
SIEMENS

Traffic Shaper for Control Data Traffic (CDT) @ Industry

2012-07-15
IEEE 802 AVB Meeting – San Diego

Franz-Josef Götz, Siemens AG

Why an ADDITIONAL Shaper for CDT in Bridges?

Reasons:

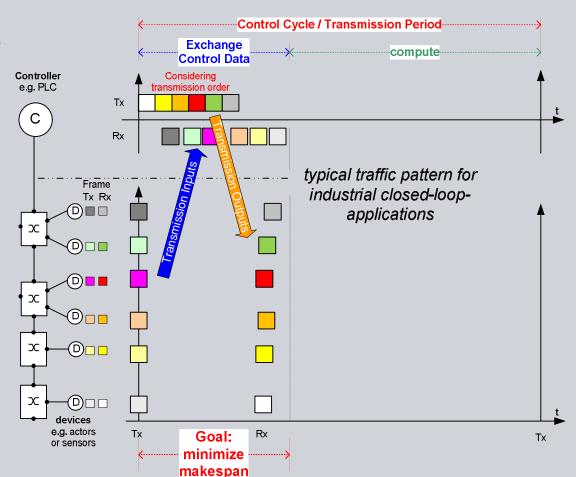
- Shaper with less configuration effort in bridges (only bandwidth not window size)
 - Adapt to different link speeds within a network
 - Automatically adaption to traffic flow
 - For mashed networks with multiple talker
 - Plugging of new components may change bandwidth but the time schedule must not adapted
- The shaper shall support periodic and event-based CDT (bandwidth limitation)
- Robust for safety critical applications
 - Emergency operation features (fail operational behavior)

NEW Shaper has to fulfill the following requirements:

- Guaranteed Low Latency for CTD
- Guarantee for maximum burst size for CTD
- Guaranteed bandwidth also for other traffic classes

Control Data Traffic Class (CDT) - Basics

Traffic shaper for Control Data Traffic in end stations and bridges


- Support periodic time based transmission of Control Data Frames in end stations
 - Transmission timestamp for window (burst)
 - Transmission timestamp per frame
- Specify scheduler for Control Data Traffic in bridges
 - TABS Time Aware Blocking Shaper with one and multiple windows
 - BLSA Burst Limiting Shaper Algorithm for CDT (will be explained in this presentation)

Preemption for Control Data Traffic

- Peer-to-Peer fragmentation of legacy traffic and AV Streams
- The preemption mechanism can be used for
 - Periodic CDT
 - Event-based CDT

But mechanism like

- L2 Routing for CDT (shortest path, multiple path for seamless redundancy),
- Bandwidth reservation for CDT and
- Scheduling of CDT

to optimize latency, minimize make span and minimize resources in bridges for Control Data Traffic are still required!

SIEMENS

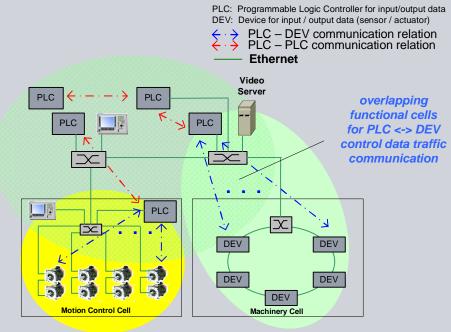
Multiple Transmission Periods for CDT

Typical Use Case:

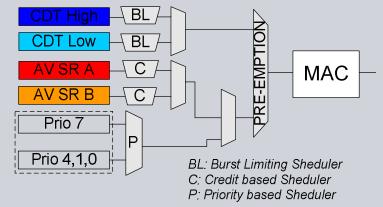
- CDT high 125µ transmission period
- CDT low 1 ms transmission period

Two CDT Classes within a functional cell because not all physical values (e.g. temperature) do change with same speed

Typical requirement on latency:


- Max latency for CDT high < 60µs
- Max latency for CDT low < 500µs

To minimize impact two Class for CDT are helpful


(one CDT Class mandatory, a second or .. optional)

Constrains for CDT Class:

- Minimum transmission period (minTP): e.g. 31,25µs
- To simplify load balancing strategy
 - Steps of 2^N x mTP (31,25μs − 1ms), N ε {1, 5} (odd-numbered shall be avoided -> bandwidth calculation becomes much more difficulty)
- Only one common transmission period within one functional cell or overlapping functional cells (least common multiple)
- Typical CDT frame size in the range of 64 400Bytes

802.1Q + Extention for CDT

IEEE 802 Meeting - San Diego

Mechanism to Guarantee Low Latency for CDT

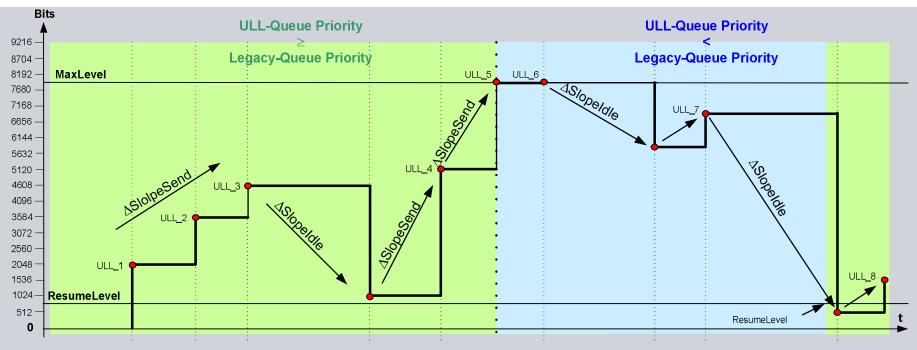
Aging for CDT Frames in CDT transmit queue

- Add local time stamp when putting CDT Frame in tx queue
- Drop CDT Frames when residence time > MaxAge

Bandwidth observation for CDT on ingress port

- Bandwidth measurement for CDT Interval = "x * TP"
- Bandwidth limitation and so called network fuses to protect network (e.g. babbling talker)

Diagnostic concept


- Count packet drop caused by aging
- Exceeding bandwidth on ingress port

Bandwidth limitation for CDT on egress port

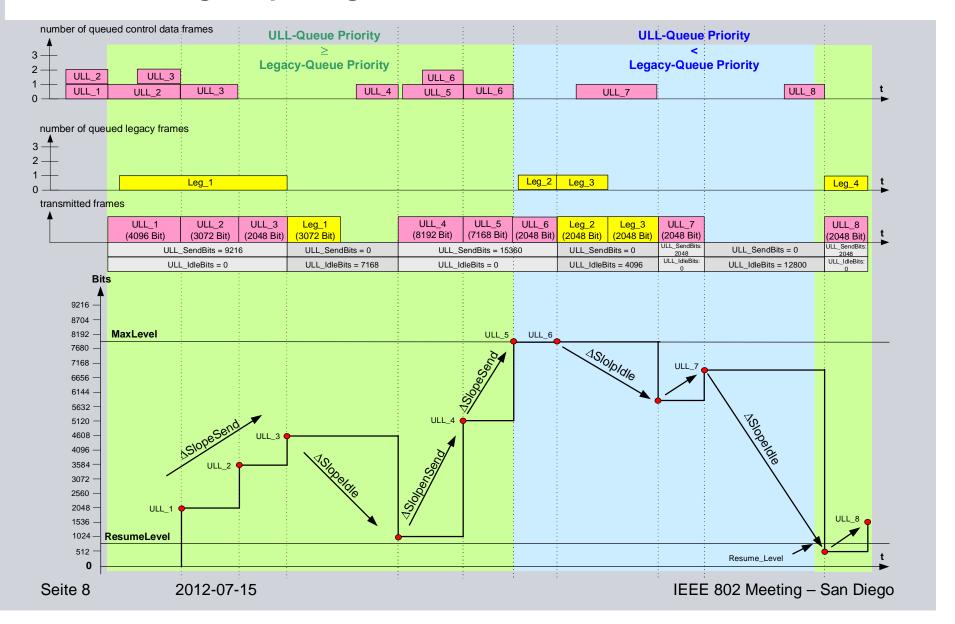
- Bandwidth reservation and limiting for CDT
- Limiting burst size for CDT

