

How may Systems work?

Karl Weber, Beckhoff Automation

BECKHOFF New Automation Technology

- Founded 1980 to handle Industrial Automation issues at local side
 ... after a while starting with own development...
- PC based technology is the base for Control Automation Technology
- Communication is a very substantional part
 - Supporting over 25 different communication technologies
 - Ethernet for Control Automation Technology
 → EtherCAT
 - Keep Ethernet frames but new Bridging concept
 - Base Technology for european robots (KUKA, ABB)
 precison, performance

IMS Research: 2012 World Market for Industrial Ethernet report:

31.3m industrial networked nodes in 2011 (1 node = 2.x ports)

... about 25% with some sort of Ethernet (<50% Std)

source:http://www.iebmedia.com/index.php?id=8595&parentid=74&themeid=255&showdetail=true&bb=true

Reasons for resilience of fieldbus technologies:

- Simplicity
- Reliability
- Numerous legacy systems in the field
- ... will not give way easily to Ethernet progress.

Trends in Industry

- Enhanced support required for
 - Vision systems (important but not focus today → follows automotive)
 - DRIVES! (very high demands regarding Sync and Latency)
 - Safety!
 With some level of reliability

Basic Requirements and Issus

- CBSA (simple, performance!!)
- TAS (complex scheduling, diagnostic)
- BLS (do not work Christian)
- PS (performance!!)

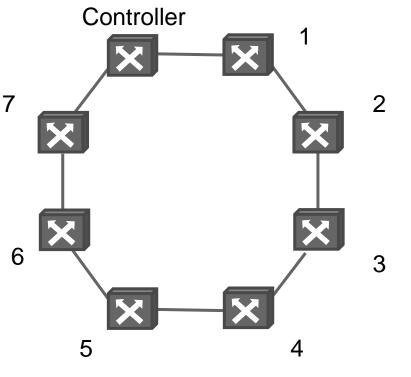
Single Standard for all	ок
Performance	?
Ease of handling	?
Better Diagnostic	?
Robustness	?

The End or Way out?

Structuring

- Arbritary Structures have negative effects...
 - Complex Schedule
 - Unpredictable Performance
 - Hard to determine Reliability
 - Error in a single component can affect <u>all components</u>
 - ... But real structures are not so complex

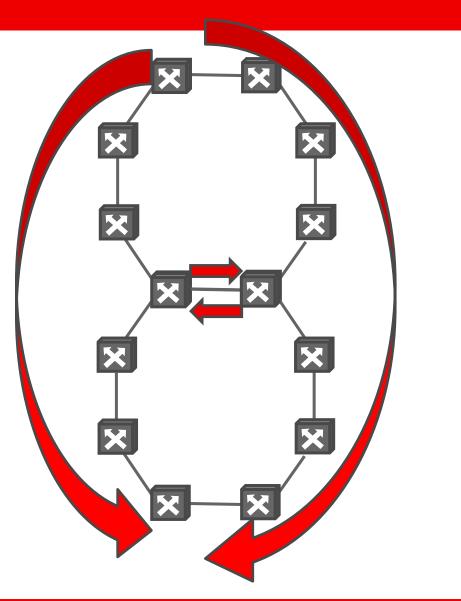
Hierarchical systems Line / Ring topologies



Rings and combinations

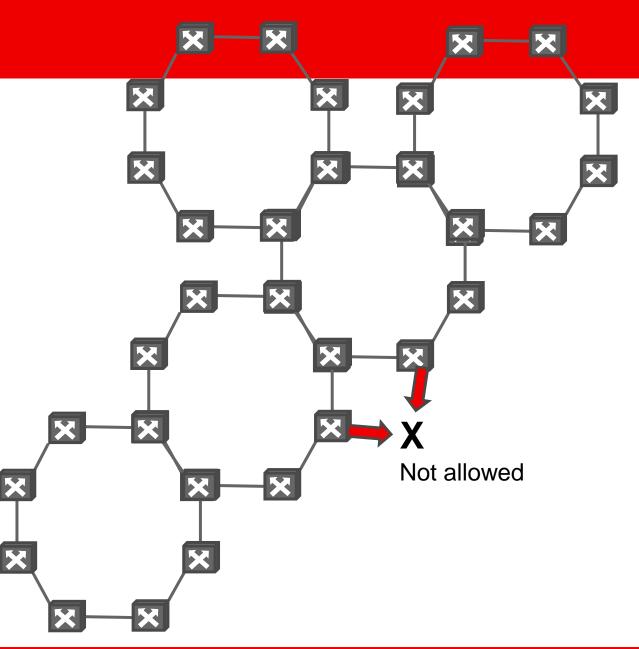
Line→ Ring building blocks

- Each node belongs to a certain structural element
- Removal/Extension easy
- Path selection trivial
- Schedule rule:
 - Controller → Device: Send frame to last first
 - Oposite Direction: Send at the same time (or almost at the same time)



Controller right: 7,6,5,4,3,2,1 Controller left: 1,2,3,4,5,6,7

More complex structures


- Good for extended systems to provide good reliability
- Transit ports belong to both rings
- Not as simple to schedule
 more flexible "TAS" required
 Maybe proxies at the second ring preferable (especially for larger systems)
- Path selection with a bypass (if and only if source/destination in different rings)
 ! Redundancy requirements that one error (transient/permanent) in one ring can be tolerated!
 Schedule different if error occurs!

More complex structures

- Reflect a hierarchy
- The same SIMPLE path rules apply
- More availability possible but with extended cost
- Restrictions must be enforced at startup!!
 → ISIS?
- Can be displayed with a simple file browser

- Difficult to handle all kind of topologies
- The proposed subset makes it much easier
- Only useful if base protocols support it
- This shall not exclude other options!

... more to discuss regarding robustness

Thank You!

We like smart high performance solutions!

