
Several New Minor Issues Pertaining
to 802.1ASbt

Geoffrey M. Garner

Consultant

IEEE 802.1 AVB TG
2014.01.17

gmgarner@alum.mit.edu

Introduction
q This presentation describes several minor issues related to 802.1AS

that were brought to the attention of the editor since the last 802.1
meeting (November, 2013)
§ Several proposals/recommendations are made on addressing these items

q This presentation also provides the result of the action item given to
the editor during the November, 2013, to look into whether making
Annex E of 802.1AS (CSN) a numbered clause would be contrary to
IEEE or IEEE 802 policies or would require a large effort to justify
doing this
§ The editor was also given the action item to update [1]

• This has been done; revision 1 [1] has been prepared for the current
meeting

January 2014 IEEE 802.1 TSN 2

Action Item
q It was suggested in the November, 2013 802.1 TSN TG meeting that,

since CSN (which includes MoCA) is a transport for 802.1AS, just as
full-duplex Ethernet, 802.11, and EPON are transports, that Annex E
(where the media-dependent layer above CSN transport is specified)
should be made a numbered clause

q The CSN numbered clause would immediately follow the current media-
dependent numbered clauses, for full-duplex Ethernet, 802.11, and EPON

q The editor as asked to investigate with the IEEE editors whether this would
be allowed, given that CSN is not an 802 technology
§ The editor was also asked to find out whether, if this is allowed and is
done, a large effort would be needed to justify it

q The editor checked with the IEEE 802.1 chair on to find out who the
appropriate person(s) are in IEEE to ask about this
§ However, on being told the question the 802.1 chair indicated that there is
not reason why this cannot be done, assuming the TSN TG wishes to do it

q Therefore, it appears it is perfectly acceptable to make Annex E a
numbered clause, if the TSN TG wishes to do this

January 2014 IEEE 802.1 TSN 3

Action Item (cont.)
q In view of the above, it is proposed that the TSN TG decide if it still

would like to make Annex E (media-dependent layer specification for
CSN transport) a numbered clause
§ It is assumed that, if so, Annex E would be moved to follow the current
clause 13
§ All necessary renumbering of clauses and subclauses and fixing of cross-
references would need to be done

• At least at the outset, this would be indicated via one or more editing
instructions

January 2014 IEEE 802.1 TSN 4

Issue 1 – 1

q This issue relates to potential continuous cycling of the
PortSyncSyncSend state machine (SM) if a Sync message is
received less than ½ Sync interval since the last Sync message was
received
§ This issue was pointed out to the editor by [2]

q Consider the PortSyncSyncSend state machine, shown on the next
slide (taken from Figure 10-8 of 802.1AS – 2011)

January 2014 IEEE 802.1 TSN 5

Issue 1 – 2

q Suppose the state
machine is in the
SET_SYNC_RECEIPT
_TIMEOUT_TIME state
waiting for a Sync
message, and a Sync
message is received
before ½ Sync interval
has elapsed since
receipt of the last Sync
message

q In this case,
rcvdPSSync is TRUE,
and currentTime –
lastSyncSentTime <
0.5*syncInterval

January 2014 IEEE 802.1 TSN 6

rcvdPSSync = FALSE;

TRANSMIT_INIT

If (rcvdPSSync)
{
 lastRcvdPortNum = rcvdPSSyncPtr->localPortNumber;
 lastPreciseOriginTimestamp = rcvdPSSyncPtr->preciseOriginTimestamp;
 lastFollowUpCorrectionField = rcvdPSSyncPtr->followUpCorrectionField;
 lastRateRatio = rcvdPSSyncPtr->rateRatio;
 lastUpstreamTxTime = rcvdPSSyncPtr->upstreamTxTime;
 lastGmTimeBaseIndicator = rcvdPSSyncPtr->gmTimeBaseIndicator;
 lastGmPhaseChange = rcvdPSSyncPtr->lastGmPhaseChange;
 lastGmFreqChange = rcvdPSSyncPtr->lastGmFreqChange;
}
rcvdPSSync = FALSE;
lastSyncSentTime = currentTime;
txMDSyncPtr = setMDSync ();
txMDSync (txMDSyncPtr);

