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Abstract— This paper gives an overview on how Software 
Defined Networking (SDN) principles can be applied to existing 
Ethernet merchant silicon considering the requirements modern 
networks face. We show that existing Layer 2 features specified 
by IEEE 802.1Q support SDN. The bridge architecture [1] 
supports control plane/data plane split by design and also allows 
for external control e.g. by an SDN Controller. The data plane 
provided by existing chips is feature rich for network 
virtualization and supports even more features like OAM. We 
outline the principles of SDN over bridges and show a number of 
possibilities for further research and development. 

I. INTRODUCTION 

Software Defined Networking (SDN) is an emerging new 
networking paradigm, which aims to introduce a new approach 
to the control and design of networks of various kinds. SDN 
relies on directly programming the packet handling 
mechanisms of the network nodes by a network controller. 
That is, the SDN concept allows defining the networking 
behavior via software tools that are easy to modify as opposed 
to behavior hard-coded in the equipment by design. It is 
understood that the behavior of the networking equipment is 
defined by software today; however, it is often difficult to 
change the behavior and requires expert knowledge of the 
equipment. As opposed, SDN provides flexibility along the 
following three characteristic features: 

 Programmability of the network 

 Separation of the control plane from the data plane 

 A controller that has a view of the entire network and 
can control the network devices 

There are a number of ways to implement SDN 
programming of the network nodes. There are some 
approaches designed with SDN in mind, such as ForCES  [9], 
OpenFlow  [14], OpenDaylight [15] or OpenStack  [16]. There 
are other approaches where the original goal was not SDN but 
they can be applied for SDN as well, e.g. SNMP or 
NETCONF.  The exact implementation choice is out of scope 
for this paper. Instead, we focus on the principles and their 
application on a high level. We note that the term “distributed 
control” is used in this paper to denote existing distributed 
bridge control protocols. 

Similar to networks under distributed control, SDN 
networks have to meet several requirements, which depend on 

the exact application. SDN addresses various network 
scenarios from enterprise through campus to carrier grade 
networks, including data center and backhaul networks. 
Therefore, prospective SDN approaches have to meet a large 
part of the below requirements: 

 Providing L2 and L3 connectivity services 

 Network virtualization 

 Supporting several customers or tenants 

 Scalability 

 Decoupling logical and physical configuration 

 Address separation 

 Traffic isolation 

 Supporting station mobility, e.g. virtual machine (VM) 
mobility 

 Quality of Service (QoS) assurance 

 Auto-provisioning and service discovery 

 Operations, Administration and Maintenance (OAM) 

which are discussed more in detail in the following. Most of 
these requirements appear whether network virtualization is 
provided based on L2 [1] or based on L3 [12]. 

Hosts, servers, network devices and their virtual 
equivalents are often (if not exclusively) reached via either 
Internet Protocol (IP) or Ethernet for communication.  
Therefore, Layer 2 and Layer 3 connectivity is an essential 
requirement.  

Network virtualization is crucial for a network or a cloud 
provider in several ways and represents a high level 
requirement that is related to several of the remaining 
requirements. For example, scalability – among other things- 
requires the support of a number of customers or tenants. 
Similarly, scalability requires that physical resources may be 
re-used across multiple customers. This is an essential 
characteristic of network virtualization and depends on the 
ability to decouple logical networks from the physical network 
as well as the separation of address spaces, which are necessary 
to eliminate address assignment dependencies among the 
customers and for the support of mobility, e.g. VM mobility. In 
order to prevent mis-delivery of one customer's data to other 
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customers, traffic for each logical network (or virtual network 
instance) must be isolated from traffic of all other virtual 
network instances. Scalability is also a general requirement in 
order (for instance) to avoid explosive growth in forwarding 
table size. Creation of a new virtual network instance or 
modification of an existing one (such as expansion) must be 
something that the provider can do with relative ease. 
Difficulty in changing a service impacts on the ability of the 
provider to increase revenue and/or control the expenses 
associated with service provisioning especially in a cloud 
environment. Auto-provisioning and verification of a virtual 
network must be enabled by network features. For services 
with traffic classes requiring differentiated Quality of Service 
(QoS), this must be enabled by the network. In order to support 
monitoring and diagnosis of services, a solution must support 
Operations Administration and Maintenance (OAM)  
capabilities on a per-virtual network (per service) basis. 

