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Ensuring Reliable Networks Lessons Learned (from ARINC) 

Redundancy Management requires precise knowledge of 

the communication latency and jitter of the messages 

on the redundant paths through the network. 

In certain cases the loss of a frame on one network can 

cause the loss of its copy on the redundant network.  

Sometimes, loss of communication requires to restart the 

sequence numbering.  

The ARINC 664-p7 redundancy mechanism is very well 

studied by academics and industry due to its 

importance and criticality for avionics systems.  

Designed for closed networks. 
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Formal Analysis by Model Checking 
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Algorithm
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ok 
SAL

SAL Model

nodes[id:index]: MODULE =

BEGIN

INPUT

 membership_in: ARRAY index

OF BOOLEAN,

 classification_in: CLASSES,

 sender_in: index

OUTPUT

 membership_out: ARRAY index

OF BOOLEAN,

 classification_out: ARRAY index

OF CLASSES

LOCAL

 asymmetry_memb: ARRAY

index OF BOOLEAN,

 asymmetry_clas: ARRAY index

OF BOOLEAN

INITIALIZATION

 (FORALL (i:index):

membership_out[i] = TRUE);

 (FORALL (i:index):

classification_out[i] = accept);

TRANSITION

[

   id=faulty

 -->

   membership_out'=[[j:index] IF

asymmetry_memb[j] THEN

FALSE ELSE TRUE ENDIF];

   classification_out'= [[j:index] IF

asymmetry_clas[j] THEN reject

ELSE flagged ENDIF];

]

END;

Properties

Specification

?

Model Checker 

Modify

no,  

because…  

Counter Example

asymmetry_memb[1][2] = false;

asymmetry_memb[1][3] = false;

asymmetry_memb[1][4] = false;

asymmetry_memb[1][5] = false;

asymmetry_memb[2][1] = false;

asymmetry_memb[2][2] = false;

asymmetry_memb[2][3] = false;

asymmetry_memb[2][4] = false;

asymmetry_memb[2][5] = false;

asymmetry_memb[3][1] = true;

asymmetry_memb[3][2] = false;

asymmetry_memb[3][3] = false;

asymmetry_memb[3][4] = false;

asymmetry_memb[3][5] = true;
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Proposal – IEEE 802.1Q 

AVB/TSN Failure Hypothesis 

Fault-Containment Regions (FCR): 
• Communication Link 

• End Station 

• Bridge 

 A fault is local to either an end station or a bridge or a communication link. 

 If more than one bridge / one end stations / one link become faulty then we have also more 
than one fault. 

 

Failure Mode for End Stations and Bridges 
• Permanent, Consistent, and Fail-Silent  

  In the case of a failure, a faulty FCR will stop producing output (“Fail-Silent”). 

 A faulty FCR will behave the same on all ports, e.g., a faulty bridge will stop producing output 
on all ports (“Consistent”).  

 A faulty FCR will be faulty for the remaining mission time (“Permanent”). 

Failure Mode for Communication Links 
• Transient or Permanent, Detectably Faulty 

 The communication link may drop frames or invalidate the Ethernet FCS on a per frame basis 
(“Transient”). 

 The communication link may become unavailable for the remaining mission time 
(“Permanent”). 

 Each failure of the communication link results in either a loss of the frame or an invalidation of 
the frame’s FCS (“Detectably Faulty“). 
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Real Network 

Abstract Model 
SN_IN 

SN_IN 

SN_delivered 

SN_delivered 

SN_accepted 
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talker: MODULE = 

BEGIN 

… 

TRANSITION 

[ 

 

 talker_state = generate 

--> 

 talker_state' = generate; 

 

[] 

  talker_state = generate 

  AND SN[1]<max_SN 

 --> 

  talker_state' = generate; 

  SN'= [[c: TYPE_channels] 

   SN[1]+1]; 
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[] 

  talker_state = generate 

  AND SN[1]>=max_SN 

 --> 

  talker_state' = stop; 

 

 

[] 

  talker_state = stop 

 --> 

  talker_state' = stop; 

   

] 

 

END; 

 

 

if 

then 
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ch_state = delay 
 --> 
  ch_state'  = delay; 
  SN_stored' = [[n:TYPE_SN]  IF n=SN_IN AND n/=0  
        THEN TRUE  
        ELSE SN_stored[n]  
        ENDIF]; 
  SN_delivered' = 0; 
   
[] 
  ch_state = delay 
 --> 
  ch_state'  = forward; 
  SN_stored' = [[n:TYPE_SN]  IF n=SN_IN AND n/=0  
        THEN TRUE 
        ELSIF n=nextSN(SN_stored) 
        THEN FALSE 
        ELSE SN_stored[n]  
        ENDIF]; 
  SN_delivered' = nextSN(SN_stored); 
   