SEND_MD_SYNC

rcvdPSSync = FALSE;

SYNC_RECEIPT_TIMEOUT

rcvdPSSync &&
(rcvdPSSyncPtr->localPortNumber != thisPort) &&
portEnabled && pttPortEnabled && asCapable &&
selectedRole[thisPort] == MasterPort

rcvdPSSync &&
(rcvdPSSyncPtr->localPortNumber != thisPort) &&
portEnabled && pttPortEnabled && asCapable &&
selectedRole[thisPort] == MasterPort

BEGIN || (rcvdPSSync && (!portEnabled || !pttPortEnabled || !asCapable))

syncReceiptTimeoutTime = rcvdPSSyncPtr->syncReceiptTimeoutTime;

SET_SYNC_RECEIPT_TIMEOUT_TIME

rcvdPSSync &&
(currentTime – lastSyncSentTime < 0.5*syncInterval) &&
(rcvdPSSyncPtr->localPortNumber != thisPort)
&& portEnabled && pttPortEnabled && asCapable &&
selectedRole[thisPort] == MasterPort

currentTime >= syncReceiptTimeoutTime

(((rcvdPSSync &&
(currentTime – lastSyncSentTime >= 0.5*syncInterval) &&
rcvdPSSyncPtr->localPortNumber != thisPort))
 || ((currentTime – lastSyncSentTime >= syncInterval) &&
(lastRcvdPortNum != thisPort)))
&& portEnabled && pttPortEnabled && asCapable &&
selectedRole[thisPort] == MasterPort

UCT

Issue 1 - 3
q In that case the rightmost branch, which cycles back to the

SET_SYNC_RECEIPT_TIMEOUT_TIME state, is taken
q However, rcvdPSSync is not set to FALSE
q As a result, this transition continues to occur (as long as

portEnabled, pttPortEnabled, asCapable, and other conditions in the
branch remain TRUE

q This cycling continues until currentTime – lastSyncSentTime >=
0.5*syncInterval

q This behavior is not desired (among other things, if this were followed
exactly it would needlessly use CPU cycles and power)

q A proposed modification to the SM to eliminate this problem is shown
on the next slide

q A new state, WAIT, is added, in which rcvdPSSync is set to FALSE
q The SM waits in this state until currentTime – lastSyncSentTime >=

0.5*syncInterval
§ At that point, the SM transitions to the SEND_MD_SYNC state

January 2014 IEEE 802.1 TSN 7

Issue 1 – 4

q If a new Sync message is
received while waiting,
the SM transitions once
back to this state and sets
rcvdPSSync to FALSE

q It is proposed to replace
the existing
PortSyncSyncSend SM
(Figure 10-8) with the SM
on this slide

January 2014 IEEE 802.1 TSN 8

rcvdPSSync = FALSE;

TRANSMIT_INIT

If (rcvdPSSync)
{
 lastRcvdPortNum = rcvdPSSyncPtr->localPortNumber;
 lastPreciseOriginTimestamp = rcvdPSSyncPtr->preciseOriginTimestamp;
 lastFollowUpCorrectionField = rcvdPSSyncPtr->followUpCorrectionField;
 lastRateRatio = rcvdPSSyncPtr->rateRatio;
 lastUpstreamTxTime = rcvdPSSyncPtr->upstreamTxTime;
 lastGmTimeBaseIndicator = rcvdPSSyncPtr->gmTimeBaseIndicator;
 lastGmPhaseChange = rcvdPSSyncPtr->lastGmPhaseChange;
 lastGmFreqChange = rcvdPSSyncPtr->lastGmFreqChange;
}
rcvdPSSync = FALSE;
lastSyncSentTime = currentTime;
txMDSyncPtr = setMDSync ();
txMDSync (txMDSyncPtr);

SEND_MD_SYNC

rcvdPSSync = FALSE;