This is a lot of requirements. The good news for early SDN 
deployments is that there is no need to do it from scratch. 
Actually, some networking technologies already provide a very 
good basis for SDN, which could be leveraged by SDN 
research and development. This paper explores Ethernet 
networking, i.e. bridging features useful for SDN. The reason 
to focus on Ethernet is its key role in networking today. The 
paper shows that the existing Ethernet data plane features form 
a good basis for SDN systems. Furthermore, the bridging 
standard [1] supports the separation of the control plane from 
the data plane by design and also allows control by an SDN 
Controller. Additional features, such as OAM or VM 
migration, are not only described by the standard, but are 
already supported by merchant silicon today. The paper also 
demonstrates how Ethernet meshes with SDN and outlines the 
design principles of a potential Ethernet-based SDN system. 

The rest of the paper is structured as follows. Section  II 
explains the architecture. Section  III provides details on 
network control. Network virtualization is then explained in 
Section  IV. The puzzles are then put into a big picture in 
Section V by presenting a hybrid network approach and by 
providing a network example in Section  VI. The paper is 
finally summarized in Section VII. 

II. SDN AND BRIDGE ARCHITECTURE 

Splitting the architecture into separate control and data 
planes is beneficial for independent scaling and innovation. It 
allows modularity and helps fractioning the functionality into 
components that can be well defined. 

A. SDN Architecture 

The control and data planes are separated in the SDN 
architecture as shown in Fig. 1. The data plane is configured 
with the blueprint of the actions invoked on an incoming 
packet out of the possible Action Set supported by the device. 

The control plane has two components: local control and 
remote control. Typically, there is a central remote controller 
that performs all the computation required for determining the 
forwarding paths for the data packets. Furthermore, the SDN 
Controller determines how the network nodes should be set up 
in order to achieve the desired forwarding behavior, i.e. exactly 
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Fig. 1. SDN Architecture 

which actions are invoked on the packets out of the commands 
available to the network nodes by means of an SDN Protocol. 
The programming of the network is then implemented by the 
local control in the nodes, which interprets the instructions 
from the remote control and configures the local data plane 
accordingly. 

Overall, the data plane consists of generic boxes 
programmed by the control plane such that the network 
behavior is determined by the remote SDN Controller 
controlling several devices. 

B. Bridge Architecture 

IEEE 802.1 standards rely on a model that is based on a 
clear separation of the data and the control planes. This fact is 
often overlooked because the control plane was originally 
distributed and the separation was inside the bridges. The MAC 
bridge architecture is specified by IEEE 802.1Q  [1]1; and is 
illustrated in Fig. 2. Note that MAC bridges are often referred 
to as Ethernet switches because IEEE 802.3 Ethernet is the 
most common IEEE 802.n media access method for IEEE 
802.1 bridges. The distributed control protocols, e.g. Shortest 
Path Bridging (SPB)  [3], are implemented by the so-called 
Higher Layer Entities, which then control the data plane as 
shown in the figure. In addition, the standard also allows 
control by an External Agent  [4], even co-exist with distributed 
control in the same network. Distributed control is turned off 
for the packets controlled by External Agents. 
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Fig. 2. Bridge architecture  

                                                            
1 When referring to “IEEE 802.1Q” one actually refers to the latest approved revision of the standard, 
which is 802.1Q-2011 today. Note that a revision [2] is ongoing, which e.g. merges [3] and [6] into the 
main standard. 
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External Agents providing topological separation to the 
already split control and data planes were introduced by 
802.1Qay [4], which has been already merged to the bridge 
standard [1]. The External Agent can for example be an SDN 
Controller, a Path Computation Element (PCE) [10] or even a 
protocol like the Generalized Multiprotocol Label Switching 
(GMPLS) [11]. If the control is provided by one or more 
External Agents, then the task of the control (Higher Layer 
Entity) local to the bridge is to implement the instructions of 
the External Agent. The standard [1] specifies the Information 
Model and the Data Model that External Agents can rely on. 

