID
ETHG_FT_So_MI_CC_Period
ETHG_FT_So_MI_CC_Pri
ETHG_FT_So_MI_LM_MAC_DA

ETHG_FT_So_MI_LM_Period

ETHG_FT_So_MI_LM_Pri ETHG_FT_So_MI_DM_Enable

ETHG_FT_So_MI_DM_MAC_DA

ETHG_FT_So_MI_DM_Test_ID

ETHG_FT_So_MI_DM_Length

ETHG_FT_So_MI_DM_Period

ETHG_FT_So_MI_DM_Pri

ETHG_FT_So_MI_1DM_Enable

ETHG_FT_So_MI_1DM_MAC_DA

ETHG_FT_So_MI_1DM_Test_ID

ETHG_FT_So_MI_1DM_Length

ETHG_FT_So_MI_1DM_Period

ETHG_FT_So_MI_1DM_Pri

ETHG_FT_So_MI_SL_Enable

ETHG_FT_So_MI_SL_MAC_DA

ETHG_FT_So_MI_SL_Test_ID

ETHG_FT_So_MI_SL_Length

ETHG_FT_So_MI_SL_Period

ETHG_FT_So_MI_SL_Pri
ETHG_FT_So_MI_1SL_Enable

ETHG_FT_So_MI_1SL_MAC_DA

ETHG_FT_So_MI_1SL_Test_ID

ETHG_FT_So_MI_1SL_Length

ETHG_FT_So_MI_1SL_Period

ETHG_FT_So_MI_1SL_Pri
	ETH_FP:
ETH_CI_D[1...M]
ETH_CI_P[1...M]
ETH_CI_DE[1...M]
ETH_RP:

ETH_RI_LM_Result(N_TF,N_LF,F_TF,F_LF)
ETH_RI_DM_Result(B_FD,F_FD,N_FD)
ETH_RI_SL_Result(N_TF,N_LF,F_TF,F_LF)

Processes

 [image: image121.emf]RI_CC_RxFCl

RI_CC_TxFCf

RI_CC_RDI

MI_CC_Enable

Block

RI_CC_Blk

RI_CC_RxFCl

RI_CC_TxFCf

RI_CC_RDI

MI_CC_Enable

Data Data Data Data

Block

ETH_AI_D/P/DE ETH_AI_D/P/DE ETH_AI_D/P/DE ETH_AI_D/P/DE

RI_CC_Blk

M

E

P

P

r

o

A

c

t

i

v

e

-

O

A

M

I

n

s

e

r

t

i

o

n

MI_MEL

MI_MEP_MAC

M

E

P

P

r

o

A

c

t

i

v

e

-

O

A

M

I

n

s

e

r

t

i

o

n

MI_MEL

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

MI_MEP_MAC

Data

P DE

Data

DE

Data

D

Data

P DE

Data

DE

Data

D

O

A

M

D

P

DE

D

M

R

DMR

Generation

RI_DMM(OAM,P,DE)

DMM

Generation

D

P

DE

D

M

M

DMM(

DA,P,1,

Test ID TLV,

TLV)

DMM

Z

Y

X

Mux

Proactive DM

Control

MI_DM_Length

MI_DM_Period

MI_DM_Pri

RI_DM_Result

(B_FD,F_FD,N_FD)

MI_DM_MAC_DA

MI_DM_Enable

RI_DMR

(rSA, TxTimeStampf,

RxTimeStampf, TxTimeStampb,

RxTimeb,rTestID)

MI_DM_Test_ID

O

A

M

D

P

DE

D

M

R

DMR

Generation

RI_DMM(OAM,P,DE)

DMM

Generation

D

P

DE

D

M

M

DMM(

DA,P,1,

Test ID TLV,

TLV)

DMM

Z

Y

X

Mux

Proactive DM

Control

MI_DM_Length

MI_DM_Period

MI_DM_Pri

RI_DM_Result

(B_FD,F_FD,N_FD)

MI_DM_MAC_DA

MI_DM_Enable

RI_DMR

(rSA, TxTimeStampf,

RxTimeStampf, TxTimeStampb,

RxTimeb,rTestID)

MI_DM_Test_ID

1DM

Generation

D

P

DE

1

D

M

1DM(

DA,P,1,

Test ID TLV,

TLV)

1DM

Z

Y

X

Mux

Proactive 1DM

Control_So

MI_1DM_Length

MI_1DM_Period

MI_1DM_Pri

MI_1DM_MAC_DA

MI_1DM_Enable

MI_1DM_Test_ID

1DM

Generation

D

P

DE

1

D

M

1DM(

DA,P,1,

Test ID TLV,

TLV)

1DM

Z

Y

X

Mux

Proactive 1DM

Control_So

MI_1DM_Length

MI_1DM_Period

MI_1DM_Pri

MI_1DM_MAC_DA

MI_1DM_Enable

MI_1DM_Test_ID

D

P

DE

L

M

R

LMR

Generation

RI_LMM(OAM,P,DE)

LMM

Generation

D

P

DE

L

M

M

LMM(

DA,P,1)

LMM

Z

Y

X

Mux

Proactive LM

Control

MI_LM_Period

MI_LM_Pri

MI_LM_MAC_DA

CCM Generation

D

DE

P

O

A

M

C

C

M

MI_CC_

Pri

MI_CC_

Period

MI_MEG_ID

MI_MEP_ID

MI_CC_

Pri

MI_CC_

Period

MI_MEG_ID

MI_MEP_ID

RI_LM_Result

(N_TF,N_LF,F_TF,F_LF)

RI_LMR

(TxFCf,RxFCf,TxFCb,RxFCl)

Pri

MI_LM_

Enable

MI_ _

Pri

MI_LM_

Enable

MI_ _

TxFC[]

MI_LM_Enable MI_ _Enable

Counter

SLM

Generation

D

P

DE

S

L

M

SLM(

DA,P,

MEP_ID,

Test _ID,

TxFCl,

TLV)

SLM

Z

Y

X

Mux

Proactive SL

Control

MI_SL_Length

MI_SL_Period

MI_SL_Pri

MI_SL_MAC_DA

MI_SL_Enable

MI_SL_Test_ID

D

P

DE

S

L

R

SLR

Generation

RI_SL_Result

(N_TF,N_LF,F_TF,F_LF)

RI_SLM(OAM,P,DE,TxFCb)

RI_SLR

(rMEP_ID,rTest_ID,TxFCf,TxFCb)

SLM

Generation

D

P

DE

S

L

M

SLM(

DA,P,

MEP_ID,

Test _ID,

TxFCl,

TLV)

SLM

Z

Y

X

Mux

Proactive SL

Control

MI_SL_Length

MI_SL_Period

MI_SL_Pri

MI_SL_MAC_DA

MI_SL_Enable

MI_SL_Test_ID

D

P

DE

S

L

R

SLR

Generation

RI_SL_Result

(N_TF,N_LF,F_TF,F_LF)

RI_SLM(OAM,P,DE,TxFCb)

RI_SLR

(rMEP_ID,rTest_ID,TxFCf,TxFCb)

Data Data Data Data

ETH_AI_D/P/DE ETH_AI_D/P/DE ETH_AI_D/P/DE ETH_AI_D/P/DE

Data Data Data Data

ETH_AI_D/P/DE ETH_AI_D/P/DE ETH_AI_D/P/DE ETH_AI_D/P/DE

Data

P DE DE D

Data

P DE DE D

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

ETH_CI_D/P/DE

D P DE

1SL

Generation

D

P

DE

1

S

L

1SL(

DA,P,

MEP_ID,

Test_ID,

TxFCl,

TLV)

1SL

Z

Y

X

Mux

Proactive 1SL

Control_So

MI_1SL_Length

MI_1SL_Period

MI_1SL_Pri

MI_1SL_MAC_DA

MI_1SL_Enable

MI_1SL_Test_ID

1SL

Generation

D

P

DE

1

S

L

1SL(

DA,P,

MEP_ID,

Test_ID,

TxFCl,

TLV)

1SL

Z

Y

X

Mux

Proactive 1SL

Control_So

MI_1SL_Length

MI_1SL_Period

MI_1SL_Pri

MI_1SL_MAC_DA

MI_1SL_Enable

MI_1SL_Test_ID

Figure 9-x+1 – ETHG_FT_So Process
MEP ProActive-OAM Insertion process:

This process inserts the OAM Traffic Units in the stream of ETH_CI, sets the MEL field to MI_MEL and sets the SA field to MI_MEP_MAC. This process resides only in the lowest number in the contiguous range of ETH_FPs or a selected ETH_FP within the group of arbitrary ETH_FPs. The detail of the OAM Insertion Behaviour is described in clause 9.2.1.1.
CCM Generation process:

This Process is defined in clause 8.1.7 where the CC protocol is defined. Clause 8.1.7.2 defines the CCM Generation Process.

Block process:

When RI_CC_Blk is raised, the Block process will discard all ETH_CI information within the group of co-located flow points. If RI_CC_Blk is cleared, the received ETH_CI information will be passed to the output port.

Proactive LM Control:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.2 defines the proactive LM Control Process.

LMM Generation:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.3 defines the LMM Generation part in LMx Generation Process.

LMR Generation:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.3 defines the LMR Generation part in LMx Generation Process.

LMM Mux:

The LMM Mux process interleaves the signal sets LMM(DA,P,1) from the input ports (X, Y, Z).

Proactive DM Control:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.2 defines the DM Control Process.

DMM Generation:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.3 defines the DMM Generation Process.

DMR Generation:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.5 defines the DMR Generation Process.

DMM Mux:

The DMM Mux process interleaves the signal sets DMM(DA,P,1,Test ID TLV, TLV) from the input ports (X, Y, Z).

Proactive1DM Control_So:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.2 defines the 1DM Control_So Process.

1DM Generation:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.3 defines the 1DM Generation Process.
1DM Mux:

The 1DM Mux process interleaves the signal sets 1DM(DA,P,1,Test ID TLV, TLV) from the input ports (X, Y, Z).

Proactive SL Control:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.2 defines the SL Control process.

SLM Generation:

This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.3 defines the SLM generation process.

SLR Generation:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.5 defines the SLR generation process.

SLM Mux:

The SLM Mux process interleaves the signal sets SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) from the input ports (X, Y, Z).

Proactive1SL Control_So:

This Process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.2 defines the 1SL Control_So Process.

1SL Generation:

This Process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.3 defines the 1SL Generation Process.

1SL Mux:

The 1SL Mux process interleaves the signal sets 1SL(DA,P,Test _ID,MEP_ID,TxFCl, TLV) from the input ports (X, Y, Z).
Defects

None.
Consequent Actions

None.

Defect correlations

None.
Performance Monitoring
None.
9.2.2.2
ETH Group Flow Termination sink function (ETHG_FT_Sk)

The ETHG_FT_Sk Process diagram is shown in Figure 9-x+2.

Symbol

[image: image122.emf]ETHG_FT

ETH_AP

ETH_FP

ETHG_MP ETHG_RP

ETHG_FT

ETH_AP

ETH_FP

ETHG_MP ETHG_RP

Figure 9-x+2 – ETHG_FT_Sk symbol
Interfaces

Table 9-y+1 – ETHG_FT_Sk interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D[1...M]
ETH_CI_P[1...M]
ETH_CI_DE[1...M]
ETH_CI_SSF
ETH_RP:

ETH_RI_LM_Result(
N_TF,N_LF,F_TF,F_LF)
ETH_RI_DM_Result(B_FD,F_FD,N_FD)

ETH_RI_SL_Result(
N_TF,N_LF,F_TF,F_LF)

ETHG_FT_Sk_MP:

ETHG_FT_Sk_MI_CC_Enable
ETHG_FT_Sk_MI_LM_Enable
ETHG_FT_Sk_MI_1Second
ETHG_FT_Sk_MI_LM_DEGM
ETHG_FT_Sk_MI_LM_M
ETHG_FT_Sk_MI_LM_DEGTHR
ETHG_FT_Sk_MI_LM_TFMIN
ETHG_FT_Sk_MI_MEL
ETHG_FT_Sk_MI_MEG_ID
ETHG_FT_Sk_MI_PeerMEP_ID[i]
ETHG_FT_Sk_MI_CC_Period
ETHG_FT_Sk_MI_CC_Pri
ETHG_FT_Sk_MI_GetSvdCCM
ETHG_FT_Sk_MI_1DM_Enable
ETHG_FT_Sk_MI_1DM_MAC_SA
ETHG_FT_Sk_MI_1DM_Test_ID
ETHG_FT_Sk_MI_1SL_Enable
ETHG_FT_Sk_MI_1SL_MAC_SA
ETHG_FT_Sk_MI_1SL_MEP_ID
ETHG_FT_Sk_MI_1SL_Test_ID

	ETH_AP:

ETH_AI_D[1...M]
ETH_AI_P[1...M]
ETH_AI_DE[1...M]
ETH_AI_TSF
ETH_AI_TSD
ETH_AI_AIS
ETH_RP:

ETH_RI_CC_RxFCl
ETH_RI_CC_TxFCf
ETH_RI_CC_RDI
ETH_RI_CC_Blk
ETH_RI_LMM(OAM,P,DE)
ETH_RI_LMR(TxFCf,RxFCf,TxFCb,RxFCl)

ETH_RI_DMM(OAM,P,DE)
ETH_RI_DMR(rSA,TxTimeStampf,
 RxTimeStampf,TxTimeStampb,RxTimeb,
 rTestID)
ETH_RI_SLM(OAM,P,DE,TxFCb)
ETH_RI_SLR(rMEP_ID,rTest_ID,TxFCf, TxFCb)
ETHG_FT_Sk_MP:

ETHG_FT_Sk_MI_cLOC[i]
ETHG_FT_Sk_MI_cUNL
ETHG_FT_Sk_MI_cMMG
ETHG_FT_Sk_MI_cUNM
ETHG_FT_Sk_MI_cDEG
ETHG_FT_Sk_MI_cUNP
ETHG_FT_Sk_MI_cUNPr
ETHG_FT_Sk_MI_cRDI
ETHG_FT_Sk_MI_cSSF
ETHG_FT_Sk_MI_cLCK
ETHG_FT_Sk_MI_pN_TF
ETHG_FT_Sk_MI_pN_LF
ETHG_FT_Sk_MI_pF_TF
ETHG_FT_Sk_MI_pF_LF
ETHG_FT_Sk_MI_pF_DS
ETHG_FT_Sk_MI_pN_DS
ETHG_FT_Sk_MI_pB_FD
ETHG_FT_Sk_MI_pB_FDV
ETHG_FT_Sk_MI_pF_FD
ETHG_FT_Sk_MI_pF_FDV
ETHG_FT_Sk_MI_pN_FD
ETHG_FT_Sk_MI_pN_FDV
ETHG_FT_Sk_MI_SvdCCM

Processes

[image: image123.emf]ETH_CI_D/P/DE ETH_CI_SSF ETH_CI_D/P/DE ETH_CI_SSF

M

E

P

P

r

o

a

c

t

i

v

e

-

M

E

P

P

r

o

a

c

t

i

v

e

-

O

A

M

e

x

t

r

a

c

t

i

o

n

O

A

M

e

x

t

r

a

c

t

i

o

n

O

A

M

e

x

t

r

a

c

t

i

o

n

O

A

M

e

x

t

r

a

c

t

i

o

n

MI_MEL

D

DE

P

A

I

S

D

DE

P

A

I

S

D

DE

P

C

C

M

D

DE

P

C

C

M

data

D

DE

P

C

C

M

D

DE

P

C

C

M

RxFCl

TxFCf

RxFCb

TxFCb

RxFCl

TxFCf

RxFCb

TxFCb

MI_LM_Enable

RI_CC_RxFCl

RI_CC_TxFCf

RI_CC_RxFCl

RI_CC_TxFCf

MI_LM_Enable

LCK

Reception

P

L

C

K

D

DE

D

e

f

e

c

t

C

o

r

r

e

l

a

t

i

o

n

dLOC[i]

dUNL

dMMG

dUNM

CI_SSF

dDEG[1]

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cRDI

MI_cLCK

MI_cSSF

MI_cDEG

dUNP

dRDI[i]

dAIS

dLCK

dUNPr

MI_cUNP

MI_cUNPr

D

e

f

e

c

t

C

o

r

r

e

l

a

t

i

o

n

dLOC[i]

dUNL

dMMG

dUNM

CI_SSF CI_SSF

dDEG[1] dDEG[1]

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cRDI MI_cRDI

MI_cLCK

MI_cSSF

MI_cDEG MI_cDEG

dUNP

dRDI[i]

dAIS

dLCK

dUNPr

MI_cUNP

MI_cUNPr

MI_cUNP

MI_cUNPr MI_cUNPr

MI_CC_Enable

D

e

f

e

c

t

C

o

r

r

e

l

a

t

i

o

n

dLOC[i]

dUNL

dMMG

dUNM

CI_SSF CI_SSF

dDEG[1] dDEG[1]

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cRDI MI_cRDI

MI_cLCK

MI_cSSF

MI_cDEG MI_cDEG

dUNP

dRDI[i]

dAIS

dLCK

dUNPr

MI_cUNP

MI_cUNPr

MI_cUNP

MI_cUNPr

D

e

f

e

c

t

C

o

r

r

e

l

a

t

i

o

n

dLOC[i]

dUNL

dMMG

dUNM

CI_SSF CI_SSF

dDEG[1] dDEG[1]

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cRDI MI_cRDI

MI_cLCK

MI_cSSF

MI_cDEG MI_cDEG

dUNP

dRDI[i]

dAIS

dLCK

dUNPr

MI_cUNP

MI_cUNPr MI_cUNPr

MI_cUNP

MI_cUNPr MI_cUNPr

MI_CC_Enable

AIS

Reception

DE

P

DE

P DMM

Reception

DE

P

DE

P DMR

Reception

DE

P

DE

P 1DM

Reception

DMM

DMR

D

RI_DMR

D

D

Proactive

1DM

Control_Sk

1DM

RI_DMM

1DM_Result

DE

P

DE

P SLM

Reception

DE

P

DE

P

SLR

Reception

SLM

SLR

D

D

RI_SLM

RI_DMM

RI_DMR

RI_DM_Result

RI_SLM

RI_SLR

RI_SL_Result

Block

aBLK

RI_CC_RDI

RI_CC_Blk

Block

D

P

D

E

D

P

D

E

RI_CC_RDI

ETH_AI_D/P/DE ETH_AI_D/P/DE ETH_AI_D/P/DE ETH_AI_D/P/DE

RI_CC_Blk

Consequent

Action

aTSF

aTSD aAIS

ETH_AI_TSF / TSD / AIS

Consequent

Action

ETH_AI_TSF / TSD / AIS

d

L

O

C

[

i

]

d

U

N

L

d

M

M

G

d

U

N

M

d

R

D

I

[

i

]

d

A

I

S

d

L

C

K

C

I

_

S

S

F

d

D

E

G

[

1

]

d

U

N

P

r

d

U

N

P

d

L

O

C

[

i

]

d

U

N

L

d

M

M

G

d

U

N

M

d

R

D

I

[

i

]

d

A

I

S

d

L

C

K

d

R

D

I

[

i

]

d

A

I

S

d

L

C

K

C

I

_

S

S

F

C

I

_

S

S

F

d

D

E

G

[

1

E

G

[

1

d

U

N

P

r

d

U

N

P

d

U

N

P

r

d

U

N

P

d

L

O

C

[

i

]

d

U

N

L

d

M

M

G

d

U

N

M

d

R

D

I

[

i

]

d

A

I

S

d

L

C

K

d

R

D

I

[

i

]

d

A

I

S

d

L

C

K

C

I

_

S

S

F

C

I

_

S

S

F

d

D

E

G

[

1

]

d

D

E

G

[

1

]

d

U

N

P

r

d

U

N

P

d

U

N

P

r

d

U

N

P

d

L

O

C

[

i

]

d

U

N

L

d

M

M

G

d

U

N

M

d

R

D

I

[

i

]

d

A

I

S

d

L

C

K

d

R

D

I

[

i

]

d

A

I

S

d

L

C

K

C

I

_

S

S

F

C

I

_

S

S

F

d

D

E

G

[

1

E

G

[

1

d

U

N

P

r

d

U

N

P

d

U

N

P

r

d

U

N

P

X

Y

Z

1DM

Dmux

X

Y

Z

1DM

Dmux

X

Y

Z

DMR

Dmux

X

Y

Z

DMR

Dmux

RI_SLR

X

Y

Z

SLR

Dmux

X

Y

Z

SLR

Dmux

Defect Generation Defect Generation

n

N

_

T

F

n

N

_

L

F

n

F

_

T

F

n

F

_

L

F

n

N

_

T

F

n

N

_

L

F

n

F

_

T

F

n

F

_

L

F

n

N

_

T

F

n

N

_

L

F

n

F

_

T

F

n

F

_

L

F

n

N

_

T

F

n

N

_

L

F

n

F

_

T

F

n

F

_

L

F

n

N

_

T

F

n

N

_

L

F

n

F

_

T

F

n

F

_

L

F

n

N

_

T

F

n

N

_

L

F

n

F

_

T

F

n

F

_

L

F

n

N

_

T

F

n

N

_

L

F

n

F

_

T

F

n

F

_

L

F

u

n

e

x

p

M

E

P

u

n

e

x

p

M

E

G

u

n

e

x

p

M

E

L

u

n

e

x

p

P

e

r

i

o

d

u

n

e

x

p

P

r

i

o

r

i

t

y

R

D

I

[

i

]

e

x

p

CCM

[

i

]

u

n

e

x

p

M

E

P

u

n

e

x

p

M

E

P

u

n

e

x

p

M

E

G

u

n

e

x

p

M

E

G

u

n

e

x

p

M

E

L

u

n

e

x

p

M

E

L

u

n

e

x

p

P

e

r

i

o

d

u

n

e

x

p

P

e

r

i

o

d

u

n

e

x

p

P

r

i

o

r

i

t

y

u

n

e

x

p

P

r

i

o

r

i

t

y

R

D

I

[

i

]

R

D

I

[

i

]

e

x

p

CCM

[

i

]

e

x

p

CCM

[

i

]

u

n

e

x

p

M

E

P

u

n

e

x

p

M

E

P

u

n

e

x

p

M

E

G

u

n

e

x

p

M

E

G

u

n

e

x

p

M

E

L

u

n

e

x

p

M

E

L

u

n

e

x

p

P

e

r

i

o

d

u

n

e

x

p

P

e

r

i

o

d

u

n

e

x

p

P

r

i

o

r

i

t

y

u

n

e

x

p

P

r

i

o

r

i

t

y

R

D

I

[

i

]

R

D

I

[

i

]

e

x

p

CCM

[

i

]

e

x

p

CCM

[

i

]

u

n

e

x

p

M

E

P

u

n

e

x

p

M

E

P

u

n

e

x

p

M

E

G

u

n

e

x

p

M

E

G

u

n

e

x

p

M

E

L

u

n

e

x

p

M

E

L

u

n

e

x

p

P

e

r

i

o

d

u

n

e

x

p

P

e

r

i

o

d

u

n

e

x

p

P

r

i

o

r

i

t

y

u

n

e

x

p

P

r

i

o

r

i

t

y

R

D

I

[

i

]

R

D

I

[

i

]

e

x

p

CCM

[

i

]

e

x

p

CCM

[

i

]

MI_LM_DEGM

MI_LM_M

MI_LM_DEGTHR

MI_LM_TFMIN

MI_LM_DEGM

MI_LM_M

MI_LM_DEGTHR

MI_LM_TFMIN

aRDI[1]

aTSF

P

e

r

f

o

r

m

a

n

c

e

M

o

n

i

t

o

r

i

n

g

P

e

r

f

o

r

m

a

n

c

e

M

o

n

i

t

o

r

i

n

g

MI_1Second

MI_pN_TF

MI_pN_LF

MI_pF _TF

MI_pF _LF

MI_pN_DS

MI_pF_DS

MI_1Second

MI_pN_TF

MI_pN_LF

MI_pF _TF

MI_pF _LF

MI_pN_DS

MI_pF_DS

MI_pB_FD

MI_pB_FDV

MI_pF_FD

MI_pF_FDV

MI_pN_FD

MI_pN_FDV

RI_DM_Result

1DM_Result

RI_SL_Result

AIS AIS

LCK LCK

AIS

LCK

Counter

D

D

E

data

P D

D

E

data

P

DE

P

DE

P

LMM

Reception

DE

P

DE

P LMR

Reception

LMM

LMR

D

RI_LMR

D

RI_LMM

X

Y

Z

LMR

Dmux

DE

P

DE

P

LMM

Reception

DE

P

DE

P LMR

Reception

LMM

LMR

D

RI_LMR

D

RI_LMM

X

Y

Z

LMR

Dmux

X

Y

Z

LMR

Dmux

RxFC[]

RI_LMM

RI_LMR

RI_LM_Result

MI_LM_

Enable

MI_CC_Period

MI_CC_Pri

MI_MEG_ID MI_PeerMEP_ID

[]

MI_Get_SvdCCM MI_SvdCCM

MI_MEL

MI_CC_Period

MI_CC_Pri

MI_MEG_ID MI_PeerMEP_ID

[]

MI_Get_SvdCCM MI_SvdCCM

MI_MEL

MI_CC_Enable

MI_1DM_Enable

MI_1DM_MAC_SA

MI_1DM_Test_ID

aBLK

aRDI

MI_CC_Period

MI_CC_Pri

MI_MEG_ID

MI_PeerMEP_ID[]

MI_Get_SvdCCM

MI_SvdCCM

LMp

CCM

Reception

CCM

Reception

data data data

D

P

D

E

D

P

D

E

ETH_AI_D/P/DE ETH_AI_D/P/DE ETH_AI_D/P/DE ETH_AI_D/P/DE

D

D

E

data

P

data data data

D

P

D

E

D

P

D

E

ETH_AI_D/P/DE ETH_AI_D/P/DE ETH_AI_D/P/DE ETH_AI_D/P/DE

D

D

E

data

P

data data data

ETH_CI_D/P/DE ETH_CI_D/P/DE

ETH_CI_D/P/DE ETH_CI_D/P/DE

DE

P

DE

P 1SL

Reception

D

Proactive

1SL

Control_Sk

1SL

1SL_Result

X

Y

Z

1SL

Dmux

MI_1SL_Enable

MI_1SL_MAC_SA

MI_1SL_MEP_ID

MI_1SL_Test_ID

DE

P

DE

P 1SL

Reception

D

Proactive

1SL

Control_Sk

1SL

1SL_Result

X

Y

Z

1SL

Dmux

X

Y

Z

1SL

Dmux

MI_1SL_Enable

MI_1SL_MAC_SA

MI_1SL_MEP_ID

MI_1SL_Test_ID

1SL_Result

Figure 9-x+3 – ETHG_FT_Sk Process

MEP Proactive-OAM Extraction process:
The MEP Proactive-OAM Extraction process extracts OAM Traffic Units that are processed in the ETHx_FT_Sk process from the stream of Traffic Units. This process resides only in the lowest number in the contiguous range of ETH_FPs or a selected ETH_FP within the group of arbitrary ETH_FPs (AIS Reception, LCK Reception, LMp, and Defect Generation processes as well). The detail of this process is described in clause 9.2.1.2.

AIS Reception process:

This process generates the AIS event upon the receipt of the AIS Traffic Unit from the OAM MEP Extraction Process.

LCK Reception process:

This process generates the LCK event upon the receipt of the LCK Traffic Unit from the OAM MEP Extraction Process.

LMM Reception:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.4 defines the LMM Reception part in LMx Reception Process.

LMR Reception:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.4 defines the LMR Reception part in LMx Receiption Process.

LMR Demux:

The LMR Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P signal can be used for the selection of the port.

DMM Reception:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.4 defines the DMM Reception Process.

DMR Reception:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.6 defines the DMR Reception Process.

DMR Demux:

The DMR Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.

1DM Reception:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.4 defines the 1DM Reception Process.

1DM Demux:

The 1DM Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.

Proactive 1DM Control_Sk:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.5 defines the 1DM Control_Sk Process.

SLM Reception:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.4 defines the SLM reception process.

SLR Reception:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.6 defines the SLR reception process.

SLR Demux:

The SLR Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.

1SL Reception:

This Process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.4 defines the 1SL Reception Process.

1SL Demux:

The 1SL Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.

Proactive 1SL Control_Sk:

This Process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.5 defines the 1SL Control_Sk Process.
Block process:

When aBlk is raised, the Block process will discard all ETH_CI information within the group of co-located flow points. If aBLK is cleared, the received ETH_CI information will be passed to the output port.

LMp process:

This process is defined in clause 8.1.7.4.

Defect Generation process:

This process detects and clears the defects (dLOC[i], dUNL, dMMG, dUNM, dDEG, dUNP, dUNPr, dRDI[i], dAIS, dLCK) as defined in clause 6, where [i] = maintenance entity.

CCM Reception process:

This process is defined in clause 8.1.7.3.

Defects
See clause 9.2.1.2.
Consequent actions

See clause 9.2.1.2.
Defect correlations

See clause 9.2.1.2.
Performance monitoring
See clause 9.2.1.2.
9.3
ETH Adaptation functions

9.3.1
ETH to Client adaptation functions (ETH/<client>_A)

For further study.
9.3.2
ETH to ETH adaptation functions (ETHx/ETH_A)

9.3.2.1
ETH to ETH adaptation source function (ETHx/ETH_A_So)

This function maps client ETH_CI traffic units into server ETH_AI traffic units.

Symbol
[image: image124.emf]ETH/ETH

ETH_FP

ETH_AP

ETH/ETH_A_So_MP

Figure 9-18 – ETHx/ETH_A_So symbol
Interfaces

Table 9-5 – ETHx/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_APS
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

ETHx/ETH_A_So_MP:
ETHx/ETH_A_So_MI_Active
ETHx/ETH_A_So_MI_MEP_MAC
ETHx/ETH_A_So_MI_Client_MEL
ETHx/ETH_A_So_MI_LCK_Period
ETHx/ETH_A_So_MI_LCK_Pri
ETHx/ETH_A_So_MI_Admin_State
ETHx/ETH_A_So_MI_MEL
ETHx/ETH_A_So_MI_APS_Pri
ETHx/ETH_A_So_MI_CSF_Period
ETHx/ETH_A_So_MI_CSF_Pri
ETHx/ETH_A_So_MI_CSF_Enable
ETHx/ETH_A_So_MI_CSFrdifdiEnable
	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE

Processes

 [image: image125.emf]ETH_CI_P/DE/D

Selector

LCK

Generation

MI_Admin_State

OAM MEL

Filter

ETH_CI_APS

Normal Lock

MI_LCK_Period

MI_Client_MEL

MI_LCK_Pri

MI_APS_Pri

APS Insert

MI_MEL

P

D

E

D P

D

E

D

ETH_AI_P/DE/D

MI_MEP_MAC

P

D

E

D P

D

E

D

P

D

E

D P

D

E

D

P

D

E

D P

D

E

D

MI_CSF_Period

CSF Insert

P

D

E

D P

D

E

D

MI_CSF_Pri

ETH_CI_SSF

MI_CSF_Enable

MI_CSFrdifdiEnable

Consequent

Actions

aCSF-RDI

aCSF-FDI

aCSF-LOS

Figure 9-19 – ETHx/ETH_A_So process
LCK Generation Process:

As defined in clause 8.1.2.

Selector Process:

As defined in clause 8.1.3.

OAM MEL FilterProcess:

As defined in clause 8.1.1.

CSF Insert Process:

As defined in clause 8.1.16.

APS Insert Process:

As defined in clause 8.1.5.

