
Interoperability with a One-Step Clock
on Receive in 802.1ASbt

Geoffrey M. Garner
Consultant

IEEE 802.1 AVB TG
2013.11.12

gmgarner@alum.mit.edu

Introduction – 1
This presentation describes changes needed in 802.1AS (potentially
to be included in 802.1ASbt) for a clock (time-aware system) to
interoperate with a one-step clock

The clock interoperating with the one-step clock would need to handle
(process) messages received from the one-step clock
However, the clock would not have to be a one-step clock, nor transmit
one-step messages

This was discussed in previous presentations, most recently in the
initial version and in Revision 1 of [1]initial version and in Revision 1 of [1]

Revision 2 of [1] described additional changes needed for 802.1AS
for a clock to transmit one-step messages; this material is not
included and not discussed in the current presentation

The present presentation expands on Revision 1 of [1] in that the
changes needed for the MDSyncReceive state machine and related
functions are indicated

November 2013 IEEE 802.1 AVB 2

Introduction – 2
Reference [1] (all revisions) also indicates that if one-step Pdelay
messages are to be handled, we need to decide how information
needed for neighbor rate ratio computation will be transported

Here, we review the possible approaches described in [1]

November 2013 IEEE 802.1 AVB 3

Review of Two-Step Handling of Sync and Follow_Up
When a two-step clock (802.1AS time-aware system) sends Sync and
Follow_Up:

originTimestamp field of Sync is set to 0 (all the Sync fields after the header are
shown as reserved in 11.4.3)
correctionField of Sync is set to 0 (Table 11-5 of the 802.1ASbt draft
PreciseOrigin timestamp field of Follow_Up message contains the timestamp of the
grandmaster (GM) where the Sync information originated, except for any sub-ns
portion
correctionField of Follow_Up contains the sum of the sub-ns portion of the
timestamp of the GM where the Sync information originated the acumulatedtimestamp of the GM where the Sync information originated, the acumulated
residence times in the path, the accumulated mean link delays in the path, and any
asymmetry corrections

A time-aware system that receives Sync and Follow_Up from a two step
clock does the following on transmitting Sync and Follow_Up

Timestamp the outgoing Sync message and compute the residence time, as
indicated in 11.2.14 (MDSyncSend state machine)
Add the residence time and mean propagation delay on the incoming link to the
correctionField of the incoming Follow_Up message
Transmit the Follow_Up message with the incoming preciseOrigin timestamp and
the new correctionField value computed in the above bullet item

November 2013 IEEE 802.1 AVB 4

Handling of Sync and Follow_Up from One-Step Clock – 1

802.1AS does not currently specify a one-step clock
The most logical place to go to for a description of what a one-step clock
sends is IEEE 1588

When a one-step boundary clock sends Sync (it does not send
Follow_Up because it is one-step):

The originTimestamp contains the recovered GM time, except for any sub-
ns part
The correctionField contains any sub-ns portion of the recovered GM timeThe correctionField contains any sub ns portion of the recovered GM time
The correctionField does not contain any residence time corrections, nor
link delays, when the Sync message is transmitted by a BC; these are
included in the correction field only if the Sync message is transmitted by a
transparent clock (TC)

•When the Sync message is transmitted by a BC, these corrections are included
in the originTimestamp (except for any sub-ns part)

November 2013 IEEE 802.1 AVB 5

Handling of Sync and Follow_Up from One-Step Clock – 2

802.1AS does not specify one-step on transmission (as stated above)
For two-step transmission, 802.1AS places all components of the
time, except the GM time when it transmits the Sync information
excluding any sub-ns portion, in the correctionField
It is conceivable that a one-step clock whose Sync messages are
being received might also place all components of time (except the
GM time when it transmits the Sync information excluding any sub-ns
portion) in the correctionField

The main constraint is that when we add the originTimestamp and
correctionField, the result is the time the Sync message was transmitted
by the next upstream node

Therefore, we will assume that the time the Sync message was
transmitted by the next upstream node is the sum of the Sync
message originTimestamp and correctionField, for the case where
the upstream boundary clock or ordinary clock is one-step
Finally, it is assumed that the Follow_Up information TLV is attached
to the Sync message when the transmission is from a one-step clock

November 2013 IEEE 802.1 AVB 6

Additional Point for Two-Step Clocks

If a clock is two-step, the correctionField of Sync ought to not contain
timing information (i.e., it ought to be zero)

