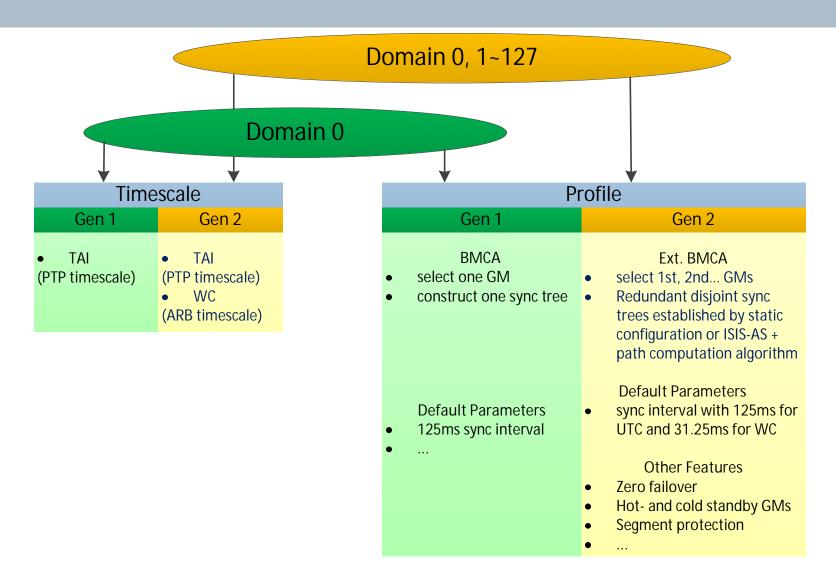


Further Discussion on Domain and Redundancy

IEEE 802.1 Interim Meeting - May 2014, Norfolk Feng Chen, Siemens AG Franz-Josef Goetz, Siemens AG



Contents

- 1. Recap: What is "Domains" for?
- 2. Recap: Proposals for Redundant Synchronization in ASbt
- 3. Issues of Using "Domains" for Redundancy
- 4. Requirements of Using "Calculated" Redundant Sync Paths
- 5. Extended BMCA for Redundant GMs

1. Recap: What is "Domains" for?

SIEMENS

2. Recap:

Proposals for Redundant Synchronization in ASbt

GM redundancy

- primary GM (GM_P) and redundant GM (GM_R)
- redundant GM operates in either cold- or hot-stand-by mode
- GM_P and redundant GM_R are to be synchronized (not yet discussed)
- need to extend BMCA to support selection of 1st, 2nd (or 3rd ...) GMs

Sync path redundancy

- (maximally) disjoint redundant sync trees
 - receiving redundant sync msgs at each slave
- Redundant sync trees are established by
 - static configuration, or
 - "ISIS-AS" + path computation algorithm
- each sync tree is assigned with a unique TreeID
 - which could be located, e.g. in the *DomainID* field of sync msgs

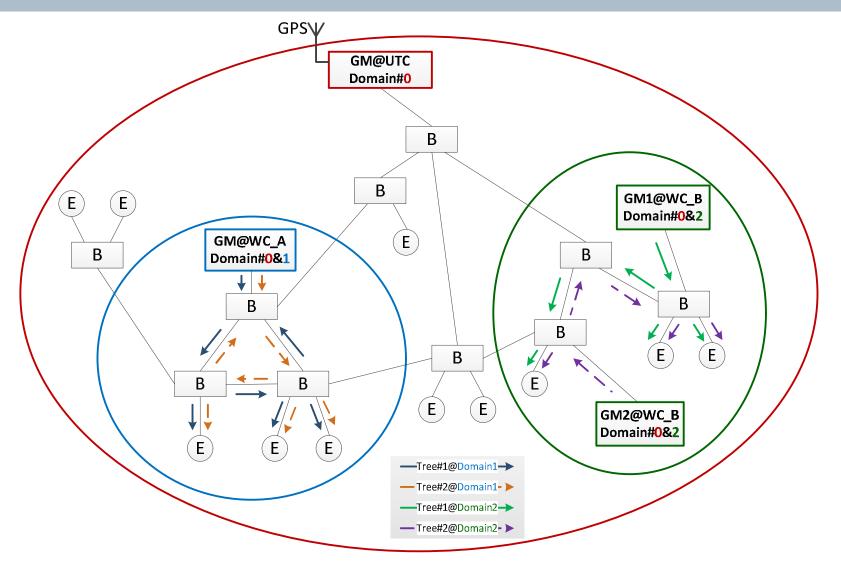
DomainID (8bit) TreeID (3bit) DomainID (5bit)

www.ieee802.org/1/files/public/docs2013/asbt-goetz-HighAvailableSync-0319-v02.pdf

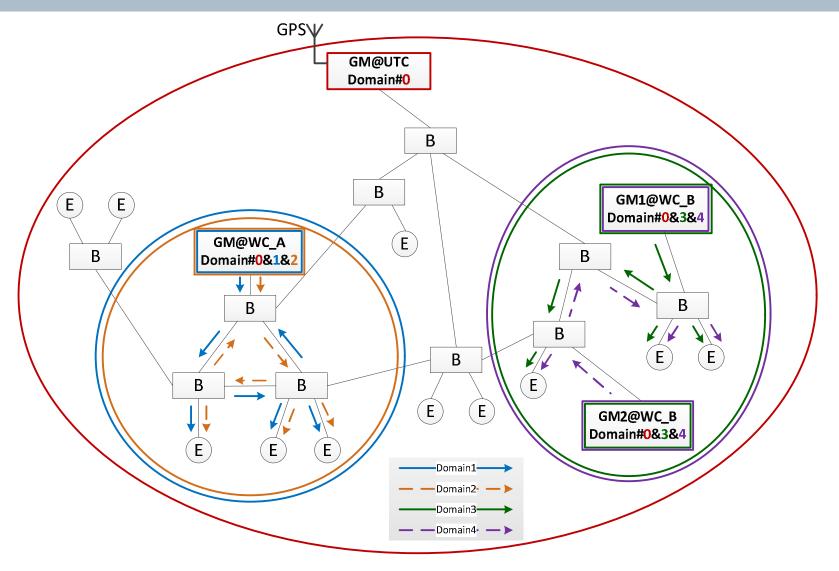
3. Issues of Using "Domains" for Redundancy