The data plane of a bridge shown in Fig. 2 depicts two ports 
and a relay in-between them. For the ease of explanation, the 
ports have a direction in the figure, i.e. Ingress and Egress 
represent their role for a single packet. Data packets are 
received by the Ingress Port, which may perform one or more 
actions on the packet out of its Action Set1, depending on how 
it is programmed. Data packets are then sent to the central 
processing, i.e. to the Relay, which can also perform actions 
out of its Action Set2. Finally, the Egress Port carries out 
actions from Action Set3. Control packets are sent to Higher 
Layer Entities by the Ingress Port and the Egress Port may 
receive them from Higher Layer Entities as shown in the 
figure. 

It is either the External Agent or the distributed control that 
determines what exactly happens to a data packet. The actions 
are grouped into three sets: ingress, relay and egress action 
sets. Each action set of a standard bridge provides a wide range 
of programmable features, which are discussed in the 
following. 

Action Set1 of an Ingress Port of a bridge involves the 
following actions that can be performed on a data packet: 

 Drop (filter) 

 Tagging, untagging 

 Virtual LAN (VLAN) IDentifier (VID) translation 

 Encapsulation, decapsulation 

 Metering 

The packet is dropped if Ingress Filtering is turned on and 
the Ingress Port is not a member of the VLAN the packet 
belongs to (based on the outermost VLAN tag carried in the 
packet). In addition, the packet may also be dropped for loop 
mitigation. Furthermore, the Ingress Port may add a new tag or 
a new Ethernet header to the packet as outermost header fields; 
or may remove the outermost tag or header. In addition, VID 
translation can also be performed based on the VID translation 
table, i.e. the outermost VID can be replaced by another VID. 
Metering may result in marking or dropping packets exceeding 
bandwidth limits. 

The Relay is responsible for forwarding the packet to 
output ports based on the VLAN ID and the destination address 
carried in the packet. The operation of the Relay is based on 
forwarding tables, which may contain entries of various types. 
The Relay may also drop the packet. That is Action Set2 is 
either forward or drop based on table entries.   

Action Set3 of Egress Ports involves the following actions: 

 Drop (filter) 

 Tagging, untagging  

 VID translation 

 Encapsulation, decapsulation 

 Queueing 

 Transmission selection 

That is, the Egress Port drops the packet if Egress Filtering 
is turned on and the port is not member of the VLAN that the 
packet belongs to. The Egress Port may remove or add an outer 
tag or header. VID translation may be also performed based on 
the VID translation table. Queuing and transmission selection 
governs how a packet is sent out. 

In summary, the bridge architecture provides a wide range 
of knobs for network programmability. The bridge architecture 
splits the control plane from the data plane; furthermore, it 
allows network control or programming by an external entity 
thus allowing geographical separation. That is, the bridge 
architecture provided by the standard  [1] is in-line with the 
three main characteristics of SDN. 

III. NETWORK CONTROL 

Ethernet networks have multiple topology layers, which are 
shown in Fig. 3. All these layers can be programmed by SDN 
or controlled by an appropriate distributed control protocol as 
illustrated in the figure. The control of the network is based on 
the control of these layers; therefore, it is discussed in this 
section. The topology layers lay down the basics for network 
virtualization, which is discussed in the next section. 

The physical topology is the bottom layer, which is 
managed by means of enabling or disabling the ports of the 
nodes by SDN control or by the network management. 

On top of the physical topology, there is the loop-free 
active topology, which is a subset of the physical topology and 
contains the active links. The active topology is comprised of 
trees; shortest path trees, spanning trees or explicit trees. Aside 
from SDN control, the active topology can be controlled by IS-
IS or by a spanning tree protocol. An SDN Controller may 
even leverage the Intermediate System to Intermediate System 
(IS-IS) [5] routing protocol in order to easily maintain explicit 
trees [8]. 

The VLAN topology is practically determined by the 
VLAN membership of the ports of the nodes, which is 
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Fig. 3. Topology layers in an Ethernet LAN 
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typically a subset of the active topology. The VLAN 
membership of the ports can be controlled by SDN aside 
distributed control. 

The forwarding table entries, i.e. the location of the 
addresses destined by the data traffic also define a topology 
within a VLAN. The sum of the forwarding paths to a unicast 
destination form a tree rooted at the destination. In case of 
distributed control, forwarding table population can be 
performed e.g. by SPB. Furthermore, MAC auto learning, i.e. 
learning of the source addresses of data packets may be also 
performed. Naturally, table entries can also be manipulated by 
External Agents – a hook for SDN. MAC learning from data 
packets can be turned off for external control and for SPB. 