 
% SN_stored is a bitvector indexed by the SN 
% SN_stored[i] will be true if the channel has stored SN i and 

false otherwise  
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[] ch_state = forward 
 --> 
  ch_state'  = delay; 
  SN_stored' = [[n:TYPE_SN]  IF n=SN_IN AND n/=0  
        THEN TRUE  
        ELSE SN_stored[n]  
        ENDIF]; 
  SN_delivered' = 0; 
 
 
[] ch_state = forward 
 --> 
  ch_state'  = forward; 
  SN_stored' = [[n:TYPE_SN]  IF n=SN_IN AND n/=0 
         THEN TRUE 
        ELSIF n=nextSN(SN_stored) 
         THEN FALSE 
        ELSE SN_stored[n]  
        ENDIF]; 
  SN_delivered' = nextSN(SN_stored); 
   
   
% SN_stored is a bitvector indexed by the SN 
% SN_stored[i] will be true if the channel has stored SN i and 

false otherwise  
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SN_top' = IF list_SN_delivered[1] >  SN_top AND 
             list_SN_delivered[1] >= list_SN_delivered[2]  
           THEN list_SN_delivered[1] 
          ELSIF list_SN_delivered[2] >  SN_top AND 
                 list_SN_delivered[2] >= list_SN_delivered[1] 
           THEN list_SN_delivered[2] 
        ELSE  SN_top 
        ENDIF; 
   
  SN_acceptance_window' = [[s:TYPE_SN]  
        IF s > SN_top' OR s < SN_top'-ACC_WINDOW  
        THEN FALSE ELSE TRUE ENDIF]; 
 
  SN_accepted' = [[s:TYPE_SN]  
       IF (s=list_SN_delivered[1] OR s=list_SN_delivered[2])  
           AND SN_acceptance_window'[s] 
       THEN TRUE 
     ELSE SN_accepted[s] ENDIF]; SN_top 
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all_accepted:  
  LEMMA system |- F(FORALL(s:TYPE_SN): SN_accepted[s]); 

 
 
F … in all execution traces, there will be a point in time  
(FORALL(s:TYPE_SN): SN_accepted[s]) … all SNs will be accepted 
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%Execution of the model: 
 
> sal-smc network all_accepted 
 
 
Note: this is not a simulation, but rather an exhaustive search.  
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Counterexample – due to 

arbitrary delays in the bridges 
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ch_state = delay AND delay_ctr < max_delay 
 --> 
  ch_state'  = delay; 
  SN_stored' = [[n:TYPE_SN]  IF n=SN_IN AND  
                   n/=0  
        THEN TRUE  
        ELSE SN_stored[n]  
        ENDIF]; 
  SN_delivered' = 0; 
  delay_ctr' = IF delay_ctr < max_delay  
   THEN delay_ctr+1  
   ELSE delay_ctr ENDIF;  

In the model we simply add a delay counter that cannot exceed a 

particular value. 

In reality this imposes a requirement of a known upper bound on the  

forwarding duration.  

 

 With this addition the previous counterexample goes away. 
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[] 
  c = FAULTY AND FAULTS_ENABLED 
 -->  
  SN_stored' IN {x: ARRAY TYPE_SN OF BOOLEAN | 
        (FORALL (i:TYPE_SN): NOT SN_stored[i] => NOT x[i])};  
 
 

We simply allow the faulty channel to drop messages. 

This is modeled by allowing the faulty channel to set any value in the 

SN_stored to FALSE. 

 

This behavior results in the following counterexample.  
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faulty channel 

SN 2 dropped 

SN 4 dropped 

SN 7 dropped 

SN 8 delivered 

SN 4 delivered 

SN 2 delivered 

but not accepted,  

due to window 



www.tttech.com 

Ensuring Reliable Networks Proposed Solution 

Page 16 

 

http://www.ieee802.org/1/files/public/docs2012/new-goetz-jochim-Seamless-Redundancy-1112-v02.pdf 
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We have analyzed a proposed solution to P802.1CB by 

means of model checking. 

This analysis strengthened the assumptions that, 

• the worst-case transmission latencies need to be known 

• the failure mode of a faulty channel needs to be taken 

into account for the configuration of the proposed 

protocol. 

We are currently analyzing how the particular 

transmission/configuration parameters interrelate, e.g., 

how large does the acceptance window need to be? 
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In this analysis the SAL model checker developed by SRI 

International has been used: http://fm.csl.sri.com/ 
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