

Proposal for Multi-path Forwarding of Control Data Frames

2012-05-15 IEEE 802.1 AVB TG Meeting May 2012, York, Great Britain

Michael Bahr, Siemens AG Franz-Josef Götz, Siemens AG

Overview

- Scenarios and Assumptions
- Goal and Starting Point
- Main Functionalities
- L2 Routing Region (visualized multipath routing concept)
- Comparison SPB-V vs. SPB-M wrt. Industrial Scenario
- Combination of SPB-V and SPB-M
- L2 Routing Filtering Database example
- Summary

Different Scenarios

Different Scenarios for audio, video, control streams

- data communication (home, IT network)
- industrial communication (factory floors etc.)
- in-car communication

Different ways for setting paths desirable

- dynamic and automatically setup
- centrally configured and centrally setup
- simple and static

These different ways for setting paths are desirable even within the industrial communication scenarios alone!

Assumptions

- unidirectional streams of control data from talker T to listener L
 - reserved streams
 - bidirectional streams are two unidirectional streams in opposite direction
 - typically multicast traffic
- typically engineered multicast addresses (one talker, many listeners)
- support of single path and multi-path (shortest)
 - maximally node / link disjoint paths for multi-path

Assumption

- L2 Routing only for specific services (Control Data)
- L2 Routing region is an overlay network
 - similar to RSTP/MSTP region and SPB region
 - runs simulataneously with RSTP/MSTP or SPB or other protocols, differentiated by VLAN ID

Goal and Starting Point

The Goal:

 reliable transmission of Control Data frames in case of single point of failures in a bridged network

The Starting Point:

- use link-state information provided by ISIS-SPB to compute
 - single shortest path for highly delay-sensitive flows of Control Data
 - maximally node disjoint multiple (two) shortest paths for highly delay-sensitive flows of Control Data
- shortest path transmissions (shortest pair) and recovery
- redundant transmission of Control Data frames an both paths
 - if one path breaks, the information of the Control Data frames reaches the destination through the other path within the time limit
- unicast and multicast transmission supported
- applied to region only
 - multipath region similar to SPB region
 - IS-IS area 1 routing only

Main functionalities

Distribution of link state information

- use ISIS-SPB from IEEE 802.1aq
- extend ISIS Link State TLV with necessary information for Multipath Forwarding of Control Data Frames
 - available capacity/bandwidth for Control Data Frames on a link / port

Distribution of communcation relationships

- not every device is talking to every other device
- →small number of communication relations (source / destination or talker / listener)
- extend MSRP or ISIS-SPB with necessary functionality
 - talker / listener information for unicast/multicast transmissions of Control Data frames distributed to all bridges in region
 - necessary because every node determines locally whether it is part of the unicast path/ multicast tree by computing the paths with a link-state algorithm for the distributed talker / listener

Main functionality

Bandwidth reservation

- available capacity/bandwith is communicated to all bridges through extended ISIS Link State TLVs / frames
- available capacity/bandwith is considered for routing, but not a trigger for re-routing
- bridges on the path perform the reservation and distribute their updated link-state information
- bridges not on the path save the information for future routing calculations and update their link state database with the received link-state information containing the new reservation

Re-routing

- re-routing shall not disturb ongoing flows of Control Data frames (if possible)
- re-routing for single shortest paths immediately
- re-establishment of second redundant path
 - manually driven (explicit trigger for re-establishment)
 - no immediate re-routing on link-breaks or bridge failures for multiple shortest paths if alternative path is still active
 - make before break

L2 Routing Region

L2 Routing Region

L2 Routing Region

Announcements can be done by extended ISIS-SPB or extended MSRP

M. Bahr, F.-J. Götz (Siemens AG)

IEEE 802.1 AVB TG Meeting - York

L2 Routing Region

Talker T sends its Control Data onto the paths to the listeners L.

Comparison SPB-V vs. SPB-M w.r.t. Industrial Scenario

SIEMENS

SPB-V (VLAN ID)

- computes source trees of shortest paths from each (ingress) bridge to all other bridges
- works on customer MAC address
- needs several VLAN IDs [BID+VLAN]
 (one per source bridge) ×
- Source MAC address learning × (problem for multiple redundant paths in certain cases)
- loop prevention ✓

SPB-M (MAC in MAC)

- computes shortest paths between all bridges
- encapsulates customer MAC address for better scalability in backbone × (no such scalability issues)
- needs single VLAN ID
- no source MAC address learning,
 → control protocol ✓
- Ioop prevention

Combination of SPB-V and SPB-M for L2 Routing

- use only single VLAN ID for separation of
 - different L2 Routing regions
 - SPB-V regions,
 - RSTP/MSTP regions
 - regions running other protocols
- use customer MAC addresses for forwarding of data frames
- no encapsulation (no MAC in MAC)
- no source address learning
- L2 routing protocol based on ISIS-SPB computes shortest single / multiple paths between some bridges (talker/listener)
- support of engineered multicast addresses
- suggestions for name
 - SPB-M without MAC-in-MAC [2]
 - SPB-M1
 - MAC by region

Seite 14	15 May 2012	M. Bahr, FJ. Götz (Siemens AG)	IEEE 802.1 AVB TG Meeting - York
----------	-------------	--------------------------------	----------------------------------

The Filtering Database for L2 Routing

		FDB	ID (FID)	MAC address	Port(s)
One entry per MAC Address	ber Destination less for unicasts n)		VLAN = 5	00:00:0c:00:00:01	3
(single path)			VLAN = 5	00:00:0c:00:00:02	15
One / two ent Destination M	ntries per MAC Address for ultiple paths)	ingress port ?	VLAN = 5	00:00:0c:00:00:03	3
unicasts (mul		ingress port ?	VLAN = 5	00:00:0c:00:00:03	7
	_	ingress port ?	VLAN = 5	00:00:0c:00:00:04	12
One / two entry per Multicast MAC Address for multicasts		ingress port ?	VLAN = 5	01:00:0c:00:xx:xx	3, 7
(multiple path	is)	ingress port ?	VLAN = 5	01:00:0c:00:xx:xx	4, 6, 15
		ingress port ?	VLAN = 5	01:00:0c:00:xx:yy	12, 31
	L				format from [2]
Seite 15	Seite 15 15 May 2012 M. Bahr, FJ. Götz (Siemens AG) IEEE 802.1 AVB TG Meeting - Yor				

Proposal Summary

- single path / multipath routing restricted to L2 Routing region
- existing and future protocols can be used simultaneously with different VLAN IDs
- use ISIS-SPB for distribution of topology information and available bandwith throughout L2 Routing region
- control data streams using engineered multicast addresses between selected nodes
- distribute talker/listener relationships throughout L2 region by extended ISIS-SPB or extended MSRP
- bridges compute consistent and best paths and bandwidth reservations locally
- MAC by region
 - one VLAN, forwarding based on customer MAC address (restricted to routing region)
 - no encapsulation of customer MAC (in contrast to SPB-M) since there is no scalability issue as in Provider Backbone
 - region has only scalable number of switches
 - only subset of switches included in routing

References

- [1] Franz-Josef Goetz: L2 Routing for Control Data Traffic @ Industry, March 2012
- [2] Norman Finn: More on SPB-V Shortest Path Bridging V-mode, Ver. 01, April 2012
- [3] Oliver Kleineberg: Redundancy for fault-tolerance and AVB Overview of the simultaneous multi-path proposal, March 2012