As we can see the different topology layers provide very 
flexible control of the forwarding paths with several knobs to 
manipulate them. Let us investigate the control options a bit 
more in detail. 

A. SDN Control 

An SDN Controller (i.e. an External Agent) can program 
each topology layer shown in Fig. 3. That is, it is fully up to the 
controller to determine which manner to program the different 
topology layers in order to achieve the desired forwarding 
behavior if the network is under SDN control. For example, 
VLAN membership of ports can be set and forwarding table 
entries can be inserted or removed by the SDN Controller. 
This, in effect will result in controlling filtering and 
encapsulation behavior of the switches and can potentially lead 
to new behavior. 

SDN based on Ethernet can be implemented for example as 
follows. As Section  II explains, a standard data plane model is 
defined for Ethernet, which involves the packet fields, the sets 
of actions and their compositions. The standard [1] defines the 
Information Model and the Data Model that the SDN Protocol 
shown in Fig. 1 can use for controlling the bridges by an SDN 
Controller. During the specification of 802.1Qay [4], SNMP 
was considered as the SDN Protocol. For controlling explicit 
trees and paths, IS-IS [8] can be used as the protocol for 
instructing the bridges by an SDN Controller. Other SDN 
Protocols can be used for the programming of the data plane if 
for example the Local Control shown in Fig. 1 performs 
translation between the SDN Protocol and the models specified 
by the standard [1]. Even though each chip implements a 
proprietary API to manipulate the data plane, they provide 
access to program the data plane by the SDN Protocol as they 
are compliant to the standard. 

B. Distributed Control 

SPB is considered as the main form of distributed control in 
this paper because it is able to control all the topology layers 
shown in Fig. 3 except for the physical topology. SPB is based 
on the Intermediate System to Intermediate System (IS-IS)  [5] 
link state routing protocol. As such, SPB has an in-built auto-
discovery for topology and for the services or addresses 
assigned to network nodes. SPB then automatically sets the 
forwarding paths necessary to provide the connectivity based 
on its auto-discovery. 

The control protocol for a particular VLAN can be selected 
by allocating the VLAN to the Multiple Spanning Tree 
Instance (MSTI) dedicated to the control protocol aimed to be 
used. There is an MSTI dedicated to External Agents, which is 
referred to as Ext-MSTI (hex FFE)  [4] in the following. The 
rest of the MSTIs are under distributed control as specified 
today, e.g. three MSTIs are associated with IS-IS control. 
VLANs that are not touched by distributed control but 
controlled by an SDN Controller have to be allocated to the 
Ext-MSTI. 

Taking a look on the network requirements listed in the 
introduction, we can see that a couple of them are already met 
by the features discussed up to this point. The auto-discovery 
of link state SPB provides service discovery, which is 
explained more in detail in Section  VI. Furthermore, the auto-
discovery supports station migration and the mapping of 
addresses to services and to VLAN tunnels. 

IV. NETWORK VIRTUALIZATION 

As the previous section explained, basic Ethernet already 
provides network virtualization by means of Virtual LANs. 
The specialty of this virtualization is that the ID of the virtual 
network is carried in the header of data packets thus making 
possible to decide which virtual network the packet belongs to. 
This makes the provisioning of virtual networks easy. 
Nevertheless, its scalability was limited by the 12-bit VID 
space. Therefore, further virtualization techniques have been 
added to Ethernet, thus scalability limitations have been 
resolved. Fig. 4 depicts all the possible Ethernet header formats 
available today for network virtualization. 

