
1
March 17, 2014

Software Defined Networking
Supported by IEEE 802.1Q

János Farkas, Stephen Haddock, Panagiotis Saltsidis
janos.farkas@ericsson.com, shaddock@stanfordalumni.org, panagiotis.saltsidis@ericsson.com

Abstract— This paper gives an overview on how Software
Defined Networking (SDN) principles can be applied to existing
Ethernet merchant silicon considering the requirements modern
networks face. We show that existing Layer 2 features specified
by IEEE 802.1Q support SDN. The bridge architecture [1]
supports control plane/data plane split by design and also allows
for external control e.g. by an SDN Controller. The data plane
provided by existing chips is feature rich for network
virtualization and supports even more features like OAM. We
outline the principles of SDN over bridges and show a number of
possibilities for further research and development.

I. INTRODUCTION

Software Defined Networking (SDN) is an emerging new
networking paradigm, which aims to introduce a new approach
to the control and design of networks of various kinds. SDN
relies on directly programming the packet handling
mechanisms of the network nodes by a network controller.
That is, the SDN concept allows defining the networking
behavior via software tools that are easy to modify as opposed
to behavior hard-coded in the equipment by design. It is
understood that the behavior of the networking equipment is
defined by software today; however, it is often difficult to
change the behavior and requires expert knowledge of the
equipment. As opposed, SDN provides flexibility along the
following three characteristic features:

 Programmability of the network

 Separation of the control plane from the data plane

 A controller that has a view of the entire network and
can control the network devices

There are a number of ways to implement SDN
programming of the network nodes. There are some
approaches designed with SDN in mind, such as ForCES [9],
OpenFlow [14], OpenDaylight [15] or OpenStack [16]. There
are other approaches where the original goal was not SDN but
they can be applied for SDN as well, e.g. SNMP or
NETCONF. The exact implementation choice is out of scope
for this paper. Instead, we focus on the principles and their
application on a high level. We note that the term “distributed
control” is used in this paper to denote existing distributed
bridge control protocols.

Similar to networks under distributed control, SDN
networks have to meet several requirements, which depend on

the exact application. SDN addresses various network
scenarios from enterprise through campus to carrier grade
networks, including data center and backhaul networks.
Therefore, prospective SDN approaches have to meet a large
part of the below requirements:

 Providing L2 and L3 connectivity services

 Network virtualization

 Supporting several customers or tenants

 Scalability

 Decoupling logical and physical configuration

 Address separation

 Traffic isolation

 Supporting station mobility, e.g. virtual machine (VM)
mobility

 Quality of Service (QoS) assurance

 Auto-provisioning and service discovery

 Operations, Administration and Maintenance (OAM)

which are discussed more in detail in the following. Most of
these requirements appear whether network virtualization is
provided based on L2 [1] or based on L3 [12].

Hosts, servers, network devices and their virtual
equivalents are often (if not exclusively) reached via either
Internet Protocol (IP) or Ethernet for communication.
Therefore, Layer 2 and Layer 3 connectivity is an essential
requirement.

Network virtualization is crucial for a network or a cloud
provider in several ways and represents a high level
requirement that is related to several of the remaining
requirements. For example, scalability – among other things-
requires the support of a number of customers or tenants.
Similarly, scalability requires that physical resources may be
re-used across multiple customers. This is an essential
characteristic of network virtualization and depends on the
ability to decouple logical networks from the physical network
as well as the separation of address spaces, which are necessary
to eliminate address assignment dependencies among the
customers and for the support of mobility, e.g. VM mobility. In
order to prevent mis-delivery of one customer's data to other

2
March 17, 2014

customers, traffic for each logical network (or virtual network
instance) must be isolated from traffic of all other virtual
network instances. Scalability is also a general requirement in
order (for instance) to avoid explosive growth in forwarding
table size. Creation of a new virtual network instance or
modification of an existing one (such as expansion) must be
something that the provider can do with relative ease.
Difficulty in changing a service impacts on the ability of the
provider to increase revenue and/or control the expenses
associated with service provisioning especially in a cloud
environment. Auto-provisioning and verification of a virtual
network must be enabled by network features. For services
with traffic classes requiring differentiated Quality of Service
(QoS), this must be enabled by the network. In order to support
monitoring and diagnosis of services, a solution must support
Operations Administration and Maintenance (OAM)
capabilities on a per-virtual network (per service) basis.