Options of PTP redundancy were discussed at the April IEEE 1588
 Plenary Meeting at CERN

Alternatives for Multiple Masters


- Change PTP to allow multiple clocks to send Sync and Announce messages even though they are not the Best Master
 - Consistent with Unicast PTP
 - Not consistent with 2008 version
- Alternate Master Flag
 - Some testing at ISPCS
 - Unclear how to support multiple spanning trees

- Multiple Domains for Multiple Masters
 - May help support multiple spanning trees
 - Two different purposes for domains must be explained in standard



An Example of not Using "Domains" for Redundancy

An Example of Using "Domains" for Redundancy

Concerns about Using "Domains" for Redundancy

- "Domains" has been used for timescales and profiles
- Domain is supposed to be independent, but redundancy needs interactions e.g. between redundant masters and paths

If using "Domains" also for redundancy

need an extra layer to handle inter-domain interactions for redundancy

complex management

 e.g. for one control network supporting both UTC and WC, with both GM and path redundancy for WC, we might need to allocate and thus manage 5 domains on each time-aware system

high implementation cost

- 5 domain require 5 PTP instances
 - meaning that 5 sets of PTP parameters, 5 PDelay measurements for each port, ...

4. Requirements of Using "Calculated" Redundant Sync Paths in ASbt

Distributing (redundant) sync msgs along calculated paths leads to relatively small jitter in synchronized time on each time-aware system, in comparison to other methods like sync flooding

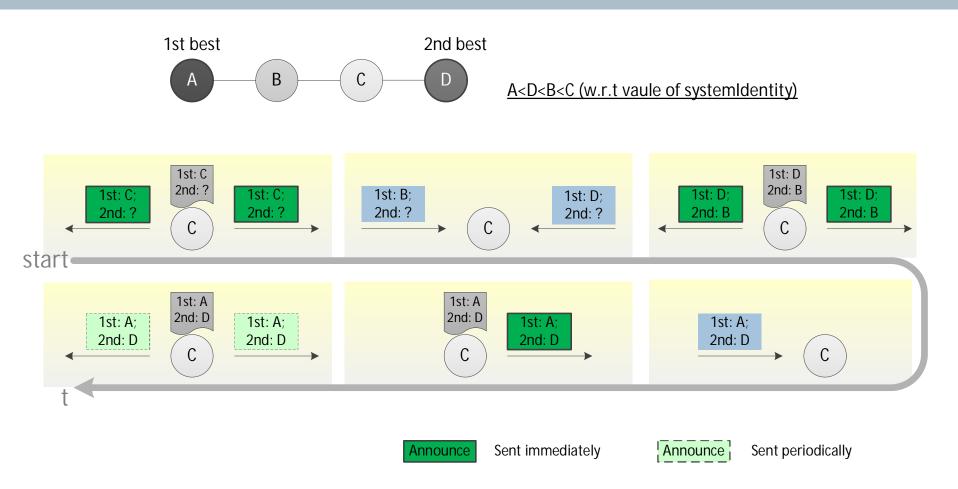
- this is already used in Gen 1
- in Gen 2, this forms a good base for an end-station to combine multiple sync flows (from redundant sync paths or/and redundant GMs) in a certain way for achieving higher accuracy and reduced jitter.

Using calculated redundant sync paths enables diagnostic capabilities

- for performing jitter monitoring on each of multiple sync paths
- for detecting from which path sync failure occurs, e.g. link-down
- diagnostic information could be used to
 - dynamically adjust sync strategy at end-stations
 - perform sync path switching in case of link-failure, e.g. segment protection

5. Extended BMCA for ASbt

BMCA in AS Gen 1


- Choose GM (one per domain)
- Establish Sync tree (one per domain)
 - Via transmission (in Announce msgs),
 comparison and maintenance of several Spanning Tree Priority Vectors
 - Port role selection algorithm is specified
- Announce msgs transmitted only on master ports

ext. BMCA in ASbt

- Choose 1st, 2nd, (or 3rd ...) best masters for each domain
 - Not to be used to establish sync trees, thus port role selection is not executed
 - redundant sync trees (of disjoint paths) will be
 - Manual configuration
 - ISIS-AS
- Announce msgs transmitted on all ports
 - time-aware systems connected must be in the same domain
- Changes in Spanning Tree Priority Vectors
 - Only rootSystemIdentity is significant, but need to have multiple instances like 1stRootSystemIdentity, 2ndRootSystemIdentity...

An Example of Selecting Two GMs with ext. BMCA

We might only need to compare the *rootSystemIdentity* values (Extended for 1st, 2nd or more) conveyed in a received Announce Message (i.e. *messagePriorityVector*), with the ones maintained locally (i.e. *gmPriorityVector*).