The widely-known VLAN tagging standardized in 1998 is 
referred to as Customer VLAN (C-VLAN) tagging (second 
column). The next step was the specification of the Service 
VLAN (S-VLAN) tag introduced by Provider Bridges (PB)  [1] 
which is sometimes referred to as Q-in-Q, due the use of two 
VLAN tags. Thus, instead of the former 12 bits, 24 bits were 
provided for network virtualization. After that, full Ethernet 
header encapsulation was introduced by Provider Backbone 
Bridges (PBB)  [1], which is sometimes referred to as MAC-in- 
MAC, due to the encapsulation in another full MAC header. 
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Fig. 4. Encapsulation formats provided by Ethernet 
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Besides keeping the formerly specified VLAN tags, a new 24-
bit ID referred to as I-SID was introduced for service 
identification, which in fact provides a 24-bit Layer 2 virtual 
network ID. This means that 16 million virtual networks can be 
supported by one Backbone VLAN (B-VLAN). Altogether a 
60-bit space is provided for network virtualization by Ethernet 
today, which removes all scalability concerns. Note, that in 
case of PBB, the payload with its Ethertype may immediately 
follow the I-tag or can optionally be preceded by VLAN tags 
as illustrated in the figure. Let us now take a look on how the 
Ethernet packet formats provide network virtualization. 

In effect, network virtualization means providing overlay 
networks. A basic overlay is provided by the C-VLAN on top 
of the physical topology as shown in Fig. 3. Interpreting the 
overlay as a service provided by the network, the VID is the 
service ID, which also has a key role in the forwarding of the 
data packet, i.e. in the transport. The full PBB packet format 
allows 4 layers of overlays as shown in Fig. 5. Each of these 
overlays may be used for example if customer networks are 
connected to PB networks connected to Edge Bridges (EB) of a 
provider’s PBB network or in a PBB Data Center Network 
(DCN) as illustrated in the figure. 

A key aspect of PBB is that it separates the service layer 
from the transport layer. That is, the first overlay provided by 
the physical network is the B-VLAN for the transport and the 
service layer is on top of the B-VLANs. A service provided by 
the backbone is identified by an I-SID, which can be point-to-
point, multipoint-to-multipoint or rooted multipoint. An I-SID 
can offer different services, i.e. further overlays. In the example 
shown in Fig. 5, the I-SID provides an S-VLAN overlay, which 
then provides a C-VLAN overlay. All of the overlays, i.e. 
virtual networks can be controlled by SDN. 
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Fig. 5. Layer 2 overlays 

IP is a native overlay for Ethernet according to the ISO 
layering. It is quite common to associate an IP subnet to a 
VLAN. In case of PBB, the overlay service provided by the I- 
SID can be a Layer 3 Virtual Private Network (L3VPN) as 
illustrated in the DCN example of Fig. 6. In this case, the 
optional fields of the PBB header are not present. More details 
on L3 overlays are available e.g. in  [13]. 
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Fig. 6. Layer 3 overlay 

Flow-based programmability is provided for network wide 
SDN by means of mapping data flows to a flow ID at edge 
bridges and programming the forwarding for the flow ID 
throughout the network. That is, the mapping of data flows to 
I-SIDs or B-VIDs can be much more flexible than the direct 
mapping of an IP subnet or a VLAN to an I-SID, and the direct 
mapping of an I-SID to a B-VID as discussed before. In fact, 
arbitrary mapping can be applied on the data flows in the edge 
nodes of the networks. A flow, for example, can be mapped to 
an I-SID, a B-VID, or a Flow Hash [7] based on an n-tuple 
classification or any other field in the packet, e.g. TCP port. 
Having the classification and the per-flow mapping 
implemented by the edge bridges, core bridges can perform the 
forwarding based on the standard Ethernet header without 
performing deeper packet inspection.  

As discussed in this section, an SDN controlled network 
providing L2 and L3 connectivity leveraging the existing 
Ethernet features is able to provide network virtualization 
fulfilling all network virtualization related requirements. This 
means that a large number of tenants or customers can be 
supported due to the scalability provided. Furthermore, the 
customer or tenant may have its own customers because of the 
several layers of virtual networks provided.  

V. HYBRID NETWORKS 

There are a couple of features already available in Ethernet, 
today but difficult to do in a software defined manner (or at 
least not part of centralized SDN solutions). Among these, 
OAM and fast protection switching are the most important 
ones for carrier-grade networks. 

Hybrid networks are comprised of hybrid nodes that 
support both SDN and distributed control. The hybrid use of 
SDN and distributed control enables using the existing features 
and make them available for SDN right now almost for free. 
Moreover, SDN bootstrapping can rely on distributed control 
(e.g. IS-IS) in a hybrid network, which ensures a default in-
band control channel for the SDN Protocol. Some further 
advantages of hybrid networks are discussed in the following. 