This is a lot of requirements. The good news for early SDN
deployments is that there is no need to do it from scratch.
Actually, some networking technologies already provide a very
good basis for SDN, which could be leveraged by SDN
research and development. This paper explores Ethernet
networking, i.e. bridging features useful for SDN. The reason
to focus on Ethernet is its key role in networking today. The
paper shows that the existing Ethernet data plane features form
a good basis for SDN systems. Furthermore, the bridging
standard [1] supports the separation of the control plane from
the data plane by design and also allows control by an SDN
Controller. Additional features, such as OAM or VM
migration, are not only described by the standard, but are
already supported by merchant silicon today. The paper also
demonstrates how Ethernet meshes with SDN and outlines the
design principles of a potential Ethernet-based SDN system.

The rest of the paper is structured as follows. Section II
explains the architecture. Section III provides details on
network control. Network virtualization is then explained in
Section IV. The puzzles are then put into a big picture in
Section V by presenting a hybrid network approach and by
providing a network example in Section VI. The paper is
finally summarized in Section VII.

II. SDN AND BRIDGE ARCHITECTURE

Splitting the architecture into separate control and data
planes is beneficial for independent scaling and innovation. It
allows modularity and helps fractioning the functionality into
components that can be well defined.

A. SDN Architecture

The control and data planes are separated in the SDN
architecture as shown in Fig. 1. The data plane is configured
with the blueprint of the actions invoked on an incoming
packet out of the possible Action Set supported by the device.

The control plane has two components: local control and
remote control. Typically, there is a central remote controller
that performs all the computation required for determining the
forwarding paths for the data packets. Furthermore, the SDN
Controller determines how the network nodes should be set up
in order to achieve the desired forwarding behavior, i.e. exactly

SDN Controller

Local Control

SDN Node 1

Action Set

Local Control

Action Set

Local Control

SDN Node 3

Action Set
Packet PacketPkt Pkt

Data Plane

Control Plane

SDN Node 2
SDN Protocol

Fig. 1. SDN Architecture

which actions are invoked on the packets out of the commands
available to the network nodes by means of an SDN Protocol.
The programming of the network is then implemented by the
local control in the nodes, which interprets the instructions
from the remote control and configures the local data plane
accordingly.

Overall, the data plane consists of generic boxes
programmed by the control plane such that the network
behavior is determined by the remote SDN Controller
controlling several devices.

B. Bridge Architecture

IEEE 802.1 standards rely on a model that is based on a
clear separation of the data and the control planes. This fact is
often overlooked because the control plane was originally
distributed and the separation was inside the bridges. The MAC
bridge architecture is specified by IEEE 802.1Q [1]1; and is
illustrated in Fig. 2. Note that MAC bridges are often referred
to as Ethernet switches because IEEE 802.3 Ethernet is the
most common IEEE 802.n media access method for IEEE
802.1 bridges. The distributed control protocols, e.g. Shortest
Path Bridging (SPB) [3], are implemented by the so-called
Higher Layer Entities, which then control the data plane as
shown in the figure. In addition, the standard also allows
control by an External Agent [4], even co-exist with distributed
control in the same network. Distributed control is turned off
for the packets controlled by External Agents.

MAC Bridge

Higher Layer Entities

Relay
(Action Set2)

Packet outPacket in

Data Plane

Control Plane

In
gr

es
s

P
or

t
(A

ct
io

n
S

et
1)

E
gr

es
s

P
o

rt
(A

ct
io

n
S

et
3)

External Agent

Control
command

Control
packet

Data
packet

LAN1 LAN2

IE
E

E
 8

0
2.

1
IE

E
E

 8
02

.n
e.

g.
 8

02
.3

Fig. 2. Bridge architecture

1 When referring to “IEEE 802.1Q” one actually refers to the latest approved revision of the standard,
which is 802.1Q-2011 today. Note that a revision [2] is ongoing, which e.g. merges [3] and [6] into the
main standard.

3
March 17, 2014

External Agents providing topological separation to the
already split control and data planes were introduced by
802.1Qay [4], which has been already merged to the bridge
standard [1]. The External Agent can for example be an SDN
Controller, a Path Computation Element (PCE) [10] or even a
protocol like the Generalized Multiprotocol Label Switching
(GMPLS) [11]. If the control is provided by one or more
External Agents, then the task of the control (Higher Layer
Entity) local to the bridge is to implement the instructions of
the External Agent. The standard [1] specifies the Information
Model and the Data Model that External Agents can rely on.