This is because IEEE 1588 – 2008 (subclause 9.5.9.4) and IEEE 802.1AS
– 2011 (subclause 11.2.14.2.1) specify that the Sync correctionField shall
be set to zero on transmit
However, it would be safest to check the correctionField of Sync anyway
since, given that we are describing interaction with one-step clocks, which
are not specified in 802.1AS, we might also have non-standard behavior
that results in the Sync correctionField non-zero when transmitted from athat results in the Sync correctionField non-zero when transmitted from a
two-step boundary clock; for example

•The message could have come from a system that interoperates with
one-step clocks and leaves the Sync correctionField intact

•There could be a one-step transparent clock in between the upstream
two-step boundary clock and the receiving boundary clock

Therefore, when receiving messages from a two-step clock, the
correctionFields of the Sync and Follow_Up messages should be added to
the preciseOriginTimestamp to obtain the time the Sync message was
transmitted by the next upstream node

November 2013 IEEE 802.1 AVB 7

Summary of Changes to Handle One-Step on Receive (See R1 of [1]) - 1

Allow twoStepFlag to be FALSE on receive, in Table 11-4
Also in Table 11-4, now must pay attention to twoStepFlag on receive
(and not ignore it on receive)
In Table 11-5, need to indicate that the correctionField of Sync now
can contain corrections for fractional ns, residence times, and link
delays (and any asymmetry corrections) in the case where the
messages are from a one-step clock

However, the correctionField may contain timing information in the two-
step case as indicated on the previous slide; therefore, it will be included in
computing the GM time

In MDSyncReceiveSM state machine (11.2.13 and Figure 11-6),
need to add logic for case where twoStepFlag is FALSE

If twoStepFlag is FALSE, do not wait for Follow_Up; process the
correctionField in Sync as the Follow_Up correctionField would be
processed.

November 2013 IEEE 802.1 AVB 8

Summary of Changes to Handle One-Step on Receive (See R1 of [1]) - 1

If twoStepFlag is TRUE, the correctionField of Sync should be added
to the preciseOriginTimestamp and correctionField of the Follow_Up
message to obtain the GM time when the Sync message was
transmitted from the next node upstream
MDSyncSendSM state machine does not change, as messages are
sent as two-step

November 2013 IEEE 802.1 AVB 9

Current MDSyncReceive State Machine

WAITING_FOR_FOLLOW_UP

rcvdSync && portEnabled
&& pttPortEnabled &&

asCapable

rcvdSync = FALSE;
rcvdFollowUp = FALSE;

DISCARD

BEGIN || (rcvdSync && (!portEnabled || !pttPortEnabled || !asCapable))

November 2013 IEEE 802.1 AVB 10

rcvdSync = FALSE;
A = rcvdSyncPtr->logMessageInterval;

upstreamSyncInterval =(109)*2A;
followUpReceiptTimeoutTime = currentTime + upstreamSyncInterval;

rcvdFollowUp = FALSE;
txMDSyncReceivePtr = setMDSyncReceive (rcvdFollowUpPtr);

txMDSyncReceive (txMDSyncReceivePtr);

WAITING_FOR_SYNC

rcvdFollowUp &&
(rcvdFollowUpPtr->sequenceId
== rcvdSyncPtr->sequenceId)

rcvdSync && portEnabled && pttPortEnabled && asCapable

currentTime >=
followUpReceiptTimeoutTime

rcvdSync && portEnabled
&& pttPortEnabled &&

asCapable

setMDSyncReceive(): creates an MDSyncReceive structure, and returns a pointer to this
structure. The members of this structure are set as follows:

a) followUpCorrectionField is set equal to the correctionField (see Error! Reference
source not found.) of the most recently received FollowUp message,

b) sourcePortIdentity is set equal to the sourcePortIdentity (see Error! Reference source
not found.) of the most recently received Sync message,

c) logMessageInterval is set equal to the logMessageInterval (see Error! Reference
source not found.) of the most recently received Sync message,

d) preciseOriginTimestamp is set equal to the preciseOriginTimestamp (see Error!
Reference source not found.) of the most recently received Follow_Up message,

e) rateRatio is set equal to the quantity (cumulativeScaledRateOffset2–41)+1.0, where
the cumulativeScaledRateOffset field is for the most recently received Follow_Up
message (see Error! Reference source not found.),

f) upstreamTxTime is set equal to the <syncEventIngressTimestamp> for the most
recently received Sync message, minus the mean propagation time on the link
attached to this port (neighborPropDelay, see 10.2.4.7) divided by
neighborRateRatio (see 10.2.4.6), minus delayAsymmetry (see 10.2.4.8) for this
port divided by rateRatio [see rateRatio is set equal to the quantity
(cumulativeScaledRateOffset above]. The <syncEventIngressTimestamp> is equal
to the timestamp value measured relative to the timestamp measurement plane,
minus any ingressLatency (see 8.4.3),

NOTE 1—The mean propagation time is divided by neighborRateRatio to convert it from
the time base of the time-aware system at the other end of the attached link to the time
base of the current time-aware system. The delayAsymmetry is divided by rateRatio to
convert it from the time base of the grandmaster to the time base of the current time-
aware system. The two quotients are then subtracted from
<syncEventIngressTimestamp>, which is measured relative to the time base of the
current time-aware system.