In order to be able to use existing chips and avoid the need 
for complete replacement of each network node and host, 
packet formats should not be changed by SDN, at least not 
initially. This even allows the data plane interworking of 
devices controlled along different principles, i.e. one can be 
under distributed control the other one can be under centralized 
SDN control; which also provides a smooth migration path. As 



6 
March 17, 2014 

a result, hybrid operation becomes just the matter of proper 
control, i.e. carefully crafted co-existence and operation of 
SDN and distributed control in the same network. In case of 
Layer 2, special attention is required to preserve the strict loop-
free operation of existing distributed control, since loops can 
cause network meltdowns. 

A way for achieving the desired proper coexistence of SDN 
and distributed control is already supported by the bridging 
standard  [1], which is based on VLAN separation. The clear 
split of the VLAN space and assigning the VLAN sets to the 
desired control planes ensures proper operation for both the 
SDN and the distributed control thus avoiding any state 
conflict or ambiguity in the operation. The standard ensures 
that a forwarding table can be only controlled by a single 
control plane, thus forwarding table separation is also provided 
besides VLAN separation. The control protocol operation 
mode for a VLAN can be selected by allocating the VLAN to 
the MSTI associated with the desired operation mode as 
discussed before in Section  III.B. SDN VLANs and forwarding 
tables are allocated to the Ext-MSTI, hence the SDN Controller 
sets up the forwarding paths for these VLANs. Distributed 
control is completely turned off for the Ext-MSTI. The clean 
separation ensures that conflict is not possible between SDN 
and the distributed control. 

Besides carrier-grade networks, OAM tools are essential for 
the maintenance of most networks. It is critical to ensure fate 
sharing between data and OAM packets. In order to achieve 
fate sharing, the operation of Connectivity Fault Management 
(CFM), which is the Ethernet OAM, relies on the functionality 
implemented in the ports, i.e. within Action Set1 and Action 
Set2 of Fig. 2. Thus, CFM can be applied for SDN VLANs too. 
Furthermore, CFM can be used for the virtual overlay networks 
as well, e.g. between VMs in a DC. The SDN Controller can 
instantiate and set up the operation (e.g. time period for 
monitoring) in the ports that need to be involved. The proper 
CFM actions out of Action Set1 and Action Set2 can be then 
automatically performed on the OAM packets. That is, hybrid 
networks make the full blown, proven and already used 
Ethernet OAM available for SDN too, thus providing the OAM 
tools at each Layer 2 virtual network overlay. 

Protection switching state machines based on CFM are also 
specified by  [1] for point-to-point VLANs, hence fast 
protection switching is available for SDN too. Therefore, the 
SDN control can instantiate protection switching as well if 
needed, e.g. for a carrier-grade service. In addition, a hybrid 
network can leverage further features specified by the standard. 
For example the features specified by the IEEE 802.1 Data 
Center Bridging (DCB) working group are essential in Cloud 
deployments relying on Ethernet, e.g. support for VM 
migration  [6]. 

Direct collaboration between SDN and distributed control 
is required to realize the full potential of the architecture. First, 
in addition to manipulating the forwarding behavior, SDN has 
to be able to set up and control the functionality that has 
distributed components, e.g. OAM in order to use it for SDN 
traffic. Second, the SDN Controller should be aware of the 
topology, the service assignments and the load in some form to 
exercise effective control. This can be achieved by retrieving 

the necessary information from the distributed control. Then, 
upon request for establishment of a service, the SDN Controller 
is able to select the control to be used based on the 
requirements of the service and/or on the actual state of the 
network. For instance, the default shortest path is satisfactory 
for certain services, while other services may require full path 
control, and may also require OAM and protection switching. 
For the latter type of services, the SDN Controller programs 
the forwarding path, sets up and initiates the operation of OAM 
and protection switching based on the exact service 
requirements. That is, the level of interaction between the SDN 
Controller and distributed control depends on the service 
requirements; therefore, the SDN touch points for service 
establishment may vary as well. 