SYNC_RECEIPT_TIMEOUT

rcvdPSSync &&
(rcvdPSSyncPtr->localPortNumber != thisPort) &&
portEnabled && pttPortEnabled && asCapable &&
selectedRole[thisPort] == MasterPort

rcvdPSSync &&
(rcvdPSSyncPtr->localPortNumber != thisPort) &&
portEnabled && pttPortEnabled && asCapable &&
selectedRole[thisPort] == MasterPort

BEGIN || (rcvdPSSync && (!portEnabled || !pttPortEnabled || !asCapable))

syncReceiptTimeoutTime = rcvdPSSyncPtr->syncReceiptTimeoutTime;

SET_SYNC_RECEIPT_TIMEOUT_TIME

rcvdPSSync &&
(currentTime – lastSyncSentTime < 0.5*syncInterval) &&
(rcvdPSSyncPtr->localPortNumber != thisPort)
&& portEnabled && pttPortEnabled && asCapable &&
selectedRole[thisPort] == MasterPort

currentTime >= syncReceiptTimeoutTime
(((rcvdPSSync &&
(currentTime – lastSyncSentTime >= 0.5*syncInterval) &&
rcvdPSSyncPtr->localPortNumber != thisPort))
 || ((currentTime – lastSyncSentTime >= syncInterval) &&
(lastRcvdPortNum != thisPort)))
&& portEnabled && pttPortEnabled && asCapable &&
selectedRole[thisPort] == MasterPort

UCT

rcvdPSSync = FALSE;

WAIT

(currentTime – lastSyncSentTime >= 0.5*syncInterval) &&
rcvdPSSyncPtr->localPortNumber != thisPort))
&& portEnabled && pttPortEnabled && asCapable &&
selectedRole[thisPort] == MasterPort

rcvdPSSync &&
(currentTime – lastSyncSentTime < 0.5*syncInterval) &&
(rcvdPSSyncPtr->localPortNumber != thisPort)
&& portEnabled && pttPortEnabled && asCapable &&
selectedRole[thisPort] == MasterPort

Issue 1 – 5

q An additional issue, related to this state machine and the
ClockMasterSyncSend SM for the case where the clock is GM, also
was identified [2]

q The ClockMasterSyncSend SM is (taken from Figure 10-5 of
802.1AS– 2011)

January 2014 IEEE 802.1 TSN 9

txPSSyncPtr = setPSSyncCMSS (gmRateRatio);
txPSSyncCMSS (txPSSyncPtr);

syncSendTime = currentTime + clockMasterSyncInterval;

SEND_SYNC_INDICATION

syncSendTime = currentTime + clockMasterSyncInterval;

INITIALIZING

currentTime >= syncSendTime

BEGIN

currentTime >= syncSendTime

Issue 1 – 6

q The SM sends a PortSyncSync structure to the SiteSync SM when
currentTime exceeds syncSendTime

q syncSendTime is computed as currentTime plus
clockMasterSyncInterval

q If the current clock is GM, the SiteSync SM sends this structure to the
PortSyncSync Send SM

q Therefore, the time between the sending of successive PortSyncSync
structures by the ClockMaster entity to the PortSyncSyncSend SM is
clockMasterSyncInterval

q Note that there is no requirement in 802.1AS that
clockMasterSyncInterval shall be the same as syncInterval for each
port (though it would seem that they should be the same, as both are
intended to be the mean interval between successive Sync messages

January 2014 IEEE 802.1 TSN 10

Issue 1 – 7

q Careful examination of the ClockMasterSyncSend SM and
PortSyncSyncSend SM indicates that if clockMasterSyncInterval is slighlty
longer than SyncInterval, the time between sending of successive Sync
messages will periodically be 0.5*syncInterval
§ In this case, if a Sync message is sent when a PortSyncSync structure is received
from the ClockMasterSyncSend SM, then another Sync message will be send by
the PortSyncSync SM after syncInterval has elapsed
§ But, a PortSyncSync structure will be received from the ClockMasterSyncSend SM
shortly after this, which will result in another Sync message being sent
0.5*syncInterval later

§ The next PortSyncSync structure will be received slightly more than 0.5*syncInterval
later, and another Sync message will be sent