The data plane of a bridge shown in Fig. 2 depicts two ports
and a relay in-between them. For the ease of explanation, the
ports have a direction in the figure, i.e. Ingress and Egress
represent their role for a single packet. Data packets are
received by the Ingress Port, which may perform one or more
actions on the packet out of its Action Set1, depending on how
it is programmed. Data packets are then sent to the central
processing, i.e. to the Relay, which can also perform actions
out of its Action Set2. Finally, the Egress Port carries out
actions from Action Set3. Control packets are sent to Higher
Layer Entities by the Ingress Port and the Egress Port may
receive them from Higher Layer Entities as shown in the
figure.

It is either the External Agent or the distributed control that
determines what exactly happens to a data packet. The actions
are grouped into three sets: ingress, relay and egress action
sets. Each action set of a standard bridge provides a wide range
of programmable features, which are discussed in the
following.

Action Set1 of an Ingress Port of a bridge involves the
following actions that can be performed on a data packet:

 Drop (filter)

 Tagging, untagging

 Virtual LAN (VLAN) IDentifier (VID) translation

 Encapsulation, decapsulation

 Metering

The packet is dropped if Ingress Filtering is turned on and
the Ingress Port is not a member of the VLAN the packet
belongs to (based on the outermost VLAN tag carried in the
packet). In addition, the packet may also be dropped for loop
mitigation. Furthermore, the Ingress Port may add a new tag or
a new Ethernet header to the packet as outermost header fields;
or may remove the outermost tag or header. In addition, VID
translation can also be performed based on the VID translation
table, i.e. the outermost VID can be replaced by another VID.
Metering may result in marking or dropping packets exceeding
bandwidth limits.

The Relay is responsible for forwarding the packet to
output ports based on the VLAN ID and the destination address
carried in the packet. The operation of the Relay is based on
forwarding tables, which may contain entries of various types.
The Relay may also drop the packet. That is Action Set2 is
either forward or drop based on table entries.

Action Set3 of Egress Ports involves the following actions:

 Drop (filter)

 Tagging, untagging

 VID translation

 Encapsulation, decapsulation

 Queueing

 Transmission selection

That is, the Egress Port drops the packet if Egress Filtering
is turned on and the port is not member of the VLAN that the
packet belongs to. The Egress Port may remove or add an outer
tag or header. VID translation may be also performed based on
the VID translation table. Queuing and transmission selection
governs how a packet is sent out.

In summary, the bridge architecture provides a wide range
of knobs for network programmability. The bridge architecture
splits the control plane from the data plane; furthermore, it
allows network control or programming by an external entity
thus allowing geographical separation. That is, the bridge
architecture provided by the standard [1] is in-line with the
three main characteristics of SDN.

III. NETWORK CONTROL

Ethernet networks have multiple topology layers, which are
shown in Fig. 3. All these layers can be programmed by SDN
or controlled by an appropriate distributed control protocol as
illustrated in the figure. The control of the network is based on
the control of these layers; therefore, it is discussed in this
section. The topology layers lay down the basics for network
virtualization, which is discussed in the next section.

The physical topology is the bottom layer, which is
managed by means of enabling or disabling the ports of the
nodes by SDN control or by the network management.

On top of the physical topology, there is the loop-free
active topology, which is a subset of the physical topology and
contains the active links. The active topology is comprised of
trees; shortest path trees, spanning trees or explicit trees. Aside
from SDN control, the active topology can be controlled by IS-
IS or by a spanning tree protocol. An SDN Controller may
even leverage the Intermediate System to Intermediate System
(IS-IS) [5] routing protocol in order to easily maintain explicit
trees [8].

The VLAN topology is practically determined by the
VLAN membership of the ports of the nodes, which is

Physical Network Topology

Active Topology

VLAN Topology

Management
(enable/disable port)

SPB, MSTP, RSTP

SPB, MVRP

SDN

Address LocationSPB, MMRP
source address learning

Distributed protocols

Fig. 3. Topology layers in an Ethernet LAN

4
March 17, 2014

typically a subset of the active topology. The VLAN
membership of the ports can be controlled by SDN aside
distributed control.