Overall, taking advantage of the hybrid approach allows 
meeting key network requirements, e.g. OAM. SDN control 
can implement auto-provisioning based on the auto-discovery 
of topology and services provided by SPB. In addition, QoS 
can be enhanced by the proper assignment of services to the 
appropriate control, i.e. to SDN or SPB. Further work is going 
on in the form of P802.1Qca, which aims to better exploit the 
potential in hybrid networking based on IS-IS.  

The most important aspect is that by relying on existing 
packet and tunneling formats, the hybrid approach enables re-
using existing chips and avoids the need for complete 
replacement of the data plane, i.e. it is at most software 
upgrade to the existing devices. 

VI. A NETWORK EXAMPLE 

After exploring the networking principles in the previous 
sections, let us investigate the operation. A hybrid network 
example comprising nodes supporting both SDN and SPB is 
discussed in the following. The example PBB network is 
shown in Fig. 7. The I-SIDs provide overlay Virtual Networks 
(VN) to S-VIDs in the example. Two new virtual networks: 
VN1 and VN2 are just being created in the example by the SDN 
Controller. 

Let us assume that the multipoint-to-multipoint VN1 has no 
special requirements, thus the SDN Controller decides to use 
shortest paths for VN1. Therefore, the SDN Controller only 
touches the end points, i.e. it programs the proper associations 
in the Edge Bridges (EB) supporting VN1. Thus, S-VID11 is 
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Fig. 7. A PBB network example 
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associated with I-SID1, which is then associated with B-VID1 
in EB1, EB2 and EB3. B-VID1 is allocated to the SPBM MSTI, 
therefore, it is a non-SDN VLAN controlled by SPB. The rest 
of actions for the establishment of VN1 are then performed by 
the distributed link state SPB; the SDN Controller has no 
further task. SPB provides the service discovery, thus the Core 
Bridges (CB) become aware of that EB1, EB2 and EB3 are 
member of the virtual network identified by I-SID1. Therefore, 
SPB populates the forwarding tables in the CBs to establish the 
multipoint-to-multipoint B- VID1 transport tunnel for I-SID1, 
which then provides the connectivity service to S-VLAN11. If a 
new end point is required for a service due to e.g. a station 
(VM) movement, then after setting the proper associations at 
the required EB, SPB automatically establishes the 
connectivity, thus supporting station (VM) migration. 

Let us assume that based on its requirements, VN2 needs 
full path control, which may deviate from the shortest path. 
Therefore, the SDN Controller has to program the forwarding 
at all bridges along the path in addition to performing the 
proper associations at EB3 and EB4. Thus, S-VID22 is 
associated with I-SID2, which is then mapped to B-VID2 in the 
EBs. B-VID2 is an SDN VLAN because it is allocated to the 
Ext-MSTI. Therefore, the distributed control does not touch 
this service.  

An interface is required between SPB and the SDN 
Controller to allow the SDN Controller to retrieve the link state 
database of SPB, e.g., from one of the bridges. Thus, the SDN 
Controller can rely on SPB to discover the physical topology; 
furthermore, the service discovery provided by SPB can be also 
used by the SDN Controller, at least for verification. 

VII. SUMMARY 

This paper has shown that the basic design principles of 
Ethernet bridging are in-line with SDN and today’s network 
requirements. We set forward three key principles for such 
SDN architectures: 

1) The use of an existing, data plane model (Ethernet). This 
includes features that require complex processing in the data 
plane, such as OAM or protection switching. Such features are 
difficult to implement solely using centralized SDN. 

2) Co-existence with and reliance on distributed control 
plane for useful features, such as topology discovery and path 
setup, where applicable. Such co-existence can happen by the 
two control planes controlling different layers or side-by-side 
controlling different parts of the traffic (e.g., separated by the 
VLAN space). 

3) The coordinated communication between the distributed 
and SDN control planes. This can be useful, for example, for 
the SDN control plane to learn the topology already discovered 
by the distributed control plane. Such communication could 
also enable the SDN control plane to react to topology changes 
and to adjust the parameters of the distributed control plane, 
when needed. 

The resulting SDN architecture has natural limitations, 
especially due to the first point above. We argue, however, that 
for early SDN systems the benefits of readily available features 
outweigh the limitations. 

Furthermore, Ethernet provides a good basis for future 
extensions and for the evolution of SDN, e.g. along the lines of 
the third point above. Future work may involve the research on 
the interface between the control planes. 
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