§ The next Sync message is sent one syncInterval later, but the next PortSyncSync
structure has not yet been received from the ClockMasterSyncSend SM because
clockMasterSyncInterval is slightly longer
§ The PortSyncSync structure is received slightly after this, and a Sync message is
sent 0.5*syncInterval later
§ The process continues

January 2014 IEEE 802.1 TSN 11

Issue 1 – 8

q This behavior was not intended, i.e., if a clock is GM, it was intended
that Sync messages be send at the mean Sync rate
§ But the TSN TG should confirm this and, if this is not correct, it should
confirm what was/is intended

q Assuming the above bullet item is correct, i.e., it was intended that
the GM send Sync messages at the mean Sync rate, then the state
machines need to be fixed

q One possible fix would be to make clockMasterSyncInterval and
syncInterval equal, i.e., use syncInterval in the ClockMasterSyncSend
SM

q In addition, logic could be added to the PortSyncSyncSend SM to
check whether the clock is GM and, if so, send Sync as soon as a
PortSyncSync structure is received
§ Note that with this logic a clock might send Sync sooner than
0.5*syncInterval if it becomes GM right after sending a Sync Message
§ Comments and suggestions on fixes are welcome

January 2014 IEEE 802.1 TSN 12

Issue 1 – 9

q Note also that IEEE 1588 – 2008 allows some variation in the actual
sync interval for a BC, as it is not possible for the actual sync interval
to be exactly equal to the specified mean sync interval (i.e., to
syncInterval)
§ The time between successive Sync, Announce, and Pdelay_Req
messages shall be within ±30% of the mean interval, with 90% confidence

• This means that 90% of the interval samples shall have values within
±30% of syncInterval

• The requirement for sending Delay_Req is different (and more
complicated and possibly problematic); however, this is not relevant
here because 802.1AS does not use Delay_Req

q Some tolerance should be allowed in the sending of Sync, Announce,
and Pdelay_Req in 802.1AS
§ The tolerance could be tighter than the 1588 requirement if desired, but
should not be looser if compliance with 1588 is desired

• An absolute upper bound could also be added (1588 does not require
an upper bound, nor does it define sync receipt timeout)

January 2014 IEEE 802.1 TSN 13

Issue 2 – 1

q This issue relates to whether sync receipt timeout should occur if
there is a GM change after receipt of an Announce message but no
Sync messages are received
§ This issue was pointed out to the editor by [3]

q Consider the PortAnnounceReceive state machine below (taken from
Figure 10-12 of 802.1AS-2011) PortAnnounceInformation state
machine, shown on the next slide (taken from Figure 10-13 of
802.1AS-Cor1 – 2013)

January 2014 IEEE 802.1 TSN 14

rcvdAnnounce = FALSE;
rcvdMsg = qualifyAnnounce (rcvdAnnouncePtr);

RECEIVE

rcvdAnnounce = FALSE;
rcvdMsg = FALSE;

DISCARD

BEGIN || (rcvdAnnounce &&
(!portEnabled || !pttPortEnabled || !asCapable))

rcvdAnnounce && portEnabled &&
pttPortEnabled && asCapable

rcvdAnnounce && portEnabled &&
pttPortEnabled && asCapable && !rcvdMsg

Issue 2 – 2

q PortAnnounceInfo
rmation SM

q Note that the
strikeout and
insertion is a
correction from
802.1AS-
Cor1-2013

January 2014 IEEE 802.1 TSN 15

CURRENT

rcvdMsg = FALSE;
announceReceiptTimeoutTime = currentTime;

infoIs = Disabled; reselect = TRUE; selected = FALSE;

DISABLED

((!portEnabled || !pttPortEnabled || !asCapable)
&& (infoIs != Disabled)) || BEGIN

/* Sending port is same master port */
announceReceiptTimeoutTime = currentTime +

announceReceiptTimeoutTimeInterval;
rcvdMsg = FALSE;

rcvdAnnouncePtr = FALSE;

REPEATED_MASTER_PORT

portPriority = masterPriority; portStepsRemoved =
masterStepsRemoved;

updtInfo = FALSE; infoIs = Mine; newInfo = TRUE

UPDATE

UCT

infoIs = Aged;
reselect = TRUE; selected = FALSE;

