Back to the future: using TAS and preemption for deterministic distributed delays

Michael Johas Teener mikejt@broadcom.com/m@jot.us

Agenda

- Objectives of this proposal
- A bit of history
 - A bit more history
- Using TAS for peristaltic transport
 - Optimizing peristaltic transport using preemption
- Scalable delays with link speed
- What needs to be done
- So, what did I get wrong this time?

Objectives

Deterministic distributed delays for all streams

- really, this time I mean it!
- queues distributed between bridges evenly

Scalable delays with link speed

10x shorter delays for Class A traffic over links with a 10x speed increase

Multiple traffic classes

- Equivalent to Gen 1
- This time we will make sure the "observation interval" is programmable!
- Use Gen 1 SRP or future SRP/IS-IS

A bit of history*

- The original "Residential Ethernet" proposal
 - http://www.ieee802.org/802_tutorials/05-March/tutorial_1_0305.pdf
 - http://www.ieee802.org/3/re study/public/200409/teener 2 0904.pdf

Synchronous pacing

 Transmitter sends all packets labelled with cycle "n" as soon as possible in that cycle

am NOT Proposing this, so

Synchronous pacing in the RE proposal

 All bridges and talkers know the time, and schedule transmissions on "cycle" boundaries

frames are labeled with a talker cycle timestamp and a scheduled cycle

frames are launched as soon as possible after the scheduled cycle

at a bridge, the received scheduled cycle in incremented by 2 for 100Mbs links, by 1 for 1G+ if no jumbos

delay is between 1+#hop*2 and 4+#hop*2 cycles for 100Mbs links, 1+#hop and 2+#hop for 1G

(all assuming max 75% isoch BW)

Problems, problems

- Required a new tag with embedded cycle time
 - NOT acceptable in 2005 (or, most likely, even now)
- Required hop-by-hop relabeling of frames
 - time stamps of a crude nature
 - NOT acceptable in 2005
- Required putting a frame in a different queue based on new label
 - hmm, that's been done for a long time, hasn't it?
- Required different queues to be enabled for transmit at different times
 - hmm, that's time-aware shaping, isn't it?
 - (yeah, yeah, I know I'm elaborating on the concept a bit)
 - NOT acceptable in 2005

Another way to label packets

Use an explicit cycle marker frame?

now frame timer labels are virtual/implicit same delays, but small inefficiency due to min size cycle marker per cycle

13 November 2012

an IEEE 802.1 contribution from Michael Johas Teener

Totally implicit time labeling

 Ensure that the cycle time is greater than the sum of the longest interfering frame plus all the isochronous

traffic

traffic will arrive within the same cycle if, of course, this traffic is complete queued at the start of a cycle and is the highest priority

now all isochronous

13 November 2012

an IEEE 802.1 contribution from Michael Johas Teener

Using TAS for "peristaltic transport"

I could have called this "isochronous", but that's got a bad name in 802, so ...

- Take some of the concepts of the RE approach, but remove the most objectionable parts:
 - Frames are normal Q-tagged frames, nothing special
 - Distinguished by traffic class, exactly like current scheduled/ shaped traffic
 - Time aware shapers on egress
 - ... but ... (new stuff alert) ...
 - Time aware internal tagging on ingress
 - Two egress queues per traffic class

Time-aware tags ... two egress queues?

- Use current time to queue frames into different queues
 - put frames received in a odd cycle in the even queue
 - and the frames received in the even cycle in the odd queue
- Even queue has a window the opens up at the beginning of the even cycle
 - duration of opening could be almost a cycle time
 - odd queue window opens during the start of the odd cycle
- Many implementation options, but this uses the Qbv concept

Improve efficiency with preemption

 Now the cycle time must be greater than the longest interfering <u>fragment</u> plus all the isochronous traffic

if the max isoch traffic is 75% of the available BW, then the fragment could be almost 400 bytes for 100Mbs links

13 November 2012

an IEEE 802.1 contribution from Michael Johas Teener

Scalable delays with link speed

Scale the cycle time inversely with link speed ...

- if the 100Mb/s link cycle time is 125μs, then the 1G link cycle time could be 12.5μs ... could be any integer divisor
- this preserves the "bytes per cycle" number, and potentially reduces delays
- but there is a big complication:
 - if a stream is less than 75Mb/s then SRP may have to assign it to a particular "sub-cycle" (remember the integer divisor?) so that it can be carried on a 100Mb/s link
 - "first come, first served" subcycle assignment may work just fine if lower speed packets are internally assigned a lower priority within a switch, but may add delays for faster streams ... needs more thought!
- I'm sure there's an easier way to do this ... but it's late and I'm tired ...

What needs to be done?

Is this worth while to continue the investigation?

- deterministic delays ... always
- delays distributed evenly among switches, so queue sizes are topology invariant
- worst case delays will always be lower
- delivery jitter will be MUCH lower and topology invariant
- SRP operational requirements unchanged for single-speed networks
- paths with multiple link speeds will require more thought,
 but scalable delays look reasonably possible

Who else is interested?

Conclusion

- What's wrong with this idea?
 - I've been wrong before ...
- Who's willing to help make it right?
- Who's willing to blow it away?

Thanks!