When this process is activated, LCK admin state shall be unlocked. See clause 7.5.2.2 of [ITU-T G.8010].
Defects

None.

Consequent Actions
aCSF-LOS (CI_SSF and MI_CSFEnable
aCSF-RDI (CI_SSFrdi and MI_CSFrdifdiEnable and MI_CSFEnable

aCSF-FDI (CI_SSFfdi and MI_CSFrdifdiEnable and MI_CSFEnable

Defect correlations

None.

Performance Monitoring
None.

9.3.2.2
ETH to ETH adaptation sink function (ETHx/ETH_A_Sk)

This function retrieves client ETH_CI traffic units from server ETH_AI traffic units.

Symbol

[image: image126.emf]ETH/ETH

ETH_FP

ETH_AP

ETH/ETH_A_Sk_MP

Figure 9-20 – ETHx/ETH_A_Sk symbol
Interfaces

Table 9-6 – ETHx/ETH_A_Sk interfaces
	Inputs
	Outputs

	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH_AI_TSF
ETH_AI_TSD
ETH_AI_AIS
ETHx/ETH_A_Sk_MP:
ETHx/ETH_A_Sk_MI_Active
ETHx/ETH_A_Sk_MI_MEP_MAC
ETHx/ETH_A_Sk_MI_Client_MEL
ETHx/ETH_A_Sk_MI_LCK_Period
ETHx/ETH_A_Sk_MI_LCK_Pri
ETHx/ETH_A_Sk_MI_Admin_State
ETHx/ETH_A_Sk_MI_AIS_Period
ETHx/ETH_A_Sk_MI_AIS_Pri
ETHx/ETH_A_Sk_MI_MEL
ETHx/ETH_A_Sk_MI_CSF_Reported
ETHx/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_APS
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi
ETH_CI_SSD
ETHx/ETH_A_Sk_MP:
ETHx/ETH_A_Sk_MI_cCSF

Processes

[image: image127.emf]APS

Extract

Selector

AIS Insert

MI_MEL

OAM MEL

Filter

MI_Admin_State

ETH_AI_P/DE/D

ETH_CI_P/DE/D ETH_CI_APS

Normal Lock

MI_LCK_Period

MI_Client_MEL MI_Client_MEL

MI_LCK_Pri

MI_AIS_Pri

MI_AIS_Period

Consequent

Actions

aAIS

ETH_CI_SSF

aSSF

ETH_AI_TSF/AIS/TSD

ETH_CI_SSD

MI_MEP_MAC

LCK

Generation

P

D

E

D P

D

E

D

P

D

E

D P

D

E

D

P

D

E

D P

D

E

D

P

D

E

D P

D

E

D

CSF

Extract

P

D

E

D P

D

E

D

MI_CSFrdifdiEnable

MI_CSF_Reported

Defect

Correlations

dCSF

MI_cCSF

Defect

Generation

Figure 9-21 – ETHx/ETH_A_Sk process
APS Extract process:

As defined in clause 8.1.6.

CSF Extract process:

As defined in clause 8.1.17.

OAM MEL Filter process:

As defined in clause 8.1.1.

AIS Insert process:

As defined in clause 8.1.4.

LCK Generation process:

As defined in clause 8.1.2.

Selector process
:

As defined in clause 8.1.3.

Defects
dCSF-LOS – See clause 6.1.5.4.

dCSF-RDI – See clause 6.1.5.4.

dCSF-FDI – See clause 6.1.5.4.

Consequent Actions
aSSF ((AI_TSF or dCSF-LOS) and (not MI_Admin_State == Locked)

aSSFrdi

(
dCSF-RDI and MI_CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and MI_CSFrdifdiEnable

aAIS (AI_AIS

Defect correlations

cCSF
(
(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not AI_TSF) and MI_CSF_Reported
Performance Monitoring
None.

9.3.3
ETH to ETH multiplexing adaptation functions (ETHx/ETH-m_A)

This adaptation function multiplexes different ETH_CI streams into a single ETH_AI stream in the source direction and demultiplexes the ETH_AI stream into individual ETH_CI streams.
Symbol

[image: image128.emf]ETH/ETH-m

ETH_FP

ETH_AP

....

ETH_TFP

ETH/ETH-m_A_MP ETH/ETH-m_A_PP

Figure 9-22 – ETHx/ETH-m_A symbol
The ETHx/ETH-m_A (Figure 9-22) function is further decomposed into separate source and sink adaptation functions that are interconnected as shown in Figure 9-23.

[image: image129.emf]ETHx/ETH-m

ETH_FP

ETH_AP

....

ETH_TFP

ETHx/ETH-m_A_Sk_MP

ETHx/ETH-m

ETH_FP

ETH_AP

....

ETH_TFP

ETHx/ETH-m_A_So_MP ETHx/ETH-m_A_PP

ETHx/ETH-m

ETH_FP

ETH_AP

....

ETH_TFP

ETHx/ETH-m_A_Sk_MP

ETHx/ETH-m

ETH_FP

ETH_AP

....

ETH_TFP

ETHx/ETH-m_A_So_MP ETHx/ETH-m_A_PP

Figure 9-23 – ETHx/ETH-m_A Source and Sink symbols
9.3.3.1
ETH to ETH multiplexing adaptation source function (ETHx/ETH-m_A_So)

This function multiplexes individual ETH_CI streams into a single ETH_AI stream.

Symbol

[image: image130.emf]ETH/ETH-m

ETH_FP

ETH_AP

....

ETH/ETH-m_A_So_MP

ETH_TFP

ETH/ETH-m_A_PP

Figure 9-24 – ETHx/ETH-m_A_So symbol
Interfaces

Table 9-7 – ETHx/ETH-m_A_So interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D[1...M]
ETH_CI_P[1...M]
ETH_CI_DE[1...M]
ETH_CI_SSF[1]
ETH_CI_SSFrdi[1]
ETH_CI_SSFfdi[1]
ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETHx/ETH-m_A_So_MP:
ETHx/ETH-m_A_So_MI_Active
ETHx/ETH-m_A_So_MI_MEP_MAC
ETHx/ETH-m_A_So_MI_Client_MEL[1…M]
ETHx/ETH-m_A_So_MI_LCK_Period[1…M]
ETHx/ETH-m_A_So_MI_LCK_Pri[1…M]
ETHx/ETH-m_A_So_MI_Admin_State
ETHx/ETH-m_A_So_MI_VLAN_Config[1...M]
ETHx/ETH-m_A_So_MI_Etype
ETHx/ETH-m_A_So_MI_PCP_Config
ETHx/ETH-m_A_So_MI_MEL
ETHx/ETH-m_A_So_MI_CSF_Period
ETHx/ETH-m_A_So_MI_CSF_Pri
ETHx/ETH-m_A_So_MI_CSF_Enable
ETHx/ETH-m_A_So_MI_CSFrdifdiEnable
	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes

[image: image131.emf]VID MUX

VLAN TAG

P

Replicate

VID

D

P

D

E

MI_Etype

MI_VLAN_Config[1…M]

P

MI_PCP_Config

MI_Admin_State

OAM

MEL Filter

ETH_CI_P/DE/D

P

D

E

D

MI_MEL

Replicate

ETH_PI_P

ETH_PI_DE

ETH_PI_D

MI_MEP_MAC

Selector

Normal

ETH_CI_P/DE/D

LCK

Generation

P

D

E

D

Lock

P

D

E

D

P

D

E

D

X

Selector

Normal

ETH_CI_P/DE/D

LCK

Generation

P

D

E

D

Lock

P

D

E

D

P

D

E

D

X

MI_Client_MEL[1…M]

MI_LCK_Period[1…M]

MI_LCK_Pri[1…M]

Selector

Normal

ETH_CI_P/DE/D

LCK

Generation

P

D

E

D

Lock

P

D

E

D

P

D

E

D

Y

Selector

Normal

ETH_CI_P/DE/D

LCK

Generation

P

D

E

D

Lock

P

D

E

D

P

D

E

D

Y

Selector

Normal

ETH_CI_P/DE/D

LCK

Generation

P

D

E

D

Lock

P

D

E

D

P

D

E

D

Z

Selector

Normal

ETH_CI_P/DE/D

LCK

Generation

P

D

E

D

Lock

P

D

E

D

P

D

E

D P

D

E

D

Z

DE

Generation

D

D

E

P

P

D

E

D P

D

E

D

P

D

E

D P

D

E

D

P

D

E

D

Consequent

Actions

aCSF-RDI

aCSF-FDI

aCSF-LOS

MI_CSF_Period

MI_CSF_Pri

ETH_AI_P/DE/D

MI_CSF_Enable

MI_CSFfdirdiEnable

ETH_CI_SSF

CSF

Insert

P

D

E

D P

D

E

D

ETH_TFP

ETH_TFP

Figure 9-25 – ETHx/ETH-m_A_So process
LCK Generation Process:

As defined in clause 8.1.2. Each FP has its LCK Generation process.

Selector Process:

As defined in clause 8.1.3. The normal CI is blocked if Admin_State = LOCKED.

VID Mux Process:

The VID MUX process interleaves the signal sets (P, D, DE) from the input ports (X, Y, Z) For each incoming signal set on forwarding the signal set, a VID signal is generated. The value of the VID signal is based on the port on which the signal set is received and the configuration from the MI_VLAN_Config input parameter.

The MI_VLAN_Config input parameter determines for every input port the associated VID Value. The allowed values for the VID signal are untagged, priority tagged and 1-4094. The following restriction applies to the allowed MI_VLAN_Config values:

· Every VID value is only used once;

Note that IEEE 802.1 standards do not allow IEEE bridges to generate priority tagged frames. Priority tagged frames are only generated by end stations. However a C-VLAN bridge may create S-VLAN priority tagged frames.

VLAN Tag Process:

This process inserts a VLAN tag into the M_SDU field of the incoming D signal. The Ethertype used is determined by the value of the MI_Etype input parameter. The MI_PCP_Config signal determines the encoding of the P and DE signals in the VLAN tag. This parameter defines a mapping from P value to PCP value in the case of C-VLAN tags, and from P value to PCP and DEI value in the case of S-VLAN tags.

The VID signal determines the VID value in the VLAN tag. If the VID signal equals priority tagged, the VID value used is 0. If the VID signal equals untagged, no VLAN tag is inserted in the M_SDU field.

P Replicate Process:

The P Replicate Process replicates the incoming P signal to both output ports, without changing the value of the signal.

DE Generation Process:

The DE Generation Process generates a DE signal with the value drop ineligible.

Replicate Process:

As defined in clause 8.4.

OAM MEL Filter Process:

As defined in clause 8.1.1.

CSF Insert Process:

As defined in clause 8.1.16. Since ETHx/ETH-m Adaptation function generates a single OAM flow while it can accommodate multiple ETH APs. In the case of using multiple APs, CSF signal is supported at only a representative OAM flow.

Defects

None.

Consequent Actions
aCSF-LOS (CI_SSF and MI_CSFEnable
aCSF-RDI (CI_SSFrdi and MI_CSFrdifdiEnable and MI_CSFEnable

aCSF-FDI (CI_SSFfdi and MI_CSFrdifdiEnable and MI_CSFEnable
Defect correlations

None.

Performance Monitoring
None.

9.3.3.2
ETH to ETH multiplexing adaptation sink function (ETHx/ETH-m_A_Sk)

Symbol
[image: image132.emf]ETH/ETH-m

ETH_FP

ETH_AP

....

ETH_TFP

ETH/ETH-m_A_Sk_MP

ETH/ETH-m_A_Sk_PP

Figure 9-26 – ETHx/ETH-m_A_Sk symbol
Interfaces

Table 9-8 – ETHx/ETH-m_A_Sk interfaces

	Inputs
	Outputs

	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH_AI_TSF
ETH_AI_AIS
ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHx/ETH-m_A_Sk_MP:
ETHx/ETH-m_A_Sk_MI_Active
ETHx/ETH-m_A_Sk_MI_MEP_MAC
ETHx/ETH-m_A_Sk_MI_Client_MEL[1…M]
ETHx/ETH-m _A_Sk_MI_LCK_Period[1…M]
ETHx/ETH-m _A_Sk_MI_LCK_Pri[1…M]
ETHx/ETH-m_A_Sk_MI_Admin_State
ETHx/ETH-m_A_Sk_MI_AIS_Period[1…M]
ETHx/ETH-m_A_Sk_MI_AIS_Pri[1…M]
ETHx/ETH-m_A_Sk_MI_VLAN_Config[1...M]
ETHx/ETH-m_A_Sk_MI_P_Regenerate
ETHx/ETH-m_A_Sk_MI_PVID
ETHx/ETH-m_A_Sk_MI_PCP_Config
ETHx/ETH-m_A_Sk_MI_Etype
ETHx/ETH-m_A_Sk_MI_MEL
ETHx/ETH-m_A_Sk_MI_CSF_Reported
ETHx/ETH-m_A_Sk_MI_CSFrdifdiEnable
ETHx/ETH-m_A_Sk_MI_Frametype_Config
ETHx/ETH-m_A_Sk_MI_Filter_Config
	ETH_FP:
ETH_CI_D[1...M]
ETH_CI_P[1...M]
ETH_CI_DE[1...M]
ETH_CI_SSF[1...M]
ETH_CI_SSFrdi[1]
ETH_CI_SSFfdi[1]
ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETHx/ETH-m_A_Sk_MP:
ETHx/ETH-m_A_Sk_MI_cCSF

Processes

 [image: image133.emf]VID DEMUX

VLAN

TAG

P

Regeneration

D

E

MI_PVID

MI_VLAN_Config[1…M]

P

MI_PCP_Config

MI_Admin_State

CSF

Extract

ETH_CI_P/DE/D

MI_MEL

MI_MEP_MAC

MI_Client_MEL[1…M]

MI_LCK_Period[1…M]

MI_LCK_Pri[1…M]

DE

Selector

D

D

E

P

ETH_AI_P/DE/D

P

Selector

MI_Etype

DE

MI_AIS_Period[1…M]

MI_AIS_Pri[1…M]

Replicate

ETH_PI_P

ETH_PI_DE

ETH_PI_D

OAM

MEL Filter

P

D

E

D P

D

E

D

P

D

E

D P

D

E

D

Frame

Type Filter

P

D

E

D P

D

E

D

MI_Frametype_Config

P

D

E

D P

D

E

D

Filter

MI_Filter_Config

P

D

E

D P

D

E

D

MI_CSF_Reported

Defect

Correlations

dCSF

MI_cCSF

Defect

Generation

P

D

E

D

P

D

E

D

Selector

Normal

Lock

Selector

Normal

Lock

P

D

E

D

P

D

E

D

X

LCK

Generation

AIS

Insert

AIS

Insert

ETH_CI_P/DE/D

Consequent

Actions

aAIS

MI_CSFrdifdiEnable

ETH_AI_TSF/AIS

P

D

E

D P

D

E

D

ETH_TFP

ETH_TFP

MI_Admin_

State

D

P

VID

MI_P_Regenerate

ETH_CI_SSF

P

D

E

D

Selector

Normal

Lock

Selector

Normal

Lock

P

D

E

D

P

D

E

D

Y

LCK

Generation

AIS

Insert

AIS

Insert

ETH_CI_P/DE/D

aSSF

aSSF

[1]

ETH_CI_SSF

P

D

E

D

Selector

Normal

Lock

Selector

Normal

Lock

P

D

E

D

P

D

E

D

Z

LCK

Generation

AIS

Insert

AIS

Insert

ETH_CI_P/DE/D

ETH_CI_SSF

Figure 9-27 – ETHx/ETH-m_A_Sk process
Replicate Process:

As defined in clause 8.4.

Filter Process:

As defined in clause 8.3.

Frame Type Filter Process:

The Frame Type Filter Process filters the ETH_CI depending on the value of the MI_frametype_Config input parameter. There are three possible values for this parameter:

· All Frames;

· Only VLAN Tagged;

· Only Untagged and Priority Tagged.

If the value of MI_frametype_Config equals All Frames, all ETH_CI is passed through. For the other two values, the process inspects the M_SDU field of the ETH_CI_D signal. It inspects the Length/Type field and, if applicable, the VID field.

If MI_frametype_Config is set to only Untagged and Priority Tagged, all frames with L/T equals MI_Etype and VID in the range 1…4094 are filtered.

If MI_frametype_Config is set to only VLAN tagged, all frames with L/T not equal to MI_Etype and all frames with L/T equal to MI_Etype and VID equal to zero are filtered.
CSF Extract process:

As defined in clause 8.1.16. Since ETHx/ETH-m Adaptation function generates a single OAM flow while it can accommodate multiple ETH APs. In the case of using multiple APs, CSF signal is supported at only a representative OAM flow.
OAM MEL Filter Process:

As defined in clause 8.1.1.

VLAN Tag Process:

The VLAN Tag Process inspects the incoming D signal; if the value in the L/T field is equal to the value provisioned by the MI_Etype input parameter a VLAN tag is present in the D signal.

If there is no VLAN tag present the VID signal gets the value presented by the MI_PVID input parameter.

If there is a VLAN tag present the VLAN Tag Process extracts the P, DE and VID information from this VLAN tag. The VID value is taken from the VID field in the VLAN tag. The P and DE values are decoded from the PCP field of the VLAN tag (C-VLAN) or from the PCP and DEI fields of the VLAN tag (S-VLAN), using the decoding information presented via the MI_PCP_Config input parameter. The P value is presented to the P Selector process and the DE value is presented to the DE Selector process.
DE Selector Process:

This process forwards the incoming DE signal. If there is no incoming DE signal present, it generates a DE signal with value drop ineligible.

P Selector Process:

This process forwards the P signal coming from the VLAN Tag process. If this signal is not present, the P signal coming from the OAM MEL process is forwarded.

P Regeneration Process:

This process regenerates the incoming P signal, based on the MI_P_Regenerate input signal. The MI_P_Regenerate signal specifies a mapping table from P value to P value.

VID Demux Process
:

The VID Demux Process deinterleaves the incoming signal set (DE, P, D) to the different ports (X, Y, Z in Figure 9-27). The VID signal determines the port to be selected, based on the MI_Vlan_Config input parameter.

The MI_Vlan_Config parameter specifies the possible VID values for the ports to be used. If there is no port assigned to a specific VID value, and this VID value is used, the VID Demux process will filter the incoming signal set.
Disabling the Ingress VID Filtering is modelled by setting MI_Vlan_Config [1…4094]. Refer to Appendix VIII.

AIS Insert Process:

As defined in clause 8.1.4.

LCK Generation Process:

As defined in clause 8.1.2. Each FP has its own LCK Generation process.

Selector Process:

As defined in clause 8.1.3. The normal CI is blocked if Admin_State = LOCKED.

Defects
dCSF-LOS – See clause 6.1.5.4.

dCSF-RDI – See clause 6.1.5.4.

dCSF-FDI – See clause 6.1.5.4.
Consequent Actions
aSSF[1]

(
(AI_TSF or dCSF_LOS) and (not MI_Admin_State == Locked)

aSSFrdi
[1]
(
dCSF-RDI and MI_CSFrdifdiEnable

aSSFfdi[1]
(
dCSF-FDI and MI_CSFrdifdiEnable

aSSF[2…M] (AI_TSF and (not MI_Admin_State == Locked)

aAIS (AI_AIS

Defect correlations
cCSF
(
(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not AI_TSF) and MI_CSF_Reported
Performance Monitoring
None.

9.3.4
ETH Group to ETH adaptation functions (ETHG/ETH_A)

9.3.4.1
ETH Group to ETH adaptation source function (ETHG/ETH_A_So)

Symbol

[image: image134.emf]ETHG/ETH

ETH_FP

ETH_AP

....

ETHG/ETH_A_So_MP

....

Figure 9-28 – ETHG/ETH_A_So symbol
Interfaces

Table 9-9 – ETHG/ETH_A_So Interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D[1…M]
ETH_CI_P[1…M]
ETH_CI_DE[1…M]
ETH_CI_APS
ETH_CI_SSF[1]
ETH_CI_SSFrdi[1]
ETH_CI_SSFfdi[1]
ETHG/ETH_A_So_MP:
ETHG/ETH_A_So_MI_Active
ETHG/ETH_A_So_MI_MEP_MAC
ETHG/ETH_A_So_MI_Client_MEL[1..M]
ETHG/ETH_A_So_MI_LCK_Period[1…M]
ETHG/ETH_A_So_MI_LCK_Pri[1…M]
ETHG/ETH_A_So_MI_Admin_State
ETHG/ETH_A_So_MI_MEL
ETHG/ETH_A_So_MI_APS_Pri
ETHG/ETH_A_So_MI_CSF_Period
ETHG/ETH_A_So_MI_CSF_Pri
ETHG/ETH_A_So_MI_CSF_Enable
ETHG/ETH_A_So_MI_CSFrdifdiEnable
	ETH_AP:
ETH_AI_D[1...M]
ETH_AI_P[1...M]
ETH_AI_DE[1...M]

Processes

[image: image135.emf]MI_Admin_State

OAM MEL Filter

MI_MEL

MI_MEP_MAC

Selector

Normal

ETH_CI_P/DE/D

LCK

Generation

P

D

E

D

Lock

P

D

E

D

P

D

E

D

MI_Client_MEL[1…M]

MI_LCK_Period[1…M]

MI_LCK_Pri[1…M]

Selector

Normal

ETH_CI_P/DE/D

LCK

Generation

P

D

E

D

Lock

P

D

E

D

P

D

E

D

Selector

Normal

ETH_CI_P/DE/D

LCK

Generation

P

D

E

D

Lock

P

D

E

D

P

D

E

D P

D

E

D

P

D

E

D

P

D

E

D

ETH_AI_P/DE/D

ETH_CI_SSF

P

D

E

D P

D

E

D

APS Insert

MI_APS_Pri

MI_MEL

MI_MEP_MAC

Consequent

Actions

aCSF-RDI

aCSF-FDI

aCSF-LOS

MI_CSF_Enable

MI_CSFfdirdiEnable

CSF Insert

P

D

E

D P

D

E

D

MI_CSF_Period

MI_CSF_Pri

ETH_AI_P/DE/D

P

D

E

D

ETH_AI_P/DE/D

ETH_CI_APS

MI_MEL

MI_MEP_MAC

Figure 9-29 – ETHG/ETH_A_So process
LCK Generation Process:

As defined in clause 8.1.2. There is a single LCK Generation process for each ETH.

Selector Process:

As defined in clause 8.1.3. The normal CI of each input is blocked if Admin_State = LOCKED.

OAM MEL Filter Process:

As defined in clause 8.1.1.

APS Insert Process:

As defined in clause 8.1.5.

CSF Insert Process:

As defined in clause 8.1.16.

Defects

None.

Consequent Actions
aCSF-LOS (CI_SSF and MI_CSFEnable
aCSF-RDI (CI_SSFrdi and MI_CSFrdifdiEnable and MI_CSFEnable

aCSF-FDI (CI_SSFfdi and MI_CSFrdifdiEnable and MI_CSFEnable
Defect correlations

None.

Performance Monitoring
None.

9.3.4.2
ETH Group to ETH adaptation sink function (ETHG/ETH_A_Sk)

Symbol

[image: image136.emf]ETHG/ETH

ETH_FP

....

ETHG/ETH_A_Sk_MP

ETH_AP

....

Figure 9-30 – ETHG/ETH_A_Sk symbol
Interfaces

Table 9-10 – ETHG/ETH_A_Sk interfaces

	Inputs
	Outputs

	ETH_AP:
ETH_AI_D[1...M]
ETH_AI_P[1...M]
ETH_AI_DE[1...M]
ETH_AI_TSF
ETH_AI_TSD
ETH_AI_AIS
ETHG/ETH_A_Sk_MP:
ETHG/ETH_A_Sk_MI_Active
ETHG/ETH_A_Sk_MI_MEP_MAC
ETHG/ETH_A_Sk_MI_Client_MEL[1…M]
ETHG/ETH_A_Sk_MI_LCK_Period[1…M]
ETHG/ETH_A_Sk_MI_LCK_Pri[1…M]
ETHG/ETH_A_Sk_MI_Admin_State
ETHG/ETH_A_Sk_MI_AIS_Period[1…M]
ETHG/ETH_A_Sk_MI_AIS_Pri[1…M]
ETHG/ETH_A_Sk_MI_MEL
ETHG/ETH_A_Sk_MI_CSF_Reported
ETHG/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_FP:
ETH_CI_D[1…M]
ETH_CI_P[1…M]
ETH_CI_DE[1…M]
ETH_CI_APS
ETH_CI_SSF[1…M]
ETH_CI_SSD
ETH_CI_SSFrdi[1]
ETH_CI_SSFfdi[1]

ETHG/ETH_A_Sk_MP:
ETHG/ETH_A_Sk_MI_cCSF

Processes

 [image: image137.emf]MI_Admin_State

CSF

Extract

MI_MEL

MI_MEP_MAC

MI_Client_MEL[1…M]

MI_LCK_Period[1…M]

MI_LCK_Pri[1…M]

MI_AIS_Period[1…M]

MI_AIS_Pri[1…M]

OAM MEL Filter

P

D

E

D

MI_CSF_Reported

Defect

Correlations

dCSF

MI_cCSF

Defect

Generation

P

D

E

D

Selector

Normal

Lock

Selector

Normal

Lock

P

D

E

D

P

D

E

D

LCK

Generation

AIS

Insert

AIS

Insert

ETH_CI_P/DE/D

Consequent

Actions

aAIS

MI_CSFrdifdiEnable

ETH_AI_AIS/TSF/TSD

MI_Admin_

State

ETH_CI_SSF

P

D

E

D

Selector

Normal

Lock

Selector

Normal

Lock

P

D

E

D

P

D

E

D

LCK

Generation

AIS

Insert

AIS

Insert

ETH_CI_P/DE/D

aSSF

aSSF

[1]

ETH_CI_SSF

P

D

E

D

Selector

Normal

Lock

Selector

Normal

Lock

P

D

E

D

P

D

E

D

LCK

Generation

AIS

Insert

AIS

Insert

ETH_CI_P/DE/D

ETH_CI_SSF/SSD

P

D

E

D P

D

E

D

APS

Extract

P

D

E

D

ETH_AI_P/DE/D

P

D

E

D

ETH_AI_P/DE/D

P

D

E

D

ETH_AI_P/DE/D

MI_MEL

MI_MEL

ETH_CI_APS

Figure 9-31 – ETHG/ETH_A_Sk process
APS Extract Process:

As defined in clause 8.1.6.
CSF Extract process:

As defined in clause 8.1.17.

OAM MEL Filter Process:

As defined in clause 8.1.1.

AIS Insert Process:

As defined in clause 8.1.4. There is a single AIS Insert process for each ETH.

LCK Generation Process:
As defined in clause 8.1.2. There is a single LCK Generation process for each ETH.

Selector Process:

As defined in clause 8.1.3. The normal CI of each input is blocked if Admin_State = LOCKED.

Defects
dCSF-LOS – See clause 6.1.5.4.

dCSF-RDI – See clause 6.1.5.4.

dCSF-FDI – See clause 6.1.5.4.
Consequent Actions
aSSF[1]
(
(AI_TSF or dCSF_LOS) and (not MI_Admin_State == Locked)

aSSFrdi
[1]
(
dCSF-RDI and MI_CSFrdifdiEnable

aSSFfdi[1]
(
dCSF-FDI and MI_CSFrdifdiEnable
aSSF[2…M] (AI_TSF and (not MI_Admin_State == Locked)
aAIS (AI_AIS

Defect correlations

cCSF
(
(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not AI_TSF) and MI_CSF_Reported
Performance Monitoring
None.

9.3.5
ETHx to ETH Group adaptation functions (ETHx/ETHG_A)

This adaptation function multiplexes different ETH_CI streams in the ETH Group into a single ETH_AI stream and demultiplexes the ETH_AI stream into individual ETH_CI streams.
Symbol

[image: image138.emf]ETH_FP

ETH_AP

....

ETH_TFP

_A_MP _A_PP

ETHx/ETHG

ETHx/ETHG ETHx/ETHG

Figure 9-z – ETHx/ETHG_A symbol
The ETHx/ETHG_A (Figure 9-z) function is further decomposed into separate source and sink adaptation functions that are interconnected as shown in Figure 9-z+1.

[image: image139.emf]ETHx/ETHG

ETH_FP

ETH_AP

....

ETH_TFP

ETHx/ETHG_A_Sk_MP

ETHx/ETHG

ETH_FP

ETH_AP

....

ETH_TFP

ETHx/ETHG_A_So_MP ETHx/ETHG_A_PP

Figure 9-z+1 – ETHx/ETHG_A source and sink symbols
9.3.5.1
ETHx to ETH Group adaptation source function (ETHx/ETHG_A_So)

This function multiplexes individuals ETH_CI streams in the ETH Group into a single ETH_AI stream.

Symbol

[image: image140.emf]ETH_FP

ETH_AP

....

ETHx/ETHG_A_So_MP

ETH_TFP

_A_PP

ETHx/ETHG

ETHx/ETHG

Figure 9-z+2 – ETHx/ETHG_A_So symbol
Interfaces

Table 9-aa – ETHx/ETHG_A_So interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D[1...M]
ETH_CI_P[1...M]
ETH_CI_DE[1...M]
ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETHx/ETHG_A_So_MP:
ETHx/ETHG_A_So_MI_Active
ETHx/ETHG_A_So_MI_MEP_MAC
ETHx/ETHG_A_So_MI_Client_MEL[1…M]
ETHx/ETHG_A_So_MI_LCK_Period[1…M]
ETHx/ETHG_A_So_MI_LCK_Pri[1…M]
ETHx/ETHG_A_So_MI_Admin_State
ETHx/ETHG_A_So_MI_VLAN_Config[1...M]
ETHx/ETHG_A_So_MI_Etype
ETHx/ETHG_A_So_MI_PCP_Config
ETHx/ETHG_A_So_MI_MEL
	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes

[image: image141.emf]VID MUX

VLAN TAG

P

Replicate

VID

D

P

DE

MI_Etype

MI_VLAN_Config

P

DE Generation

MI_PCP_Config

MI_Admin_State

P

D

E

D

P

D

E

D

P

D

E

D

OAM MEL Filter

ETH_CI_P/DE/D

ETH_AI_P/DE/D

MI_LCK_Period[1...M]

MI_Client_MEL[1..M]

MI_LCK_Pri[1...M]

X Y Z

DE

P

D

E

D

P

D

E

D

MI_MEL

….....

Selector

Normal

Lock Normal Normal Lock Lock

ETH_CI_P/DE/D

LCK

Generation

P

D

E

D

ETH_CI_P/DE/D

LCK

Generation

P

D

E

D

ETH_CI_P/DE/D

LCK

Generation

P

D

E

D

Replicate

ETH_PI_P

ETH_PI_DE

ETH_PI_D

MI_MEP_MAC

[1…M]

Figure 9-z+3 – ETHx/ETHG_A_So process
LCK Generation Process:

As defined in clause 8.1.2. Each FP has its LCK Generation process.

Selector Process:

As defined in clause 8.1.3. The normal CI is blocked if Admin_State = LOCKED.

VID Mux Process:

The VID MUX process interleaves the signal sets (P, D, DE) from the input ports (X, Y, Z). The detail of this process is described in clause 9.3.3.1.
VLAN Tag Process:

This process inserts a VLAN tag into the M_SDU field of the incoming D signal. The detail of this process is described in clause 9.3.3.1.

P Replicate Process:

The P Replicate Process replicates the incoming P signal to both output ports, without changing the value of the signal.

