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Introduction and Outline

dThis presentation gives an update on the High Accuracy work of the
IEEE P1588 Working Group (in the High Accuracy Subcommittee)

|t was requested in the January 15, 2014 TSN call that author give this
presentation

QHigh accuracy will be an optional feature for the next version of IEEE
Std 1588 (i.e., next version after the 2008 version)

L The White Rabbit (WR) work at CERN was one main driving force for
including this feature

=The WR work is an input to the HA work; however, the HA feature is
expected to be more general

*Nonetheless, since the WR work is, at present, the most complete
description of a way of achieving sub-ns accuracy, we begin here with a
summary of the WR work

=Most of the detailed description in this presentation uses WR as an
example, as detailed description for the more general HA mechanisms is
not available yet
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Summary of White Rabbit - 1

dSee [1] and [3] for a detailed description of WR, and [2] for an
overview

OWR includes a PTP profile, and adds the following aspects
*A WR state machine (SM) that is driven by the PTP state machine

=A link model that includes

* A digital dual mixer time difference (DDMTD), for obtaining timestamps with sub-
ns granularity

L1 syntonization (needed for the DDMTD to work)

—By L1 syntonization, we mean syntonization at the physical layer, i.e., the syntonized
oscillators have the same physical layer frequency (we are not simply measuring a rate
ratio, as in 802.1AS)

*Models for link asymmetry estimation (i.e., link calibration)

=Note that the DDMTD requires L1 syntonization only at the link level, i.e.,
between the two ports at the end point of a link

*However, the actual L1 syntonization in WR is network-wide

Some of the discussions in the P1588 HA SC have centered on
whether L1 syntonization needs to be network-wide or only on a link-by-
link basis
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Summary of White Rabbit - 2

UWR link model (taken from Figure 3.12 of [1] and Figure 11 of [3])
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Model of a WR link (a) and relations between master and slave clocks (b))
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Summary of White Rabbit - 3

On slide 5

"A0 Ao AL A, @re PHY delays at the master transmitter, slave

receiver, slave transmitter, and master receiver, respectively

*These delays are fixed (except there might be components that change
whenever the link is initialized

=y, . and §, are link delays from master to slave and slave to master,
respectively

=The current link model assumes a fiber link; the transmit and receive
messages are assumed to traverse the same fiber, and these delays
depend on the group indices of refraction for the transmit and receive
wavelengths

*The reference clock nominal rate is 125 MHz (i.e., 8 ns coarse timestamp
granularity)

"\When a PTP event message is sent by the master (i.e., Sync) or by the
slave (i.e., Delay Req; WR uses the Delay Request/Response
mechanism), the messages are sent at times aligned with transmit clock
edges
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Summary of White Rabbit - 4

On slide 5 (cont.)

=Each event message is timestamped with the reference clock on receipt
(this is a coarse timestamp, since the granularity is 8 ns)

*The phase detector at the master is the DDMTD; it makes a fine (i.e., sub-
ns) measurement of the phase difference (phasey,, on slide 5) between
the sent and received message

»Based on this measurement and the link delay asymmetry models, the
time offset at the slave is obtained, and phasegis adjusted.

»The full process is summarized in more detail on the following slide (taken
from Figure 3.13 of [1] and Figure 12 of [3])
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Summary of White Rabbit - 5

UWR synchronization flow (taken from Figure 3.13 of [1] and Figure 12
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Summary of White Rabbit - 6

Analog Dual Mixer Time Difference (taken from Figure 3.18 of [1] and
Figure 17 of [3])
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signal has much lower frequency, for which time can be
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Summary of White Rabbit - 7

4lif /., and f ., are very close, then the low-pass filters remove the
high frequency components, and the resulting signal has much lower
frequency, for which time can be measured to much finer granularity

*For example (see [1] and [3]), if f,,, =125 MHz and {4, = 124.99 MHz,
the output signal is 10 kHz

QWhite Rabbit uses a digital version of the mixer, the Digital Dual Mixer Time
Difference (DDMTD) (see [1] and [3], and see [4] for a detailed description of
the DDMTD)

clky = sin(2mupt)

A D Q
clkgmia = sin (27rvdmtdt) S ik
. n Deglitcher
DDMTD Schematic (take Vdmtd = —— 1”’} Oamtal?)
. &
n from Figure 2 of [4])) Digiad
clkg = sin (2rv,t + 0(t)) Counter
® o
N
> clk
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Summary of White Rabbit - 8