AGED

rcvdInfo = rcvInfo();

RECEIVE

/* Sending port is new master port */
portPriority = messagePriority;

portStepsRemoved = rcvdAnnouncePtr->stepsRemoved;
recordOtherAnnounceInfo();

announceReceiptTimeoutTimeInterval =
announceReceiptTimeout*(109)*216+rcvdAnnouncePtr->logMessageInterval;

announceReceiptTimeoutTime = currentTime +
announceReceiptTimeoutTimeInterval;

InfoIs = Received; reselect = TRUE; selected = FALSE;
rcvdMsg = FALSE;

rcvdAnnouncePtr = FALSE;

SUPERIOR_MASTER_PORT

rcvdMsg = FALSE;
rcvdAnnouncePtr = FALSE;

INFERIOR_MASTER_OR_OTHER_PORT

selected &&
updtInfo

selected && updtInfo

(infoIs == Received) &&
(currentTime >= announceReceiptTimeoutTime ||

(currentTime >= syncReceiptTimeoutTime &&
gmPresent)) && !updtInfo && !rcvdMsg

portEnabled &&
pttPortEnabled
&& asCapable

rcvdMsg

UCT

UCT

UCT

rcvdInfo == SuperiorMasterInfo

rcvdInfo == RepeatedMasterInfo

rcvdInfo == InferiorDesignatedMasterInfo
|| rcvdInfo == OtherInfo

rcvdMsg &&
!updtInfo

Issue 2 – 3
q When an Announce message is received an qualified, the

PortAnnounceReceive SM sets rcvdMsg to TRUE
§ Note that the pointer rcvdAnnouncePtr is a pointer to a structure that
contains the fields of the Announce message

q The PortAnnounceInformation SM transitions from the CURRENT state to the
RECEIVE state, and the function rcvInfo() is invoked
§ rcvInfo() compares the received Announce information
(messagePriorityVector) with the information on the current GM
(portPriorityVector; note that when a new GM is chosen, the
PortAnnounceInformation SM and PortRoleSelection SM will together
cause the portPriorityVector of each port to contain the information on the
current GM)
§ If the new Announce information is better than or the same as the current
GM (i.e., messagePriorityVector is superior to or the same as the
portPriorityVector), the Announce information is used, and the new
announceReceiptTimeoutTime is set
§ However, a new syncReceiptTimeoutTime is not set

• SyncReceiptTimeoutTime is set by the PortSyncSyncSend SM when a
Sync message is sent (see slides 6 and 8)

January 2014 IEEE 802.1 TSN 16

Issue 2 – 4
q This is correct (i.e., not setting a new syncReceiptTimeoutTime) if the

GM has not changed and Sync (and Announce) messages have been
received all along

q However, consider the case where an Announce message is
received from a clock (time-aware system) that is better than the
current GM, and that clock becomes the new GM, but for some
reason it never sends a Sync message
§ In this case, syncReceiptTimeoutTime is not set
§ If the new GM also stops sending Announce after the initial Announce,
eventually announce receipt timeout will occur; however, this will take on
the order of 3 s if default parameters are used because the default
announce interval is 1 s and default announceReceiptTimeout is 3
§ If the new GM does not stop sending Announce, then neither sync receipt
timeout nor announce receipt timeout will occur; the new GM will remain
GM but never send timing information

• In this case, the clocks synchronized to this GM will act as if they are
free-running, and this will continue indefinitely, or until announce receipt
timeout occurs or an Announce message is received from a better clock

January 2014 IEEE 802.1 TSN 17

Issue 2 – 5

q Both cases in the above main bullet (first-level sub-bullets 2 and 3)
violate the goal of GM changeover occurring with in 1 s
§ Neither case is desirable, though the second case is worse

q It would appear that this problem could be fixed by simply setting the
syncReceiptTimeoutTime in the SUPERIOR_MASTER_PORT state
of the PortAnnounceInformation SM

q However, recall the definition of superior (see 10.3.5 of 802.1AS;
note that this definition follows the 13.10 of 802.1Q-2012)
§ The messagePriorityVector is superior to the portPriorityVector if and only
if:

a)  The messagePriorityVector is better than the portPriorityVector, or
b)  The Announce message has been transmitted from the same master time-

aware system and MasterPort as the portPriorityVector

§  Note that, given 2 priority vectors A and B, A is better, the same as or
worse than B if and only if A > B, A = B, or A < B, respectively

