
www.tttech.com

Ensuring Reliable Networks

Page 1

Formal Analysis of P802.1CB
IEEE Plenary, Geneva, Jul/2013

Wilfried Steiner, Corporate Scientist

wilfried.steiner@tttech.com

www.tttech.com

Ensuring Reliable Networks Proposed Solution

Page 2

http://www.ieee802.org/1/files/public/docs2012/new-goetz-jochim-Seamless-Redundancy-1112-v02.pdf

www.tttech.com

Ensuring Reliable Networks Lessons Learned (from ARINC)

Redundancy Management requires precise knowledge of

the communication latency and jitter of the messages

on the redundant paths through the network.

In certain cases the loss of a frame on one network can

cause the loss of its copy on the redundant network.

Sometimes, loss of communication requires to restart the

sequence numbering.

The ARINC 664-p7 redundancy mechanism is very well

studied by academics and industry due to its

importance and criticality for avionics systems.

Designed for closed networks.

Page 3

http://www.ieee802.org/1/files/public/docs2013/

new-avb-wsteiner-8021CB-lessons-learned-from-avionics-0513-v01.pdf

www.tttech.com

Ensuring Reliable Networks

Page 4

Formal Analysis by Model Checking

Failure

Specification

INIT

(1)

LISTEN

(2)

COLD

START

(3)

ACTIVE

(4)

1.1 2.1

2.2

3.1

3.2

INIT

(1)

LISTEN

(2)

1.1

2.1 STARTUP

(3)

Tentative

ROUND

(5)

ACTIVE

(7)

Protected

STARTUP

(6)

2.2

3.2

SILENCE

(4)

3.1

4.1

5.1

5.2

6.1

6.26.3

2.3

Algorithm

Specification

ok
SAL

SAL Model

nodes[id:index]: MODULE =

BEGIN

INPUT

 membership_in: ARRAY index

OF BOOLEAN,

 classification_in: CLASSES,

 sender_in: index

OUTPUT

 membership_out: ARRAY index

OF BOOLEAN,

 classification_out: ARRAY index

OF CLASSES

LOCAL

 asymmetry_memb: ARRAY

index OF BOOLEAN,

 asymmetry_clas: ARRAY index

OF BOOLEAN

INITIALIZATION

 (FORALL (i:index):

membership_out[i] = TRUE);

 (FORALL (i:index):

classification_out[i] = accept);

TRANSITION

[

 id=faulty

 -->

 membership_out'=[[j:index] IF

asymmetry_memb[j] THEN

FALSE ELSE TRUE ENDIF];

 classification_out'= [[j:index] IF

asymmetry_clas[j] THEN reject

ELSE flagged ENDIF];

]

END;

Properties

Specification

?

Model Checker

Modify

no,

because…

Counter Example

asymmetry_memb[1][2] = false;

asymmetry_memb[1][3] = false;

asymmetry_memb[1][4] = false;

asymmetry_memb[1][5] = false;

asymmetry_memb[2][1] = false;

asymmetry_memb[2][2] = false;

asymmetry_memb[2][3] = false;

asymmetry_memb[2][4] = false;

asymmetry_memb[2][5] = false;

asymmetry_memb[3][1] = true;

asymmetry_memb[3][2] = false;

asymmetry_memb[3][3] = false;

asymmetry_memb[3][4] = false;

asymmetry_memb[3][5] = true;

www.tttech.com

Ensuring Reliable Networks

Page 5

Proposal – IEEE 802.1Q

AVB/TSN Failure Hypothesis

Fault-Containment Regions (FCR):
• Communication Link

• End Station

• Bridge

 A fault is local to either an end station or a bridge or a communication link.

 If more than one bridge / one end stations / one link become faulty then we have also more
than one fault.

Failure Mode for End Stations and Bridges
• Permanent, Consistent, and Fail-Silent

 In the case of a failure, a faulty FCR will stop producing output (“Fail-Silent”).

 A faulty FCR will behave the same on all ports, e.g., a faulty bridge will stop producing output
on all ports (“Consistent”).

 A faulty FCR will be faulty for the remaining mission time (“Permanent”).

Failure Mode for Communication Links
• Transient or Permanent, Detectably Faulty

 The communication link may drop frames or invalidate the Ethernet FCS on a per frame basis
(“Transient”).

 The communication link may become unavailable for the remaining mission time
(“Permanent”).

 Each failure of the communication link results in either a loss of the frame or an invalidation of
the frame’s FCS (“Detectably Faulty“).

www.tttech.com

Ensuring Reliable Networks 802.1CB – Model Structure

Page 6

Real Network

Abstract Model
SN_IN

SN_IN

SN_delivered

SN_delivered

SN_accepted

www.tttech.com

Ensuring Reliable Networks Talker Model

talker: MODULE =

BEGIN

…

TRANSITION

[

 talker_state = generate

-->

 talker_state' = generate;

[]

 talker_state = generate

 AND SN[1]<max_SN

 -->

 talker_state' = generate;

 SN'= [[c: TYPE_channels]

 SN[1]+1];

Page 7

[]

 talker_state = generate

 AND SN[1]>=max_SN

 -->

 talker_state' = stop;

[]

 talker_state = stop

 -->

 talker_state' = stop;

]

END;

if

then

www.tttech.com

Ensuring Reliable Networks Channel 1/2

Page 8

ch_state = delay
 -->
 ch_state' = delay;
 SN_stored' = [[n:TYPE_SN] IF n=SN_IN AND n/=0
 THEN TRUE
 ELSE SN_stored[n]
 ENDIF];
 SN_delivered' = 0;