DE Generation Process:

The DE Generation Process generates a DE signal with the value drop ineligible.

Replicate Process:

As defined in clause 8.4.

OAM MEL Filter Process:

As defined in clause 8.1.1.

Defects

None.

Consequent Actions

None.

Defect correlations

None.

Performance Monitoring
None.

9.3.5.2
ETHx to ETH Group adaptation sink function (ETHx/ETHG_A_Sk)

Symbol
[image: image142.emf]ETH_FP

ETH_AP

....

ETH_TFP

_A_Sk_MP

_A_Sk_PP

ETHx/ETHG

ETHx/ETHG

ETHx/ETHG

Figure 9-z+4 – ETHx/ETHG_A_Sk symbol
Interfaces

Table 9-aa+1 – ETHx/ETHG_A_Sk interfaces

	Inputs
	Outputs

	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH_AI_TSF
ETH_AI_AIS
ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHx/ETHG_A_Sk_MP:
ETHx/ETHG_A_Sk_MI_Active
ETHx/ETHG_A_Sk_MI_MEP_MAC
ETHx/ETHG_A_Sk_MI_Client_MEL[1…M]
ETHx/ETHG_A_Sk_MI_LCK_Period[1…M]
ETHx/ETHG_A_Sk_MI_LCK_Pri[1…M]
ETHx/ETHG_A_Sk_MI_Admin_State
ETHx/ETHG_A_Sk_MI_AIS_Period[1…M]
ETHx/ETHG_A_Sk_MI_AIS_Pri[1…M]
ETHx/ETHG_A_Sk_MI_VLAN_Config[1...M]
ETHx/ETHG_A_Sk_MI_P_Regenerate
ETHx/ETHG_A_Sk_MI_PVID
ETHx/ETHG_A_Sk_MI_PCP_Config
ETHx/ETHG_A_Sk_MI_Etype
ETHx/ETHG_A_Sk_MI_MEL
ETHx/ETHG_A_Sk_MI_Frametype_Config
ETHx/ETHG_A_Sk_MI_Filter_Config
	ETH_FP:
ETH_CI_D[1...M]
ETH_CI_P[1...M]
ETH_CI_DE[1...M]
ETH_CI_SSF[1...M]
ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

Processes

[image: image143.emf]P

Regeneration

VLAN TAG Process

P Selector

DE Selector

VID D

D

D

E

MI_Etype

MI_PCP_Config

MI_P_Regenerate

MI_VLAN_Config [1…M]

FRAME TYPE FILTER

MI_PVID

OAM MEL Filter MI_MEL

DE P D

Filter

VID DEMUX

P

P

P

Replicate

DE P D

DE P D

D

E

P D

ETH_AI_P/DE/D

ETH_AI_TSF

ETH_CI_P/DE/ D

MI_frametype_Config

MI_Filter_Config

P

DE

Consequent

Actions

aAIS aSSF

……....

ETH_CI_P/DE/D

ETH_CI_SSF

ETH_CI_P/DE/D

ETH_CI_SSF

ETH_CI_P/DE/D

ETH_CI_SSF

ETH_AI_AIS

MI_Admin_State

MI_LCK _Period [1...M] MI_LCK _Period [1...M]

MI_Client_MEL [1..M] MI_Client_MEL [1..M]

MI_LCK _Pri [1...M] MI_LCK _Pri [1...M]

MI_MEP_MAC

MI_AIS_Period [1...M]

MI_AIS_Pri [1...M]

D

E

ETH_PI_D

ETH_PI_P

ETH_PI_DE

Selector

P

D

E

D

LCK

Generation

P

D

E

D

Normal Lock

AIS

Insert

Selector

P

D

E

D

LCK

Generation

P

D

E

D

Normal Lock

AIS

Insert

Selector

P

D

E

D

LCK

Generation

P

D

E

D

Normal Lock

AIS

Insert

Selector

P

D

E

D

LCK

Generation

P

D

E

D

Normal Lock

AIS

Insert

Selector

P

D

E

D

LCK

Generation

P

D

E

D

Normal Lock

AIS

Insert

X Y Z

……....

E E

P

E

D

P

D

D

P

D

D

D

Figure 9-z+5 – ETHx/ETHG_A_Sk process
Replicate Process:

As defined in clause 8.4.

Filter Process:

As defined in clause 8.3.

Frame Type Filter Process:

The Frame Type Filter Process filters the ETH_CI depending on the value of the MI_frametype_Config input parameter. The detail of this process is described in clause 9.3.3.2.
OAM MEL Filter Process:

As defined in clause 8.1.1.

VLAN Tag Process:

The VLAN Tag Process inspects the incoming D signal. The detail of this process is described in clause 9.3.3.1.
DE Selector Process:

This process forwards the incoming DE signal. If there is no incoming DE signal present, it generates a DE signal with value drop ineligible.

P Selector Process:

This process forwards the P signal coming from the VLAN Tag process. If this signal is not present, the P signal coming from the OAM MEL process is forwarded.

P Regeneration Process:

This process regenerates the incoming P signal, based on the MI_P_Regenerate input signal. The MI_P_Regenerate signal specifies a mapping table from P value to P value.

VID Demux Process:

The VID Demux Process deinterleaves the incoming signal set (DE, P, D) to the different ports (X, Y, Z in Figure 9-z+5). The detail of this process is described in clause 9.3.3.1.

AIS Insert Process:

As defined in clause 8.1.4.

LCK Generation Process:

As defined in clause 8.1.2. Each FP has its own LCK Generation process.

Selector Process:

As defined in clause 8.1.3. The normal CI is blocked if Admin_State = LOCKED.

Defects

None.

Consequent Actions

aSSF (AI_TSF and (not MI_Admin_State == Locked)

aAIS (AI_AIS

Defect correlations

None.

Performance Monitoring
None.

9.4
ETH Diagnostic Functions

9.4.1
ETH Diagnostic Flow Termination Functions for MEPs (ETHDe_FT)

The bidirectional ETHDe Flow Termination (ETHDe_FT) function is performed by a co-located pair of ETHDe flow termination source (ETHDe_FT_So) and sink (ETHDe_FT_Sk) functions.
9.4.1.1
ETH Diagnostic Flow Termination Source Function for MEPs (ETHDe_FT_So)

The ETHDe_FT_So Process diagram is shown in Figure 9-32.

Symbol

[image: image144.emf]ETHDe

ETHDe_AP

ETHDe_FP

ETHDe_MP ETHDe_RP

Figure 9-32 – ETHDe_FT_So symbol

Interfaces

Table 9-11 – ETHDe_FT_So interfaces

	Inputs
	Outputs

	ETH_AP:

ETH_AI_D
ETH_AI_P
ETH_AI_DE

ETH_RP:
ETH_RI_LMM(D,P,DE)

ETH_RI_LMR(TxFCf,RxFCf,TxFCb,RxFCl)

ETH_RI_LBM(D,P,DE)

ETH_RI_LBR(SA,rTLV,TID)

ETH_RI_DMM(D,P,DE)

ETH_RI_DMR(rSA,TxTimeStampf,RxTimeStampf,
TxTimeStampb,RxTimeb,rTestID)

ETH_RI_LTM(D,P,DE)

ETH_RI_LTR(SA,TTL,TID,TLV)
ETH_RI_SLM(OAM,P,DE,TxFCb)

ETH_RI_SLR(rMEP_ID,rTest_ID,TxFCf,TxFCb)
ETHDe_FT_So_MP:
ETHDe_FT_So_MI_LM_Start(DA,P,Period)

ETHDe_FT_So_MI_LM_Terminate

ETHDe_FT_So_MI_LB_Discover(P)

ETHDe_FT_So_MI_LB_Series(DA,DE,P,N, Length, Period)

ETHDe_FT_So_MI_LB_Test
(DA,DE,P,Pattern, Length, Period)

ETHDe_FT_So_MI_LB_Test_Terminate

ETHDe_FT_So_MI_DM_Start(DA,P,Test ID,Length,Period)

ETHDe_FT_So_MI_DM_Terminate

ETHDe_FT_So_MI_1DM_Start(DA,P,Test ID,Length,Period)

ETHDe_FT_So_MI_1DM_Terminate

ETHDe_FT_So_MI_TST(DA,DE,P,Pattern, Length, Period)

ETHDe_FT_So_MI_TST_Terminate

ETHDe_FT_So_MI_LT(TA,TTL.P)

ETHDe_FT_So_MI_MEP_MAC

ETHDe_FT_So_MI_MEL

ETHDe_FT_So_MI_MEP_ID
ETHDe_FT_So_MI_LM_Enable
ETHDe_FT_So_MI_SL_Start(DA,P,Test_ID,Length,Period)
ETHDe_FT_So_MI_SL_Terminate
ETHDe_FT_So_MI_1SL_Start(
 DA,P,Test_ID,Length,Period)
ETHDe_FT_So_MI_1SL_Terminate

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETHDe_FT_So_MP:

ETHDe_FT_So_MI_LM_Result(N_TF, N_LF, F_TF, F_LF)

ETHDe_FT_So_MI_LB_Discover_Result(MACs)

ETHDe_FT_So_MI_LB_Series_Result(REC,ERR,OO)

ETHDe_FT_So_MI_LB_Test_Result
(Sent, REC, CRC, BER, OO)

ETHDe_FT_So_MI_DM_Result(count,B_FD[],F_FD[],N_FD[])
ETHDe_FT_So_MI_TST_Result(Sent)

ETHDe_FT_So_MI_LT_Results(Results)

ETHDe_FT_So_MI_SL_Result(N_TF,N_LF,F_TF,F_LF)

Processes
[image: image145.emf]TxFC[]

M

E

P

O

n

D

e

m

a

n

d

-

O

A

M

I

n

s

e

r

t

i

o

n

ETH_AI_D/P/DE

D P DE

MI_MEL

LBM

Generation

LBR

Generation

D

P

DE

D

P

DE

LTM

Generation

D

P

DE

MI_MEP_MAC

Data

L

B

M

L

B

R

L

T

M

Data

Data

RI_LBM(D,P,DE)

D

P

DE

1DM

Generation

1

D

M

D

P

DE

TST

Generation

T

S

T

MI_1DM_Start(DA,P,

MI_1DM_Terminate

LTR

Generation

D

P

DE

L

T

R

RI_LTM(D,P,DE)

MI_LM_Pri

M

E

P

O

n

D

e

m

a

n

d

-

O

A

M

I

n

s

e

r

t

i

o

n

ETH_AI_D/P/DE

D P DE

MI_MEL

ETH_CI_D/P/DE ETH_CI_D/P/DE ETH_CI_D/P/DE ETH_CI_D/P/DE

LBM

Generation

LBR

Generation

D

P

DE

P

DE

LTM

Generation

D

P

DE

MI_MEP_MAC

Data

L

B

M

L

B

R

L

T

M

Data

Data

MI_LM_Start(DA,P,Period)

MI_LM_Terminate

MI_LM_Result(N_TF, N_LF, F_TF, F_LF)

RI_LMR(TxFCf,RxFCf,TxFCb,RxFCl)

MI_LM_Start(DA,P,Period)

MI_LM_Terminate

MI_LM_Result(N_TF, N_LF, F_TF, F_LF

RI_LMR(TxFCf,RxFCf,TxFCb,RxFCl)

RI_LBM(D,P,DE)

D

P

DE

1DM

Generation

1

D

M

D

P

DE

TST

Generation

T

S

T

MI_1DM_Start(DA,P,

MI_1DM_Terminate

1DM(DA,P,0,

Test TD TLV,

TLV)

TST(DA,P,DE,

TLV,TLD)

LTR

Generation

D

P

DE

L

T

R

LTM(TA,TTL,

TID,P)

RI_LTM(,P,DE)

TST

Control_So

MI_TST(DA,DE,P,Pattern, Length, Period)

MI_TST_Terminate

MI_TST_Result(Sent)

LT

Control

MI_LT(TA, P)

MI_LT_Result(Results)

RI_LTR(SA,TTL,TID,TLV)

TTL,

TST

Control_So

MI_TST(DA,DE,P,Pattern, Length, Period)

MI_TST_Terminate

MI_TST_Result(Sent)

MI_LT(TA, P)

MI_LT_Result(Results)

RI_LTR(SA,TTL,TID,TLV)

TTL,

MI_LM_Enable

LB

Control

MI_LB_Discover(P)

MI_LB_Discover_Result(MACs)

MI_LB_Series(DA,DE,P,N, Period)

MI_LB_Series_Result(REC,ERR,OO)

MI_LB_Test(DA,DE,P,Pattern, Length, Period)

MI_LB_Test_Terminate

RI_LBR(SA,

rTLV,TID

)

MI_LB_Test_Result(Sent,REC,CRC,BER,OO)

Length,

MI_LB_Discover(P)

MI_LB_Discover_Result(MACs)

MI_LB_Series(DA,DE,P,N, Period)

MI_LB_Series_Result(REC,ERR,OO)

MI_LB_Test(DA,DE,P,Pattern, Length, Period)

MI_LB_Test_Terminate

RI_LBR(SA,

rTLV,TID

)

MI_LB_Test_Result(Sent,REC,CRC,BER,OO)

Length,

LB

Control

MI_LB_Discover(P)

MI_LB_Discover_Result(MACs)

MI_LB_Series(DA,DE,P,N, Period)

MI_LB_Series_Result(REC,ERR,OO)

MI_LB_Test(DA,DE,P,Pattern, Length, Period)

MI_LB_Test_Terminate

RI_LBR(SA,

rTLV,TID

)

MI_LB_Test_Result(Sent,REC,CRC,BER,OO)

Length,

MI_LB_Discover(P)

MI_LB_Discover_Result(MACs)

MI_LB_Series(DA,DE,P,N, Period)

MI_LB_Series_Result(REC,ERR,OO)

MI_LB_Test(DA,DE,P,Pattern, Length, Period)

MI_LB_Test_Terminate

RI_LBR(SA,

rTLV,TID

)

MI_LB_Test_Result(Sent,REC,CRC,BER,OO)

Length,

Test ID,Length,Period)

DMM

Generation

D

P

DE

D

P

DE

D

M

M

D

M

R

DMR

Generation

RI_DMM(D,P,DE)

DMM

Generation

D

P

DE

D

P

DE

D

M

M

D

M

R

Control

On-demand

DM

DMM(DA,P,0,

Test ID TLV,

TLV)

DMR

Generation

RI_DMM(D,P,DE)

DMM

Z

Y

X

Mux

DMM

Generation

D

P

DE

D

P

DE

D

M

M

D

M

R

DMR

Generation

RI_DMM(D,P,DE)

DMM

Generation

D

P

DE

D

P

DE

D

M

M

D

M

R

Control

On-demand

DM

Control

On-demand

DM

DMM(DA,P,0,

Test ID TLV,

TLV)

DMR

Generation

RI_DMM(D,P,DE)

DMM

Z

Y

X

Mux

DMM

Z

Y

X

Mux

Control_So

On-demand

1DM

1DM

Z

Y

X

Mux

1DM

Z

Y

X

Mux

DMM

Generation

D

P

DE

D

P

DE

S

L

M

SL

R

DMR

Generation

SLM

Generation

D

P

DE

D

P

DE

M

Control

On-demand

SL

Control

On-demand

SL

SLM(DA,P,

MEP_ID,

Test_ID,

TxFCl,TLV)

SLR

Generation

MI_SL_Result(N_TF,N_LF,F_LF)

SLM

Z

Y

X

Mux

SLM

Z

Y

X

Mux

RI_SLR(rMEP_ID,rTest_ID,TxFCf,TxFCb)

MI_SL_Start(DA,P,Test ID,Length,Period)

MI_SL_Terminate

RI_SLM(OAM,P,DE,TxFCb)

MI_DM_Start(DA,P,

MI_DM_Terminate

MI_DM_Result(count,B_FD[],F_FD[],N_FD[])

MI_DM_Start(DA,P,Test ID,Length,Period)

MI_DM_Terminate

RI_DMR(rSA,TxTimeStampf, RxTimeStampf,

MI_DM_Result(count,B_FD[],F_FD[],N_FD[])

TxTimeStampb,RxTimeb,rTest_ID)

MI_DM_Start(DA,P,

MI_DM_Terminate

MI_DM_Result(count,B_FD[],F_FD[],N_FD[])

MI_DM_Start(DA,P,Test ID,Length,Period)

MI_DM_Terminate

RI_DMR(rSA,TxTimeStampf, RxTimeStampf,

MI_DM_Result(count,B_FD[],F_FD[],N_FD[])

TxTimeStampb,RxTimeb,rTest_ID)

DMM

Generation

D

P

DE

D

P

DE

D

M

M

D

M

R

DMR

Generation

RI_LMM(D,P,DE)

LMM

Generation

D

P

DE

D

P

DE

D

M

M

D

M

R

Control

On-demand

LM

Control

On-demand

LM

LMM(DA,P,0)

LMR

Generation

RI_ (D,P,DE)

LMM

Z

Y

X

Mux

LMM

Z

Y

X

Mux

Counter

Generation

D

P

DE

1

S

L

Generation

D

P

DE

Control_So

On-demand

1SL

1SL(DA,P,

MEP_ID,

Test_ID,

TxFCl,TLV)

1SL

Z

Y

X

Mux

MI_1SL_Start(DA,P,Test ID,Length,Period)

MI_1SL_Terminate

1SL

Generation

D

P

DE

1

S

L

Generation

D

P

DE

Control_So

On-demand

1SL

1SL(DA,P,

MEP_ID,

Test_ID,

TxFCl,TLV)

1SL

Z

Y

X

Mux

1SL

Z

Y

X

Mux

MI_1SL_Start(DA,P,Test ID,Length,Period)

MI_1SL_Terminate

1SL

MI_MEP_ID

Figure 9-33 – ETHDe_FT_So Process

MEP On Demand-OAM Insertion process:

The MEP On Demand OAM Insertion process inserts OAM Traffic Units that are generated in the ETHDe_FT_So process into the stream of Traffic Units.

For all ETH_CI_D received on any but the data input port, the SA field is overwritten with the MI_MEP_MAC value. In the M_SDU field, the MEL field is overwritten with the MI_MEL value.

If the DA of the OAM Traffic Unit is a Class1 or Class 2 Multicast DA the OAM insertion process updates the DA to reflect the right MEL.
This ensures that every generated OAM field has the correct SA, DA and MEL.

LB Control:

This Process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.2 defines the LB Control Process.

LBM Generation:

This Process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.3 defines the LBM Generation Process.

LBR Generation:

This Process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.6 defines the LBR Generation Process.

On-demand LM Control:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.2 defines the on-demand LM Control Process.

LMM Generation:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.3 defines the LMM Generation part in LMx Generation Process.

LMR Generation:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.3 defines the LMR Generation part in LMx Generation Process.

LMM Mux:

The LMM Mux process interleaves the signal sets LMM(DA,P,0) from the input ports (X, Y, Z).
On-demand DM Control:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.2 defines the DM Control Process.

DMM Generation:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.3 defines the DMM Generation Process.

DMR Generation:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.5 defines the DMR Generation Process.

DMM Mux:

The DMM Mux process interleaves the signal sets DMM(DA,P,0,Test ID TLV, TLV) from the input ports (X, Y, Z).
On-demand 1DM Control_So:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.2 defines the 1DM Control_So Process.

1DM Generation:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.3 defines the 1DM Generation Process.

1DM Mux:

The 1DM Mux process interleaves the signal sets 1DM(DA,P,0,Test ID TLV, TLV) from the input ports (X, Y, Z).
TST Control_So:

This Process is defined in clause 8.1.12 where the TST protocol is defined. Clause 8.1.12.2 defines the TST Control Process.

TST Generation:

This Process is defined in clause 8.1.12 where the TST protocol is defined. Clause 8.1.12.3 defines the TST Generation Process.

LT Control:

This Process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.2 defines the LT Control Process.

LTM Generation:

This Process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.3 defines the LTM Generation Process.

LTR Generation:

This Process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.6 defines the LTR Generation Process.

On-demand SL Control:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.2 defines the SL Control process.

SLM Generation:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.3 defines the SLM generation process.

SLR Generation:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.5 defines the SLR generation process.
SLM Mux:

The SLM Mux process interleaves the signal sets SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) from the input ports (X, Y, Z).
Ondemand 1SL Control_So:

This Process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.2 defines the 1SL Control_So Process.

1SL Generation:

This Process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.3 defines the 1SL Generation Process.

1SL Mux:

The 1SL Mux process interleaves the signal sets 1SL(DA,P, MEP_ID,Test _ID, TxFCl, TLV) from the input ports (X, Y, Z).
Defects

None.
Consequent actions

None.
Defect correlations

None.
Performance monitoring
None.

9.4.1.2
ETH Diagnostic Flow Termination Sink Function for MEPs (ETHDe_FT_Sk)

The ETHDe_FT_Sk Process diagram is shown in Figure 9-34.

Symbol

[image: image146.emf]ETHDe_FT

ETHDe_AP

ETHDe_FP

ETHDe_MP ETHDe_RP

Figure 9-34 – ETHDe_FT_Sk symbol

Interfaces

Table 9-12 – ETHDe_FT_Sk interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETHDe_FT_Sk_MP:
ETHDe_FT_Sk_MI_LM_Enable
ETHDe_FT_Sk_MI_MEL
ETHDe_FT_Sk_MI_MEP_MAC
ETHDe_FT_Sk_MI_1DM_Start(SA,Test ID)
ETHDe_FT_Sk_MI_1DM_Terminate
ETHDe_FT_Sk_MI_TST_Start(SA,Pattern)
ETHDe_FT_Sk_MI_TST_Terminate
ETHDe_FT_Sk_MI_1SL_Start(
 SA,MEP ID, Test ID)
ETHDe_FT_Sk_MI_1SL_Terminate

	ETH_AP:

ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH _RP:

ETH_RI_LMM(D,P,DE)
ETH_RI_LMR(TxFCf,RxFCb,TxFCb,RxFCl)
ETH_RI_LBM(D,P,DE)
ETH_RI_LBR(SA,rTLV,TID)
ETH_RI_DMM(D,P,DE)

ETH_RI_DMR(
rSA,TxTimestampf,RxTimeStampf,
TxTimeStampb,RxTimeb,rTest ID)

ETH_RI_LTM(D,P,DE)
ETH_RI_LTR(SA,TTL,TID,TLV)
ETH_RI_SLM(OAM,P,DE,TxFCb)
ETH_RI_SLR(
 rMEP_ID,rTest_ID,TxFCf,TxFCb)

ETHDe_FT_Sk_MP:
ETHDe_FT_Sk_MI_1DM_Result(
 count,N_FD[])
ETHDe_FT_Sk_MI_TST_Result(
 REC,CRC,BER,OO)
ETHDe_FT_Sk_MI_1SL_Result(N_TF,N_LF)

Processes

[image: image147.emf]M

E

P

O

n

d

e

m

a

n

d

-

O

A

M

E

x

t

r

a

c

t

i

o

n

D

P DE

MI_MEL

ETH_CI_D/P/DE ETH_CI_D/P/DE

MEP LBM

Reception

LBR Reception

D

P

DE

D

P

DE

DMM Reception

D

P

DE

DMR Reception

D

P

DE

D

P

DE

TST Reception

D

P

DE

Reception

D

P

DE

D

P

DE

ETH_AI_D/P/DE

L

B

M

L

B

R

D

M

M

D

M

R

1

D

M

T

S

T

L

T

M

L

T

R

MI_LM_Enable

Data

Data

1DM Reception

RI_LBM(D,P,DE)

RI_LBR(SA,rTLV,TID)

RI_DMM(D,P,DE)

RI_DMR(rSA, TxTimeStampf,

TST

Control_Sk

MI_TST_Start(SA,pattern)

MI_TST_Terminate

MI_TST_Result(REC,CRC,BER,OO)

TST

Control_Sk

MI_TST_Start(SA,pattern)

MI_TST_Terminate

MI_TST_Result(REC,CRC,BER,OO)

Data

RI_LTR(SA,TTL,TID,TLV)

RI_LTM(D,P,DE)

RxTimeStampf,TxTimeStampb,

MI_MEP_MAC

MEP LTM

LTR Reception

1DM

Control_Sk

MI_1DM_Result(count, N_FD[])

MI_1DM_Start(SA,Test_ID)

MI_1DM_Terminate

X

Y

Z

1DM

Dmux

X

Y

Z

1DM

Dmux

X

Y

Z

DMR

Dmux

SLM Reception

D

P

DE

SLR Reception

D

P

DE

SLM

SLR

RI_SLR(rMEP_ID,rTest_ID,

TxFCf, TxFCb)

X

Y

Z

SLR

Dmux

RI_SLM(OAM,P,DE,TxFCb)

RxTimeb,rTest_ID)

LMM Reception

D

P

DE

LMR Reception

D

P

DE

L

M

M

L

M

R

RI_LMM (D,P,DE)

RI_LMR(

TxFCf, RxFCb,

TxFCb, RxFCl)

X

Y

Z

LMR

Dmux

RxFC[]

Counter

D

P

DE

1

S

L

1SL Reception

1SL

Control_Sk

MI_1SL_Result(N_TF,N_LF)

MI_1SL _Start(SA,MEP ID,Test_ID)

MI_1SL _Terminate

X

Y

Z

1SL

Dmux

D

P

DE

1

S

L

1SL Reception

1SL

Control_Sk

MI_1SL_Result(N_TF,N_LF)

MI_1SL _Start(SA,MEP ID,Test_ID)

MI_1SL _Terminate

X

Y

Z

1SL

Dmux

X

Y

Z

1SL

Dmux

 Figure 9-35 – ETHDe_FT_Sk processes

MEP On Demand -OAM extraction process:

The MEP On Demand-OAM Extraction process extracts OAM Traffic Units that are processed in the ETHDe_FT_Sk process from the stream of Traffic Units as defined in the following pseudo code:

if (TYPE=<ETHOAM>) and (MEL=MI_MEL) then
 switch(OPC) {
 case <LMM>: if (Flag.Type=0) then
 extract ETH-LMM OAM traffic unit and forward to LMM Port
 endif
 case <LMR>: if (Flag.Type=0) then
 extract ETH-LMR OAM traffic unit and forward to LMR Port

 endif
 case <DMM>: if (Flag.Type=0) then

extract ETH-DMM OAM traffic unit and forward to DMM Port
 endif
 case <DMR>: if (Flag.Type=0) then

extract ETH-DMR OAM traffic unit and forward to DMR Port
 endif
 case <1DM>: extract ETH-1DM OAM traffic unit and forward to 1DM Port

 case <LTM>: extract ETH-LTM OAM traffic unit and forward to LTM Port

 case <LTR>: extract ETH-LTR OAM traffic unit and forward to LTR Port

 case <LBM>: extract ETH-LBM OAM traffic unit and forward to LBM Port
 case <LBR>: extract ETH-LBR OAM traffic unit and forward to LBR Port

 case <TST>: extract ETH-TST OAM traffic unit and forward to TST Port

 case <SLM>: extract ETH-SLM OAM traffic unit and forward to SLM port

 case <SLR>: extract ETH-SLR OAM traffic unit and forward to SLR port
 case <1SL>: extract ETH-1SL OAM traffic unit and forward to 1SL Port

 default: forward ETH_CI traffic unit to Data port

 }

else

 forward ETH_CI_traffic unit to Data Port

endif
NOTE 1 - Further filtering of OAM Traffic Units is performed by the OAM MEL Filter Process which forms part of the ETH Adaptation functions specified in clause 9.3.
NOTE 2 – If both ETHDe_FT and ETHx_FT are involved in synthetic loss measurments, the MEP On Demand-OAM Extraction process need to take a role of the discrimination which Flow Termination the received ETH-SLM PDU belongs to. Detail mechanism is for further study.

MEP LBM Reception:

This Process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.5 defines the LBM MEP Reception Process.

LBR Reception:

This Process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.7 defines the LBR Reception Process.

LMM Reception:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.4 defines the LMM Reception part in LMx Reception Process.

LMR Reception:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.4 defines the LMR Reception part in LMx Receiption Process.

LMR Demux:

The LMR Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P signal can be used for the selection of the port.
DMM Reception:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.4 defines the DMM Reception Process.

DMR Reception:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.6 defines the DMR Reception Process.

DMR Demux:

The DMR Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1DM Reception:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.4 defines the 1DM Reception Process.

1DM Demux:

The 1DM Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1DM Control_Sk:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.5 defines the 1DM Control_Sk Process.

TST Reception:

This Process is defined in clause 8.1.12 where the TST protocol is defined. Clause 8.1.12.4 defines the TST Reception Process.

TST Control_Sk:

This Process is defined in clause 8.1.12 where the TST protocol is defined. Clause 8.1.12.5 defines the TST Control_Sk Process.

MEP LTM Reception:

This Process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.5 defines the MEP LTM Reception Process.

LTR Reception:

This Process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.7 defines the LTR Reception Process.

SLM Reception:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.4 defines the SLM reception process.

SLR Reception:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.6 defines the SLR reception process.

SLR Demux:

The SLR Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1SL Reception:
This process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.4 defines the 1SL reception process.

1SL Demux:

The 1DM Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1SL Control_Sk:
This process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.5 defines the 1SL control_Sk process.

Defects

None.
Consequent actions

None.
Defect correlations

None.
Performance monitoring
None.

9.4.2
ETH Diagnostic Flow Termination Functions for MIPs (ETHDi_FT)

9.4.2.1
ETH Diagnostic Flow Termination Source Function for MIPs (ETHDi_FT_So)

Symbol

[image: image148.emf]ETHDi

ETHDi_AP

ETHDi_FP

ETHDi_MP ETHDi_RP

Figure 9-36 – ETHDi_FT_So symbol

Interfaces

Table 9-13 – ETHDi_FT_So interfaces

	Inputs
	Outputs

	ETH_AP:

ETH_AI_D
ETH_AI_P
ETH_AI_DE

ETH_RP:

ETH_RI_LBM(D,P,DE)
ETH_RI_LTM(D,P,DE)
ETHDi_FT_So_MP:

ETHDi_FT_So_MI_MEL
ETHDi_FT_So_MI_MIP_MAC
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

Processes

[image: image149.emf]M

I

P

O

A

M

I

n

s

e

r

t

i

o

n

ETH_AI_D/P/DE

MI_MEL

ETH_CI_D/P/DE

LBR Generation

D

P

DE

LTR Generation

D

P

DE

MI_MIP_MAC

L

B

R

L

T

R

Data

RI_LBM(D,P,DE)

RI_LTM(D,P,DE)

Figure 9-37 – ETHDi_FT_So Process

MIP OAM Insertion:

The MIP OAM Insertion process inserts OAM Traffic Units that are generated in the ETHDi_FT_So process into the stream of Traffic Units.

For all ETH_CI_D received on any but the data input port, the SA field is overwritten with the MI_MIP_MAC value. In the M_SDU field the Ethertype value is overwritten with the OAM Ethertype value (89-02) and the MEL field is overwritten with the MI_MEL value.

This ensures that every generated OAM field has the correct SA, Ethertype and MEL.

LBR Generation:

This Process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.6 defines the LBR Generation Process.

LTR Generation:

This Process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.6 defines the LTR Generation Process. This process may be regarded as the LT Responder which is located outside of this MIP independently, however, the process itself is the same.

