
SRP Scaling:
Refresh Timer
Andre Fredette

IEEE 802 Plenary
July 16, 2013

Outline

Page 2

 MRP LeaveAll Processing Overview

 Review the MRP Timer issue for MSRP.
  Previously discussed in:
∎  at-cgunther-mrp-timers-0310-v02.pdf (March 2010)
∎  avb-dolsen-srp-limitations-v2.pdf (November 2011)

 Propose a modification to MRP that solves the problem.
  Introduced in:
∎  new-tsn-cgunther-SRP-next-gen-0313-v01.pdf (March 2013)

The LeaveAll

Page 3

 The LeaveAll process performs a refresh and garbage
collection function for MRP applications.
  If a Leave was missed, the attribute will get aged out.
  If a Join was missed, the attribute will be added.
∎  Note: Not a likely case since MRP ensures that two join messages are sent

for each attribute or peer has reported the attribute as registered.

 Each time a leaveall (LA) event is sent or received,
  All attributes (Talkers, Listeners, Domain) must be “refreshed” before the

Leavetimer expires,
  Otherwise, they age out.

How it Works (Registrar State Machine)

4

  If (S==IN && r/txLA)
  Start leavetimer
  -> LV

  If (if S==LV & rJoin*!)
  Stop leavetimer
  -> IN

  If (S==LV && leavetimer!)
  Lv
  -> MT

IEEE Std
MAC BRIDGES AND VIRTUAL BRIDGED LOCAL AREA NETWORKS 8021Q-2011

Copyright © 2011 IEEE. All rights reserved. 175

10.7.8 Registrar state machine

A full MRP Participant maintains a single instance of this state machine for each Attribute value that is
currently registered, or that the Registrar state machine is in the process of deregistering.

NOTE—As with the Applicant, state information is conceptually maintained for all possible values of all Attribute types
that are defined for a given application; however, in real implementations of MRP, it is likely that the range of possible
Attribute values in some applications will preclude this, and the implementation will limit the state to those Attribute
values in which the Participant has an immediate interest. In the case of simple devices that have no interest in what
other Participants have registered, it may be appropriate for that device to ignore Registrar operation altogether.

The detailed operation of this state machine is described in Table 10-4.

10.7.9 LeaveAll state machine

A single LeaveAll state machine exists for each full MRP Participant. Leave All messages generated by this
state machine also generate LeaveAll events against all the Applicant and Registrar state machines
associated with that Participant and Port; hence, LeaveAll generation is treated by those state machines in
the same way as reception of a LeaveAll message from an external source.

The detailed operation of this state machine is described in Table 10-5.

10.7.10 PeriodicTransmission state machine

A single PeriodicTransmission state machine exists for each Port. Periodic Transmission events are
generated on a regular basis, against all Applicant state machines that are associated with that Port.

The detailed operation of this state machine is described in Table 10-6.

Table 10-4—Registrar state table

STATE

IN LV MT

EV
EN

T

Begin! MT MT MT

rNew!
New

IN

New
Stop leavetimer

IN

New

IN

rJoinIn! ||
rJoinMt! IN Stop leavetimer

IN
Join
IN

rLv! ||
rLA! ||
txLA! ||

Re-declare!

Start leavetimer
LV -x- -x-

Flush! MT Lv
MT MT

leavetimer! -x- Lv
MT MT

How it Works (Applicant State Machine)

Page 5

 When a LA event is
sent or received:
  Applicant state machine

causes the participant to
send a Join event for each
attribute being declaring.