The forwarding table entries, i.e. the location of the
addresses destined by the data traffic also define a topology
within a VLAN. The sum of the forwarding paths to a unicast
destination form a tree rooted at the destination. In case of
distributed control, forwarding table population can be
performed e.g. by SPB. Furthermore, MAC auto learning, i.e.
learning of the source addresses of data packets may be also
performed. Naturally, table entries can also be manipulated by
External Agents – a hook for SDN. MAC learning from data
packets can be turned off for external control and for SPB.

As we can see the different topology layers provide very
flexible control of the forwarding paths with several knobs to
manipulate them. Let us investigate the control options a bit
more in detail.

A. SDN Control

An SDN Controller (i.e. an External Agent) can program
each topology layer shown in Fig. 3. That is, it is fully up to the
controller to determine which manner to program the different
topology layers in order to achieve the desired forwarding
behavior if the network is under SDN control. For example,
VLAN membership of ports can be set and forwarding table
entries can be inserted or removed by the SDN Controller.
This, in effect will result in controlling filtering and
encapsulation behavior of the switches and can potentially lead
to new behavior.

SDN based on Ethernet can be implemented for example as
follows. As Section II explains, a standard data plane model is
defined for Ethernet, which involves the packet fields, the sets
of actions and their compositions. The standard [1] defines the
Information Model and the Data Model that the SDN Protocol
shown in Fig. 1 can use for controlling the bridges by an SDN
Controller. During the specification of 802.1Qay [4], SNMP
was considered as the SDN Protocol. For controlling explicit
trees and paths, IS-IS [8] can be used as the protocol for
instructing the bridges by an SDN Controller. Other SDN
Protocols can be used for the programming of the data plane if
for example the Local Control shown in Fig. 1 performs
translation between the SDN Protocol and the models specified
by the standard [1]. Even though each chip implements a
proprietary API to manipulate the data plane, they provide
access to program the data plane by the SDN Protocol as they
are compliant to the standard.

B. Distributed Control

SPB is considered as the main form of distributed control in
this paper because it is able to control all the topology layers
shown in Fig. 3 except for the physical topology. SPB is based
on the Intermediate System to Intermediate System (IS-IS) [5]
link state routing protocol. As such, SPB has an in-built auto-
discovery for topology and for the services or addresses
assigned to network nodes. SPB then automatically sets the
forwarding paths necessary to provide the connectivity based
on its auto-discovery.

The control protocol for a particular VLAN can be selected
by allocating the VLAN to the Multiple Spanning Tree
Instance (MSTI) dedicated to the control protocol aimed to be
used. There is an MSTI dedicated to External Agents, which is
referred to as Ext-MSTI (hex FFE) [4] in the following. The
rest of the MSTIs are under distributed control as specified
today, e.g. three MSTIs are associated with IS-IS control.
VLANs that are not touched by distributed control but
controlled by an SDN Controller have to be allocated to the
Ext-MSTI.

Taking a look on the network requirements listed in the
introduction, we can see that a couple of them are already met
by the features discussed up to this point. The auto-discovery
of link state SPB provides service discovery, which is
explained more in detail in Section VI. Furthermore, the auto-
discovery supports station migration and the mapping of
addresses to services and to VLAN tunnels.

IV. NETWORK VIRTUALIZATION

As the previous section explained, basic Ethernet already
provides network virtualization by means of Virtual LANs.
The specialty of this virtualization is that the ID of the virtual
network is carried in the header of data packets thus making
possible to decide which virtual network the packet belongs to.
This makes the provisioning of virtual networks easy.
Nevertheless, its scalability was limited by the 12-bit VID
space. Therefore, further virtualization techniques have been
added to Ethernet, thus scalability limitations have been
resolved. Fig. 4 depicts all the possible Ethernet header formats
available today for network virtualization.

The widely-known VLAN tagging standardized in 1998 is
referred to as Customer VLAN (C-VLAN) tagging (second
column). The next step was the specification of the Service
VLAN (S-VLAN) tag introduced by Provider Bridges (PB) [1]
which is sometimes referred to as Q-in-Q, due the use of two
VLAN tags. Thus, instead of the former 12 bits, 24 bits were
provided for network virtualization. After that, full Ethernet
header encapsulation was introduced by Provider Backbone
Bridges (PBB) [1], which is sometimes referred to as MAC-in-
MAC, due to the encapsulation in another full MAC header.