Defects

None.
Consequent actions

None.
Defect correlations

None.
Performance monitoring
None.
9.4.2.2
ETH Diagnostic Flow Termination Sink Function for MIPs (ETHDi_FT_Sk)

Symbol

[image: image150.emf]ETHDi

ETHDi_AP

ETHDi_FP

ETHDi_MP ETHDi_RP

Figure 9-38 – ETHDi_FT_Sk symbol

Interfaces

Table 9-14 – ETHDi_FT_Sk interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETHDi_FT_Sk_MP:
ETHDi_FT_Sk_MI_MEL
ETHDi_FT_Sk_MI_MIP_MAC
	ETH_AP:

ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH_RP:
ETH_RI_LBM(D,P,DE)
ETH_RI_LTM(D,P,DE)

Processes

 [image: image151.emf]M

I

P

O

A

M

E

x

t

r

a

c

t

i

o

n

ETH_AI_D/P/DE

MI_MEL

ETH _CI _D /P /DE

MIP LBM

Reception

D

P

DE

MIP LTM

Reception

MI_MIP_MAC

L

T

M

L

B

M

Data

RI_LBM(D,P,DE)

RI_LTM(D,P,DE)

D

P

DE

D

P

DE

L

T

M

Data

Data

MIP OAM

Insertion

L

T

M

Data

Data

MIP OAM

Insertion

Figure 9-39 – ETHDi_FT_Sk Process

MIP OAM extraction process:

The MIP OAM Extraction process extracts OAM Traffic Units that are processed in the ETHDi_FT_Sk process from the stream of Traffic Units as defined in the following pseudo code:

if (TYPE=<ETHOAM>) and (MEL=MI_MEL) then
 switch(OPC) {
 case <LBM>: extract ETH-LBM OAM traffic unit and forward to LBM Port
 case <LTM>: extract ETH-LTM OAM traffic unit and forward to LTM Port
 default: forward ETH_CI traffic unit to Data port

 }
else

forward ETH CI traffic unit to Data Port

endif
NOTE - Further filtering of OAM Traffic Units is performed by the OAM MEL Filter Process which forms part of the ETH Adaptation functions specified in clause 9.3.
MIP OAM insertion process:

The MIP OAM Insertion process inserts OAM Traffic Units that are generated in the ETHDi_FT_Sk process into the stream of Traffic Units.

For all ETH_CI_D received on any but the data input port, the SA field is overwritten with the MI_MEP_MAC value. In the M_SDU field the Ethertype value is overwritten with the OAM Ethertype value (89-02) and the MEL field is overwritten with the MI_MEL value.

This ensures that every generated OAM field has the correct SA, Ethertype and MEL.

MIP LBM Reception Process:

This Process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.4 defines the LBM MIP Reception Process.

MIP LTM Reception Process:

This Process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.4 defines the MIP LTM Reception Process. This process may be regarded as the LT Responder which is located outside of this MIP independently, however, the process itself is the same.

Defects

None.
Consequent actions

None.
Defect correlations

None.
Performance monitoring
None.

9.4.3 ETHD to ETH Adaptation functions (ETHD/ETH_A)

The ETHD/ETH adaptation function is an empty function; it is included to satisfy the modelling rules.

The bidirectional ETHD/ETH adaptation function is performed by a co-located pair of ETHD/ETH adaptation source (ETHD/ETH_A_So) and sink (ETHD/ETH_A_Sk) functions.

9.4.3.1
ETHD to ETH Adaptation Source function (ETHD/ETH_A_So)

The ETHD/ETH_A_So function symbol is shown in Figure 9-40 and the process in Figure 9-41.

[image: image152.wmf]ETHD_AP

ETH_FP

ETHD/ETH

Figure 9-40 – ETHD/ETH_A_So symbol
Interfaces

Table 9-15 – ETHD/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

See specific OAM process for additional inputs
	ETH_AP:

ETHD_AI_D
ETHD_AI_P
ETHD_AI_DE

See specific OAM process for additional inputs

Processes

[image: image153.wmf]AI_D

AI_DE

AI_P

CI_D

CI_DE

CI_P

Figure 9-41 – ETHD/ETH_A_So Process

Defects

None.
Consequent Actions

None.

Defect correlations

None.
Performance Monitoring
None.

9.4.3.2
ETHD to ETH Adaptation Sink function (ETHD/ETH_A_Sk)

The ETHD/ETH_A_Sk function symbol is shown in Figure 9-42 and the process in Figure 9-43.

Symbol

[image: image154.wmf]ETHD_AP

ETH_FP

ETHD/ETH

Figure 9-42 – ETHD/ETH_A_Sk symbol
Interfaces

Table 9-16 – ETHD/ETH_A_Sk interfaces

	Inputs
	Outputs

	ETH_AP:

ETHD_AI_D
ETHD_AI_P
ETHD_AI_DE
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

Processes
The ETHD/ETH_A_Sk Process diagram is shown in Figure 9-43.

[image: image155.wmf]AI_D

AI_DE

AI_P

CI_D

CI_DE

CI_P

Figure 9-43 – ETHD/ETH_A_Sk Process

9.4.4 ETHDi to ETH adaptation functions (ETHDi/ETH_A)
The ETHDi/ETH inserts and extracts the R-APS information into or from the stream of ETH_CI.

9.4.4.1
ETHDi to ETH adaptation source function (ETHDi/ETH_A_So)

This function allows the insertion of R-APS information into a stream of ETH_CI.

Symbol

[image: image156.emf]ETHDi/ETH_A_So

ETH_FP

ETH_AP

ETHDi/ETH_A_So_MP

Figure 9-x – ETHDi/ETH_A_So symbol

Interfaces

Table 9-y – ETHDi/ETH_A_So Interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_RAPS
ETHDi/ETH_A_So_MP:
ETHDi/ETH_A_So_MI_Active
ETHDi/ETH_A_So_MI_MEL
ETHDi/ETH_A_So_MI_RAPS_Pri
ETHDi/ETH_A_So_MI_MIP_MAC
	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE

Processes

[image: image157.emf]RAPS Insert

P

D

E

D

P

D

E

D

ETH_CI_RAPS ETH_CI_P/DE/D

MI_MEL

ETH_AI_P/DE/D

MI_RAPS_Pri

MI_MIP_MAC

Figure 9-x+1 – ETHDi/ETH_A_So Process
RAPS Insert:

The RAPS Insert process encodes the ETH_CI_RAPS signal into the ETH_CI_D signal of an ETH_CI traffic unit; the resulting RAPS traffic unit is inserted into the stream of incoming traffic units, i.e., the outgoing stream consist of the incoming traffic units and the inserted RAPS traffic units. The ETH_CI_RAPS signal contains the RAPS Specific Information as defined in [ITU-T G.8032].

The ETH_CI_D signal contains a Source and Destination address field and an M_SDU field. The format of the M_SDU field for RAPS traffic units is determined by the ETH_CI_RAPS signal. The MEL in the M_SDU field is determined by the MI_MEL input parameter.

The values of the Source and Destination address fields in the ETH_CI_D signal are determined by the Local MAC address of the maintenance entity group intermediate point (MIP) (MI_MIP_MAC) and the Ring Multicast address as described in [ITU-T G.8032]. The value of the Ring Multicast MAC address is 01-19-A7-00-00-01. The value of MI_ MIP_MAC should be a valid unicast MAC address.

The value of the ETH_CI_P signal associated with the generated RAPS traffic units is determined by the MI_RAPS_Pri input parameter.

The value of the ETH_CI_DE signal associated with the generated RAPS traffic units is set to drop ineligible.

9.4.4.2
ETHDi to ETH adaptation sink function (ETHDi/ETH_A_Sk)

This function extracts the RAPS information from the RAPS traffic units, without filtering the traffic unit.

Symbol

[image: image158.emf]ETHDi/ETH_A_Sk

ETH_FP

ETHDi/ETH_A_Sk_MP

ETH_AP

Figure 9-x+2 – ETHDi/ETH_A_Sk symbol

Interfaces

Table 9-y+1 – ETHDi/ETH_A_Sk Interfaces
	Inputs
	Outputs

	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH_AI_TSF
ETHDi/ETH_A_Sk_MP:
ETHDi/ETH_A_Sk_MI_Active
ETHDi/ETH_A_Sk_MI_MEL
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_RAPS
ETH_CI_SSF

NOTE – Currently in this Recommendation, for the ETHDi_FT_Sk, no consequent action for the ETH_CI_SSF input has been defined. However the consequent action should be ETH_AI_TSF output, to propagate the failure information.

Processes

[image: image159.emf]RAPS Extract

P

D

E

D

P

D

E

D

ETH_CI_RAPS ETH_CI_P/DE/D

MI_MEL

ETH_AI_P/DE/D

ETH_CI_SSF

ETH_AI_TSF

aSSF

Consequent

Actions

Figure 9-x+3 – ETHDi/ETH_A_Sk process
RAPS Extract:

The RAPS Extract process extracts ETH_CI_RAPS signals from the incoming stream of ETH_CI traffic units, without filtering the RAPS Traffic Unit. ETH_CI_RAPS signals are only extracted if they belong to the MEL as defined by the MI_MEL input parameter.

If an incoming traffic unit is an RAPS traffic unit belonging to the MEL defined by MI_MEL, the traffic unit will be duplicated. The original RAPS traffic unit will be transparently forwarded and the ETH_CI_RAPS signal will be extracted from the duplicate. The ETH_CI_RAPS is the RAPS Specific Information contained in the received Traffic Unit. All other traffic units will be transparently forwarded, without being duplicated. The encoding of the ETH_CI_D signal for RAPS frames is defined in clause 9.10 of [ITU-T Y.1731].

The criteria for filtering are based on the values of the fields within the M_SDU field of the ETH_CI_D signal:

•
length/type field equals the OAM Ethertype (89-02), and

•
MEL field equals MI_MEL, and

•
OAM type equals RAPS (40), as defined in clause 9.1 of [ITU-T Y.1731]
Defects

None.

Consequent Actions

aSSF (AI_TSF

Defect correlations

None.

Performance Monitoring
None.

9.5
Server to ETH Adaptation functions (<server>/ETH_A)

Figure 9-44 presents a high level view of the processes that are present in a generic Server to ETH adaptation function (<server>/ETH). The information crossing the <server>/ETH termination flow point (ETH_TFP) is referred to as the ETH characteristic information (ETH_CI). The information crossing the Server layer access point (<server>_AP) is referred to as the Server-specific adapted information (<server>_AI). Note that for some server signals not all processes need to be present, as defined in the server specific adaptation functions.

[image: image160.emf]ETH_FP

Server Specific

802.3 protocols

Replicate

Queuing

ETH_TFP

<server>_AP

<server>/ETH_A_So

ETH_FP

Server Specific

802.3 protocols

Replicate

Filter

ETH_TFP

<server>_AP

<server>/ETH_A_Sk

(note)

Note: This interface is shown here for reference only. It corresponds to the ISS interface in the IEEE

802 model.

ETH_PP

ETH_TP

Figure 9-44 – Server to ETH adaptation functions

The following generic processes are specified: “Filter” in clause 8.3, “Queues” in clause 8.2, “Replicate” in clause 8.4, and “802.3 Protocols” in clause 8.5. Server-specific processes are specified in server-specific clauses.

NOTE 1 – Filtering in <server>/ETH_A sink adaptation function is not applied to frames forwarded to the ETH_TFP. The processes connected to this ETH_TFP should filter ETH_CI or process it.
NOTE 2 – Queuing of frames in the source direction is also not applied for frames from the ETH_TFP. If queuing of frames in the sink direction is required when traffic conditioning is applied, this will be included in the Traffic Conditioning function.
NOTE 3 – For G.8011.1 EPL service, ETH_TFP is unconnected. For services supporting ETH_TFP in the source direction, prioritization of frames received across the ETH_FP and ETH_TFP interfaces will be required. Such prioritization is for further study.

NOTE 4 – Server to ETH adaptation functions may have the processes of ETH-AIS insertion and ETH-LCK generation. Note that Figure 9-44 and related figures in clauses 9.7, 10 and 11 don’t explicitly depict those features to avoid introducing the description complexity.

9.6
ETH Traffic Conditioning and Shaping functions (ETH_TCS)

9.6.1
ETH Traffic Conditioning and Shaping functions (ETH_TCS)

9.6.1.1
ETH Traffic Shaping Function (ETH_TCS_So)

Symbol

[image: image161.emf]ETH_FP

ETH_FP

ETH_TCS_So_MP

Figure 9-45 – ETH_TCS_So symbol
Interfaces

Table 9-17 – ETH_TCS_So Interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_TCS_So_MP:
ETH_TCS_So_MI_Prio_Config
ETH_TCS_So_MI_Queue_Config[]
ETH_TCS_So_MI_Sched_Config
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

Processes

[image: image162.emf]ETH_CI_D/P/DE

ETH_CI_D/P/DE

Priority

Splitter

MI_Prio_Config

MI_Queue_Config[]

Queue

Queue

MI_Sched_Config

Scheduler

Priority

Merger

Figure 9-46 – ETH_TCS_So process
Priority Splitter:

As defined in clause 8.9.2.
Queue:

As defined in clause 8.9.1.
Scheduler:

As defined in clause 8.9.5.
Priority Merger:

As defined in clause 8.9.3.
Defects

None.

Consequent Actions

None.

Defect correlations

None.

Performance Monitoring
None.

9.6.1.2
ETH Traffic Conditioning Function (ETH_TCS_Sk)

Symbol

[image: image163.emf]ETH_FP

ETH_FP

ETH_TCS_Sk_MP

Figure 9-47 – ETH_TCS_Sk symbol
Interfaces

Table 9-18 – ETH_TCS_Sk Interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_TCS_Sk_MP:
ETH_TCS_Sk_MI_Prio_Config
ETH_TCS_Sk_MI_Cond_Config[]
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

Processes

[image: image164.emf]ETH_CI_D/P/DE

ETH_CI_D/P/DE

Priority

Splitter

c

o

n

d

i

t

i

o

n

e

r

C

o

n

d

i

t

i

o

n

e

r

Priority

Merger

MI_Prio_Config

MI_Cond_Config[]

Figure 9-48 – ETH_TCS_Sk processes

Priority Splitter:

As defined in clause 8.9.2.
Conditioner:

As defined in clause 8.9.4.
Priority Merger:
As defined in clause 8.9.3.
Defects

None.

Consequent Actions

None.

Defect correlations

None.

Performance Monitoring
None.

9.6.2
ETH Group Traffic Conditioning and Shaping Functions (ETH_GTCS)

9.6.2.1
ETH Group Traffic Shaping Function (ETH_GTCS_So)

Symbol

[image: image165.emf]ETH_FP

ETH_FP

ETH_GTCS_So_MP

ETH_FP

ETH_FP

Figure 9-49 – ETH_GTCS_So symbol
Interfaces

Table 9-19 – ETH_GTCS_So Interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_GTCS_So_MP:
ETH_GTCS_So_MI_Prio_Config[]
ETH_GTCS_So_MI_Queue_Config[][]
ETH_GTCS_So_MI_Sched_Config
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

Processes

[image: image166.emf]ETH_CI_D/P/DE

ETH_CI_D/P/DE

Priority

Splitter

MI_Prio_Config[]

MI_Queue_Config[][]

Queue

Queue

MI_Sched_Config[]

Scheduler

Priority

Merger

ETH_CI_D/P/DE

Priority

Splitter

Queue

Queue

Priority

Merger

ETH_CI_D/P/DE

Figure 9-50 – ETH_TCS_So processes

Priority Splitter:

As defined in clause 8.9.2.
Queue:

As defined in clause 8.9.1.
Scheduler:

As defined in clause 8.9.5.
Priority Merger:
As defined in clause 8.9.3.

Defects

None.

Consequent Actions

None.

Defect correlations

None.

Performance Monitoring
None.

9.6.2.2
ETH Group Traffic Conditioning Function (ETH_GTCS_Sk)

For ETH Group Traffic, traffic conditioning process is performed per flow point but there is no correlation between each process. Threfore, an ETH_GTCS_Sk function can be modelled by multiple ETH_TCS_Sk functions and no specific function is defined in this recommendation.
9.7
ETH Link Aggregation Functions

The ETH Link Aggregation functions model the Link Aggregation functionality as described in [IEEE 802.1AX] (moved from clause 43 of IEEE 802.3-2005). The definitions in the present clause provide references to the appropriate generic process definitions in clause 8 of [ITU-T G.806] where necessary.

The generic model used is shown in Figures 9-51 and 9-52. Figure 9-51 shows the simplified model for the case of one single aggregator, while Figure 9-52 shows the generic model for the case of several aggregators. Np denotes the number of ETYn_AP interfaces (interfaces to the IEEE 802.3 PHY layer), while Na is the number of ETH-LAG_FP interfaces (interfaces to the IEEE 802.3 MAC layer).

[image: image167.wmf]ETYn-Np/ETH-LAG-1

ETYn

ETYn

ETYn-Np_AP =

ETYn_AP[1..Np]

ETYn_CI

ETYn_CI

ETH-LAG/ETH

ETH-LAG

-Np-1

ETH_TFP

ETH-LAG_AP

ETYn_CI

ETYn_CI

ETH_FP

ETH-LAG/ETH

ETH-LAG

ETH-LAG_AP

ETH_TFP

ETH_FP

ETH-LAG_AP

...

Figure 9-51 – Simplified model of Ethernet Link Aggregation with decomposition of ETH-LAG-Np-Na_TT function for Na=1

[image: image168.wmf]ETYn-Np/ETH-LAG-Na

ETYn

ETYn

ETYn-Np_AP =

ETYn_AP[1..Np]

ETYn_CI

ETYn_CI

ETH-LAG/ETH

ETH-LAG

-Np-Na

ETH_TFP

ETH-LAG_AP

ETYn_CI

ETYn_CI

ETH_FP

ETH-LAG/ETH

ETH-LAG

ETH-LAG_AP

ETH-LAG/ETH

ETH-LAG

ETH-LAG_AP

ETH_TFP

ETH_FP

ETH_TFP

ETH_FP

ETH-LAG-Na_AP =

ETH-LAG_AP[1..Na]

ETH-LAG/ETH

ETH_TFP

ETH_FP

...

...

...

Figure 9-52 – Generic model of Ethernet Link Aggregation with decomposition of ETH-LAG-Np-Na_TT function

9.7.1
ETH Link Aggregation Layer Trail Termination Function (ETH-LAG-Np-Na_TT)

The ETH-LAG-Np-Na_TT function is decomposed as shown in Figures 9-53 and 9-55.

NOTE – ETH-LAG-Np-Na_TT functions always consist of a pair of identically-sized source and sink functions (i.e., a source function with certain values of Na/Np and a sink function with the same Na/Np values), as per [IEEE 802.3].

9.7.1.1
ETH Link Aggregation Adaptation Source Function (ETYn-Np/ETH-LAG-Na_A_So)

Symbol

[image: image169.emf]ETYn-Np/ETH-LAG-Na

ETYn-Np_AI = ETYn_AI[1...Np]

ETH-LAG-Na_CI = ETH-LAG_CI[1...Na]

ETYn-Np/ETH-LAG-Na_So_MI

…...

Figure 9-53 – ETYn-Np/ETH-LAG-Na_A_So symbol

Interfaces

Table 9-20 – ETYn-Np/ETH-LAG-Na_A_So interfaces

	Inputs
	Outputs

	ETH-LAG_FP:
ETH-LAG-Na_CI_D =
 ETH-LAG_CI[1..Na]_D
ETH-LAG-Na_CI_P =
 ETH-LAG_CI[1..Na]_P
ETH-LAG-Na_CI_DE =
 ETH-LAG_CI[1..Na]_DE
ETH-LAG-Na_CI_Clock =
 ETH-LAG_CI[1..Na]_Clock

ETYn-Np/ETH-LAG-Na _A_So_MP:

ETYn-Np/ETH-LAG-Na_A_So_
 MI_Active
ETYn-Np/ETH-LAG-Na_A_So_
 MI_TxPauseEnable

ETYn-Np/ETH-LAG-Na_A_So_
 MI_Agg[1..Na]_AP_List

ETYn-Np/ETH-LAG-Na_A_So_
 MI_AggPort[1..Np]_
 ActorAdmin_State

	ETYn_AP:
ETYn-Np_AI_Data = ETYn_AI[1..Np]_Data
ETYn-Np_AI_Clock = ETYn_AI[1..Np]_Clock
ETYn-Np/ETH-LAG-Na _A_So_MP:
ETYn-Np/ETH-LAG-Na_A_So_
 MI_Agg[1..Na]_
 ActorSystemID
 ActorSystemPriority
 ActorOperKey
 PartnerSystemID
 PartnerSystemPriority
 PartnerOperKey
 DataRate
 CollectorMaxDelay

ETYn-Np/ETH-LAG-Na_A_So_
 MI_AggPort[1..Np]_
 ActorOperKey
 PartnerOperSystemPriority
 PartnerOperSystemID
 PartnerOperKey
 ActorPort
 ActorPortPriority
 PartnerOperPort
 PartnerOperPortPriority
 ActorOperState
 PartnerOperState

ETYn-Np/ETH-LAG-Na_A_So_
 MI_pAggOctetsTxOK[1..Na]

ETYn-Np/ETH-LAG-Na_A_So_
 MI_pAggFramesTxOK[1..Na]

ETYn-Np/ETH-LAG-Na_A_So_
 MI_pFramesTransmittedOK[1..Np]

ETYn-Np/ETH-LAG-Na_A_So_
 MI_pOctetsTransmittedOK[1..Np]

NOTE 1 – The signals MI_Agg[1..Na]_… and MI_AggPort[1..Np]_… represent the attributes of the "Aggregator" and "Aggregator Port" objects of the same name in the model in clause 6.3 of [IEEE 802.1AX]. As an example, the output MI_Agg[k]_PartnerSystemID corresponds to the IEEE read-only attribute aAggPartnerSystemID for aggregator object #k.

NOTE 2 – For the purposes of Ethernet Transport Equipment, the above table contains the minimum set of aggregator and aggregator port inputs and outputs to be supported. This set is a subset of the IEEE 802.1AX model, of which some attributes have been omitted because they are specific to the IEEE management philosophy or for simplification in transport equipment. All parameters not explicitly settable per the table above take their default values as per [IEEE 802.1AX].

NOTE 3 – this is the minimum set of common requirements that transport equipment must fulfil.

Processes

A process diagram of this function is shown in Figure 9-54.

[image: image170.emf]Aggregation

Control

Aggregator #1

ETYn server #1

802.1AB/X #1

802.3 #1

ETYn server #2

802.1AB/X #2

802.3 #2

ETYn server #Np

802.1AB/X #Np

802.3 #Np

Aggregator #2 Aggregator #Na

M

I

_

p

F

r

a

m

e

s

T

r

a

n

s

m

i

t

t

e

d

O

K

[

1

.

.

N

p

]

M

I

_

p

O

c

t

e

t

s

T

r

a

n

s

m

i

t

t

e

d

O

K

[

1

.

.

N

p

]

C

I

_

P

a

u

s

e

T

r

i

g

g

e

r

[

1

.

.

N

p

]

M

I

_

T

x

P

a

u

s

e

E

n

a

b

l

e

[

1

.

.

N

p

]

M

I

_

A

g

g

[

1

.

.

N

a

]

_

.

.

.

M

I

_

A

g

g

P

o

r

t

[

1

.

.

N

p

]

_

.

.

.

M

I

_

p

A

g

g

O

c

t

e

t

s

T

x

O

K

[

1

.

.

N

a

]

M

I

_

p

A

g

g

F

r

a

m

e

s

T

x

O

K

[

1

.

.

N

a

]

ETY_AI[1] ETY_AI[2] ETY_AI[Np]

ETH-LAG_CI[1] ETH-LAG_CI[2] ETH-LAG_CI[Na]

...

...

...

...

...

...

...

...

MAC FCS #1 MAC FCS #2 MAC FCS #Np

...

Figure 9-54 – ETYn-Np/ETH-LAG-Na_A_So processes

The input MI_Agg[1..Na]_AP_List defines, for each aggregator, which ports (access points) are provisioned to be assigned to it. The AP_List attributes for all aggregators are disjunct lists.

The system shall assign a unique value for the parameter aAggActorAdminKey for each aggregator in the system. The system shall also assign the value used for each aggregator to the parameter aAggPortActorAdminKey of all ports in its assigned port list (AP_List).

NOTE 4 – This automated AdminKey assignment is a simplification of the IEEE provisioning model, where the keys are provisioned explicitly for each port and aggregator.

NOTE 5 – Automated assignment of PartnerAdminKey attributes is for further study.

ETYn Server:

This process is identical to the “ETYn Server Specific” process defined in clause 10.3.1.

MAC FCS, 802.1AB/X, 802.3:

These processes are as per the definitions of the “MAC FCS generation” in clause 8.8.1, “802.1AB/X processes” in clause 8.8.3 and “802.3 protocols” in clause 8.5.

Aggregation Control:

This process is the source part of the process of the same name in [IEEE 802.1AX].

NOTE 6 – The “Aggregation Control” process is a single process shared between the source and the sink of a pair of source/sink adaptation functions.

NOTE 7 – As per the IEEE model and given the automated key assignment, only ports from each aggregator’s AP_List will be eligible to be selected by that aggregator.

Aggregator:

This process is the source part of the process of the same name in [IEEE 802.1AX]. A coupled mux state machine model is used.

NOTE 8 – Each “Aggregator #k” process is a single process shared between the source and the sink of a pair of source/sink adaptation functions.
Defects

None.
Consequent actions

None.
Defect correlations

None.

Performance monitoring

For each aggregator:

MI_pAggOctetsTxOK[1..Na] per clause 6 of [IEEE 802.1AX].

MI_pAggFramesTxOK[1..Na] per clause 6 of [IEEE 802.1AX].

For each access point:

MI_pOctetsTransmittedOK[1..Np] per clause 6 of [IEEE 802.1AX].

MI_pFramesTransmittedOK[1..Np] per clause 6 of [IEEE 802.1AX].

9.7.1.2
ETH Link Aggregation Adaptation Sink Function (ETYn-Np/ETH-LAG-Na_A_Sk)

Symbol

[image: image171.emf]ETYn-Np/ETH-LAG-Na

ETYn-Np_AI = ETYn_AI[1...Np]

ETH-LAG-Na_CI = ETH-LAG_CI[1...Na]

ETYn-Np/ETH-LAG-Na_Sk_MI

…...

Figure 9-55 – ETYn-Np/ETH-LAG-Na_A_Sk symbol

Interfaces

Table 9-21 – ETYn-Np/ETH-LAG-Na_A_Sk interfaces

	Inputs
	Outputs

	ETYn_AP:
ETYn-Np_AI_D=
 ETYn_AI[1..Np]_D
ETYn-Np_AI_P=
 ETYn_AI[1..Np]_P
ETYn-Np_AI_DE=
 ETYn_AI[1..Np]_DE
ETYn-Np_AI_Clock
 ETYn_AI[1..Np]_Clock

ETYn-Np/ETH-LAG-Na _A_Sk_MP:
ETYn-Np/ETH-LAG-Na_A_Sk_
 MI_Active
ETYn-Np/ETH-LAG-Na_A_Sk_
 MI_PLLThr[1..Na]
	ETH-LAG_FP:
ETH-LAG-Na_CI_D=
 ETH-LAG_CI[1..Na]_D
ETH-LAG-Na_CI_P=
 ETH-LAG_CI[1..Na]_P
ETH-LAG-Na_CI_DE=
 ETH-LAG_CI[1..Na]_DE
ETH-LAG-Na_CI_Clock=
 ETH-LAG_CI[1..Na]_Clock
ETH- LAG-Na_CI_aSSF=
 ETH-LAG_CI[1..Na]_aSSF

ETYn-Np/ETH-LAG-Na _A_Sk_MP:
ETYn-Np/ETH-LAG-Na_A_Sk_
 MI_cPLL[1..Na]
ETYn-Np/ETH-LAG-Na_A_Sk_
 MI_cTLL[1..Na]
ETYn-Np/ETH-LAG-Na_A_Sk_
 MI_pAggOctetsRxOK[1..Na]
ETYn-Np/ETH-LAG-Na_A_Sk_
 MI_pAggFramesRxOK[1..Na]
ETYn-Np/ETH-LAG-Na_A_Sk_
 MI_pFramesReceivedOK[1..Np]
ETYn-Np/ETH-LAG-Na_A_Sk_
 MI_pOctetsReceivedOK[1..Np]
ETYn-Np/ETH-LAG-Na_A_Sk_
 MI_pFCSErrors[1..Np.]

Processes

A process diagram of this function is shown in Figure 9-56.

[image: image172.emf]Aggregation

Control

Aggregator #1

ETYn server #1

MAC FCS #1

802.3 #1

ETYn server #2

MAC FCS #2

802.3 #2

ETYn server #Np

MAC FCS #Np

802.3 #Np

Aggregator #2 Aggregator #Na

M

I

_

p

F

r

a

m

e

s

R

e

c

e

i

v

e

d

O

K

[

1

.

.

N

p

]

M

I

_

p

O

c

t

e

t

s

R

e

c

e

i

v

e

d

O

K

[

1

.

.

N

p

]

M

I

_

p

A

g

g

O

c

t

e

t

s

R

x

O

K

[

1

.

.

N

a

]

M

I

_

p

A

g

g

F

r

a

m

e

s

R

x

O

K

[

1

.

.

N

a

]

M

I

_

c

P

L

L

[

1

.

.

N

a

]

M

I

_

c

T

L

L

[

1

.

.

N

a

]

M

I

_

P

L

L

T

h

r

[

1

.

.

N

a

]

ETY_AI[1] ETY_AI[2]

ETY_AI[Np

]

ETH-LAG_CI[1] ETH-LAG_CI[2] ETH-LAG_CI[Na]

...

...

...

...

...

...

...

...

M

I

_

p

F

C

S

E

r

r

o

r

s

[

1

.

.

N

p

]

802.1AB/X #1 802.1AB/X #2 802.1AB/X #Np

...

Figure 9-56 – ETYn-Np/ETH-LAG-Na_A_Sk process

ETYn Server:

This process is identical to the “ETYn Server Specific” process defined in clause 10.3.2.

MAC FCS, 802.1AB/X, 802.3:

These processes are as per the definitions of the “MAC FCS Check” in clause 8.8.2, “802.1AB/X protocols” in clause 8.8.3 and “802.3 protocols” in clause 8.5.

Aggregation Control:

This process is the source part of the process of the same name in [IEEE 802.1AX].

NOTE 1 – The “Aggregation Control” process is a single process shared between the source and the sink of a pair of source/sink adaptation functions. The parameters used by this bidirectional process are defined in the interface section of the source adaptation function.

Aggregator:

This process is the source part of the process of the same name in [IEEE 802.1AX]. A coupled mux state machine model is used.

NOTE 2 – Each “Aggregator #k” process is a single process shared between the source and the sink of a pair of source/sink adaptation functions. The parameters used by this bidirectional process are defined in the interface section of the source adaptation function.
Defects

dMNCD[j] (Member j not Collecting/Distributing): The defect shall be raised if an access point (port) in an aggregator’s AP_List stays outside of the COLLECTING_DISTRIBUTING state for longer than Xraise seconds. The defect shall be cleared if the port enters the COLLECTING_DISTRIBUTING state and stays there for Xclear seconds.

Xraise = Xclear = 1 second.

Consequent actions

[image: image173.wmf][

]

[

]

Õ

Î

¬

k

MI_AP_List

j

j

dMNCD

aSSF

LAG_CI[k]_

-

ETH

NOTE 3 – In other words, aSSF will be raised at the output ETH-LAG_CI[k] of an aggregator if all ports in its assigned port list (AP_List[k]) have the dMNCD defect active.