Proposal: Burst Limiting Shaper Algorithm for CDT

- While reserved bandwidth for Control Data is available the queue for Control data has highest priority (green area)
- While reserved bandwidth for Control Data is consumed the queue for Control data has lowest priority (blue area) to guarantee bandwidth for legacy traffic
- When Control Data frames are transmitted in the green area they can preempt transmission of a legacy frame
- In the blue area Control Data frames can only be transmitted when the queues for legacy traffic are empty

Burst Limiting Shaper Algorithm for CDT

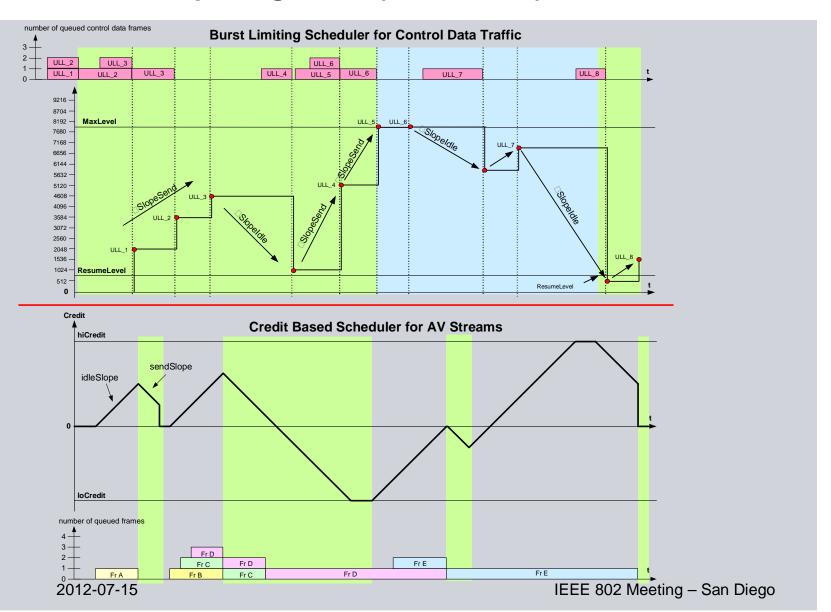
Calculations for Burst Limiting Shaper Algorithm (BLSA):


- Link speed (linkSpeed)
- Common transmission period (CTP)
- Leaky Bucket Bandwidth Fraction (LB_BwF is reserverd bandwidth for Control Data in %)
- Leake Rate for Control Data Traffic: LeakRate = LB BwF * linkSpeed
- Mean Frame Size for Control Data Frames in Bits: MeanCDFrameSize
- Send Slope for Control Data in bits : Slope_{Send} = (1 LB_BwF) * MeanCDFrameSize
- Idle Slope for Control Data in bits: Slope_{Idle} = LB_BwF * MeanCDFrameSize
- Maximum number of Bits (maximum burst size) per TP: MaxLevel = LeakRate * CTP + SafetyMargin
- Mean Control Data Frames per transmission period: mCDFramesTP = MaxLevel / Slope_{Send}
- Re-priority level: ResumeLevel = 0.1 * MaxLevel

Simple example for 10% of the available bandwidth for Control Data Traffic, CTP = $125\mu s$ and mean frame size for Control Data Frames: MeanCDFrameSize = 128 bytes

- linkSpeed = 1 Gbit/s
- **LB_BwF** = 0.1 (10%)
- LeakRate = 0.1 * 1 Gbit/s = 100Mbit/s
- **Slope**_{Send} = (1 LB_BwF) * 8 * 128 bytes = 922 bits
- **Slope**_{Idle} = LB_BwF * 8 * 128 bytes = -103 bits
- MaxLevel = 100 Mbits/s * 125µs + SafetyMargin = 12500 bits + SafetyMargin ≈ 13000 bits
- mCDFramesTP = > 13000 bits / 922 bits ≈ 14 Control Data frames
- **ResumeLevel** = 0.1 * 13000 bits = 1300 bits

SIEMENS


Burst Limiting Shaper Algorithm for CDT

Compare Burst Limiting Shaper Algorithm (CDT) with Credit Based Shaper Algorithm (AV Streams)

Seite 9

Next Steps?

Which PAR includes

- Specification for NEW Control Data Traffic Class
 - Supported transmission Periods
 - Multiple transmission periods

...

Burst Limiting Scheduler Algorithm (BLSA)

???