Dst Addr

Src Addr

802.1D-1990

Ethertype

Payload

C-VID

Provider
Bridges (PB)

802.1ad-2005

Ethertype

Payload

C-DA

C-SA

S-VID
Ethertype

Ethertype

DA

SA

802.1Q-1998

Ethertype

Payload

VID

Ethertype

Provider
Backbone

Bridges (PBB)
802.1ah-2008

I-SID

B-DA

B-SA

B-VID

Ethertype

Payload

C-VID

Ethertype

C-DA

C-SA

S-VID
Ethertype

Ethertype

Ethertype

I-tag
B

-tag
B

-M
A

C
S

-tag
C

-tag

optiona
l

Fig. 4. Encapsulation formats provided by Ethernet

5
March 17, 2014

Besides keeping the formerly specified VLAN tags, a new 24-
bit ID referred to as I-SID was introduced for service
identification, which in fact provides a 24-bit Layer 2 virtual
network ID. This means that 16 million virtual networks can be
supported by one Backbone VLAN (B-VLAN). Altogether a
60-bit space is provided for network virtualization by Ethernet
today, which removes all scalability concerns. Note, that in
case of PBB, the payload with its Ethertype may immediately
follow the I-tag or can optionally be preceded by VLAN tags
as illustrated in the figure. Let us now take a look on how the
Ethernet packet formats provide network virtualization.

In effect, network virtualization means providing overlay
networks. A basic overlay is provided by the C-VLAN on top
of the physical topology as shown in Fig. 3. Interpreting the
overlay as a service provided by the network, the VID is the
service ID, which also has a key role in the forwarding of the
data packet, i.e. in the transport. The full PBB packet format
allows 4 layers of overlays as shown in Fig. 5. Each of these
overlays may be used for example if customer networks are
connected to PB networks connected to Edge Bridges (EB) of a
provider’s PBB network or in a PBB Data Center Network
(DCN) as illustrated in the figure.

A key aspect of PBB is that it separates the service layer
from the transport layer. That is, the first overlay provided by
the physical network is the B-VLAN for the transport and the
service layer is on top of the B-VLANs. A service provided by
the backbone is identified by an I-SID, which can be point-to-
point, multipoint-to-multipoint or rooted multipoint. An I-SID
can offer different services, i.e. further overlays. In the example
shown in Fig. 5, the I-SID provides an S-VLAN overlay, which
then provides a C-VLAN overlay. All of the overlays, i.e.
virtual networks can be controlled by SDN.

B-VLAN

I-SID

S-VLAN

C-VLAN

I-SID

B-DA
B-SA

B-VID
Ethertype

Payload

C-VID
Ethertype

C-DA
C-SA

S-VID
Ethertype

Ethertype

Ethertype

PBB
Customer
Network

Customer
Network

PB PB

SDN

EB EB

PBB
DCNEB EB

Virtual
Machine Server

Rack
Virtual

Machine
Server
Rack

I-tag
B

-tag
S

-tag
C

-ta
g

Fig. 5. Layer 2 overlays

IP is a native overlay for Ethernet according to the ISO
layering. It is quite common to associate an IP subnet to a
VLAN. In case of PBB, the overlay service provided by the I-
SID can be a Layer 3 Virtual Private Network (L3VPN) as
illustrated in the DCN example of Fig. 6. In this case, the
optional fields of the PBB header are not present. More details
on L3 overlays are available e.g. in [13].

IP Subnet

B-VLAN

I-SID I-SID

B-DA
B-SA

B-VID
Ethertype

Payload

Ethertype

C-DA
C-SA

Ethertype

SDN

PBB
DCNEB EB

I-tag
B

-tag

Fig. 6. Layer 3 overlay

Flow-based programmability is provided for network wide
SDN by means of mapping data flows to a flow ID at edge
bridges and programming the forwarding for the flow ID
throughout the network. That is, the mapping of data flows to
I-SIDs or B-VIDs can be much more flexible than the direct
mapping of an IP subnet or a VLAN to an I-SID, and the direct
mapping of an I-SID to a B-VID as discussed before. In fact,
arbitrary mapping can be applied on the data flows in the edge
nodes of the networks. A flow, for example, can be mapped to
an I-SID, a B-VID, or a Flow Hash [7] based on an n-tuple
classification or any other field in the packet, e.g. TCP port.
Having the classification and the per-flow mapping
implemented by the edge bridges, core bridges can perform the
forwarding based on the standard Ethernet header without
performing deeper packet inspection.