Defect correlations

Defining

[image: image174.wmf][

]

[

]

(

)

[

]

å

Î

=

k

MI_AP_List

j

j

dMNCD

not

k

mAP_Active

i.e., the number of active (no-defect) ports among those in an aggregator’s AP_List,

then:

[image: image175.wmf][

]

[

]

0

k

mAP_Active

k

LAG_cTLL

-

ETH

=

¬

[image: image176.wmf][

]

[

]

(

)

[

]

[

]

(

)

k

MI_PLLThr

k

mAP_Active

and

k

mAP_Active

0

k

LAG_cPLL

-

ETH

<

<

¬

NOTE 4 – In other words, a cTLL (Total Link Loss) fault cause will be raised if no ports are active for an aggregator. A cPLL (Partial Link Loss) fault cause shall be raised if the number of active ports is less than the provisioned threshold.

Performance monitoring

For each aggregator:

MI_pAggOctetsRxOK[1..Na] per clause 6 of [IEEE 802.1AX].

MI_pAggFramesRxOK[1..Na] per clause 6 of [IEEE 802.1AX].

For each access point:

MI_pFCSErrors[1..Np] per clause 6 of [IEEE 802.1AX].

MI_pOctetsReceivedOK[1..Np] per clause 6 of [IEEE 802.1AX].

MI_pFramesReceivedOK[1..Np] per clause 6 of [IEEE 802.1AX].

9.7.1.3
ETH Link Aggregation Flow Termination Source Function (ETH-LAG_FT_So)

Symbol

[image: image177.wmf]ETH-LAG_AI

ETH-LAG_CI

ETH-LAG

Figure 9-57 – ETH-LAG_FT_So symbol

Interfaces

Table 9-22 – ETH-LAG_FT_So interfaces

	Inputs
	Outputs

	ETH-LAG_AP:
ETH-LAG_AI_D
ETH-LAG_AI_P
ETH-LAG_AI_DE
ETH-LAG_AI_ClocK
	ETH-LAG_FP:
ETH-LAG_CI_D
ETH-LAG_CI_P
ETH-LAG_CI_DE
ETH-LAG_CI_ClocK

Processes

This function just forwards the ETH-LAG_AP information onto the ETH-LAG_FP without manipulation.

Defects

None.

Consequent Actions

None.

Defect Correlations

None.
Performance monitoring
None.
9.7.1.4
ETH Link Aggregation Flow Termination Sink Function (ETH-LAG_FT_Sk)

Symbol

[image: image178.emf]ETH_LAG_TT_Sk_MI

ETH-LAG_AI

ETH-LAG_CI

ETH-LAG

Figure 9-58 – ETH-LAG_FT_Sk symbol

Interfaces

Table 9-23 – ETH-LAG_FT_Sk interfaces

	Inputs
	Outputs

	ETH-LAG_FP:
ETH-LAG_CI_D
ETH-LAG_CI_P
ETH-LAG_CI_DE
ETH-LAG_CI_ClocK
ETH-LAG_CI_SSF
ETH-LAG_FT_Sk_MP:
ETH-LAG_TT_Sk_MI_SSF_Reported
	ETH-LAG_AP:
ETH-LAG_AI_D
ETH-LAG_AI_P
ETH-LAG_AI_DE
ETH-LAG_AI_ClocK
ETH-LAG_AI_TSF
ETH-LAG_AI_AIS

ETH-LAG_FT_Sk_MP:
ETH-LAG_TT_Sk_MI_cSSF

Processes

This function just forwards the ETH-LAG_FP information onto the ETH-LAG_AP without manipulation.

Defects:

None
Consequent actions

aTSF
(
CI_SSF

Defect correlations

cSSF
(
CI_SSF and SSF_Reported

Performance monitoring
None.
9.7.2
ETH-LAG to ETH Adaptation Function (ETH-LAG/ETH_A)

9.7.2.1
ETH-LAG to ETH Adaptation Source Function (ETH-LAG/ETH_A_So)

Symbol

[image: image179.emf]ETH-LAG/ETH

ETH_CI

(ETH_FP)

ETH-LAG_CI

ETH_CI

(ETH_TFP)

ETH_TI

ETH-LAG_PI

Figure 9-59 – ETH-LAG/ETH_A_So symbol

Interfaces

Table 9-24 – ETH-LAG/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_ClocK

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_ClocK
ETH_TP:
ETH_TI_ClocK

ETH-LAG/ETH_A_So_MP:
ETH-LAG/ETH_A_So_MI_Active
	ETH-LAG_AP:
ETH-LAG_AI_D
ETH-LAG_AI_P
ETH-LAG_AI_DE
ETH-LAG_AI_ClocK

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes

A process diagram of this function is shown in Figure 9-60.

[image: image180.emf]Queuing

ETH_CI

(ETH_FP)

ETH_CI

(ETH_TFP)

Replicate

ETH_LAG_AI

ETH_PI

(ETHTF_PP)

ETH_PI

(ETHF_PP)

ETH_TI

Figure 9-60 – ETH-LAG/ETH_A_So process

See “Queuing” in clause 8.2 and “Replicate” in clause 8.4.
Defects

None.

Consequent actions

None.

Defect correlations

None.

Performance monitoring
None.
9.7.2.2
ETH-LAG to ETH Adaptation Sink Function (ETH-LAG/ETH_A_Sk)

Symbol

[image: image181.emf]ETH-LAG/ETH

ETH_CI

(ETH_FP)

ETH-LAG_CI

ETH-LAG/ETH_A_Sk_MI

ETH_CI

(ETH_TFP)

ETH_PI

Figure 9-61 – ETH-LAG/ETH_A_Sk symbol

Interfaces

Table 9-25 – ETH-LAG/ETH_A_Sk interfaces

	Inputs
	Outputs

	ETH-LAG_AP:
ETH-LAG_AI_D
ETH-LAG_AI_P
ETH-LAG_AI_DE
ETH-LAG_AI_ClocK
ETH-LAG-AI_TSF
ETH-LAG-AI_AIS
ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETH-LAG/ETH_A_Sk_MP:
ETH-LAG/ETH_A_Sk_MI_Active

ETH-LAG/ETH_A_Sk_MI_FilterConfig
	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_ClocK
ETH_CI_SSF

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_ClocK

ETH_CI_SSF

Processes

A process diagram of this function is shown in Figure 9-62.

[image: image182.emf]ETH_CI

(ETH_FP)

ETH_CI

(ETH_TFP)

Replicate

ETH-LAG_AI

ETH_PI

(ETHTF_PP)

ETH_PI

(ETHF_PP)

Filter MI_FilterConfig

Figure 9-62 – ETH-LAG/ETH_A_Sk process

See “Filter” in clause 8.3 and “Replicate” in clause 8.4.
Defects

None.

Consequent actions

None.

Defect correlations

None.

Performance monitoring
None.

9.8
ETH MEP and MIP functions

MEP and MIP compound functions are defined in [ITU-T G.806]. This clause specifies the compositions of those functions with ETH Flow Termination, Adaptation and Diagnostic atomic functions described in clauses 9.2, 9.3 and 9.4, respectively.

9.8.1
ETH NCM MEP function
An ETH NCM (Network Connection Monitoring) MEP function is capable to originate, filter and terminate proactive ETH OAM signals and to originate, respond to and terminate diagnostic ETH OAM signals at the NCM MEG levels. The NCM MEP is composed of ETHx_FT, ETHD/ETH_A and ETHDe_FT atomic functions. This MEP is located at ETH (sub-)layer boundary and connected with ETHx/client_A or ETHx/ETH-m_A. Application with other adaptation functions, and the model for multiple access points are for further study.
[image: image183.emf]ETHx

ETH

De

ETHD/

ETH

Figure 9-63 – ETH NCM MEP compound functions

9.8.2
ETH TCM MEP function

An ETH TCM (Tandem Connection Monitoring) MEP function is capable to originate, filter and terminate proactive ETH OAM signals and to originate, respond to and terminate diagnostic ETH OAM signals at one of the TCM MEG levels. The TCM MEP is composed of ETHx/ETH_A, ETHx_FT, ETHD/ETH_A and ETHDe_FT atomic functions. In addition, it can be composed of ETHG/ETH_A, ETHG_FT, ETHD/ETH_A and ETDe_FT if ETH Group MEG is configured and multiple access point pools are accommodated. This MEP is located within an ETH (sub-)layer.
[image: image184.emf]ETHx

ETH

De

ETHD

/ETH

ETHx/

ETH

ETHx

ETH

De

ETHD

/ETH

ETHx/

ETH

ETHG

ETH

De

ETHD

/ETH

ETHG/

ETH

ETHG

ETH

De

ETHD

/ETH

ETHG/

ETH

Figure 9-64 – ETH TCM MEP compound functions

9.8.3
ETH MIP function

An ETH MIP function is capable to respond to on-demand ETH OAM signals at one of the MEG levels on the both directions. The MIP combines two back-to-back half-MIP functions. It consists of two pairs of the ETHD/ETH_A and ETHDi_FT atomic functions, each facing in opposite directions. The model for multiple flow points is for further study.
[image: image185.emf]ETH

Di

ETHD/

ETH

ETH

Di

ETHD/

ETH

ETH

Di

ETHD/

ETH

ETH

Di

ETHD/

ETH

ETH

Di

ETHD/

ETH

ETHD/

ETH

Figure 9-65 – ETH MIP compound functions

9.8.4
ETH half MIP function

An ETH half MIP function is capable to respond to on-demand ETH OAM signals at one of the MEG levels on a single direction. The half MIP is composed of a pair of ETHD/ETH_A and ETHDi_FT atomic functions. The model for multiple flow points is for further study.
[image: image186.emf]ETH

Di

ETHD/

ETH

Figure 9-66 – ETH MIP compound functions

10
Ethernet PHY Layer functions (ETYn)

This Recommendation supports the following full-duplex Ethernet PHYs:

· ETY1: 10BASE-T (twisted pair electrical; full-duplex only)

· ETY2.1: 100BASE-TX (twisted pair electrical; full-duplex only; for further study)

· ETY2.2: 100BASE-FX (optical; full-duplex only; for further study)

· ETY3.1: 1000BASE-T (copper; for further study)

· ETY3.2: 1000BASE-LX/SX (long- and short-haul optical; full duplex only)

· ETY3.3: 1000BASE-CX (short-haul copper; full duplex only; for further study)

· ETY4: 10GBASE-S/L/E (optical; for further study)

10.1
ETYn Connection functions (ETYn_C)

Not applicable; there are no connection functions defined for this layer.

10.2
ETYn Trail Termination functions (ETYn_TT)

In the sink direction, Ethernet PHY Trail Termination functions (ETYn_TT) terminate received optical or electrical Ethernet signals, delivering a conditioned signal to the ETYn/ETH_Sk_A sink adaptation function. In the source direction, ETYn_TT trail termination accepts an electrical signal from the ETYn/ETH_So_A source adaptation function, and outputs an appropriate electrical or optical signal to the Ethernet electrical or optical delivery medium.

NOTE – The ETYn_TT functions are intended to encapsulate the whole functionality of the physical layer in the IEEE 802.3 model. The models in this Recommendation define this functionality just by reference to the IEEE model and intentionally do not provide details on it, as this functionality is well-understood from the IEEE work.

The types of ETYn functions are as defined in Table 10-1:

Table 10-1 – ETYn types

	ETYn Type
	IEEE 802.3 Interface type

	ETY1
	10BASE-T

	ETY2.1
	100BASE-TX

	ETY2.2
	100BASE-FX

	ETY3.1
	1000BASE-T

	ETY3.2
	1000BASE-LX/SX

	ETY3.3
	1000BASE-CX

	ETY4
	10GBASE-S/L/E

Note that the 10G WAN PHY is for further study.
10.2.1
ETYn Trail Termination Source function (ETYn_TT_So)

Symbol

[image: image187.emf]ETYn_TT_So

ETYn_CI

ETYn_TT_So_MI

ETYn_AI

ETYn_RI

Figure 10-1 – ETYn_TT_So symbol

Interfaces

Table 10-2 – ETYn_TT_So interfaces

	Inputs
	Outputs

	ETYn_AP:
ETYn_AI_Data
ETYn_AI_ClocK
ETYn_AI_SSF
ETYn_AI_SSFrdi
ETYn_AI_SSFfdi
ETYn_RP:
ETYn_RI_RSF
ETYn_TT_So_MP:
ETYn_TT_So_MI_FTSEnable
	ETYn_TCP:
ETYn_CI_Data
ETYn_CI_ClocK

ETYn_RP:
ETYn_RI_FTS
ETYn_TT_So_MP:
ETYn_TT_So_MI_PHYType
ETYn_TT_So_MI_PHYTypeList

Processes

This source function together with the corresponding sink function implements all processes in the physical layer in the IEEE 802.3 model.

“Fault Propagation” process:

When the AI_SSF and the FTSEnable (Forced Transmitter Shutdown) are true and RI_RSF (Remote Signal Fail) is false, this process forces the transmitter shutdown by either turning off the output transmitting device or inserting Error codes (e.g. /V/, 10B_ERR for 1 GbE).

As soon as the transmitter shutdown is forced, the RI_FTS is asserted. The RI_FTS is reset after [for further study] seconds the forcing of transmitter shutdown is removed.

NOTE – Further detail is intentionally left out of this Recommendation.

When the AI_SSFrdi is true and the PHY supports remote fault signalling, this process inserts the PHY-specific remote fault signal.

When the AI_SSFfdi is true and the PHY supports local fault signalling, this process inserts the PHY-specific local fault signal.

ETY2.2 and ETY4 support remote fault signalling. ETY4 supports local fault signalling.

Defects

None.
Consequent actions

None.
Defect correlations

None.
Performance monitoring
None.
10.2.2
ETYn Trail Termination Sink function (ETYn_TT_Sk)

Symbol

[image: image188.emf]ETYn_TT_Sk

ETYn_CI

ETYn_TT_Sk_MI

ETYn_AI

ETYn_RI

Figure 10-2 – ETYn_TT_Sk symbol

Interfaces

Table 10-3 – ETYn_TT_Sk interfaces

	Inputs
	Outputs

	ETYn_TCP:
ETYn_CI_Data
ETYn_RP:
ETYn_RI_FTS
	ETYn_AP:
ETYn_AI_Data
ETYn_AI_ClocK
ETYn_AI_TSF
ETYn_AI_TSFrdi
ETYn_AI_TSFfdi
ETYn_RP:
ETYn_RI_RSF
ETYn_TT_Sk_MP:
ETYn_TT_Sk_MI_cLOS
ETYn_TT_Sk_MI_cRDI
ETYn_TT_Sk_MI_cFDI

Processes

This sink function together with the corresponding source function implements all processes in the physical layer in the IEEE 802.3 model.

NOTE 1 – Further detail is intentionally left out of this Recommendation.

“Fault Propagation” process:
When the PHY supports remote fault signalling, this process inserts the AI_TSFrdi in response to the PHY-specific remote fault signal.

When the PHY supports local fault signalling, this process inserts the AI_TSFfdi in response to the PHY-specific local fault signal.

ETY2.2 and ETY4 support remote fault signalling. ETY4 supports local fault signalling.

Defects

dLOS: The defect is detected as soon as the aMediaAvailable parameter (as defined in [IEEE 802.3]) gets a value different from “available” and the RI_FTS is false. The defect is cleared as soon as the aMediaAvailable parameter becomes “available”.

NOTE 2 – aRSF is generated and communicated to the ETY_TT_So (RI_RSF) to prevent a Forced Transmitter Shutdown in case of dLOS. This Recommendation does not specify the Remote Fault Indication signalling.

dRDI: The defect is detected and cleared based on PHY-specific remote fault signalling (as defined in [IEEE 802.3]).

dFDI: The defect is detected and cleared based on PHY-specific local fault signalling (as defined in [IEEE 802.3]).

Consequent actions

aTSF (dLOS

aRSF (dLOS

aTSFrdi (dRDI

aTSFfdi (dFDI

Defect correlations

cLOS (dLOS

cRDI (dRDI

cFDI (dFDI
Performance monitoring
None.

10.3
ETYn to ETH Adaptation functions (ETYn/ETH_A)

Figures 10-3 and 10-4 illustrate the Ethernet trail termination to ETH adaptation function (ETYn/ETH_A and ETYn/ETH-m_A). Information crossing the ETH flow point (ETH_FP) and ETH termination flow point (ETH_TFP) is referred to as ETH characteristic information (ETH_CI). Information crossing the ETYn access point (ETY_AP) is referred to as ETYn adapted information (ETYn_AI). Note that ETYn/ETH-m_A is a compound function of ETYn/ETH_A and ETHx/ETH-m_A (see clause 9.3.3).
[image: image189.emf]ETH_CI

ETYn/ETH_A_MI

ETYn_AI

ETYn/ETH_A

To/From

ETH_FP

To/From

ETH_TFP

Figure 10-3 – ETYn Server to ETH Adaptation Function

[image: image190.emf]ETH_CI

ETYn/ETH-m_A_MI

ETYn_AI

ETYn/ETH-m_A

To/From

ETH_FP

To/From

ETH_TFP

….

Figure 10-4 – ETYn Server to ETH-m Adaptation Function

The ETYn/ETH_A adaptation function shown in Figure 10-3 can be further decomposed into separate source and sink adaptation functions shown in Figure 10-5:

[image: image191.emf]ETYn/ETH_A_So -

ETYn_AI

From

ETH_TFP

ETYn/ETH_A_Sk_MI

ETYn/ETH_A_Sk

ETYn_AI

ETYn/ETH_A_So_MI ETYn/ETH_A_PI

ETH_CI ETH_CI

From

ETH_FP

To

ETH_TFP

To

ETH_FP

Figure 10-5 – ETYn/ETH_A Source and Sink Adaptation Functions
10.3.1
ETYn to ETH Adaptation Source function (ETYn/ETH_A_So)

Symbol

[image: image192.emf]ETYn/ETH_A_So

ETH_TI

ETYn/ETH_A_PI

ETH_CI_ESMC

ETYn/ETH_A_So_MI

ETH_CI_Clock ETH_FP ETH_TFP

ETH_CI

ETYn_AI

Figure 10-6 – ETYn/ETH_A_So symbol

Interfaces

Table 10-4 – ETYn/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_TFP
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi
ETH_A_CI_PauseTrigger
ETH_CI_ClocK
ETH_CI_ESMC

ETH_TP:
ETH_TI_ClocK

ETYn/ETH_A_So_MP:
ETYn/ETH_A_So_MI_Active
ETYn/ETH_A_So_MI_TxPauseEnable
	ETYn_AP:
ETYn_AI_Data
ETYn_AI_ClocK
ETYn_AI_SSF
ETYn_AI_SSFrdi
ETYn_AI_SSFfdi
ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETYn/ETH_A_So_MP:
ETYn/ETH_A_So_MI_pFramesTransmittedOK
ETYn/ETH_A_So_MI_pOctetsTransmittedOK

Processes

A process diagram of this function is shown in Figure 10-7.

[image: image193.emf]Queueing

ETH_CI

(ETH_FP)

ETH_CI

(ETH_TFP)

ETYn_AI

ETH_PI

(ETHTF_PP)

ETH_PI

(ETHF_PP)

Replicate

MI_pFramesTransmittedOK

MI_pOctetsTransmittedOK

MI_TxPauseEnable

CI_

PauseTrigger

ETH_TI

ETYn Server Specific

MAC FCS Generation

MAC Frame Counter

802.1AB/X protocols

802.3 protocols

ETH_CI_ESMC ETH_CI_Clock

Figure 10-7 – ETYn/ETH_A_So process

Processes

The “Queuing,” “Replicate,” “802.3 protocols” “802.1AB/X protocols” and “MAC FCS Generate” processes are defined in clause 8 (“Generic processes”).

The “ETYn Server Specific” source process pads frames shorter than the minimum frame size (of 64 octets) to the minimum frame size according to clause 3.2.8 of [IEEE 802.3].

NOTE – All source processes related to the Ethernet physical layer are encapsulated in this Recommendation by the ETYn_TT_So function.

MAC Frame counting process location is For Further Study.
Defects

None.
Consequent actions

None.
Defect correlations

None.
Performance monitoring
For Further Study.
10.3.2
ETYn to ETH Adaptation Sink function (ETYn/ETH_A_Sk)

Symbol

[image: image194.png]ETH_TFP ETH_FP ETH_CI Clock ETH_CI_ESMC
etH ot

ETYn /ETH _A_Pl — ETVn /ETH _A_Sk & ETVn /ETH _A_Sk_M

ETYn _Al

Figure 10-8 – ETYn/ETH_A_Sk symbol

Interfaces

Table 10-5 – ETYn/ETH_A_Sk interfaces

	Inputs
	Outputs

	ETYn_AP:
ETYn_AI_Data
ETYn_AI_ClocK
ETYn_AI_TSF
ETYn_AI_TSFrdi
ETYn_AI_TSFfdi
ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETYn/ETH_A_Sk_MP:
ETYn/ETH_A_Sk_MI_Active
ETYn/ETH_A_Sk_MI_FilterConfig
ETYn/ETH_A_Sk_MI_MAC_Length
	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi
ETH_CI_ClocK

ETH_CI_ESMC

ETYn/ETH_A_Sk_MP:
ETYn/ETH_A_Sk_MI_pErrors
ETYn/ETH_A_Sk_MI_pFramesReceivedOK
ETYn/ETH_A_Sk_MI_pOctetsReceivedOK

Processes

A process diagram of this function is shown in Figure 10-9.

[image: image195.emf]Filter

ETH_CI

(ETH_FP)

ETH_CI

(ETH_TFP)

ETYn_AI

ETH_PI

(ETHTF_PP)

ETH_PI

(ETHF_PP)

ETYn Server Specific

Replicate

MI_pFramesReceivedOK

MI_pOctetsReceivedOK

MAC Length Check

MI_FilterConfig

MAC Frame Check

MI_pErrors

MAC Frame Counter

802.1AB/X protocols

802.3 protocols

MI_MAC_Length

ETH_CI_ESMC ETH_CI_Clock

Figure 10-9 – ETYn/ETH_A_Sk process

The “Filter,” “Replicate,” “802.3 protocols”, “802.1AB/X protocols”, MAC Frame Counting, “MAC FCS Check” and “MAC Length Check” processes are defined in clause 8 (“Generic processes”).

The “ETYn Server Specific” sink process is a null process.

NOTE – All sink processes related to the Ethernet physical layer are encapsulated in this Recommendation by the ETYn_TT_Sk function.

MAC Frame Counting: For Further Study.
Defects

None.
Consequent actions

aSSF (AI_TSF

Defect correlations

None.
Performance monitoring
For Further Study.
10.4
1000BASE-(SX/LX/CX) ETY to Coding sub-layer Adaptation functions (ETY3/ETC3_A)

This adaptation function adapts 1000BASE-SX, -LX, or -CX physical layer signals from / toGMII data octets. The combination of ETY3_TT and ETY3/ETC3_A represents the functions up to and including the PCS sublayer in the 802.3 model. The GMII data octets may be extracted from or mapped into GFP-T frames, per clause 11.2 SDH to ETC Adaptation functions (Sn-X/ETC3_A). It may also be extracted from and mapped into ODU0, per 14.3.7.1/G.798 (ODU0P/CBRx_A). In the latter case, the ETC3_CP from the ETY3/ETC3_A function is bound to the CBRx_CP of the ODU0P/CBRx_A function.
10.4.1
ETY3 to ETC3 Adaptation Source function (ETY3/ETC3_A_So)

Symbol

[image: image196.emf]ETC3_CI

ETY3_AI

ETY3/ETC3_A_So

ETC3_TCP

Figure 10-x – ETY3/ETC3_A_So symbol

Interfaces

Table 10-x – ETY3/ETC3_A_So interfaces

	Inputs
	Outputs

	ETC3_TCP:
ETC3_CI_Data_Control
ETC3_CI_ClocK
ETC3_CI_Control_Ind
ETC3_CI_SSF
ETY3/ETC3_A_So_MP:

ETY3/ETC3_A_So_MI_Active
	ETY3_AP:
ETY3_AI_Data
ETY3_AI_ClocK
ETY3_AI_SSF

Processes

The ETY3/ETC3_A_So function adapts 8B/10B codewords to the physical layer signal.
Defects

None.
Consequent actions

None.
Defect correlations

None.
Performance monitoring
For Further Study.
10.4.2
ETY3 to ETC3 Adaptation Sink function (ETY3/ETC3_A_Sk)

Symbol

[image: image197.emf]ETC3_CI

ETY3_AI

ETY3/ETC3_A_Sk

ETC3_TCP

Figure 10-x – ETY3/ETC3_A_Sk symbol

Interfaces

Table 10-x – ETY3/ETC3_A_Sk interfaces

	Inputs
	Outputs

	ETY3_AP:
ETY3_AI_Data
ETY3_AI_ClocK
ETY3_AI_TSF
ETY3/ETC3_A_Sk_MP:

ETY3/ETC3_A_So_MI_Active
	ETC3_TCP:
ETC3_CI_Data_Control
ETC3_CI_ClocK
ETC3_CI_Control_Ind
ETC3_CI_SSF

Processes

This function adapts the physical layer signal to 8B/10B codewords.
Defects

None.
Consequent actions

aSSF (AI_TSF

Defect correlations

None.
Performance monitoring
For Further Study.
10.5
ETCn Trail Termination functions (ETCn_TT)

For further study.
10.6
ETCn to ETH Adaptation functions (ETCn/ETH_A)
For further study.
10.7
ETY4 to Ethernet PP-OS adaptation function (ETY4/ETHPP-OS_A)
The ETY4 to Ethernet PP-OS adaptation function supports transporting preamble and ordered set information of the 10GBASE-R signals over enhanced OPU2 payload area.

It adapts 10GBASE-R signals from/to data frames which include the preamble and start-of-frame delimiter and ordered sets from the inter-frame gap into ETHPP-OS_CI for subsequent mapping into an OPU2 with extended payload area as described in clause 11.5.3.

Note that there is no Ethernet MAC termination function. Consequently, since no error checking is performed on the Ethernet MAC frames, errored MAC frames are forwarded in both ingress and egress directions.
10.7.1
ETY4 to Ethernet PP-OS adaptation source function (ETY4/ETHPP-OS_A_So)

Symbol

[image: image198.emf]ETY4/ETHPP-OS_A_So

ETY4_AI

ETHPP-OS_CI

ETY4/ETHPP-OS_A_So_MI

Figure 10-x – ETY4/ETHPP-OS_A_So symbol

Interfaces

Table 10-x – ETY4/ETHPP-OS_A_So interfaces

	Inputs
	Outputs

	ETHPP-OS_FP:
ETHPP-OS_CI_D
ETHPP-OS_CI_SSF
ETY4/ETHPP-OS_A_So_MP:
ETY4/ETHPP-OS_A_So_MI_Active
	ETY4_AP:
ETY4_AI_Data
ETY4_AI_ClocK
ETY4_AI_SSF

NOTE – ETHPP-OS_CI_D is composed of Preamble, Payload and Order Set information in [ITU-T G.7041].

Processes

A process diagram of this function is shown in Figure 10-x+1.

 [image: image199.emf]ETY4 Server-specific

processes

ETY4_AI

ETHPP-OS_CI_D

Figure 10-x+1 – ETY4/ETHPP-OS_A_So process diagram

Activation: The ETY4/ETHPP-OS_A_So function shall access the ETY4 access point and perform the processes specified below when it is activated (MI_Active is true). Otherwise, it shall not access the ETY4 access point.

ETY4 Server-specific processes: None.

NOTE – All source processes related to the Ethernet physical layer are encapsulated in this Recommendation by the ETYn_TT_So function.

Defects

None.

Consequent actions None.
Defect correlations

None.

Performance monitoring
For further study.

10.7.2 ETY4 to Ethernet PP-OS adaptation sink function (ETY4/ETHPP-OS_A_Sk)

Symbol

[image: image200.emf]ETY4/ETHPP-OS_A_Sk

ETY4_AI

ETHPP-OS_CI

ETY4/ETHPP-OS_A_Sk_MI

Figure 10-x+2 – ETY4/ETHPP-OS_A_Sk symbol

Interfaces

Table 10-x+1 – ETY4/ETHPP-OS_A_Sk interfaces

	Inputs
	Outputs

	ETY4_AP:
ETY4_AI_Data
ETY4_AI_ClocK
ETY4_AI_TSF
ETY4/ETHPP-OS_A_Sk_MP:
ETY4/ETHPP-OS_A_Sk_MI_Active
	ETHPP-OS_FP:
ETHPP-OS_CI_D
ETHPP-OS_CI_SSF

Processes

A process diagram of this function is shown in Figure 10-x.

 [image: image201.emf]ETY4 Server-specific

processes

ETY4_AI

ETHPP-OS_CI_D ETHPP-OS_CI_SSF

Figure 10-x+3 – ETY4/ETHPP-OS_A_Sk process diagram

Activation: The ETY4/ETHPP-OS_A_Sk function shall access the ETY4 access point and perform the processes specified below when it is activated (MI_Active is true). Otherwise, it shall activate the SSF signal and not report its status via the management point.

ETY4 Server-specific processes: None

NOTE – All sink processes related to the Ethernet physical layer are encapsulated in this Recommendation by the ETYn_TT_Sk function.

Defects

None.

Consequent actions

aSSF (AI_TSF

Note that the replacement signal is generated in the subsequent adaptation source function ODU2P/ETHPP-OS_A_So.

Defect correlations

None.

Performance monitoring
For further study.
11
Non-Ethernet server to ETH adaptation functions

11.1
SDH to ETH adaptation functions (S/ETH_A)

11.1.1
VC-n to ETH adaptation functions (Sn/ETH_A; n = 3, 3-X, 4, 4-X)

This covers non-concatenated, contiguously concatenated, and non-LCAS VCAT. See clause 11.1.2 for LCAS-capable VC-n-Xv/ETH adaptation functions.

11.1.1.1
VC-n to ETH adaptation source function (Sn/ETH_A_So)

This function maps ETH_CI information onto an Sn_AI signal (n = 3, 3-X, 4, 4-X).

Data at the Sn_AP is a VC-n (n = 3, 3-X, 4, 4-X), having a payload as described in [ITU-T G.707], but with indeterminate POH bytes: J1, B3, G1.

Symbol

[image: image202.emf]ETH_CI

Sn/ETH_A_So_MI

Sn_AI

Sn_TI

Sn/ETH_A_So

ETH_PI

(ETHTF_PP)

(ETHF_PP)

From

ETH_FP

From

ETH_TFP

ETH_RI

Figure 11-1 – Sn/ETH_A_So symbol

Interfaces

Table 11-1 – Sn/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sn_TP:

Sn_TI_Clock
Sn_TI_FrameStart

Sn/ETH_A_So_MP:

Sn/ETH_A_So_MI_Active
Sn/ETH_A_So_MI_CSFEnable
Sn/ETH_A_So_MI_CSFrdifdiEnable
	Sn_AP:

Sn_AI_Data
Sn_AI_ClocK
Sn_AI_FrameStart

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes

A process diagram of this function is shown in Figure 11-2.

[image: image203.emf]ETH specific

GFP-F processes

Common

GFP-F processes

VC-n specific

processes

VC-n specific

GFP-F processes

FCSenable=false

CMuxConfig

CMuxActive=false

MI_CSFEnable

ETH_CI_D

(ETH_FP)

GFP_Frame GFP_FS

Sn_AI_D

Sn_TI_CK

GFP_Frame GFP_FS

802.3 MAC FCS

Replicate

Queueing

ETH_CI_D

(ETH_TFP)

ETH_CI_SSF

(ETH_FP)

ETH_PI_D

(ETHTF_PP)

ETH_PI_D

(ETHF_PP)

ETH_Frame

ETH_Frame+FCS

Sn_AI_CK Sn_AI_FS

Sn_AI_D

Sn_AI_CK Sn_AI_FS

Sn_TI_FS

Figure 11-2 – Sn/ETH_A_So process

"Queuing" process:

See clause 8.2.