NOTE 2—The difference between the mean propagation time in the grandmaster time
base, the time base of the time-aware system at the other end of the link, and the time
base of the current time-aware system is usually negligible. The same is true of any
delayAsymmetry. See NOTE 2 of Error! Reference source not found..

g) gmTimeBaseIndicator is set equal to the gmTimeBaseIndicator of the most recently
received Follow_Up message (see Error! Reference source not found.),

h) lastGmPhaseChange is set equal to the lastGmPhaseChange of the most recently
received Follow_Up message (see Error! Reference source not found.), and

i) lastGmFreqChange is set equal to the lastGmFreqChange of the most recently
received Follow_Up message (see Error! Reference source not found.).

New MDSyncReceive State Machine

WAITING_FOR_FOLLOW_UP

rcvdSync && portEnabled
&& pttPortEnabled &&

asCapable && twoStepFlag

rcvdSync = FALSE;
rcvdFollowUp = FALSE;

DISCARD

BEGIN || (rcvdSync && (!portEnabled || !pttPortEnabled || !asCapable))

WAITING_FOR_SYNC

rcvdSync && portEnabled
&& pttPortEnabled &&

asCapable && !twoStepFlag

November 2013 IEEE 802.1 AVB 11

rcvdSync = FALSE;
A = rcvdSyncPtr->logMessageInterval;

upstreamSyncInterval =(109)*2A;
followUpReceiptTimeoutTime = currentTime + upstreamSyncInterval;

rcvdFollowUp = FALSE;
txMDSyncReceivePtr = setMDSyncReceive (rcvdFollowUpPtr);

txMDSyncReceive (txMDSyncReceivePtr);

WAITING_FOR_SYNC

rcvdFollowUp &&
(rcvdFollowUpPtr->sequenceId
== rcvdSyncPtr->sequenceId)

rcvdSync && portEnabled && pttPortEnabled && asCapable

currentTime >=
followUpReceiptTimeoutTime

rcvdSync && portEnabled
&& pttPortEnabled &&

asCapable

rcvdSync = FALSE;
A = rcvdSyncPtr->logMessageInterval;

upstreamSyncInterval =(109)*2A;
txMDSyncReceivePtr = setMDSyncReceive (rcvdSyncPtr);

txMDSyncReceive (txMDSyncReceivePtr);

rcvdSync && portEnabled &&
pttPortEnabled && asCapable

setMDSyncReceive(): creates an MDSyncReceive structure, and returns a pointer to this
structure. The members of this structure are set as follows:

a) If twoStepFlag of the most recently received Sync message is TRUE,
followUpCorrectionField is set equal to the sum of the correctionField (see Error!
Reference source not found.11.4.2.4) of the most recently received Sync message,
plus the correctionField of the most recently received Follow_Up message, else
followUpCorrectionField is set equal to the correctionField of the most recently
received Sync message,

b) sourcePortIdentity is set equal to the sourcePortIdentity (see Error! Reference source
not found.11.4.2.5) of the most recently received Sync message,

c) logMessageInterval is set equal to the logMessageInterval (see Error! Reference
source not found.11.4.2.8) of the most recently received Sync message,

d) if twoStepFlag of the most recently received Sync message is TRUE,
preciseOriginTimestamp is set equal to the preciseOriginTimestamp (see Error!
Reference source not found.11.4.4.2.1) of the most recently received Follow_Up
message, else preciseOriginTimestamp is set equal to the originTimestamp (see
11.4.3.2.1) of the most recently received Sync message,

e) rateRatio is set equal to the quantity (cumulativeScaledRateOffset2–41)+1.0, where
the cumulativeScaledRateOffset field is for the most recently received Follow_Up
message (see Error! Reference source not found.11.4.4.3.6),

f) upstreamTxTime is set equal to the <syncEventIngressTimestamp> for the most
recently received Sync message, minus the mean propagation time on the link
attached to this port (neighborPropDelay, see 10.2.4.7) divided by
neighborRateRatio (see 10.2.4.6), minus delayAsymmetry (see 10.2.4.8) for this
port divided by rateRatio [see rateRatio is set equal to the quantity
(cumulativeScaledRateOffsete) above]. The <syncEventIngressTimestamp> is
equal to the timestamp value measured relative to the timestamp measurement
plane, minus any ingressLatency (see 8.4.3),