[]
 ch_state = delay
 -->
 ch_state' = forward;
 SN_stored' = [[n:TYPE_SN] IF n=SN_IN AND n/=0
 THEN TRUE
 ELSIF n=nextSN(SN_stored)
 THEN FALSE
 ELSE SN_stored[n]
 ENDIF];
 SN_delivered' = nextSN(SN_stored);

% SN_stored is a bitvector indexed by the SN
% SN_stored[i] will be true if the channel has stored SN i and

false otherwise

www.tttech.com

Ensuring Reliable Networks Channel 2/2

Page 9

[] ch_state = forward
 -->
 ch_state' = delay;
 SN_stored' = [[n:TYPE_SN] IF n=SN_IN AND n/=0
 THEN TRUE
 ELSE SN_stored[n]
 ENDIF];
 SN_delivered' = 0;

[] ch_state = forward
 -->
 ch_state' = forward;
 SN_stored' = [[n:TYPE_SN] IF n=SN_IN AND n/=0
 THEN TRUE
 ELSIF n=nextSN(SN_stored)
 THEN FALSE
 ELSE SN_stored[n]
 ENDIF];
 SN_delivered' = nextSN(SN_stored);

% SN_stored is a bitvector indexed by the SN
% SN_stored[i] will be true if the channel has stored SN i and

false otherwise

www.tttech.com

Ensuring Reliable Networks Listener

Page 10

SN_top' = IF list_SN_delivered[1] > SN_top AND
 list_SN_delivered[1] >= list_SN_delivered[2]
 THEN list_SN_delivered[1]
 ELSIF list_SN_delivered[2] > SN_top AND
 list_SN_delivered[2] >= list_SN_delivered[1]
 THEN list_SN_delivered[2]
 ELSE SN_top
 ENDIF;

 SN_acceptance_window' = [[s:TYPE_SN]
 IF s > SN_top' OR s < SN_top'-ACC_WINDOW
 THEN FALSE ELSE TRUE ENDIF];

 SN_accepted' = [[s:TYPE_SN]
 IF (s=list_SN_delivered[1] OR s=list_SN_delivered[2])
 AND SN_acceptance_window'[s]
 THEN TRUE
 ELSE SN_accepted[s] ENDIF]; SN_top

www.tttech.com

Ensuring Reliable Networks Correctness Property

all_accepted:
 LEMMA system |- F(FORALL(s:TYPE_SN): SN_accepted[s]);

F … in all execution traces, there will be a point in time
(FORALL(s:TYPE_SN): SN_accepted[s]) … all SNs will be accepted

Page 11

%Execution of the model:

> sal-smc network all_accepted

Note: this is not a simulation, but rather an exhaustive search.

www.tttech.com

Ensuring Reliable Networks

Counterexample – due to

arbitrary delays in the bridges

Page 12

www.tttech.com

Ensuring Reliable Networks Channel w. delay upper bound

Page 13

ch_state = delay AND delay_ctr < max_delay
 -->
 ch_state' = delay;
 SN_stored' = [[n:TYPE_SN] IF n=SN_IN AND
 n/=0
 THEN TRUE
 ELSE SN_stored[n]
 ENDIF];
 SN_delivered' = 0;
 delay_ctr' = IF delay_ctr < max_delay
 THEN delay_ctr+1
 ELSE delay_ctr ENDIF;

In the model we simply add a delay counter that cannot exceed a

particular value.

In reality this imposes a requirement of a known upper bound on the

forwarding duration.

 With this addition the previous counterexample goes away.

www.tttech.com

Ensuring Reliable Networks Adding a faulty channel

Page 14

[]
 c = FAULTY AND FAULTS_ENABLED
 -->
 SN_stored' IN {x: ARRAY TYPE_SN OF BOOLEAN |
 (FORALL (i:TYPE_SN): NOT SN_stored[i] => NOT x[i])};

We simply allow the faulty channel to drop messages.

This is modeled by allowing the faulty channel to set any value in the

SN_stored to FALSE.

This behavior results in the following counterexample.

www.tttech.com

Ensuring Reliable Networks Acceptance Window Size = 3 SN

Page 15

faulty channel

SN 2 dropped

SN 4 dropped

SN 7 dropped

SN 8 delivered

SN 4 delivered

SN 2 delivered

but not accepted,

due to window

www.tttech.com

Ensuring Reliable Networks Proposed Solution

Page 16

http://www.ieee802.org/1/files/public/docs2012/new-goetz-jochim-Seamless-Redundancy-1112-v02.pdf

www.tttech.com

Ensuring Reliable Networks Conclusion

We have analyzed a proposed solution to P802.1CB by

means of model checking.

This analysis strengthened the assumptions that,

• the worst-case transmission latencies need to be known

• the failure mode of a faulty channel needs to be taken

into account for the configuration of the proposed

protocol.

We are currently analyzing how the particular

transmission/configuration parameters interrelate, e.g.,

how large does the acceptance window need to be?

Page 17

www.tttech.com

Ensuring Reliable Networks Further Info

In this analysis the SAL model checker developed by SRI

International has been used: http://fm.csl.sri.com/

Page 18

http://fm.csl.sri.com/

www.tttech.com

E n s u r i n g R e l i a b l e N e t w o r k s

w w w . t t t e c h . c o m

Page 19