"Replicate" process:

See clause 8.4.

802.3 MAC FCS generation:

See clause 8.8.1.

Ethernet specific GFP-F source process:

See clause 8.8.6.1.
Common GFP source process:

See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

VC-n specific GFP source process:
See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the VC-n payload area according to clause 10.6 of [ITU-T G.707].

VC-n specific source process:

C2: Signal label information is derived directly from the Adaptation function type. The value for "GFP mapping" in Table 9-11 of [ITU-T G.707] is placed in the C2 byte position.

H4: For Sn/ETH_A_So with n = 3, 4, the H4 byte is sourced as all-zeros.

NOTE 1 – For Sn/ETH_A_So with n = 3-X, 4-X, the H4 byte is undefined at the Sn-X_AP output of this function (as per clause 12 of [ITU-T G.783]).

NOTE 2 – For Sn/ETH_A_So with n = 3, 4, 3-X, 4-X, the K3, F2, F3 bytes are undefined at the Sn-X_AP output of this function (as per clause 12 of [ITU-T G.783]).

Counter processes:

For Further Study.
Defects

None.

Consequent actions

aCSF-RDI (CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI (CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS (CI_SSF and CSFEnable

Defect correlations

None.

Performance monitoring
For further study.
11.1.1.2
VC-n to ETH adaptation sink function (Sn/ETH_A_Sk)

This function extracts ETH_CI information from the Sn_AI signal (n = 3, 3-X, 4, 4-X), delivering ETH_CI to ETH_TFP and ETH_FP.

Data at the Sn_AP is as described in [ITU-T G.707].

Symbol

[image: image204.emf]ETH_CI

Sn/ETH_A_Sk_MI

Sn_AI

Sn/ETH_A_Sk

ETH_PI

(ETHTF_PP)

(ETHF_PP)

To

ETH_FP

To

ETH_TFP

ETH_RI

Figure 11-3 – Sn/ETH_A_Sk symbol

Interfaces

Table 11-2 – Sn/ETH_A_Sk interfaces

	Inputs
	Outputs

	Sn_AP:

Sn_AI_Data
Sn_AI_ClocK
Sn_AI_FrameStart
Sn_AI_TSF

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
Sn/ETH_A_Sk_MP:

Sn/ETH_A_Sk_MI_Active
Sn/ETH_A_Sk_MI_FilterConfig
Sn/ETH_A_Sk_MI_CSF_Reported
Sn/ETH_A_Sk_MI_MAC_Length
Sn/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sn/ETH_A_Sk_MP:

Sn/ETH_A_Sk_MI_AcSL
Sn/ETH_A_Sk_MI_AcEXI
Sn/ETH_A_Sk_MI_AcUPI
Sn/ETH_A_Sk_MI_cPLM
Sn/ETH_A_Sk_MI_cLFD
Sn/ETH_A_Sk_MI_cUPM
Sn/ETH_A_Sk_MI_cEXM
Sn/ETH_A_Sk_MI_cCSF
Sn/ETH_A_Sk_MI_pFCSError

Processes

A process diagram of this function is shown in Figure 11-4.

[image: image205.emf]VC-n specific

processes

CMuxConfig

CmuxActive=false

Sn_AI_D/CK/FS/TSF

VC-n specific

GFP-F processes

cPLM

cLFD

Common

GFP-F processes

GFP_Frame/FS/SF

ETH specific

GFP-F processes

FCSdiscard=false

ETH_Frame

Replicate

Filter

AcSL

cEXM

AcEXI

Sn_AI_D/CK/FS/TSF

GFP_Frame/FS/SF

cUPM

AcUPI

pErrors

802.3 MAC Frm Chk

ETH_Frame+FCS

ETH_CI_D

ETH_CI_SSF

(ETH_FP)

ETH_PI_D

(ETHF_PP)

MI_FilterConfig

ETH_PI_D

(ETHTF_PP)

SF

SF

ETH_CI_D

ETH_CI_SSF

(ETH_TFP)

MAC Length Chk

SF ETH_Frame+FCS

MI_MAC_Length

MI_CSFrdifdiEnable

Figure 11-4 – Sn/ETH_A_Sk process

"Filter" process:

See clause 8.3.

"Replicate" process:

See clause 8.4.

"802.3 MAC FCS Check" process:

See clause 8.8.2.

Ethernet specific GFP-F sink process:

See clause 8.8.6.2.

Common GFP sink process:

See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported (MI_CMuxActive=false).

VC-n specific GFP sink process:

See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the VC-n payload area according to clause 10.6 of [ITU-T G.707].

VC-n specific sink process:

C2: The signal label is recovered from the C2 byte as per clause 6.2.4.2 of [ITU-T G.806]. The signal label for "GFP mapping" in Table 9-11 of [ITU-T G.707] shall be expected. The accepted value of the signal label is also available at the Sn/ETH_A_Sk_MP.
Defects

dPLM – See clause 6.2.4.2 of [ITU-T G.806].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF-LOS – See clause 8.8.6.2.

dCSF-RDI – See clause 8.8.6.2.

dCSF-FDI – See clause 8.8.6.2.

Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM
(
dPLM and (not AI_TSF);

cLFD
(
dLFD and (not dPLM) and (not AI_TSF);

cUPM
(
dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);

cEXM
(
dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cCSF
(
(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported

Performance monitoring

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pFCSErrors: count of FrameCheckSequenceErrors per second.

NOTE – This primitive is calculated by the MAC FCS Check process.
11.1.2
LCAS-capable VC-n-Xv to ETH adaptation functions (Sn-X-L/ETH_A; n = 3, 4)

11.1.2.1
LCAS-capable VC-n-Xv to ETH adaptation source function (Sn-X-L/ETH_A_So)
This function maps ETH_CI information onto an Sn-X-L_AI signal (n = 3 or 4).

Data at the Sn-X-L_AP is a VC-n-X (n = 3 or 4), having a payload as described in [ITU-T G.707], but with indeterminate POH bytes: J1, B3, G1.

Symbol

[image: image206.wmf]
Figure 11-5 – Sn-X-L/ETH_A_So symbol

Interfaces

Table 11-3 – Sn-X-L/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sn-X-L_AP:

Sn-X-L_AI_XAT
Sn-X-L_TP:

Sn-X-L_TI_ClocK
Sn-X-L_TI_FrameStart

Sn-X-L/ETH_A_So_MP:

Sn-X-L/ETH_A_So_MI_Active
Sn-X-L/ETH_A_So_MI_CSFEnable
Sn-X-L/ETH_A_So_MI_CSFrdifdiEnable
	Sn-X-L_AP:

Sn-X-L_AI_Data
Sn-X-L_AI_ClocK
Sn-X-L_AI_FrameStart

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes

A process diagram of this function is shown in Figure 11-6.

[image: image207.emf]MI_CSFrdifdiEnable

Figure 11-6 – Sn-X-L/ETH_A_So process

See clause 11.1.1.1 for a description of Sn-X-L/ETH_A processes.
Defects

None.
Consequent actions

aCSF-RDI (CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI (CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS (CI_SSF and CSFEnable

Defect correlations

None.

Performance monitoring
For further study.
11.1.2.2
LCAS-capable VC-n-Xv to ETH adaptation sink function (Sn-X-L/ETH_A_Sk)
This function extracts ETH_CI information from a VC-n-Xv server signal (n = 3 or 4), delivering ETH_CI to ETH_TFP and ETH_FP.

Data at the Sn-X-L_AP is a VC-n-Xv (n = 3 or 4), having a payload as described in [ITU-T G.707].

Symbol

[image: image208.wmf]
Figure 11-7 – Sn-X-L/ETH_A_Sk symbol

Interfaces

Table 11-4 – Sn-X-L/ETH_A_Sk interfaces

	Inputs
	Outputs

	Sn-X-L_AP:

Sn-X-L_AI_Data
Sn-X-L_AI_ClocK
Sn-X-L_AI_FrameStart
Sn-X-L_AI_TSF
Sn-X-L_AI_XAR
ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
Sn-X-L/ETH_A_Sk_MP:

Sn-X-L/ETH_A_Sk_MI_Active
Sn-X-L/ETH_A_Sk_MI_FilterConfig
Sn-X-L/ETH_A_Sk_MI_CSF_Reported
Sn-X-L/ETH_A_Sk_MI_MAC_Length
Sn-X-L/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sn-X-L/ETH_A_Sk_MP:

Sn-X-L/ETH_A_Sk_MI_AcSL
Sn-X-L/ETH_A_Sk_MI_AcEXI
Sn-X-L/ETH_A_Sk_MI_AcUPI
Sn-X-L/ETH_A_Sk_MI_cPLM
Sn-X-L/ETH_A_Sk_MI_cLFD
Sn-X-L/ETH_A_Sk_MI_cUPM
Sn-X-L/ETH_A_Sk_MI_cEXM
Sn-X-L/ETH_A_Sk_MI_cCSF
Sn-X-L/ETH_A_Sk_MI_pFCSError

Processes

See process diagram and process description in clause 11.1.1.2. The additional Sn-X-L_AI_XAR interface is not connected to any of the internal processes.
Defects

dPLM – See clause 6.2.4.2 of [ITU-T G.806].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF-LOS – See clause 8.8.6.2.

dCSF-RDI – See clause 8.8.6.2.

dCSF-FDI – See clause 8.8.6.2.
Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

NOTE 1 – XAR = 0 results in AI_TSF being asserted, so there is no need to include it as additional contributor to aSSF.

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM
(
dPLM and (not AI_TSF);

cLFD
(
dLFD and (not dPLM) and (not AI_TSF);

cUPM
(
dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);

cEXM
(
dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cCSF
(
(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported

Performance monitoring

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pFCSError: count of FrameCheckSequenceErrors per second.

NOTE 2 – This primitive is calculated by the MAC FCS Check process.
11.1.3
VC-m to ETH adaptation functions (Sm/ETH_A; m = 11, 11-Xv, 12, 12-Xv, 2)

11.1.3.1
VC-m to ETH adaptation source function (Sm/ETH_A_So)

This function maps ETH_CI information onto a VC-m server signal (m = 11, 11-X, 12, 12-X, 2) and sources the Sm_AP signal.

Data at the Sm_AP is a VC-m (m = 11, 11-X, 12, 12-X, 2), having a payload as described in [ITU-T G.707], but with indeterminate POH bytes: J2, V5[1-4], V5[8].

Symbol

[image: image209.wmf]
Figure 11-8 – Sm/ETH_A_So symbol

Interfaces

Table 11-5 – Sm/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sm_AP:

Sm_AI_XAT
Sm_TP:

Sm_TI_ClocK
Sm_TI_FrameStart

Sm/ETH_A_So_MP:

Sm/ETH_A_So_MI_Active
Sm/ETH_A_So_MI_CSFEnable
Sm/ETH_A_So_MI_CSFrdifdiEnable
	Sm_AP:

Sm_AI_Data
Sm_AI_ClocK
Sm_AI_FrameStart

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes

A process diagram of this function is shown in Figure 11-9.

[image: image210.emf]MI_CSFrdifdiEnable

Figure 11-9 – Sm/ETH_A_So process

"Queuing" process:

See clause 8.2.

"Replicate" process:

See clause 8.4.

802.3 MAC FCS generation:

See clause 8.8.1.

Ethernet specific GFP-F source process:

See clause 8.5.4.1.1 of [ITU-T G.806]. GFP pFCS generation is disabled (FCSenable=false). The UPI value for Frame-Mapped Ethernet shall be inserted (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are inserted into the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].

Response to ETH_CI_SSF asserted is for further study.

Common GFP source process:

See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

VC-m specific GFP source process:

See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the VC-m payload area according to clause 10.6 of [ITU-T G.707].

VC-m specific source process:

V5[5-7] and K4[1]: Signal label information is derived directly from the adaptation function type. The value for "GFP mapping" in Table 9-13 of [ITU-T G.707] is placed in the K4[1] Extended Signal Label field as described in clause 8.2.3.2 of [ITU-T G.783].

K4[2]: For Sm/ETH_A_So with m = 11, 12, 2, the K4[2] bit is sourced as all-zeros.

NOTE 1 – For Sm/ETH_A_So with m = 11-X, 12-X, the K4[2] bit is undefined at the Sm-X_AP output of this function (as per clause 13 of [ITU-T G.783]).

NOTE 2 – For Sm/ETH_A_So with m = 11, 11-X, 12, 12-X, 2, the K4[3-8], V5[1-4] and V5[8] bits are undefined at the Sm-X_AP output of this function (as per clause 13 of [ITU-T G.783]).
Defects

None.

Consequent actions

aCSF-RDI (CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI (CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS (CI_SSF and CSFEnable

Defect correlations

None.

Performance monitoring
For further study.
11.1.3.2
VC-m to ETH adaptation sink function (Sm/ETH_A_Sk)

This function extracts ETH_CI information from the Sm_AI signal (m = 11, 11-X, 12, 12-X, 2), delivering ETH_CI to ETH_TFP and ETH_FP.

Data at the Sm_AP is as described in [ITU-T G.707].

Symbol

[image: image211.wmf]
Figure 11-10 – Sm/ETH_A_Sk symbol

Interfaces

Table 11-6 – Sm/ETH_A_Sk interfaces

	Inputs
	Outputs

	Sm_AP:

Sm_AI_Data
Sm_AI_ClocK
Sm_AI_FrameStart
Sm_AI_TSF

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
Sm/ETH_A_Sk_MP:

Sm/ETH_A_Sk_MI_Active
Sm/ETH_A_Sk_MI_FilterConfig
Sm/ETH_A_Sk_MI_CSF_Reported
Sm/ETH_A_Sk_MI_MAC_Length
Sm/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sm/ETH_A_Sk_MP:

Sm/ETH_A_Sk_MI_AcSL
Sm/ETH_A_Sk_MI_AcEXI
Sm/ETH_A_Sk_MI_AcUPI
Sm/ETH_A_Sk_MI_cPLM
Sm/ETH_A_Sk_MI_cLFD
Sm/ETH_A_Sk_MI_cUPM
Sm/ETH_A_Sk_MI_cEXM
Sm/ETH_A_Sk_MI_cCSF
Sm/ETH_A_Sk_MI_pFCSError

Processes

A process diagram of this function is shown in Figure 11-11.

[image: image212.emf]MI_CSFrdifdiEnable

Figure 11-11 – Sm/ETH_A_Sk process

"Filter" process:

See clause 8.3.

"Replicate" process:

See clause 8.4.

"802.3 MAC FCS Check" process:

See clause 8.8.2.

Ethernet specific GFP-F sink process:

See clause 8.5.4.1.2 of [ITU-T G.806]. GFP pFCS checking, GFP p_FCSError, p_FDis are not supported (FCSdiscard=false). The UPI value for Frame-Mapped Ethernet shall be expected (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are extracted from the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].

Common GFP sink process:

See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

VC-m specific GFP sink process:

See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the VC-m payload area according to clause 10.6 of [ITU-T G.707].

VC-m specific sink process:

V5[5-7] and K4[1]: The signal label is recovered from the extended signal label position as described in clause 8.2.3.2 of [ITU-T G.783] and clause 6.2.4.2 of [ITU-T G.806]. The signal label for "GFP mapping" in Table 9-13 of [ITU-T G.707] shall be expected. The accepted value of the signal label is also available at the Sm/ETH_A_Sk_MP.
Defects

dPLM – See clause 6.2.4.2 of [ITU-T G.806].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF-LOS – See clause 8.8.6.2.

dCSF-RDI – See clause 8.8.6.2.

dCSF-FDI – See clause 8.8.6.2.
Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM
(
dPLM and (not AI_TSF);

cLFD
(
dLFD and (not dPLM) and (not AI_TSF);

cUPM
(
dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);

cEXM
(
dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cCSF
(
(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported

Performance monitoring

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pFCSError: count of FrameCheckSequenceErrors per second.

NOTE – This primitive is calculated by the MAC FCS Check process.
11.1.4
LCAS-capable VC-m-Xv to ETH adaptation functions (Sm-X-L/ETH_A; m = 11, 12)

11.1.4.1
LCAS-capable VC-m-Xv to ETH adaptation source function (Sm-X-L/ETH_A_So)

This function maps ETH_CI information onto an Sm-X-L_AI signal (m = 11 or 12).

Data at the Sm-X-L_AP is a VC-m-X (m = 11 or 12), having a payload as described in [ITU-T G.707], but with indeterminate POH bytes: J2, V5[1-4], V5[8].

Symbol

[image: image213.emf]From

ETH_TFP

From

ETH_FP

ETH_CI

(ETHTF_PP)

Sm-X-L/ETH_A_So_MI

Sm-X-L_TI

ETH_PI

(ETHF_PP)

Sm-X-L_AI

Sm-X-L_AI_X

AT

Sm-X-L/ETH_A_So

Figure 11-12 – Sm-X-L/ETH_A_So symbol

Interfaces

Table 11-7 – Sm-X-L/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sm-X-L_AP:

Sm-X-L_AI_XAT
Sm _TP:

Sm_TI_ClocK
Sm_TI_FrameStart

Sm-X-L/ETH_A_So_MP:

Sm-X-L/ETH_A_So_MI_Active
Sm-X-L/ETH_A_So_MI_CSFEnable
Sm-X-L/ETH_A_So_MI_CSFrdifdiEnable
	Sm-X-L_AP:

Sm-X-L_AI_Data
Sm-X-L_AI_ClocK
Sm-X-L_AI_FrameStart

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes

A process diagram of this function is shown in Figure 11-13.

[image: image214.emf]MI_CSFrdifdiEnable

Figure 11-13 – Sm-X-L/ETH_A_So process

See clause 11.1.3.1 for a description of Sm-X-L/ETH_A processes.
Defects

None.

Consequent actions

aCSF-RDI (CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI (CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS (CI_SSF and CSFEnable

Defect correlations

None.

Performance monitoring
For further study.
11.1.4.2
LCAS-capable VC-m-Xv to ETH adaptation sink function (Sm-X-L/ETH_A_Sk)

This function extracts ETH_CI information from the Sm-X-L_AI signal (m = 11 or 12), delivering ETH_CI to ETH_TFP and ETH_FP.

Data at the Sm_AP is as described in [ITU-T G.707].

Symbol

[image: image215.wmf]
Figure 11-14 – Sm-X-L/ETH_A_Sk symbol

Interfaces

Table 11-8 – Sm-X-L/ETH_A_Sk interfaces

	Inputs
	Outputs

	Sm-X-L_AP:

Sm-X-L_AI_Data
Sm-X-L_AI_ClocK
Sm-X-L_AI_FrameStart
Sm-X-L_AI_TSF
Sm-X-L_AI_XAR
ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
Sm-X-L/ETH_A_Sk_MP:

Sm-X-L/ETH_A_Sk_MI_Active
Sm-X-L/ETH_A_Sk_MI_FilterConfig
Sm-X-L/ETH_A_Sk_MI_CSF_Reported
Sm-X-L/ETH_A_Sk_MI_MAC_Length
Sm-X-L/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sm-X-L/ETH_A_Sk_MP:

Sm-X-L/ETH_A_Sk_MI_AcSL
Sm-X-L/ETH_A_Sk_MI_AcEXI
Sm-X-L/ETH_A_Sk_MI_AcUPI
Sm-X-L/ETH_A_Sk_MI_cPLM
Sm-X-L/ETH_A_Sk_MI_cLFD
Sm-X-L/ETH_A_Sk_MI_cUPM
Sm-X-L/ETH_A_Sk_MI_cEXM
Sm-X-L/ETH_A_Sk_MI_cCSF
Sm-X-L/ETH_A_Sk_MI_pFCSError

Processes

See process diagram and process description in clause 11.1.1.2. The additional Sm-X-L_AI_XAR interface is not connected to any of the internal processes.
Defects

dPLM – See clause 6.2.4.2 of [ITU-T G.806].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF-LOS – See clause 8.8.6.2.

dCSF-RDI – See clause 8.8.6.2.

dCSF-FDI – See clause 8.8.6.2.
Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

NOTE 1 – XAR = 0 results in AI_TSF being asserted, so there is no need to include it as additional contributor to aSSF.

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM
(
dPLM and (not AI_TSF);

cLFD
(
dLFD and (not dPLM) and (not AI_TSF);

cUPM
(
dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);

cEXM
(
dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cCSF
(
(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported

Performance monitoring

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pFCSError: count of FrameCheckSequenceErrors per second.

NOTE 2 – This primitive is calculated by the MAC FCS process.
11.2
SDH to ETC adaptation functions (Sn-X/ETC3_A)

11.2.1
VC-n-X to ETC3 Adaptation Source function (Sn-X/ETC3_A_So)

This function maps ETC_CI information from an ETC3 onto an Sn-X_AI signal (n=3, 4). This mapping is currently only defined for X=7 for VC-4 and X=22 for VC-3.

Data at the Sn-X_AP is a VC-n-Xv, having a payload as described in [ITU-T G.707], but with indeterminate POH bytes: J1, B3, G1.

Symbol

[image: image216.emf]ETC3_CI

Sn-X_AI

Sn-X/ETC3_A_So

From

ETC3_TCP

S4-X/ETC3_A_So_MI

S4-X_TI

Figure 11-15 – Sn-X/ETC3_A_So symbol

Interfaces

Table 11-9 – Sn-X/ETC3_A_So interfaces

	Inputs
	Outputs

	ETC3_TCP:
ETC3_CI_Data_Control
ETC3_CI_ClocK
ETC3_CI_Control_Ind
ETC3_CI_SSF

Sn-X_TP:
Sn-X _TI_ClocK
Sn-X _TI_FrameStart

Sn-X/ETC3_A_So_MP:
Sn-X/ETC3_A_So_MI_Active
Sn-X/ETC3_A_So_MI_CSFEnable
	Sn-X_AP:
Sn-X_AI_Data
Sn-X_AI_ClocK
Sn-X_AI_FrameStart

Processes

A process diagram of this function is shown in Figure 11-16.

[image: image217.emf]ETC3_CI_Clock ETC3_CI_SSF

ETC3_CI_Data_Control ETC3_CI_Control_Ind

(From ETC3_TCP)

FCSenable_false

MI_CSFenable

CMuxConfig

CmuxActive=false

ETC3 specific

GFP-T processes

Common

GFP-T processes

VC-n-X specific

GFP-T processes

VC-n-X specific

processes

GFP_FS GFP_Frame

GFP_FS GFP_Frame

Sn_X_AI_CK Sn_X_AI_FS

Sn_X_AI_D

Sn_X_AI_CK Sn_X_AI_FS

Sn_X_AI_D

Sn_X_TI_CK

Sn_X_TI_FS

ETC3_CI_Clock ETC3_CI_SSF

ETC3_CI_Data_Control ETC3_CI_Control_Ind

(From ETC3_TCP)

FCSenable_false

MI_CSFenable

CMuxConfig

CmuxActive=false

ETC3 specific

GFP-T processes

Common

GFP-T processes

VC-n-X specific

GFP-T processes

VC-n-X specific

processes

GFP_FS GFP_Frame

GFP_FS GFP_Frame

Sn_X_AI_CK Sn_X_AI_FS

Sn_X_AI_D

Sn_X_AI_CK Sn_X_AI_FS

Sn_X_AI_D

Sn_X_TI_CK

Sn_X_TI_FS

Figure 11-16 – Sn-X/ETC3_A_So process

Ethernet specific GFP-T source process:

See clause 8.5.4.2.1 of [ITU-T G.806]. GFP pFCS generation is disabled (FCSenable=false). The UPI value for Transparent Gb Ethernet shall be inserted (Table 6-3 of [ITU-T G.7041]). The Ethernet codeword information is inserted into the client payload information field of the GFP-T frames according to clause 8 of [ITU-T G.7041]. 65B rate adaptation is enabled (RAdisable=false).
NOTE - Equipment designed prior to this Amendment may not support configuration of RAdisable; in such equipment the use of 65B rate adaptation is implicitly enabled.
Response to ETC3_CI_SSF is according to the principles in clauses 8.3 and 8.3.4 of [ITU-T G.7041] and Appendix VIII of [ITU-T G.806]. Details are ffs.

Common GFP source process:

See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

VC-n-X specific GFP source process:

See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the VC-n-X (n=3,4) payload area according to clause 10.6 of [ITU-T G.707].

VC-n-X specific source process:

C2: Signal label information is derived directly from the Adaptation function type. The value for “GFP mapping” in Table 9-11 of [ITU-T G.707] is placed in the C2 byte position.

NOTE – For Sn-X/ETC3_A_So, the H4, K3, F2, and F3 bytes are undefined at the Sn-X_AP output of this function (as per clause 12 of [ITU-T G.783]).
Defects

None.

Consequent actions

aCSF-RDI (CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI (CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS (CI_SSF and CSFEnable

Defect correlations

None.

Performance monitoring
For further study.

11.2.2
VC-n-X to ETC3 Adaptation Sink function (Sn-X/ETC3_A_Sk)

This function extracts ETC3_CI information from the Sn-X_AI signal (n=3, 4), delivering ETC3_CI to the ETC3_TCP.

Data at the Sn-X_AP is as described in [ITU-T G.707]. This mapping is currently only defined for X=7 for VC-4 and X=22 for VC-3.

Symbol

[image: image218.emf]ETC3_CI

Sn-X_AI

Sn-X/ETC3_A_Sk

To

ETC3_TCP

S4-X/ETC3_A_Sk_MI

Figure 11-17 – Sn-X/ETC3_A_Sk symbol

Interfaces

Table 11-10 – Sn-X/ETC3_A_Sk interfaces

	Inputs
	Outputs

	Sn-X_AP:
Sn-X_AI_Data
Sn-X_AI_ClocK
Sn-X_AI_FrameStart
Sn-X_AI_TSF

Sn-X/ETC3_A_Sk_MP:
Sn-X/ETC3_A_Sk_MI_Active
Sn-X/ETC3_A_Sk_MI_CSF_Reported

	ETC3_TCP:
ETC3_CI_Data_Control
ETC3_CI_ClocK
ETC3_CI_Control_Ind
ETC3_CI_SSF
Sn-X / ETC3_A_Sk_MP:
Sn-X / ETC3_A_Sk_MI_AcSL
Sn-X / ETC3_A_Sk_MI_AcEXI
Sn-X / ETC3_A_Sk_MI_AcPFI
Sn-X / ETC3_A_Sk_MI_AcUPI
Sn-X / ETC3_A_Sk_MI_cPLM
Sn-X / ETC3_A_Sk_MI_cLFD
Sn-X / ETC3_A_Sk_MI_cUPM
Sn-X / ETC3_A_Sk_MI_cEXM
Sn-X / ETC3_A_Sk_MI_cCSF
Sn-X / ETC3_A_Sk_MI_pCRC16Errors

Processes

A process diagram of this function is shown in Figure 11-18.

[image: image219.emf]processes

CMuxConfig

CmuxActive=false

Sn-X_AI_D/CK/FS/TSF

VC-nX specific

GFP-T processes

cPLM

cLFD

Common

GFP- T processes

GFP_Frame/FS/SF

ETH specific

GFP-T processes

AcSL

cEXM

AcEXI

Sn-X_AI_D/CK/FS/TSF

GFP_Frame/FS/SF

pCRC16

AcUPI

ETC3_CI_SSF

VC- X specific

cUPM

(To ETC3_TCP)

ETC3_CI_Data_Control

ETC3_CI_Clock

ETC3_CI_Control_Ind

AcPFI

cCSF

FCSdiscard=false

n

Figure 11-18 – Sn-X/ETC3_A_Sk process

Ethernet specific GFP-T sink process:

See clause 8.5.4.2.2 of [ITU-T G.806]. GFP pFCS checking and GFP p_FCSError, are not supported (FCSdiscard=false). The UPI value for Transparent Gb Ethernet shall be expected (Table 6-3 of [ITU-T G.7041]). Frames discarded due to incorrect PFI or UPI values shall be counted in _pFDis. Errors detected in a received superblock are reported as a _pCRC16Error. If ECenable=true, then single transmission channel errors in the superblock shall be corrected using the superblock CRC-16. The Ethernet codeword information is extracted from the client payload information field of the GFP-F frames according to clause 8 of [ITU-T G.7041].

Common GFP sink process:

See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported (MI_CMuxActive=false). Frames discarded due to EXI mismatch or errors detected by the tHEC shall be counted in _pFDis.

VC-n-X specific GFP sink process:

See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the VC-n-X payload area according to clause 10.6 of [ITU-T G.707].

VC-n-X specific sink process:

C2: The signal label is recovered from the C2 byte as per clause 6.2.4.2 of [ITU-T G.806]. The signal label for “GFP mapping” in Table 9-11 of [ITU-T G.707] shall be expected. The accepted value of the signal label is also available at the Sn-X/ETC3_A_Sk_MP.
Defects

dPLM – See clause 6.2.4.2 of [ITU-T G.806].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF – See clause 6.2.6.4 of [ITU-T G.806].

Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM
(
dPLM and (not AI_TSF)

cLFD
(
dLFD and (not dPLM) and (not AI_TSF)

cUPM
(
dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);

cEXM
(
dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cCSF per clause 8.5.4.2.2 of [ITU-T G.806].

Performance monitoring

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pCRC16Errors: count of superblock CRC-16 errors per second

_pFDis = sum (n_FDis_tHEC + n_FDis_eHEC_EXI + n_FDis_PTI_UPI)
11.3
S4-64c to ETH-w adaptation functions

This covers 64B/66B-encoded mapping of Ethernet frames into VC-4-64c.

For further study.
11.4
PDH to ETH adaptation functions (P/ETH_A)

11.4.1
Pq to ETH Adaptation functions (Pq/ETH_A; q = 11s, 12s, 31s, 32e)

11.4.1.1
Pq to ETH Adaptation Source function (Pq/ETH_A_So)

This function maps ETH_CI information onto an Pq_AI signal (q = 11s, 12s, 31s, 32e).

Data at the Pq_AP is a Pq (q = 11s, 12s, 31s, 32e), having a payload as described in [ITU-T G.7043] with a value of N=1. The VLI byte is reserved and not used for payload data.

Symbol

[image: image220.wmf]

Pq

-

X

-

L_AI

From

ETH_TFP

ETH_CI

From

ETH_FP

(ETHF_PP)

Pq_TI

Pq/ETH_A_So

Pq/ETH_A_So_MI

 (ETHTF_PP)

 ETH_PI

Figure 11-19 – Pq/ETH_A_So symbol

Interfaces

Table 11-11 – Pq/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Pq_TP:

Pq_TI_ClocK
Pq_TI_FrameStart

Pq/ETH_A_So_MP:

Pq/ETH_A_So_MI_Active
Pq/ETH_A_So_MI_CSFEnable
Pq/ETH_A_So_MI_CSFrdifdiEnable
	Pq_AP:

Pq_AI_Data
Pq_AI_ClocK
Pq_AI_FrameStart

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes

A process diagram of this function is shown in Figure 11-20.

[image: image221.emf]

Pq specific processes

GFP_Frame

GFP_FS

CMuxConfig

CmuxActive=false

Pq specific GFP - F processes

Pq_TI_FS

Pq_TI_CK

 Common GFP - F processes

GFP_Frame

GFP_FS

ETH specific GFP - F processes

FCSenable=false

ETH_Frame

Queueing

ETH_CI_D (E TH_TFP)

802.3 MAC FCS

ETH_Frame+FCS

 ETH_PI_D (ETHTF_PP)

Replicate

ETH_CI_D (ETH_FP)

 ETH_PI_D (ETHF_PP)

MI_CSFenable

ETH_CI_SSF (ETH_FP)

Pq_AI_D/CK/FS

Pq_AI_D/CK/FS

MI_CSFrdifdiEnable

Figure 11-20 – Pq/ETH_A_So process

“Queuing” process:

See clause 8.2.