USignals generated by the DDMTD (taken from Figure 3.20 (b) of [1]
and Figure 19(b) of [3])
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Summary of White Rabbit - 9

UNote that for the DDMTD to work, the frequencies of the signals
being compared must be the same

U This means that the frequency at the master and the received
frequency from the slave must be syntonized

UIn principle, this does not require that the entire network be
syntonized; however (the following sub-bullets are the current view of
the author of this presentation):

»Timestamping on each port of a clock must be relative to a common clock;
this implies that different ports on the same clock will have the same
frequency

»This, plus syntonization of the ports at the ends of a link, seem to imply
syntonization of all the nodes in the network

*In theory, different ports of a clock could timestamp relative to different
clocks if we knew the relations among those clocks

»But, if those clocks were not syntonized, we would have to measure those
relations using timestamps, and would need the HA mechanisms for those
measurements (i.e., DDMTD and syntonization)
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Summary of White Rabbit - 10

dWhite Rabbit SM (taken from Figure 9 of [3])
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Figure 9: White Rabbit state machine.

January 2014 IEEE 802.1 TSN 13



Summary of White Rabbit - 11

UExample of message flows (taken from Figure 3.14 of [1] and Figure
13 of [3]; note that this is not the full set of message flows)

Master Slave:
time time

No vahd data pattern

Physical connection OK

ANNOUNCE
SUAVE_PRESENT
—lox

Link detection

Syntonization

Y v

Figure 13: WR Link detection and syntonization
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High Accuracy SC Requirements

UThe full requirements are in the P1588 Working Group HA SC
Central Desktop area

U The requirements are not reproduced verbatim here because it was
not clear to the author what permissions, if any, were needed for this

UHowever, the requirements are, essentially, to consider the optional
mechanisms needed for the HA feature, provide a detailed
description of each mechanism, provide examples of how to combine
the mechanisms to achieve HA (i.e., better than 1 ns), and identify
other groups (either in the P1588 WG or elsewhere) to liaise
information to

The main mechanisms discussed so far are
»physical layer syntonization
alink delay/asymmetry calibration

*Means to achieve the necessary timestamp granularity (need not be
confined to DDMTD)
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HA Use Cases - 1

UThis list is a result of a survey within the P1588 WG, plus subsequent
discussion in the HA SC

WThis is a current list; it could be added to if there are additional
suggestions

=White Rabbit

»Telecom networks (essentially the current Telecom time profile with full
timing support (i.e., all nodes PTP capable) and SyncE support for
frequency, and using current method for link calibration

*Note that discussions are still ongoing concerning what this item will
include and how it would differ from the current Telecom time profile
with full timing support

=High accuracy over Telecom (essentially the current Telecom time profile
with full timing support and SyncE support, but with DDMTD and other
features to obtain high accuracy

*Note that we must consider whether SyncE as specified in G.8262
would support the use of the DDMTD (it is not clear what the SyncE
performance is in White Rabbit; this is being looked at)
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HA Use Cases - 2

»High accuracy over Copper

Link calibration of the portion of link delay that could vary each time the
link is initialized could likely not be done as in WR

UNote that some of the HA optional mechanisms could be useful by
themselves, for example

»Link calibration is useful even if sub-ns accuracy is not needed

*Note that management support for automatic calibration of link asymmetry
is part of the 802.1ASbt PAR

\Whatever is done here should be consistent with what is done in the HA
SC

=Also, some application may not need sub-ns accuracy per se, but might
need a much larger number of hops than has currently been considered

*For example, some of the industrial automation use cases in AVB Gen
2 need 64 hops or 128 hops
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HA SC Work Expected between now and F2F in April, 2014

UProduce use cases and requirements for Optional L1 Syntonization

UProduce proposal for full P1588 WG for optional L1 Syntonization
feature

LEven though L1 Syntonization is the initial mechanism being worked
on, there will be some discussion of link calibration prior to and during
the April, 2014 F2F meeting

|t was indicated that, since the meeting will be at CERN, it would be
desirable to take advantage of the fact that WR experts will be present and
not limit the discussion to only L1 Syntonization

UAs of the preparation of this presentation, the requirements for L1
syntonization are being discussed in the HA SC

*The next call is Thursday, January 23, 2014 at 11 AM EST (8 AM PST)
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