As discussed in this section, an SDN controlled network
providing L2 and L3 connectivity leveraging the existing
Ethernet features is able to provide network virtualization
fulfilling all network virtualization related requirements. This
means that a large number of tenants or customers can be
supported due to the scalability provided. Furthermore, the
customer or tenant may have its own customers because of the
several layers of virtual networks provided.

V. HYBRID NETWORKS

There are a couple of features already available in Ethernet,
today but difficult to do in a software defined manner (or at
least not part of centralized SDN solutions). Among these,
OAM and fast protection switching are the most important
ones for carrier-grade networks.

Hybrid networks are comprised of hybrid nodes that
support both SDN and distributed control. The hybrid use of
SDN and distributed control enables using the existing features
and make them available for SDN right now almost for free.
Moreover, SDN bootstrapping can rely on distributed control
(e.g. IS-IS) in a hybrid network, which ensures a default in-
band control channel for the SDN Protocol. Some further
advantages of hybrid networks are discussed in the following.

In order to be able to use existing chips and avoid the need
for complete replacement of each network node and host,
packet formats should not be changed by SDN, at least not
initially. This even allows the data plane interworking of
devices controlled along different principles, i.e. one can be
under distributed control the other one can be under centralized
SDN control; which also provides a smooth migration path. As

6
March 17, 2014

a result, hybrid operation becomes just the matter of proper
control, i.e. carefully crafted co-existence and operation of
SDN and distributed control in the same network. In case of
Layer 2, special attention is required to preserve the strict loop-
free operation of existing distributed control, since loops can
cause network meltdowns.

A way for achieving the desired proper coexistence of SDN
and distributed control is already supported by the bridging
standard [1], which is based on VLAN separation. The clear
split of the VLAN space and assigning the VLAN sets to the
desired control planes ensures proper operation for both the
SDN and the distributed control thus avoiding any state
conflict or ambiguity in the operation. The standard ensures
that a forwarding table can be only controlled by a single
control plane, thus forwarding table separation is also provided
besides VLAN separation. The control protocol operation
mode for a VLAN can be selected by allocating the VLAN to
the MSTI associated with the desired operation mode as
discussed before in Section III.B. SDN VLANs and forwarding
tables are allocated to the Ext-MSTI, hence the SDN Controller
sets up the forwarding paths for these VLANs. Distributed
control is completely turned off for the Ext-MSTI. The clean
separation ensures that conflict is not possible between SDN
and the distributed control.

Besides carrier-grade networks, OAM tools are essential for
the maintenance of most networks. It is critical to ensure fate
sharing between data and OAM packets. In order to achieve
fate sharing, the operation of Connectivity Fault Management
(CFM), which is the Ethernet OAM, relies on the functionality
implemented in the ports, i.e. within Action Set1 and Action
Set2 of Fig. 2. Thus, CFM can be applied for SDN VLANs too.
Furthermore, CFM can be used for the virtual overlay networks
as well, e.g. between VMs in a DC. The SDN Controller can
instantiate and set up the operation (e.g. time period for
monitoring) in the ports that need to be involved. The proper
CFM actions out of Action Set1 and Action Set2 can be then
automatically performed on the OAM packets. That is, hybrid
networks make the full blown, proven and already used
Ethernet OAM available for SDN too, thus providing the OAM
tools at each Layer 2 virtual network overlay.

Protection switching state machines based on CFM are also
specified by [1] for point-to-point VLANs, hence fast
protection switching is available for SDN too. Therefore, the
SDN control can instantiate protection switching as well if
needed, e.g. for a carrier-grade service. In addition, a hybrid
network can leverage further features specified by the standard.
For example the features specified by the IEEE 802.1 Data
Center Bridging (DCB) working group are essential in Cloud
deployments relying on Ethernet, e.g. support for VM
migration [6].