NOTE 1—The mean propagation time is divided by neighborRateRatio to convert it from
the time base of the time-aware system at the other end of the attached link to the time
base of the current time-aware system. The delayAsymmetry is divided by rateRatio to
convert it from the time base of the grandmaster to the time base of the current time-
aware system. The two quotients are then subtracted from
<syncEventIngressTimestamp>, which is measured relative to the time base of the
current time-aware system.

NOTE 2—The difference between the mean propagation time in the grandmaster time
base, the time base of the time-aware system at the other end of the link, and the time
base of the current time-aware system is usually negligible. The same is true of any
delayAsymmetry. See NOTE 2 of Error! Reference source not found.11.2.15.2.4.

g) gmTimeBaseIndicator is set equal to the gmTimeBaseIndicator of the most recently
received Follow_Up message (see Error! Reference source not found.11.4.4),

h) lastGmPhaseChange is set equal to the lastGmPhaseChange of the most recently
received Follow_Up message (see Error! Reference source not found.11.4.4), and

i) lastGmFreqChange is set equal to the lastGmFreqChange of the most recently
received Follow_Up message (see Error! Reference source not found.11.4.4).

Sync Message Tables

The Sync message structure (subclause 11.4.3) must be shown
separately for the one-step and two-step cases
If twoStepFlag is TRUE, the Sync message is as it is shown in 11.4.3
(Table 11-8)

In this case, the originTimestamp field, which follows the header, is shown
as reserved

If twoStepFlag is FALSE, the Sync message looks like the Follow_Up
message (Table 11-9), except that the preciseOriginTimestamp ismessage (Table 11 9), except that the preciseOriginTimestamp is
labeled originTimestamp

In this case, the Follow_Up information TLV is present

November 2013 IEEE 802.1 AVB 12

Processing of Pdelay Messages – 1 (taken from [1])

Need to decide what to do regarding the Pdelay messages
Both Pdelay_Resp and Pdelay_Resp_Follow_Up messages are used in nearest
neighbor rate ratio measurement
In one-step Pdelay, only Pdelay_Resp is sent, and it carries difference between its
send time and the Pdelay_Req receipt time

•This is sufficient information for propagation delay measurement, but not for
neighbor rate ratio measurement

Some possible solutions are
•Don’t handle one-step Pdelay messages on receive (i.e., only handle one-step
S)Sync)

•Carry the responseOriginTimestamp (i.e., the timestamp of the sending of
Pdelay_Resp) in the requestReceiptTimestamp field of Pdelay_Resp

–This can be done because IEEE 1588 specifies that in the one-step case the
requestReceiptTimestamp field is set to zero, and the difference t3 – t2 is carried in the
correctionField

–But this would not allow any sub-ns component of the timestamp of sending
Pdelay_Resp to be carried

–Also, this would be a specification in 802.1AS; it would be necessary that the one-step
system that sends Pdelay_Resp complies with this (probably would want to request this
be added to 1588v3)

July 2012 IEEE 802.1 AVB 13

Processing of Pdelay Messages – 2 (taken from [1])

Need to decide what to do regarding the Pdelay messages (cont.)
Some possible solutions (cont.)

•Carry the responseOriginTimestamp in a TLV attached to Pdelay_Resp
–In this approach, a TLV of the same length must be added to Pdelay_Req so that

Pdelay_Req and Pdelay_Resp have the same length
–This is done to ensure that there is no error in measured propagation delay in the event

there is an unknown or undetected asymmetry that depends on message length
–This Pdelay_Req TLV would likely not carry any useful information; its purpose would be

only to ensure that Pdelay_Req and Pdelay_Resp have the same length

•Invent a new mechanism for neighbor rate ratio measurement for this case (i.e., g (,
other than the new mechanisms above)

•Others?
The intent is that the AVB TG would pick a solution for measuring rate ratio (either
one of the above or another solution)

•It is not intended to have multiple options

July 2012 IEEE 802.1 AVB 14

References – 1

[1] Geoffrey M. Garner, Discussion of Assumptions for 802.1ASbt
Features, presentation for IEEE 802.1 AVB TG, July 16, 2012,
Revision 1, July 16, 2012, Revision 2, July 19, 2012.

November 2013 IEEE 802.1 AVB 15