“Replicate” process:

See clause 8.4.

802.3 MAC FCS generation:

See clause 8.8.1.

Ethernet specific GFP-F source process:

See clause 8.5.4.1.1 of [ITU-T G.806]. GFP pFCS generation is disabled (FCSenable=false). The UPI value for Frame-Mapped Ethernet shall be inserted (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are inserted into the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].

Response to ETH_CI_SSF asserted is for further study.

Common GFP source process:

See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

Pq specific GFP source process:

See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the Pq payload area according to [ITU-T G.8040].

Pq specific source process:

NOTE – the VLI byte is fixed stuff equal to 0x00 at the Pq_AP output of this function.

P31s specific:

MA: Signal label information is derived directly from the Adaptation function type. The value for “GFP mapping” in clause 2.1 of [ITU-T G.832] is placed in the Payload Type field of the MA byte.
Defects

None.
Consequent actions

aCSF-RDI (CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI (CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS (CI_SSF and CSFEnable
Defect correlations

None.

Performance monitoring
For further study.

11.4.1.2
Pq to ETH Adaptation Sink function (Pq/ETH_A_Sk)

This function extracts ETH_CI information from a Pq_AI signal (q = 11s, 12s, 31s, 32e), delivering ETH_CI to ETH_TFP and ETH_FP.

Data at the Pq_AP is a Pq (q = 11s, 12s, 31s, 32e), having a payload as described in [ITU-T G.7043] with a value of N=1. The VLI byte is reserved and not used for payload data.

Symbol

[image: image222.wmf]

Pq_AI

To

ETH_TFP

ETH_CI

To

ETH_FP

(ETHF_PP)

Pq/ETH_A_Sk

Pq/ETH_A_Sk_MI

(ETHTF_PP)

ETH_PI

Figure 11-21 – Pq/ETH_A_Sk symbol

Interfaces

Table 11-12 – Pq/ETH_A_Sk interfaces

	Inputs
	Outputs

	Pq_AP:

Pq_AI_Data
Pq_AI_ClocK
Pq_AI_FrameStart
Pq_AI_TSF

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
Pq/ETH_A_Sk_MP:

Pq/ETH_A_Sk_MI_Active
Pq/ETH_A_Sk_MI_FilterConfig
Pq/ETH_A_Sk_MI_CSF_Reported
Pq/ETH_A_Sk_MI_MAC_Length
Pq/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:

ETH_CI_D

ETH_CI_P

ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Pq/ETH_A_Sk_MP:

Pq/ETH_A_Sk_MI_AcSL
Pq/ETH_A_Sk_MI_AcEXI
Pq/ETH_A_Sk_MI_AcUPI
Pq/ETH_A_Sk_MI_cPLM
Pq/ETH_A_Sk_MI_cLFD
Pq/ETH_A_Sk_MI_cUPM
Pq/ETH_A_Sk_MI_cEXM
Pq/ETH_A_Sk_MI_cCSF
Pq/ETH_A_Sk_MI_pFCSError

Processes

A process diagram of this function is shown in Figure 11-22.

[image: image223.emf]

Pq specific processes

CMuxConfig

CmuxActive=false

Pq specific GFP - F processes

cPLM

cLFD

 Common GFP - F processes

GFP_Frame/FS/SF

ETH specific GFP - F processes

FCSdiscard=false

ETH_Frame

Replicate

Filter

AcSL

cEXM

AcEXI

Pq_AI_D/CK/FS/TSF

GFP_Frame/FS/SF

cUPM

AcUPI

pFCSErrors

802.3 MAC Frm Chk

ETH_Frame+FCS

ETH_CI_D ETH_CI_SSF (ETH_FP) ETH_PI_D (ETHF_PP)

MI_FilterConfig

ETH_PI_D (ETHTF_PP)

SF

SF

ETH_CI_D ETH_CI_SSF (ETH_TFP)

Pq_AI_D/CK/FS/TSF

MI_CSFrdifdiEnable

Figure 11-22 – Pq/ETH_A_Sk process

“Filter” process:

See clause 8.3.

“Replicate” process:

See clause 8.4.

“802.3 MAC FCS Check” process:

See clause 8.8.2.

Ethernet specific GFP-F sink process:

See clause 8.5.4.1.2 of [ITU-T G.806]. GFP pFCS checking, GFP p_FCSError, p_FDis are not supported (FCSdiscard=false). The UPI value for Frame-Mapped Ethernet shall be expected (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are extracted from the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].

Common GFP sink process:

See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported (MI_CMuxActive=false).

Pq specific GFP sink process:

See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the Pq payload area according to [ITU-T G.8040].

Pq specific sink process:

NOTE 1 – the VLI byte at the Pq_AP input of this function is ignored.

P31s specific:

MA: The signal label is recovered from the Payload Type field in the MA byte as per clause 6.2.4.2 of [ITU-T G.806]. The signal label for “GFP mapping” in clause 2.1 of [ITU-T G.832] shall be expected. The accepted value of the signal label is also available at the P31s/ETH_A_Sk_MP.

Defects

dPLM – See clause 6.2.4.2 of [ITU-T G.806].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF-LOS – See clause 8.8.6.2.

dCSF-RDI – See clause 8.8.6.2.

dCSF-FDI – See clause 8.8.6.2.
NOTE 2 – dPLM is only defined for q = 31s. dPLM is assumed to be false for q = 11s, 12s, 32e.

Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM
(
dPLM and (not AI_TSF)

cLFD
(
dLFD and (not dPLM) and (not AI_TSF)

cUPM
(
dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);

cEXM
(
dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cCSF
(
(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported

Performance monitoring

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pFCSError: count of FrameCheckSequenceErrors per second.

NOTE 3 – This primitive is calculated by the MAC FCS Check process.
11.4.2
LCAS-capable Pq-Xv to ETH Adaptation functions (Pq-X-L/ETH_A; q = 11s, 12s, 31s, 32e)

11.4.2.1
LCAS-capable Pq-Xv to ETH Adaptation Source function (Pq-X-L/ETH_A_So)

This function maps ETH_CI information onto an Pq-X-L_AI signal (q = 11s, 12s, 31s, 32e).

Data at the Pq-X-L_AP is a Pq-X-L (q = 11s, 12s, 31s, 32e), having a payload as described in [ITU-T G.7043].

Symbol

[image: image224.wmf]

Pq

-

X

-

L_AI

From

ETH_TFP

ETH_CI

From

ETH_FP

(ETHF_PP)

Pq

-

X

-

L_AI_ X

AT

Pq

-

X

-

L_TI

Pq

-

X

-

L/ETH_A_So

Pq

-

X

-

L/ETH_A_So_MI

 (ETHTF_PP)

 ETH_PI

Figure 11-23 – Pq-X-L/ETH_A_So symbol

Interfaces

Table 11-13 – Pq-X-L/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Pq-X-L_AP:

Pq-X-L_AI_XAT
Pq-X-L_TP:

Pq-X-L_TI_ClocK
Pq-X-L_TI_FrameStart

Pq-X-L/ETH_A_So_MP:

Pq-X-L/ETH_A_So_MI_Active
Pq-X-L/ETH_A_So_MI_CSFEnable
Pq-X-L/ETH_A_So_MI_CSFrdifdiEnable
	Pq-X-L_AP:

Pq-X-L_AI_Data
Pq-X-L_AI_ClocK
Pq-X-L_AI_FrameStart

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes

A process diagram of this function is shown in Figure 11-24.

[image: image225.emf]

Pq - X - L specific proc esses

GFP_Frame

GFP_FS

CMuxConfig

CmuxActive=false

Pq - X - L specific GFP - F processes

Pq - X - L_TI_FS

Pq - X - L_TI_CK

 Common GFP - F processes

GFP_Frame

GFP_FS

ETH specific GFP - F processes

FCSenable=false

ETH_Frame

Queueing

ETH_CI_D (ETH_TFP)

802.3 MAC FCS

ETH_Frame+FCS

 ETH_PI_D (ETHTF_PP)

Replicate

ETH_CI_D (ETH_FP)

 ETH_PI_D (ETHF_PP)

MI_CSFenable

Pq - X - L_AI_X AT

ETH_CI_SSF (ETH_FP)

Pq - X - L_AI_D/CK/FS

Pq - X - L_AI_D/CK/FS

MI_CSFrdifdiEnable

Figure 11-24 – Pq-X-L/ETH_A_So process

“Queuing” process:

See clause 8.2.

“Replicate” process:

See clause 8.4.

802.3 MAC FCS generation:

See clause 8.8.1.

Ethernet specific GFP-F source process:

See clause 8.5.4.1.1 of [ITU-T G.806]. GFP pFCS generation is disabled (FCSenable=false). The UPI value for Frame-Mapped Ethernet shall be inserted (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are inserted into the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].

Response to ETH_CI_SSF asserted is for further study.

Common GFP source process:

See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

Pq-X-L specific GFP source process:

See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the Pq-X-L payload area according to [ITU-T G.8040].

Pq-X-L specific source process:

P31s-X-L specific:

MA: Signal label information is derived directly from the Adaptation function type. The value for “GFP mapping” in clause 2.1 of [ITU-T G.832] is placed in the Payload Type field of the MA byte.

NOTE – the VLI byte is undefined at the Pq-X-L_AP output of this function.
Defects

None.

Consequent actions

aCSF-RDI (CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI (CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS (CI_SSF and CSFEnable
Defect correlations

None.

Performance monitoring
For further study.

11.4.2.2
LCAS-capable Pq-Xv to ETH Adaptation Sink function (Pq-X-L/ETH_A_Sk)

This function extracts ETH_CI information from a Pq-X-L_AI signal (q = 11s, 12s, 31s, 32e), delivering ETH_CI to ETH_TFP and ETH_FP.

Data at the Pq-X-L_AP is a Pq-X-L (q = 11s, 12s, 31s, 32e), having a payload as described in [ITU-T G.7043].

Symbol

[image: image226.wmf]

Pq

-

X

-

L_AI

To

ETH_TFP

ETH_CI

To

ETH_FP

(ETHF_PP)

Pq

-

X

-

L_AI_ X

AR

Pq

-

X

-

L/ETH_A_Sk

Pq

-

X

-

L/ETH_A_Sk_MI

(ETHTF_PP)

ETH_PI

Figure 11-25 – Pq-X-L/ETH_A_Sk symbol

Interfaces

Table 11-14 – Pq-X-L/ETH_A_Sk interfaces

	Inputs
	Outputs

	Pq-X-L_AP:

Pq-X-L_AI_Data
Pq-X-L_AI_ClocK
Pq-X-L_AI_FrameStart
Pq-X-L_AI_TSF
Pq-X-L_AI_XAR
ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

Pq-X-L/ETH_A_Sk_MP:

Pq-X-L/ETH_A_Sk_MI_Active
Pq-X-L/ETH_A_Sk_MI_FilterConfig
Pq-X-L/ETH_A_Sk_MI_CSF_Reported
Pq-X-L/ETH_A_Sk_MI_MAC_Length
Pq-X-L/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Pq-X-L/ETH_A_Sk_MP:

Pq-X-L/ETH_A_Sk_MI_AcSL
Pq-X-L/ETH_A_Sk_MI_AcEXI
Pq-X-L/ETH_A_Sk_MI_AcUPI
Pq-X-L/ETH_A_Sk_MI_cPLM
Pq-X-L/ETH_A_Sk_MI_cLFD
Pq-X-L/ETH_A_Sk_MI_cUPM
Pq-X-L/ETH_A_Sk_MI_cEXM
Pq-X-L/ETH_A_Sk_MI_cCSF
Pq-X-L/ETH_A_Sk_MI_pFCSError

Processes

A process diagram of this function is shown in Figure 11-26.

[image: image227.emf]

Pq - X - L specific processes

CMuxConfig

CmuxActive=false

Pq - X - L specif ic GFP - F processes

cPLM

cLFD

 Common GFP - F processes

GFP_Frame/FS/SF

ETH specific GFP - F p rocesses

FCSdiscard=false

ETH_Frame

Replicate

Filter

AcSL

cEXM

AcEXI

Pq - X - L_AI_D/CK/FS/TSF

GFP_Frame/FS/SF

cUPM

AcUPI

pFCSErrors

802.3 MAC Frm Chk

ETH_Frame+FCS

ETH_CI_D ETH_CI_SSF (ETH_FP) ETH_PI_D (ETHF_PP)

MI_FilterConfig

ETH_PI_D (ETHTF_PP)

SF

SF

ETH_CI_D ETH_CI_SSF (ETH_TFP)

Pq - X - L_AI_X AR Pq - X - L_AI_D/CK/FS/TSF

MI_CSFrdifdiEnable

Figure 11-26 – Pq-X-L/ETH_A_Sk process

“Filter” process:

See clause 8.3.

“Replicate” process:

See clause 8.4.

“802.3 MAC FCS Check” process:

See clause 8.8.2.

Ethernet specific GFP-F sink process:

See clause 8.5.4.1.2 of [ITU-T G.806]. GFP pFCS checking, GFP p_FCSError, p_FDis are not supported (FCSdiscard=false). The UPI value for Frame-Mapped Ethernet shall be expected (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are extracted from the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].

Common GFP sink process:

See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported (MI_CMuxActive=false).

Pq-X-L specific GFP sink process:

See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the Pq-X-L payload area according to [ITU-T G.8040].

Pq-X-L specific sink process:

P31s-X-L specific:

MA: The signal label is recovered from the Payload Type field in the MA byte as per clause 6.2.4.2 of [ITU-T G.806]. The signal label for “GFP mapping” in clause 2.1 of [ITU-T G.832] shall be expected. The accepted value of the signal label is also available at the P31s-X-L/ETH_A_Sk_MP.

NOTE 1 – The Pq-X-L_AI_XAR interface is not connected to any of the internal processes.
Defects

dPLM – See clause 6.2.4.2 of [ITU-T G.806].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF-LOS – See clause 8.8.6.2.

dCSF-RDI – See clause 8.8.6.2.

dCSF-FDI – See clause 8.8.6.2.
NOTE 2 – dPLM is only defined for q = 31s. dPLM is assumed to be false for q = 11s, 12s, 32e.

Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

NOTE 3 – XAR=0 results in AI_TSF being asserted, so there is no need to include it as additional contributor to aSSF.

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM
(
dPLM and (not AI_TSF)

cLFD
(
dLFD and (not dPLM) and (not AI_TSF)

cUPM
(
dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);

cEXM
(
dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cCSF
(
(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported

Performance monitoring

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pFCSError: count of FrameCheckSequenceErrors per second.

NOTE 4 – This primitive is calculated by the MAC FCS Check process.

11.5 OTH to ETH adaptation functions (O/ETH_A)

11.5.1
ODUk to ETH adaptation functions (ODUkP/ETH_A)

11.5.1.1
ODUk to ETH adaptation source function (ODUkP/ETH_A_So)

The ODUkP/ETH_A_So function creates the ODUk signal from a free running clock. It maps the ETH_CI information into the payload of the OPUk, adds OPUk Overhead (RES, PT) and default ODUk Overhead.

Symbol

[image: image228.wmf]
Figure 11-27 – ODUkP/ETH_A_So symbol

Interfaces

Table 11-15 – ODUkP/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

ODUkP/ETH_A_So_MP:

ODUkP/ETH_A_So_MI_Active
ODUkP/ETH_A_So_MI_CSFEnable
ODUkP/ETH_A_So_MI_CSFrdifdiEnable
	ODUkP_AP:

ODUkP_AI_Data
ODUkP_AI_ClocK
ODUkP_AI_FrameStart
ODUkP_AI_MultiframeStart

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE
ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes

A process diagram of this function is shown in Figure 11-28.

[image: image229.emf]ETH specific

GFP-F processes

Common

GFP-F processes

ODUkP specific

processes

ODUkP specific

GFP-F processes

FCSenable=false

CMuxConfig

CMuxActive=false

MI_CSFEnable

ETH_CI_D

(ETH_FP)

GFP_Frame GFP_FS

ODUkP_AI_D

ODUkP_AI_D/CK/FS/MFS

ODUkP_AI_CK/FS

GFP_Frame GFP_FS

802.3 MAC FCS

Replicate

Queueing

ETH_CI_D

(ETH_TFP)

ETH_CI_SSF

(ETH_FP)

ETH_PI_D

(ETHTF_PP)

MI_CSFfdirdiEnable

ETH_PI_D

(ETHF_PP)

ETH_Frame

ETH_Frame+FCS

Figure 11-28 – ODUkP/ETH_A_So process

"Queuing" process:

See clause 8.2.

"Replicate" process:

See clause 8.4.

802.3 MAC FCS generation:

See clause 8.8.1.

Ethernet specific GFP-F source process:

See clause 8.5.4.1.1 of [ITU-T G.806]. GFP pFCS generation is disabled (FCSenable=false). The UPI value for frame-mapped Ethernet shall be inserted (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are inserted into the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].

Common GFP source process:

See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

ODUkP specific GFP source process:
See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the ODUk payload area according to clause 17.4 of [ITU-T G.709].

ODUkP specific source process:

[image: image230.emf]AI_D

ODUkOH is set to all-0’s,

except PM STAT = 001

ODUkP_AP

RES

CSF

PT

Free run

clock generator

(ODCa)

CK

1

122368

AI_CK

1

256

AI_FS AI_MFS

FS

MFS

MI_Active

Figure 11-29 – ODUkP specific source process

Clock and (Multi)Frame Start signal generation:
The function shall generate a local ODUk clock (ODUkP_AI_CK) with a clock rate within the minimum to maximum clock rate of the specified ODU signal as given in Table 14-2/G.798 . The jitter and wander requirements as defined in Annex A of [ITU-T G.8251] (ODCa clock) apply.

The function shall generate the (multi)frame start reference signals AI_FS and AI_MFS for the ODUk signal. The AI_FS signal shall be active once per 122 368 clock cycles. AI_MFS shall be active once every 256 frames.
PT: The payload type information is derived directly from the Adaptation function type. The value for “GFP mapping” shall be inserted into the PT byte position of the PSI overhead as defined in clause 15.9.2.1.1 of [ITU-T G.709].
RES: The function shall insert all-0's into the RES bytes.
CSF: The function shall signal the failure of the client signal to the far end by use of the Bit 1 of the PSI[2] byte of the Payload Structure Identifier as defined in clause 17.1 of [ITU-T G.709].
All other bits of the ODUk overhead should be sourced as "0"s, except the ODUk-PM STAT field which should be set to the value "normal path signal" (001).
Counter processes:
For Further Study.
Defects

None.

Consequent actions

aCSF-RDI (CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI (CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS (CI_SSF and CSFEnable

aCSF-OPU (CI_SSF and CSFEnable

Defect correlations

None.

Performance monitoring
For further study.
11.5.1.2
ODUk to ETH adaptation sink function (ODUkP/ETH_A_Sk)

The ODUkP/ETH_A_Sk extracts ETH_CI information from the ODUkP payload area, delivering ETH_CI to ETH_TFP and ETH_FP. It extracts the OPUk Overhead (PT and RES) and monitors the reception of the correct payload type.

Symbol

[image: image231.wmf]
Figure 11-30 – ODUkP/ETH_A_Sk symbol

Interfaces

Table 11-16 – ODUkP/ETH_A_Sk interfaces

	Inputs
	Outputs

	ODUkP_AP:

ODUkP_AI_Data
ODUkP_AI_ClocK
ODUkP_AI_FrameStart
ODUkP_AI_MultiframeStart
ODUkP_AI_TSF

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ODUkP/ETH_A_Sk_MP:

ODUkP/ETH_A_Sk_MI_Active
ODUkP/ETH_A_Sk_MI_FilterConfig
ODUkP/ETH_A_Sk_MI_CSF_Reported
ODUkP/ETH_A_Sk_MI_MAC_Length
ODUkP/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

ODUkP/ETH_A_Sk_MP:

ODUkP/ETH_A_Sk_MI_AcPT
ODUkP/ETH_A_Sk_MI_AcEXI
ODUkP/ETH_A_Sk_MI_AcUPI
ODUkP/ETH_A_Sk_MI_cPLM
ODUkP/ETH_A_Sk_MI_cLFD
ODUkP/ETH_A_Sk_MI_cUPM
ODUkP/ETH_A_Sk_MI_cEXM
ODUkP/ETH_A_Sk_MI_cCSF
ODUkP/ETH_A_Sk_MI_pFCSError

Processes

A process diagram of this function is shown in Figure 11-31.
[image: image232.emf]ODUkP specific

processes

CMuxConfig

CmuxActive=false

ODUkP_AI_D/CK/FS/MFS/TSF

ODUkP specific

GFP-F processes

cPLM

cLFD

Common

GFP-F processes

GFP_Frame/FS/SF

ETH specific

GFP-F processes

FCSdiscard=false

ETH_Frame

Replicate

Filter

AcPT

cEXM

AcEXI

ODUkP_AI_D/CK/FS/TSF

GFP_Frame/FS/SF

cUPM

AcUPI

pFCSErrors

802.3 MAC Frm Chk

ETH_Frame+FCS

ETH_CI_D

ETH_CI_SSF

(ETH_FP)

ETH_PI_D

(ETHF_PP)

MI_FilterConfig

ETH_PI_D

(ETHTF_PP)

SF

SF

ETH_CI_D

ETH_CI_SSF

(ETH_TFP)

MAC Lengt h Chk

SF

ETH_Frame+FCS

MI_MAC_Length

MI_CSFrdifdiEnable

cCSF

Figure 11-31 – ODUkP/ETH_A_Sk process

"Filter" process:

See clause 8.3.

"Replicate" process:

See clause 8.4.

"802.3 MAC FCS Check" process:

See clause 8.8.2.

Ethernet specific GFP-F sink process:

See clause 8.5.4.1.2 of [ITU-T G.806]. GFP pFCS checking, GFP p_FCSError, p_FDis are not supported (FCSdiscard=false). The UPI value for Frame-Mapped Ethernet shall be expected (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are extracted from the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].

Common GFP sink process:

See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported (MI_CMuxActive=false).

ODUkP specific GFP sink process:

See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the ODUk payload area according to clause 17.4 of [ITU-T G.709].

ODUkP specific sink process:
[image: image233.emf]PT Process

D

e

f

e

c

t

C

o

r

r

e

l

a

t

i

o

n

s

Extract PT

Extract CSF

dCSF

dPLM

dCSF

AI_TSF

dPLM

AI_CK AI_FS AI_MFS AI_D

M

I

_

c

C

S

F

M

I

_

c

P

L

M

M

I

_

A

c

t

i

v

e

AI_TSF

M

I

_

A

c

P

T

ODUkP_AP

Figure 11-32 – ODUkP specific sink process

PT: The function shall extract the PT byte from the PSI overhead as defined in clause 8.7.1 of [ITU-T G.798]. The payload type value for "GFP mapping" in clause 15.9.2.1.1 of [ITU-T G.709] shall be expected. The accepted PT value is available at the MP (MI_AcPT) and is used for PLM defect detection.

RES: The value in the RES bytes shall be ignored.
CSF: The function shall extract the CSF signal indicating the failure of the client signal out of the Bit 1 of the PSI[2] byte of the Payload Structure Identifier as defined in clause 17.1 of [ITU-T G.709].
Defects

dPLM – See clause 6.2.4.1 of [ITU-T G.798].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF-LOS – See clause 8.8.6.2.

dCSF-RDI – See clause 8.8.6.2.

dCSF-FDI – See clause 8.8.6.2.
Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM
(
dPLM and (not AI_TSF);

cLFD
(
dLFD and (not dPLM) and (not AI_TSF);

cUPM
(
dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);

cEXM
(
dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cCSF
(
(dCSF-LOS or dCSF-OPU or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported

Performance monitoring

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pFCSErrors: count of FrameCheckSequenceErrors per second.

NOTE – This primitive is calculated by the MAC FCS Check process.
11.5.2
LCAS-capable ODUk-Xv to ETH adaptation functions (ODUkP-X-L/ETH_A; k = 1, 2, 3)

11.5.2.1
LCAS-capable ODUk-Xv to ETH adaptation source function (ODUkP-X-L/ETH_A_So)

The ODUkP-X-L/ETH_A_So function creates the ODUk-X-L signal from a free running clock. It maps the ETH_CI information into the payload of the OPUk-Xv (k = 1, 2, 3), adds OPUk-Xv Overhead (RES, vcPT).

Symbol

[image: image234.wmf]
Figure 11-33 – ODUkP-X-L/ETH_A_So symbol

Interfaces

Table 11-17 – ODUkP-X-L/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

ODUkP-X-L_AP:

ODUkP-X-L_AI_XAT
ODUkP-X-L/ETH_A_So_MP:

ODUkP-X-L/ETH_A_So_MI_Active
ODUkP-X-L/ETH_A_So_MI_CSFEnable
ODUkP-X-L/ETH_A_So_MI_CSFrdifdiEnable
	ODUkP-X-L_AP:

ODUkP-X-L_AI_Data
ODUkP-X-L_AI_ClocK
ODUkP-X-L_AI_FrameStart
ODUkP-X-L_AI_MultiframeStart

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes

A process diagram of this function is shown in Figure 11-34.

[image: image235.emf]MI_CSFrdifdiEnable

Figure 11-34 – ODUkP-X-L/ETH_A_So process

See clause 11.5.1.1 for a description of ODUkP-X-L/ETH_A processes.

ODUkP-X-L specific source process:

[image: image236.emf]AI_D

ODUkOH is set to all-0’s,

except PM STAT = 001

ODUkP-X-L_AP

RES

CSF

PT

Free run

clock generator

(ODCa)

CK

1

(X

AT

*122368)

AI_CK

1

256

AI_FS AI_MFS

FS

MFS

MI_Active

Figure 11-35 – ODUkP-X-L specific source process

Clock and (Multi)Frame Start signal generation:
The function shall generate a local ODUk clock (ODUkP_AI_CK) with a clock rate within the minimum to maximum clock rate of the specified ODU signal as given in Table 14-2/G.798 . The jitter and wander requirements as defined in Annex A of [ITU-T G.8251] (ODCa clock) apply.

The function shall generate the (multi)frame start reference signals AI_FS and AI_MFS for the ODUk signal. The AI_FS signal shall be active once per XAT * 122 368 clock cycles. AI_MFS shall be active once every 256 frames.

vcPT: The payload type information is derived directly from the Adaptation function type. The value for “GFP mapping” shall be inserted into the vcPT byte position of the PSI overhead as defined in clause 18.1.2.2 of [ITU-T G.709].

RES: The function shall insert all-0's into the RES bytes.
CSF: The function shall signal the failure of the client signal to the far end by use of the Bit 1 of the PSI[2] byte of the Payload Structure Identifier as defined in clause 18.1.2.2.1.3 of [ITU-T G.709].

All other bits of the ODUk overhead should be sourced as "0"s, except the ODUk-PM STAT field which should be set to the value "normal path signal" (001).
Counter processes:
For Further Study.
Defects

None.

Consequent actions

aCSF-RDI (CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI (CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS (CI_SSF and CSFEnable

aCSF-OPU (CI_SSF and CSFEnable

Defect correlations

None.

Performance monitoring
For further study.
11.5.2.2
LCAS-capable ODUk-Xv to ETH adaptation sink function (ODUkP-X-L/ETH_A_Sk)

The ODUkP-X-L/ETH_A_Sk extracts ETH_CI information from the ODUkP-Xv payload area, delivering ETH_CI to ETH_TFP and ETH_FP. It extracts the OPUk-Xv Overhead (vcPT and RES) and monitors the reception of the correct payload type.

Symbol

[image: image237.wmf]
Figure 11-36 – ODUkP-X-L/ETH_A_Sk symbol

Interfaces

Table 11-18 – ODUkP-X-L/ETH_A_Sk interfaces

	Inputs
	Outputs

	ODUkP-X-L_AP:

ODUkP-X-L_AI_Data
ODUkP-X-L_AI_ClocK
ODUkP-X-L_AI_FrameStart

ODUkP-X-L_AI_MultiframeStart
ODUkP-X-L_AI_TSF
ODUkP-X-L_AI_XAR
ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ODUkP-X-L/ETH_A_Sk_MP:

ODUkP-X-L/ETH_A_Sk_MI_Active
ODUkP-X-L/ETH_A_Sk_MI_FilterConfig
ODUkP-X-L/ETH_A_Sk_MI_CSF_Reported
ODUkP-X-L/ETH_A_Sk_MI_MAC_Length
ODUkP-X-L/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

ODUkP-X-L/ETH_A_Sk_MP:

ODUkP-X-L/ETH_A_Sk_MI_AcVcPT
ODUkP-X-L/ETH_A_Sk_MI_AcEXI
ODUkP-X-L/ETH_A_Sk_MI_AcUPI
ODUkP-X-L/ETH_A_Sk_MI_cVcPLM
ODUkP-X-L/ETH_A_Sk_MI_cLFD
ODUkP-X-L/ETH_A_Sk_MI_cUPM
ODUkP-X-L/ETH_A_Sk_MI_cEXM
ODUkP-X-L/ETH_A_Sk_MI_cCSF
ODUkP-X-L/ETH_A_Sk_MI_pFCSError

Processes

See process diagram and process description in clause 11.5.1.2. The additional ODUkP-X-L_AI_XAR interface is not connected to any of the internal processes.

ODUkP-X-L specific sink process:

[image: image238.emf]vcPT Process

D

e

f

e

c

t

C

o

r

r

e

l

a

t

i

o

n

s

Extract vcPT

Extract CSF

dCSF

dVcPLM

dCSF

AI_TSF

dVcPLM

AI_CK AI_FS AI_MFS AI_D

M

I

_

c

C

S

F

M

I

_

c

V

c

P

L

M

M

I

_

A

c

t

i

v

e

AI_TSF

M

I

_

A

c

V

c

P

T

ODUkP-X-L_AP

Figure 11-37 – ODUkP-X-L specific sink process

PT: The function shall extract the vcPT byte from the PSI overhead as defined in clause 8.7.3 of [ITU-T G.798]. The payload type value for "GFP mapping" in clause 18.1.2.2 of [ITU-T G.709] shall be expected. The accepted PT value is available at the MP (MI_AcPT) and is used for PLM defect detection.

RES: The value in the RES bytes shall be ignored.
CSF: The function shall extract the CSF signal indicating the failure of the client signal out of the Bit 1 of the PSI[2] byte of the Payload Structure Identifier as defined in clause 18.1.2.2.1.3 of [ITU-T G.709].
Defects

dVcPLM – See clause 6.2.4.2 of [ITU-T G.798].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF-LOS – See clause 8.8.6.2.

dCSF-RDI – See clause 8.8.6.2.

dCSF-FDI – See clause 8.8.6.2.
Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dVcPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

NOTE 1 – XAR = 0 results in AI_TSF being asserted, so there is no need to include it as additional contributor to aSSF.

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cVcPLM
(
dVcPLM and (not AI_TSF);

cLFD
(
dLFD and (not dVcPLM) and (not AI_TSF);

cCSF
(
(dCSF-LOS or dCSF-OPU or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported

Performance monitoring

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pFCSError: count of FrameCheckSequenceErrors per second.

NOTE 2 – This primitive is calculated by the MAC FCS Check process.