Direct collaboration between SDN and distributed control
is required to realize the full potential of the architecture. First,
in addition to manipulating the forwarding behavior, SDN has
to be able to set up and control the functionality that has
distributed components, e.g. OAM in order to use it for SDN
traffic. Second, the SDN Controller should be aware of the
topology, the service assignments and the load in some form to
exercise effective control. This can be achieved by retrieving

the necessary information from the distributed control. Then,
upon request for establishment of a service, the SDN Controller
is able to select the control to be used based on the
requirements of the service and/or on the actual state of the
network. For instance, the default shortest path is satisfactory
for certain services, while other services may require full path
control, and may also require OAM and protection switching.
For the latter type of services, the SDN Controller programs
the forwarding path, sets up and initiates the operation of OAM
and protection switching based on the exact service
requirements. That is, the level of interaction between the SDN
Controller and distributed control depends on the service
requirements; therefore, the SDN touch points for service
establishment may vary as well.

Overall, taking advantage of the hybrid approach allows
meeting key network requirements, e.g. OAM. SDN control
can implement auto-provisioning based on the auto-discovery
of topology and services provided by SPB. In addition, QoS
can be enhanced by the proper assignment of services to the
appropriate control, i.e. to SDN or SPB. Further work is going
on in the form of P802.1Qca, which aims to better exploit the
potential in hybrid networking based on IS-IS.

The most important aspect is that by relying on existing
packet and tunneling formats, the hybrid approach enables re-
using existing chips and avoids the need for complete
replacement of the data plane, i.e. it is at most software
upgrade to the existing devices.

VI. A NETWORK EXAMPLE

After exploring the networking principles in the previous
sections, let us investigate the operation. A hybrid network
example comprising nodes supporting both SDN and SPB is
discussed in the following. The example PBB network is
shown in Fig. 7. The I-SIDs provide overlay Virtual Networks
(VN) to S-VIDs in the example. Two new virtual networks:
VN1 and VN2 are just being created in the example by the SDN
Controller.

Let us assume that the multipoint-to-multipoint VN1 has no
special requirements, thus the SDN Controller decides to use
shortest paths for VN1. Therefore, the SDN Controller only
touches the end points, i.e. it programs the proper associations
in the Edge Bridges (EB) supporting VN1. Thus, S-VID11 is

CB5

B-VID2

EB3 EB4

EB2

EB1

I-SID2

S-VID11

SDN Controller

SDN
+SPB

Fig. 7. A PBB network example

7
March 17, 2014

associated with I-SID1, which is then associated with B-VID1
in EB1, EB2 and EB3. B-VID1 is allocated to the SPBM MSTI,
therefore, it is a non-SDN VLAN controlled by SPB. The rest
of actions for the establishment of VN1 are then performed by
the distributed link state SPB; the SDN Controller has no
further task. SPB provides the service discovery, thus the Core
Bridges (CB) become aware of that EB1, EB2 and EB3 are
member of the virtual network identified by I-SID1. Therefore,
SPB populates the forwarding tables in the CBs to establish the
multipoint-to-multipoint B- VID1 transport tunnel for I-SID1,
which then provides the connectivity service to S-VLAN11. If a
new end point is required for a service due to e.g. a station
(VM) movement, then after setting the proper associations at
the required EB, SPB automatically establishes the
connectivity, thus supporting station (VM) migration.

Let us assume that based on its requirements, VN2 needs
full path control, which may deviate from the shortest path.
Therefore, the SDN Controller has to program the forwarding
at all bridges along the path in addition to performing the
proper associations at EB3 and EB4. Thus, S-VID22 is
associated with I-SID2, which is then mapped to B-VID2 in the
EBs. B-VID2 is an SDN VLAN because it is allocated to the
Ext-MSTI. Therefore, the distributed control does not touch
this service.

An interface is required between SPB and the SDN
Controller to allow the SDN Controller to retrieve the link state
database of SPB, e.g., from one of the bridges. Thus, the SDN
Controller can rely on SPB to discover the physical topology;
furthermore, the service discovery provided by SPB can be also
used by the SDN Controller, at least for verification.

VII. SUMMARY

This paper has shown that the basic design principles of
Ethernet bridging are in-line with SDN and today’s network
requirements. We set forward three key principles for such
SDN architectures:

1) The use of an existing, data plane model (Ethernet). This
includes features that require complex processing in the data
plane, such as OAM or protection switching. Such features are
difficult to implement solely using centralized SDN.

2) Co-existence with and reliance on distributed control
plane for useful features, such as topology discovery and path
setup, where applicable. Such co-existence can happen by the
two control planes controlling different layers or side-by-side
controlling different parts of the traffic (e.g., separated by the
VLAN space).