IEEE Std
802.1Q-2011 LOCAL AND METROPOLITAN AREA NETWORKS

174 Copyright © 2011 IEEE. All rights reserved.

Table 10-3—Applicant state table

STATE

VO11 VP6 VN6 AN6 AA6 QA LA6 AO3,11 QO3,11 AP3,6 QP3 LO6

EV
EN

T

Begin! — VO VO VO VO VO VO VO VO VO VO VO

New! VN VN — — VN VN VN VN VN VN VN VN

Join! VP — — — — — AA AP QP — — VP

Lv! — VO LA LA LA LA — — — AO QO —

rNew! — — — — — — — — — — — —

rJoinIn! AO4 AP4 — — QA — — QO — QP — —

rIn! — — — — QA5 — — — — — — —

rJoinMt! ||
rMt! — — — — — AA — — AO — AP VO

rLv! || rLA! ||
Re-declare! LO1 — — VN VP9 VP9 —10 LO1 LO1 VP VP —

periodic! — — — — — AA — — — — AP —

tx!7 [s]
—

sJ
AA

sN
AN

sN
QA8

sJ
QA

[sJ]
—

sL
VO

[s]
—

[s]
—

sJ
QA

[s]
—

s
VO

txLA!2 [s]
LO

s
AA

sN
AN

sN
QA

sJ
QA

sJ
—

[s]
LO

[s]
LO

[s]
LO

sJ
QA

sJ
QA

[s]
—

txLAF!2 LO VP VN VN VP VP LO LO LO VP VP —

Notes to the table:
1Applicant-Only participants exclude the LO state, and transition to VO.
2These events do not occur for Applicant-Only participants.
3Point-to-point subset participants exclude the AO, QO, AP, and QP states.
4Ignored (no transition) if point-to-point subset or if operPointToPointMAC is TRUE.
5Ignored (no transition) if operPointToPointMAC is FALSE. See MRP Design Notes below.
6Request opportunity to transmit on entry to VN, AN, AA, LA, VP, AP, and LO states.
7If the MRPDU is full and cannot convey a required message there is no change of state and an additional
transmit opportunity is requested if that has not been done already.
8QA if the Registrar is IN, and AA otherwise. See MRP Design Notes below.
MRP design notes:
5On shared media the receipt of In does not confirm registration by all Participants, and the In could have been
sent by an Applicant-Only participant.
8Since New messages do not convey registrar state, a Leave could have been received without an Empty or
JoinEmpty prompt being sent, the transition to AA guards against loss of that Leave by another Applicant.
9The design accepts a small possibility of a continued registration (after rLv! if a Lv! occurs before a further Join
is sent) in return for not accumulating many Active participants when Join!s and Lv!s are frequent. rLv!
processing is deliberately not optimized for point-to-point.
10If a Leave has been received, the Registrar for the transmitting participant is very probably IN, as this
Applicant has not yet sent a Leave, so the pending Leave is required. The small savings from avoiding
transmission of Leaves pending on receipt of LeaveAlls does not merit distinguishing the rLv! and rLA! cases.
11The VO, AO, and QO states represent states where the attribute is neither being declared by the Participant nor
being registered by any other station on the LAN. In implementations where dynamic creation and discarding of
state machines is desirable, the state machine can be discarded when in any of these states, pending a future
requirement to declare or register that attribute value.

The Timer Issue

Page 6

 The MRP Protocol limits the rate at which PDUs may be
transmitted.
  3 PDUs per 1.5 * Jointime

 Number of attributes that can fit in a PDU is limited.

 Therefore, this PDU rate-limiting limits the number of
attributes that can be refreshed before timers expire and
attributes age out.

MRP Timer Interactions

Page 7

LeaveTime Operation (point to point)

Point to Point operation� Point to Point operation
allows 3 packets every 1.5
JoinTime

� JoinTime is defined as
200 milliseconds

� No way to discover if the� No way to discover if the
entire network is point to
point

�See IEEE Std. 802.1Q-
2011 Table 10-7

3
(Slide From avb-dolsen-srp-limitations-v2.pdf, NOV 2011)

Worst Case Max Streams

Page 8

 Assuming worst case of 1 attribute per vector

 Max Streams Calculations
  Vector_Size = Vector_Hdr(2) + First_Value_Len

 + Ceiling(Values_In_Vector/3)
 {+ Ceiling(Values_In_Vector/4)} /* If Listner */

  Vectors_Per_PDU =
floor((Max_PDU_Size - Message_Overhead(9))/Vector_Size)

  PDUs_Per_Leavetime = Leavetime / (JoinTime/2)
  Max_Streams = PDUs_Per_Leavetime * Vectors_Per_PDU

The Limits

Page 9

 MRP allows for efficient packing of sequential attributes
 But, attributes are not always efficiently packable.
 Examples of max attributes with default timer values

(JoinTime = 200ms, LeaveTime = 600ms).

 Other Applications

  Not an issue for MVRP because all 4K attributes always fit in one PDU.
  Similar issue for MMRP.

Attributes
per Vector

Talker
Advertise

Talker Fail Listener

1 318 240 810
8 2352 1824 5472

Max 26,352 26,190 15,228

Near “Solutions”

Page 10

  Increase Leavetime
  This is the only solution available in the current version of SRP.
  Problem: Increases the time to explicitly tear down an existing stream.