11.5.3
ODU2P to Ethernet PP-OS adaptation functions (ODU2P/ETHPP-OS_A)

The ODU2P to Ethernet PP-OS adaptation function supports transporting Preamble and Ordered Set information of the 10GBASE-R signals over enhanced OPU2 payload area.

It provides XGMII service over ODU2 with extended OPU2 payload area.

As shown in Figure 46-3 of [IEEE 802.3], the Ethernet data stream at the XGMII consists of: <inter-frame><preamble><sfd><data><efd>. For the purposes of these mappings, the client data frames include the <preamble><sfd><data> information, and the Ordered Sets include specific information carried in the <inter-frame> characters. The mapping of both client data frames and Ordered Sets into ODU2 using GFP-F frames is described in this clause.
Note that there is no Ethernet MAC termination function. Consequently, since no error checking is performed on the Ethernet MAC frames, errored MAC frames are forwarded at both the ingress and egress to the GFP adaptation functions.
11.5.3.1
ODU2P to Ethernet PP-OS adaptation source function (ODU2P/ETHPP-OS_A_So)

The ODU2P/ETHPP-OS_A_So function creates the ODU2P signal from a free running clock. It maps the ETHPP-OS_CI information into the payload of the OPU2P, adds OPU2P Overhead (RES, PT) and default ODU2P Overhead.

Symbol

 [image: image239.emf]ETHPP-OS_CI

ODU2P_AI

ODU2P/ETHPP-OS_A_So_MI

ODU2P/ETHPP-OS_A_So

Figure 11-x – ODU2P/ETHPP-OS_A_So symbol

Interfaces
Table 11-x – ODU2P/ETHPP-OS_A_So interfaces

	Inputs
	Outputs

	ETHPP-OS_CP:
ETHPP-OS_CI_D
ETHPP-OS_CI_SSF

ODU2P/ETHPP-OS_A_So_MP:
ODU2P/ETHPP-OS_A_So_MI_Active
ODU2P/ETHPP-OS_A_So_MI_CSFEnable
	ODU2P_AP:
ODU2P_AI_Data
ODU2P_AI_ClocK
ODU2P_AI_FrameStart
ODU2P_AI_MultiframeStart

NOTE – ETHPP-OS_CI_D is composed of Preamble, Payload and Order Set information in [ITU-T G.7041].

Processes
A process diagram of this function is shown in Figure 11-x+1.

[image: image240.emf]ETHPP-OS specific

GFP-F processes

Common

GFP-F processes

ODU2P specific

processes

ODU2P specific

GFP-F processes

FCSenable=false

CMuxConfig

CMuxActive=false

MI_CSFEnable

ETHPP-OS_CI_D CI_D_SSF

GFP_Frame GFP_FS

GFP_Frame GFP_FS

ODU2P_AI_D/CK/FS

ODU2P_AI_D/CK/FS/MFS

Figure 11-x+1 – ODU2P/ETHPP-OS_A_So process

Ethernet specific GFP-F source process:

The Ethernet frames are inserted into the client payload information field of the GFP-F frames according to clause 7.9.2 of [ITU-T G.7041].
The UPI values for frame-mapped Ethernet shall be inserted for data or Ordered Sets respectively. (Table 6-3 of [ITU-T G.7041]). The rest of the fields but UPI field in Type Header are static as:

· PTI = 000 (Client Data)

· PFI = 0 (No FCS)

· EXI = 0000 (Null Extension Header)
GFP client management frames (PTI = 100) are inserted if CI_SSF is input and GFP pFCS generation is disabled (FCSenable=false).

Common GFP source process:

See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

ODU2P specific GFP source process:
See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the ODU2 payload area according to clause 17.4.1 of [ITU-T G.709]. OPU CSF may be generated if CI_SSF is input.

ODU2P specific source process:
See clause 11.5.1.1 (k=2).

Defects

None.
Consequent actions

aCSF-LOS (CI_SSF and CSFEnable

aCSF-OPU (CI_SSF and CSFEnable
Defect correlations

None.
Performance monitoring
For further study.
11.5.3.2
ODU2P to Ethernet PP-OS adaptation sink function (ODU2P/ETHPP-OS_A_Sk)

The ODU2P/ETHPP-OS_A_Sk extracts ETHPP-OS_CI information from the ODU2P payload area, delivering ETHPP-OS_CI to ETHPP-OS_TCP. It extracts the OPU2P Overhead (PT and RES) and monitors the reception of the correct payload type.

Symbol

[image: image241.png]ETHP-0S_CI

ODUZPETHPP-0S _

_skm

Figure 11-x+3 – ODU2P/ETHPP-OS_A_Sk symbol

Interfaces
Table 11-x+2 – ODU2P/ETHPP-OS_A_Sk interfaces

	Inputs
	Outputs

	ODU2P_AP:
ODU2P_AI_Data
ODU2P_AI_ClocK
ODU2P_AI_FrameStart
ODU2P_AI_MultiframeStart
ODU2P_AI_TSF
ODU2P/ETHPP-OS_A_Sk_MP:
ODU2P/ETHPP-OS_A_Sk_MI_Active
ODU2P/ETHPP-OS_A_Sk_MI_CSF_Reported
	ETHPP-OS_CP:
ETHPP-OS_CI_D
ODU2P/ETHPP-OS_A_Sk_MP:
ODU2P/ETHPP-OS_A_Sk_MI_AcPT
ODU2P/ETHPP-OS_A_Sk_MI_AcEXI
ODU2P/ETHPP-OS_A_Sk_MI_AcUPI
ODU2P/ETHPP-OS_A_Sk_MI_cPLM
ODU2P/ETHPP-OS_A_Sk_MI_cLFD
ODU2P/ETHPP-OS_A_Sk_MI_cUPM
ODU2P/ETHPP-OS_A_Sk_MI_cEXM
ODU2P/ETHPP-OS_A_Sk_MI_cCSF

Processes
A process diagram of this function is shown in Figure 11-x+4.
[image: image242.emf]ETHPP-OS specific

GFP-F processes

Common

GFP-F processes

ODU2P specific

processes

ODU2P specific

GFP-F processes

CMuxConfig

CMuxActive=false

ETHPP-OS_CI_D

GFP_Frame/FS/SF

GFP_Frame/FS/SF

ODU2P_AI_D/CK/FS/TSF

ODU2P_AI_D/CK/FS/MFS/TSF

FCSdiscard=false

AcEXI

AcPT

AcUPI

pCRC16

dUPM

cCSF

cEXM

dLFD

cPLM

AcPFI

Figure 11-x+4 – ODU2P/ETHPP-OS_A_Sk process
Ethernet specific GFP-F sink process:

The Ethernet frames are extracted from the client payload information field of the GFP-F frames according to clause 7.9 of [ITU-T G.7041].
See clause 8.5.4.1.2 of [ITU-T G.806]. GFP pFCS checking, GFP p_FCSError, p_FDis are not supported (FCSdiscard=false). The UPI value for Frame-Mapped Ethernet shall be expected for data or Ordered Sets respectively (Table 6-3 of [ITU-T G.7041]).
Client signal fail from GFP-F or OPU may generate LF as included ETHPP-OS_CI_D.

Common GFP sink process:

See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported (MI_CMuxActive=false).

ODU2 specific GFP sink process:

See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the ODU2 payload area according to clause 17.4.1 of [ITU-T G.709].

ODU2P specific sink process:
See clause 11.5.1.2 (k=2).

Defects
dPLM – See clause 6.2.4.1 of [ITU-T G.798].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].
dCSF-LOS – See clause 8.8.6.2.

dCSF-OPU – For further study.

Consequent actions
The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS
Defect correlations
The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM
(
dPLM and (not AI_TSF);

cLFD
(
dLFD and (not dPLM) and (not AI_TSF);

cUPM
(
dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);

cEXM
(
dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cCSF
(
(dCSF-LOS or dCSF-OPU) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported
Performance monitoring
For further study.
11.5.4
ODU0P to 1 GbE client adaptation functions (ODU0P/CBRx_A)
The adaptation function that supports the transport of 1GbE signals in the OTN is the ODU0P to Client adaptation function (ODU0P/CBRx_A) (0≤x≤1.25G) described in [ITU-T G.798]. When the client is 1 GbE, the CBRx and ETC3 signals are equivalent; as such the ETY3/ETC3_A functions are bound to the ODU0P/CBRx_A functions.
11.6
MPLS to ETH adaptation functions (MPLS/ETH_A)

For further study.
11.7
ATM VC to ETH adaptation functions (VC/ETH_A)

For further study.
11.8
RPR to ETH adaptation functions (RPR/ETH_A)

For further study.
Appendix I – Applications and functional diagrams

(This Appendix does not form an integral part of this Recommendation.)

Figure I.1 presents the set of atomic functions associated with the Ethernet signal transport, shown in several example applications.

•
Ethernet UNI/NNI interface port on EoT equipment.

•
Ethernet over SDH NNI interface port on EoT equipment.

•
Ethernet UNI interface port supporting multiplexed access on EoT equipment.

[image: image243.wmf]
Figure I.1 – Ethernet atomic functions in some possible application

Appendix II – AIS/RDI mechanism for an Ethernet Private Line over a single SDH or OTH server layer

(This Appendix does not form an integral part of this Recommendation.)

In order to address fault notification for failures in either the access links or within the SDH / OTH server layer, the following functionality is required:

a) Convey fault notification for an access link failure from one side of the network to the other.

b) Convey fault notification for an SDH / OTH server layer failure to the access links.

[ITU-T G.7041] defines Client Management Frames (CMFs) for conveying information about the client signal from an ingress edge NE to the egress edge NE. Defined CMF Signals are Client Signal Fail (CSF), Client Forward Defect Indication (FDI) and Client Reverse Defect Indication (RDI) implementing the Remote Fail Indication Mechanism.

[ITU-T G.806] defines the equipment functional details of the CSF and RFI mechanisms.

This Recommendation defines the Ethernet specific equipment functional details for the CSF and RFI mechanisms.

The combination of the above three Recommendations provides the functionality required by (a) and (b).

In addition, this basic functionality can be further enhanced to support fault notification for the Ethernet client by using Ethernet Physical Layer Defect Signals shown in Appendix VI of [ITU-T G.7041] by means of Ethernet OAM. For example, use of the Link Fault flag defined in clause 57 of [IEEE 802.3] (EFM OAM), in conjunction with the GFP-F CMF CSF and RFI indications. This is illustrated below.

A simplifying assumption can be made regarding the conditioning of the Ethernet access links on either side of the SDH / OTH transport network. For an EPL application, the access link is specific to a single service, and since an Ethernet service is bi-directional, a fault in either direction should result in the access link being conditioned as “failed”.

The following fault scenarios and accompanying figures illustrate this example of interworking of the EFM OAM Link Fault flag with the GFP-F CMF CSF and RFI indications to appropriately condition the Ethernet access links. Only uni-directional faults are considered, the scenarios can be combined per the superposition principle to describe bi-directional faults. Further, only an SDH server layer is shown in the examples. CE = Customer Edge. PE = Provider Edge.

Scenario 1

In Figure II.1, a uni-directional fault occurs on the east access link on ingress to the carrier network.

[image: image244.wmf]CE

CE

Ethernet

Ethernet

802.3 PHY

MAC layer

Ethernet Transport

Network

PHY layer

EPL service

802.3 PHY

GFP

-

F Connection

(ETH layer)

MAC frame

visibility

CMF_CSF

PE

PE

MAC frame

visibility

SDH Path (s)

n

Laser

Shutdown

Link Fault

Link Fault

CE

CE

Ethernet

Ethernet

802.3 PHY

MAC layer

Ethernet Transport

Network

PHY layer

EPL service

802.3 PHY

GFP

-

F Connection

(ETH layer)

MAC frame

visibility

CMF_CSF

PE

PE

MAC frame

visibility

SDH Path (s)

n

Laser

Shutdown

Link Fault

Link Fault

Figure II.1 – Fault on Ingress

· The east PE detects loss of signal on the ingress access link:

· 802.3 EFM OAM sends Link Fault upstream, interspersed with Idles

· GFP-F CMF CSF indication is sent into the network.

· The east CE detects Link Fault:

· Idles are sent towards the network and towards the enterprise

· The west PE detects the GFP-F CMF CSF indication:

· If there is no network_ETH_AIS indication available, the laser (or electrical driver) is shutdown.

· The west CE detects loss of signal:

· 802.3 EFM OAM sends Link Fault upstream, interspersed with Idles

· Idles are sent towards the enterprise

Scenario 2

In Figure II.2, a uni-directional fault occurs westbound on the server layer within the carrier network.

[image: image245.emf]CE CE

Ethernet Ethernet

802.3 PHY

MAC layer

Ethernet Transport

Network

PHY layer

EPL service

802.3 PHY

GFP-F Connection

(ETH layer)

MAC frame

visibility

PE PE

MAC frame

visibility

SDH Path

SDH Paths

n-1

Path AIS

Path RDI

Laser

Shutdown

Laser

Shutdown

Link Fault

Link Fault

CE CE

Ethernet Ethernet

802.3 PHY

MAC layer

Ethernet Transport

Network

PHY layer

EPL service

802.3 PHY

GFP-F Connection

(ETH layer)

MAC frame

visibility

PE PE

MAC frame

visibility

SDH Path

SDH Paths

n-1

Path AIS

Path RDI

Laser

Shutdown

Laser

Shutdown

Link Fault

Link Fault

CMF_RDI

Figure II.2 – Fault within Carrier Network

· An NE in the carrier network detects the failure of one of the member paths of a VCAT group:

· SDH Path AIS is generated downstream on the affected path

· The west PE detects SDH Path AIS:

· SDH Path RDI is generated back into the network on the associated path

· GFP-F CMF RDI is generated back into the network

· If there is no network_ETH_AIS indication available, the laser (or electrical driver) is shut down

· The west CE detects loss of signal:

· 802.3 EFM OAM sends Link Fault upstream, interspersed with Idles

· Idles are sent towards the enterprise

· The east PE detects the GFP-F CMF RDI indication :

· If there is no network_ETH_RDI indication available, the laser (or electrical driver) is shut down

· The east CE detects loss of signal:

· 802.3 EFM OAM sends Link Fault upstream, interspersed with Idles

· Idles are sent towards the enterprise

Note that for a network failure affecting all member paths of a VCAT group (where LCAS is not supported) the same steps above apply, with the addition of SDH Path AIS and RDI being sent on all the member paths.

Scenario 3

In Figure II.3, a uni-directional fault occurs on the west access link towards the enterprise network.

[image: image246.emf]CE CE

Ethernet Ethernet

802.3 PHY

MAC layer

Ethernet Transport

Network

PHY layer

EPL service

802.3 PHY

GFP-F Connection

(ETH layer)

MAC frame

visibility

PE PE

MAC frame

visibility

SDH Path (s) n

Link Fault

CMF_RDI

Laser

Shutdown

Link Fault

CE CE

Ethernet Ethernet

802.3 PHY

MAC layer

Ethernet Transport

Network

PHY layer

EPL service

802.3 PHY

GFP-F Connection

(ETH layer)

MAC frame

visibility

PE PE

MAC frame

visibility

SDH Path (s) n

Link Fault

Laser

Shutdown

Link Fault

Figure II.3 – Fault on Egress

· The west CE detects loss of signal:

· 802.3 EFM OAM sends Link Fault upstream, interspersed with Idles

· Idles are sent towards the enterprise

· The west PE detects the Link Fault indication:

· GFP-F CMF RDI indication is sent into the network

· Idles are sent towards the CE

· The east PE detects the GFP-F CMF RDI indication:

· If there is no network_ETH_RDI indication available, the laser (or electrical driver) is shutdown

· The east CE detects loss of signal:

· 802.3 EFM OAM sends Link Fault upstream, interspersed with Idles

· Idles are sent towards the enterprise

Note that a PE only reacts to the reception of a Link Fault indication when there are no other conditioning alarms (i.e., the PE takes no further conditioning action when it receives a Link Fault indication in response to having shutdown its own egress laser).

Appendix III – Compound Functions

(This Appendix does not form an integral part of this Recommendation.)

ETH MEP and MIP compound functions are defined in clause 9.8 of this recommendation.

Appendix IV – Startup conditions

(This Appendix does not form an integral part of this Recommendation.)

The set of interconnected ETH_FF processes must be loop-free, since otherwise the integrity of the network may be compromised. This requirement implies that one can only include ports of the ETH_FF process in the ETH_C function if it is known that this will not create a loop.

In [IEEE 802.1D] and [IEEE 802.1Q], this is secured by starting in a state without connectivity, except for the exchange of BPDUs. Consequently, the Spanning Tree Protocol extends the connectivity while making sure that this does not create any loops.

This means that the ETH_C function as defined in this Recommendation, on startup of the equipment may not contain an ETH_FF that includes more than one port of its enclosing ETH_FF process. After startup, ports may be added to ETH_FF process under control of the Spanning Tree Protocol. Alternatively this may be done under control of a management system, as long as the management system can guarantee that there are no loops created.
Appendix V – SDL descriptions

(This Appendix does not form an integral part of this Recommendation.)

In this recommendation, detail characteristics of equipment functional blocks are described with SDL diagrams specified in [ITU-T Z.100]. The SDL diagrams use the following conventions.
[image: image247.png]00Ny

state

send
receive
task

decision

Figure V.1 – SDL symbols
Appendix VI – Calculation methods for frame loss measurement

(This Appendix does not form an integral part of this Recommendation.)

Frame loss measurement is performed by the collection of counter values for ingress and egress service frames and exchange of OAM frames with the local counter value between a pair of MEPs. In this recommendation, two different mechanisms are defined for frame loss measurement and both mechanisms have the different calculation methods.

VI.1
Dual-ended loss measurement
This is performed by proactive OAM and both MEPs send dual-ended CCM frames to its peer MEP periodically. The calculation method specified in the Proactive Loss Measurement Process is depicted as the following Figure VI.1.

[image: image248.emf]TxFCf[t

p

] ETH-CCM

ETH-CCM

(TxFCf[t

p

], RxFCb[t

p

], TxFCb[t

p

])

Local Remote

ETH-CCM

ETH-CCM

(TxFCf[t

c

], RxFCb[t

c

], TxFCb[t

c

])

RxFCl[t

p

]

TxFCf[t

p

]

RxFCb[t

p

]

TxFCf[t

c

]

RxFCl[t

c

]

TxFCf[t

c

]

RxFCb[t

c

]

TxFCl RxFCl TxFCl RxFCl

N_LF (Frame Loss

near-end

) = |TxFCf[t

c

] -TxFCf[t

p

]| - |RxFCl[t

c

] -RxFCl[t

p

]|

F_LF (Frame Loss

far-end

) = |TxFCb[t

c

] -TxFCb[t

p

]| - |RxFCb[t

c

] - RxFCb[t

p

]|

(TxFCf[t

p

], RxFCb[t

p

], TxFCb[t

p

])

(TxFCf[t

c

], RxFCb[t

c

], TxFCb[t

c

])

= |TxFCb -TxFCb_svd| - |RxFCb

–

 RxFCb_svd|

= |TxFCf -TxFCf_svd| -|RxFCl

–

 RxFCl_svd|

Figure VI.1 – Dual-ended ETH LM
VI.2
Single-ended loss measurement
This is performed by on-demand OAM and a MEP sends LMM frames to its peer MEP and receives LMR frames from its peer MEP. The calculation method specified in the LM Control Process is depicted as the following Figure VI.2.

[image: image249.emf]TxFCf[t

p

] ETH-LMM

(TxFCf[t

p

])

ETH-LMR

(TxFCf[t

p

], RxFCf[t

p

], TxFCb[t

p

])

Local Remote

ETH-LMM

(TxFCf[t

c

])

ETH-LMR

(TxFCf[t

c

], RxFCf[t

c

], TxFCb[t

c

])

RxFCl[t

p

]

TxFCb[t

p

]

RxFCf[t

p

]

TxFCf[t

c

]

RxFCl[t

c

]

TxFCb[t

c

]

RxFCf[t

c

]

TxFCl RxFCl TxFCl RxFCl

N_LF (Frame Loss

near-end

) = |TxFCb[t

c

] -TxFCb[t

p

]| - |RxFCl[t

c

] -RxFCl[t

p

]|

F_LF (Frame Loss

far-end

) = |TxFCf[t

c

] -TxFCf[t

p

]| -|RxFCf[t

c

] - RxFCf[t

p

]|

= |TxFCf -TxFCf_svd| - |RxFCf

–

 RxFCf_svd|

= |TxFCb -TxFCb_svd| - |RxFCl

–

 RxFCl_svd|

Figure VI.2 – Single-ended ETH LM
Appendix VII – Considerations of the support of a rooted multipoint EVC service

(This Appendix does not form an integral part of this Recommendation.)

This Appendix considers the support of a rooted multipoint service defined in [ITU-T G.8011]. Connectivity of a rooted multipoint service is established between one or more rooted points and zero or more leaf points. Each leaf point can only exchange data with the root point, while a root point can exchange data with each leaf point and other root points. Consequently, some extended mechanisms on ETH layer is required to disable the connectivity between particular pair of the points.

Two potential models are introduced in this Appendix. The first model is achieved by the enhancement of “port group” functionality to ETH Flow Forwarding function. The second model is composed of the usage of “asymmetric VLANs” configuration described in clause B.1.3 of [IEEE 802.1Q]. The subclasses below describe a principle of the operation for each model.

NOTE1 – The asymmetric VLAN model will be included in the main body of the later version of this recommendation after the development of the functional modeling and the study of interworking between the asymmetric VLAN model and the port group model.
NOTE2 – Both the port group and the asymmetric VLAN models are also applicable to other network scenarios such as multipoint-to-multipoint service defined in [ITU-T G.8011] while this Appendix addresses the rooted multipoint service only. Application examples to other scenarios will be considered in the later version of this recommendation.
VII.1
Port group function
The port group function is achieved by the enhancement to ETH Flow Forwarding function defined in clause 9.1.1. Figure VII.1 shows a principle of the operation for port group function. A port group is configured to the ports {A, B, C} for which the split horizon behaviour are applied in an ETH Flow Forwarding function. Frames arriving via an input port in the port group can be forwarded to one or more output ports, with the exception of the output ports that are members of the port group. Frames arriving on an input port which is not a member of the port group can be forwarded to any output ports, with exception of the port over which the frame arrived. As a result, the direct communication between members of the port group can be disabled.
[image: image250.emf]A

B

C

X

Port Group {A,B,C}

ETH_FF

Figure VII.1 – Principle of the port group function
Figure VII.2 shows an example of port group function composing a rooted-multipoint EVC. The node X in this figure is configured to disable forwarding ETH_CI traffic signal between members of the port group {X2, X3, X4}.
[image: image251.emf]Root

Leaf

Leaf

Leaf

Port Group

configuration

X1

X

X

X4

X2

X3

X1

X

X

X4

X2

X3

Figure VII.2 – Application example of the port group function
VII.2
Configuration of asymmetric VLANs
The clause B.1.3 of [IEEE 802.1Q] describes a configuration example of asymmetric VLANs to support a rooted multipoint service. The configuration allocates two different VLANs to the traffic generated by a root and a leaf (leaves) respectively. As a result, it can disable the direct communication between any pair of leaves. To facilitate an appropriate MAC learning over the different VLANs, this configuration uses Shared VLAN Learning (SVL) mode described in clause 9.1.1.

The following figure VII.3 shows an example of the operation. In this figure, the ports A, B, and C are attached to leaf nodes while the port X is attached to a root node. The VID M allocated to the traffic from the root node to leaf nodes is configured on the ports A, B and C. The VID N allocated to the traffic from the leaf nodes to a root node is configured on the port X only. As a result, asymmetric VLANs are configured and the appropriate connectivity between the ports A, B, C and X is established.

[image: image252.emf]A

B

C

A

B

C

X

ETH_FF

(VID=N)

ETH_FF

(VID=M)

A

B

C

A

B

C

X

Figure VII.3 – Principle of the asymmetric VLANs
Figure VII.4 shows an application example of the asymmetric VLANs to a rooted multipoint service. Note that both a root node and leaf nodes can use the single VID or untagged frames on the client ports (depicted as yellow bidirectional arrows in this figure), while multiple VIDs are required within the EVC. This VID configuration on the client ports can be achieved by the VID translation and/or untagging on the output interfaces.
[image: image253.emf]Root

Leaf

Leaf

Leaf

X1

X

X

X4

X2

X3

Figure VII.4 – Application example of the asymmetric VLANs
NOTE3 – This Appendix only describes a scenario of the single rooted multipoint environment as a basic example. However, the asymmetric VLAN model can also support multiple root nodes and/or grouping of leaf nodes as advanced rooted multipoint scenarios.

Appendix VIII –Configurations for Ingress VID Filtering

(This Appendix does not form an integral part of this Recommendation.)

This Appendix describes an example of the configuration for ingress VID filtering described in [IEEE 802.1Q].
[image: image254.emf]FF10 FF20 FF30 FF40

FFx

Sk

So

10 20 30 40

10 20 30 40

Sk

So

10 20 40

Port A Port C Port D

ETH_C

Sk

So

1…4094

20

10 20 40

Sk

So

1…4094

Port B

30

Figure VIII.1 –Example of configuration for ingress VID filtering
Table VIII-1 – VID Configuration
	VID
	Port A
	Port B
	Port C
	Port D

	
	Ingress
	Egress
	Ingress
	Egress
	Ingress
	Egress
	Ingress
	Egress

	10
	(
	
	(
	
	(
	(
	(
	(

	20
	(
	(
	(
	
	(
	(
	(
	(

	30
	(
	
	(
	(
	(
	(
	
	

	40
	(
	
	(
	
	(
	(
	(
	(

	Others
	(
	
	(
	
	
	
	
	

Figure VIII.1 and Table VIII-1 show an example of the configuration. For the ingress configuration, MI_Vlan_Config[] signal is set to ETHx/ETH-m_A_Sk function and ETH_CI signals corresponding VIDs are connected to ETH_FF processes in ETH_C function. For the egress configuration, MI_Vlan_Config[] signal is set to ETHx/ETH-m_A_So function and ETH_CI signals corresponding VIDs are connected to ETH_FF processes in ETH_C function.

On ports A and B in this example, MI_Vlan_Config[1…4094] are set to ETHx/ETH-m_A_Sk in order to disable the Ingress VID filtering. In this case, incoming all VIDs traffic is once forwarded to ETH_C. Since ETH_FF is connected to configured ingress and egress ports only, the traffic is forwarded to the approproate ports.

Bibliography
[b-ITU-T G.704]

Recommendation ITU-T G.704 (1998), Synchronous frame structures used at 1544, 6312, 2048, 8448 and 44 736 kbit/s hierarchical levels.
[b-ITU-T I.732]

Recommendation ITU-T I.732 (2000), Functional characteristics of ATM equipment.
[b-ITU-T M.3208.1]

Recommendation ITU-T M.3208.1 (1997), TMN management services for dedicated and reconfigurable circuits network: Leased circuit services.

	Contact:
	Akira SAKURAI
NEC Corporation

Japan
	Tel: +81-4-7185-6835
Fax: +81-4-7185-7810
Email: a-sakurai@da.jp.nec.com

	Contact:
	Huub van Helvoort

Huawei Technologies

P.R. China
	Tel: +31-649-248-936
Email: Huub.van.Helvoort@huawei.com

	Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of ITU-T.

PAGE

ITU‑T Rec. G.8021/Y.1341 (08/2004)

_1207614483.doc

Pause Request Control Frame

Pause Receive

_1221034940.vsd
Priority
Splitter

_1231225561.vsd
ETHDe

ETHDe_AP

ETHDe_FP

ETHDe_MP

ETHDe_RP

_1268120485.vsd
ETHDi/ETH_A_So

ETH_FP

ETH_AP

ETHDi/ETH_A_So_MP

_1353941200.vsd
ETY4/ETHPP-OS_A_Sk

ETY4_AI

ETHPP-OS_CI

ETY4/ETHPP-OS_A_Sk_MI

_1353941202.vsd
ETY4/ETHPP-OS_A_So

ETY4_AI

ETHPP-OS_CI

ETY4/ETHPP-OS_A_So_MI

_1268120486.vsd
RAPS Insert

P

D
E

D

P

D
E

D

ETH_CI_RAPS

ETH_CI_P/DE/D

MI_MEL

ETH_AI_P/DE/D

MI_RAPS_Pri

MI_MIP_MAC

_1232108936.unknown

_1257602834.vsd
ETH_CI_D/P/DE

ETH_CI_D/P/DE

Priority
Splitter

�

MI_Prio_Config[]

MI_Queue_Config[][]

MI_Sched_Config[]

Queue

Queue

Scheduler

Priority
Merger

ETH_CI_D/P/DE

Priority
Splitter

ETH_CI_D/P/DE

Queue

Queue

Priority
Merger

_1232109091.unknown

_1232108321.unknown

_1232108935.unknown

_1231227405.vsd
ETHDe_FT

ETHDe_AP

ETHDe_FP

ETHDe_MP

ETHDe_RP

_1221034996.vsd
Conditioner

_1221069964.vsd
Priority
Splitter

conditioner

Conditioner

Priority
Merger

ETH_CI_D/P/DE

ETH_CI_D/P/DE

MI_Prio_Config

MI_Cond_Config[]

_1221070522.vsd
ETH_CI_D/P/DE

ETH_CI_D/P/DE

Priority
Splitter

�

MI_Prio_Config

MI_Queue_Config[]

MI_Sched_Config

Queue

Queue

Scheduler

Priority
Merger

_1221035011.vsd
Scheduler

_1221034957.vsd
Priority
Merger

_1207748578.vsd
Adjust width of box to change paragraph width. Box's height adjusts according to text.

MAC FCS Supervision

Performance Monitoring

FrameCheckSequenceErrors

pFCSErrors

ETH_CI

ETH_CI

_1213822176.unknown

_1221034919.vsd
 Queue

_1213822473.unknown

_1213788337.unknown

_1213788420.unknown

_1207746469.doc

ETH-CI

ETH-CI

MAC FCS generation

_1170405744.unknown

_1170593665.unknown

_1171892677.unknown

_1171917790.doc

 (ETHTF_PP)

(ETHF_PP)

Pq-X-L_AI

ETH_CI

From

ETH_TFP

From

ETH_FP

Pq/ETH_A_So

 ETH_PI

Pq_TI

Pq/ETH_A_So_MI

_1171917999.doc

(ETHTF_PP)

(ETHF_PP)

Pq_AI

ETH_CI

To

ETH_TFP

To

ETH_FP

Pq/ETH_A_Sk

ETH_PI

Pq/ETH_A_Sk_MI

_1171892737.unknown

_1171893318.unknown

_1170661997.unknown

_1170663304.unknown

_1170582855.unknown

_1170583683.unknown

_1170405807.unknown

_1170582658.unknown

_1170405751.unknown

_1162235120.bin

_1170404853.unknown

_1162220005.bin

_1162233234.bin

_1159088946.doc

 (ETHTF_PP)

(ETHF_PP)

Pq-X-L_AI

Pq-X-L_AI_ XAT

ETH_CI

From

ETH_TFP

From

ETH_FP

Pq-X-L/ETH_A_So

 ETH_PI

Pq-X-L_TI

Pq-X-L/ETH_A_So_MI

_1157913232.doc

(ETHTF_PP)

(ETHF_PP)

Pq-X-L_AI

Pq-X-L_AI_ XAR

ETH_CI

To

ETH_TFP

To

ETH_FP

Pq-X-L/ETH_A_Sk

ETH_PI

Pq-X-L/ETH_A_Sk_MI