3) The coordinated communication between the distributed
and SDN control planes. This can be useful, for example, for
the SDN control plane to learn the topology already discovered
by the distributed control plane. Such communication could
also enable the SDN control plane to react to topology changes
and to adjust the parameters of the distributed control plane,
when needed.

The resulting SDN architecture has natural limitations,
especially due to the first point above. We argue, however, that
for early SDN systems the benefits of readily available features
outweigh the limitations.

Furthermore, Ethernet provides a good basis for future
extensions and for the evolution of SDN, e.g. along the lines of
the third point above. Future work may involve the research on
the interface between the control planes.

REFERENCES
[1] IEEE Std. 802.1Q, “IEEE Standard for Local and Metropolitan Area

Networks: Media Access Control (MAC) Bridges and Virtual Bridged
Local Area Networks,” 2011.
http://standards.ieee.org/getieee802/download/802.1Q-2011.pdf

[2] IEEE draft Std. 802.1Q-REV, “IEEE Standard for Local and
Metropolitan Area Networks: Bridges and Networks,” January 2014.
http://www.ieee802.org/1/files/private/q-rev-drafts/d2/IEEE802-1Q-
REV-d2-0.pdf

[3] IEEE Std. 802.1aq, “IEEE Standard for Local and Metropolitan Area
Networks: Media Access Control (MAC) Bridges and Virtual Bridged
Local Area Networks – Amendment 9: Shortest Path Bridging,” March
2012. http://standards.ieee.org/getieee802/download/802.1aq-2012.pdf

[4] IEEE Std. 802.1Qay, “IEEE Standard for Local and Metropolitan Area
Networks: Virtual Bridged Local Area Networks – Amendment 10:
Provider Backbone Bridge Traffic Engineering,” August 2009.

[5] ISO/IEC 10589, Information Technology – Telecommunications and
Information Exchange Between Systems – Intermediate System to
Intermediate System Intra-Domain Routing Information Exchange
Protocol for Use in Conjunction with the Protocol for Providing the
Connectionless- Mode Network Service (ISO 8473),” 2nd ed., 2002.

[6] IEEE Std. 802.1Qbg, “IEEE Standard for Local and Metropolitan Area
Networks: Media Access Control (MAC) Bridges and Virtual Bridged
Local Area Networks – Amendment: Edge Virtual Bridging,” March
2012. http://standards.ieee.org/getieee802/download/802.1Qbg-2012.pdf

[7] IEEE draft Std. 802.1Qbp D1.6, “IEEE Standard for Local and
Metropolitan Area Networks: Bridges and Bridged Networks –
Amendment: Equal Cost Multiple Paths (ECMP),” September 2013.
http://www.ieee802.org/1/files/private/bp-drafts/d1/802-1bp-d1-6.pdf

[8] IEEE draft Std. 802.1Qca D0.6, “IEEE Standard for Local and
Metropolitan Area Networks: Bridges and Bridged Networks –
Amendment: Path Control and Reservation,” February 2014.
http://www.ieee802.org/1/files/private/ca-drafts/d0/802-1Qca-d0-6.pdf

[9] IETF RFC 5810, “Forwarding and Control Element Separation
(ForCES) Protocol Specification,” March 2010.
http://tools.ietf.org/html/rfc5810

[10] IETF RFC 4655, “A Path Computation Element (PCE)-Based
Architecture,” August 2006. http://tools.ietf.org/html/rfc4655

[11] IETF RFC 5828, “Generalized Multiprotocol Label Switching (GMPLS)
Ethernet Label Switching Architecture and Framework,” March 2010.
http://tools.ietf.org/html/rfc5828

[12] Network Virtualization Overlays, http://datatracker.ietf.org/wg/nvo3

[13] P. Unbehagen, R. Lapuh, S. Hares and P. Ashwood-Smith, “IP/IPVPN
services with IEEE 802.1aq SPB networks,” IETF draft, March, 2012.
http://tools.ietf.org/html/draft-unbehagen-spb-ip-ipvpn-00

[14] ONF Std. ver. 1.3.3, “OpenFlow Switch Specification,” December 2013.
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.3.3.pdf

[15] OpenDaylight, http://www.opendaylight.org

[16] OpenStack, http://openstack.org