 Don’t use the Leavetimer (just refresh before the next LA is
sent or recieved:
  Problems:
∎  if both peers send a LA at approximately the same time, they will both

 Start Leavetimer when txLA!, and then
 See the rxLA! as the “next LA”.

∎  If one device misses the LA from it’s peer, it will send a LA of it’s own

Root Cause of Problem

Page 11

 This is a problem because the same Leavetimer is used for
two different purposes:
1.  As a refresh timer after the LeaveAll event is sent or received, and
2.  To support multiple devices in a shared medium
∎  When a device on a shared medium sends a Leave event for an attribute,
∎  And another device on that same shared medium is still declaring the

attribute,
∎  The other device needs to send a Join event to prevent the attribute from

aging out,
∎  and the Leavetimer allows time for this to happen.

  Note: The Leavetimer is not needed for purpose #2 on a P2P link – it only
serves to lengthen the stream tear-down time.

  It worked for MVRP because all possible attributes fit in one
PDU.

 Would be a problem for MMRP.
 Conclusion: We need a different timer for each of the above

purposes.

Proposed Solution

Page 12

 Add a new timer called the RefreshTimer to be used in the
LeaveAll process.
  State: IN_R – In Refresh
  Event: refreshTimer!
  Actions: Start/Stop RefreshTimer
  Send event rules: Same as when in the LV state

 Update the Registrar State Machine to handle the

RefreshTimer as shown on the following slide.

 No changes are needed to the Applicant State Machine.

 The recommended default value for Refreshtime is 9
seconds (slightly less than the default Leavetime of 10
seconds).

Updated Registrar State Machine

Page 13

1"
"

Extended'Refresh'
Andre'Fredette'

5/4/2013'
"
The Leave All mechanism is used as a “garbage collection” mechanism to add or remove streams for
which the join or leave messages have been lost. This should not happen often, so it is not critical that it
works extremely quickly. Extended Refresh uses a different timer behavior and Registrar State to extend
the amount of time available to refresh attributes while preserving the faster reaction time when
intentionally removing a stream.

When"using"Extended"Refresh,"the"following"registrar"state"machine"replaces"IEEE"802.1Q@2011,"Table"
10@4,"Registrar"state"table."
"

Table'1'::'Registrar'State'Table'w/Extended'Refresh'

"
STATE"

IN" IN_R" LV" MT"
EV

EN
T"

Begin!" MT" Stop"refreshtimer"
MT"

Stop"leavetimer"
MT" MT"

rNew!" New"
IN"

New"
Stop"refreshtimer"

IN"

New"
Stop"leavetimer"

IN"

New"
IN"

rJoinIn!"||"
rJoinMt!" IN" Stop"refreshtimer"

IN"
Stop"leavetimer"

IN"
Join"
IN"

rLv!" Start"leavetimer"
LV"

Stop"refreshtimer"
Start"leavetimer"

LV"
@x@" @x@"

rLA!"||"
txLA!"||"

Re@declare!"

Start"refreshtimer"
IN_R" @x@" @x@" @x@"

Flush!" Lv"
MT"

Stop"refreshtimer"
Lv"
MT"

Stop"leavetimer"
Lv"
MT"

MT"

leavetimer!" @x@" @x@" Lv"
MT" @x@"

refreshTimer!" @x@" Start"leavetimer"
LV" @x@" @x@"

"
NOTE:""The"refresh"time"is"effectively"disabled"when"set"to"zero.""If"the"refresh"time"is"set"to"zero,"the"
Registrar"state"is"IN,"and""the"rLA!"or"txLA!"occurs,"it"is"permissible"to"start"the"leavetimer"and"transition"
directly"to"the"LV"state."
"
Other"Modifications:"

"
1. IEEE"802.1Q@2011,"Clause"10.7.1"

"
Add"the"following"Registrar"State"definition:"
"

Discussion

Page 14

 The Refresh Timer proposal is interoperable with existing
implementations
  Protocol behaves as if it is in the LV state when in the IN_R state.
  Loos like a longer LeaveTimer.

 Needed even when IS-IS is used because MRP-based
MSRP will likely be used when talking to end points.

 Should still consider other MSRP optimizations such as
summary messages and timer negotiation.

 Recommend that the RefreshTimer and associated Registrar
State Machine changes be included with the next version of
SRP.

