

EtherNet/IP – Example of IP-based Industrial Network

Anatoly Moldovansky

Prepared for the IEEE 802.1TSN Teleconference July 31, 2013

Who is Rockwell Automation?

- Rockwell Automation is a leading supplier of industrial control products and solutions.
- Product examples include: programmable controllers, industrial software, motion control devices (electrical drives and motors), I/O modules to interface to various sensors and actuators, industrial computers and operator interface devices, and industrial networks.
- These products are used to build control systems utilized in various types of manufacturing including discrete part manufacturing (diapers, shaving blades), batch (beer, soup), and continuous process (metals, petrochemical).

EtherNet/IP

 EtherNet/IP is an industrial local area network used as a control system backbone. EtherNet/IP specification is maintained by Open Device Vendor Association or ODVA. Simplified ENIP Architecture is shown below.

OSI Reference Model Layers

Application

Transport

Network

LLC

---- Data-Link----MAC

Physical

EtherNet/IP Layers

Common Industrial Protocol (CIP) (ODVA standard)				
TCP and UDP				
IP				
None				
IEEE 802.3				
IEEE 802.3				

EtherNet/IP (cont.)

- EtherNet/IP is 10/100Mbps half/full duplex network supporting copper and fiber media.
- EtherNet/IP application protocol, CIP, is a is connection oriented protocol, operating under assumption of unreliable layers below it.
- UDP is used for real-time communication (controller-to-I/O modules, controller-to-drives, controller-to-controller).
- TCP is used for non-real time communication.
- Ethernet/IP supports IEEE1588-based time synchronization using end-toend delay measurement mechanism.

Traffic Types

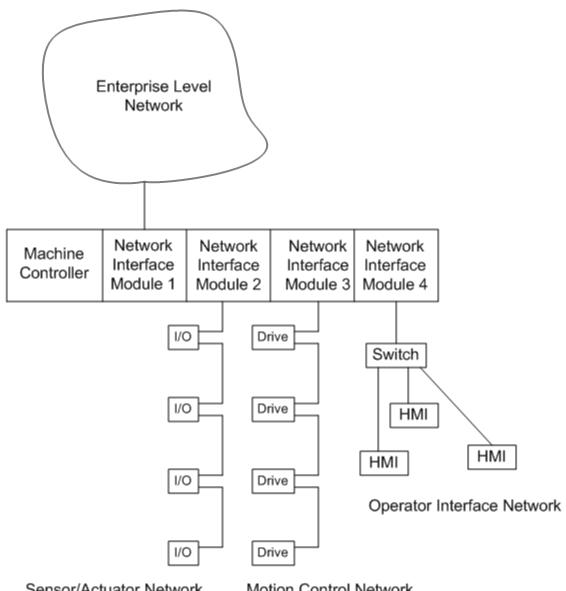
- Cyclic with short (few hundred microseconds) update periods
 - Examples:
 - Motion control (Controller-to-Drive and Drive-to-Controller)
 - Controller-to-Controller
- Cyclic characterized by relatively long update periods (typically 1-100 ms)
 - Examples:
 - Controller-to-Output Modules
 - Input Modules-to-Controller
 - 1588 traffic
- Event Driven (driven by change of state on an input or application triggered)
- Non-Real Time

IP- Supported Services

- Addressing (unicast/multicast)
- DSCP codes used for traffic prioritization
- Time To Live (TTL = 1 is used for traffic with local importance)
- Other Layer 3 protocols (e.g., IGMP) are also supported

Traffic Prioritization

Traffic Type	CIP Priority	DSCP	802.1D Priority (if used)	CIP Traffic Usage (recommended)
PTP Event (IEEE 1588)	n/a	59 ('111011')	7	n/a
PTP General (IEEE 1588)	n/a	47 ('101111')	5	n/a
Real-Time	Urgent	55 ('110111')	6	CIP Motion
	Scheduled	('101111')	5	Safety I/O I/O
	High	43 ('101011')	5	I/O
	Low	31 ('011111')	3	not recommended
Non Real-Time	All	27 ('011011')	3	CIP messaging



Performance

- Performance goals are met using networks dedicated to different classes of service (motion control, I/O control, HMI)
- Other options aimed to improve performance:
 - VLANs
 - IGMP Snooping
 - QoS

Multiple Networks Example

Sensor/Actuator Network

Motion Control Network

Performance Parameters

- Performance parameters of a typical EtherNet/IP motion control network:
 - Maximum number of nodes: 50
 - Message Transmission Period: 500µs
 - Average message data size: 125 bytes

Connectivity

- Link to plant network is a requirement these days
- Due to support of TCP/IP this connection is seamless

Redundancy

- Redundancy is achieved today through network duplication
 - Another ODVA network, ControlNet, is currently used
- Seamless redundancy is under consideration

Thank you for your attention