January 2014 IEEE 802.1 TSN 18

Issue 2 – 5

q The reason for (b) in the definition of superior is so that the BMCA will
be triggered if the current GM downgrades its quality (i.e., a worse
Announce message is received from the same clock and port, which
results in a worse messagePriorityVector), just as it is triggered a
better Announce message is received from a different clock

q However, it appears that (b) will also cause an Announce message
received from the current master port, reflecting the current GM, i.e.,
if the messagePriorityVector is the same as the portPriorityVector, it
will still be considered superior, and the PortAnnounceInformation SM
will branch to the state SUPERIOR_MASTER_PORT rather than
REPEATED_MASTER_PORT

q This behavior seems incorrect and, in any case, with the proposed fix
of setting syncReceiptTimeoutTime in the
SUPERIOR_MASTER_PORT state would cause it to be set
whenever an Announce message is received (whereas it would be
desired to set it in this state only when the GM first becomes GM

January 2014 IEEE 802.1 TSN 19

Issue 2 – 6

q This point will be investigated before any changes are made in the
802.1ASbt draft

q Comments on this are welcome

January 2014 IEEE 802.1 TSN 20

Issue 3 – 1

q This issue relates to the computation of mean propagation delay
using the peer delay mechanism
§ IEEE 802.1AS – 2011 and IEEE 1588 – 2008 do equivalent arithmetic
computations when computing mean delay, but the computations are
organized differently

• This appears to not be a problem, because the two sets of computations are
equivalent and the same result is obtained given the same input values

§ This issue was pointed out to the editor by [3]

q Recall the notation:
§ T1 = pdelayReqEventEgressTimestamp
§ T2 = pdelayReqEventIngressTimestamp
§ T3 = pdelayRespEventEgressTimestamp
§ T4 = pdelayRespEventIngressTimestamp

January 2014 IEEE 802.1 TSN 21

Issue 3 – 2

q In IEEE 802.1AS, the mean path delay is computed as

q Where r is the neighborRateRatio, which converts T1 and T4 to the
timebase of the peer delay responder

q In IEEE 1588:
§ T3 above is replaced by the responseOriginTimestamp (of the
Pdelay_Resp_Follow_Up message), which contains the
pdelayRespEventEgressTimestamp, except for any fractional ns portion
§ T2 above is replaced by the requestReceiptTimestamp (of the Pdelay_Resp
message), which contains the pdelayReqEventIngressTimestamp, except
for any fractional ns portion
§ In addition, the correctionFields of Pdelay_Resp and
Pdelay_Resp_Follow_Up are subtracted in the numerator
§ The result is (we retain the neighborRateRatio factor):

January 2014 IEEE 802.1 TSN 22

2
)()(2314 TTTTrD −−−⋅

=

Issue 3 – 3

q In 1588, the fractional ns portion of T2 is subtracted from the
correctionField of Pdelay_Resp, rather than added as in 802.1AS
§ However, the correctionField of Pdelay_Resp is then subtracted in the
equation above, and the two minus signs cancel

q The computations in 802.1AS and 1588 are mathematically
equivalent, and no change is needed in 802.1ASbt

January 2014 IEEE 802.1 TSN 23

2/]

)()([14

ollow_Uplay_Resp_FFieldofPdecorrection
lay_RespFieldofPdecorrection

ampeiptTimestrequestRecampiginTimestresponseOrTTrD
−

−−−−⋅=

References – 1

[1] Geoffrey M. Garner, Interoperability with a One-Step Clock on
Receive in 802.1ASbt, presentation for IEEE 802.1 TSN TG, July 16,
2013, Revision 1, January 15, 2014.

[2] Rune Haugom, emails of November 25, 2013,January 14, 2014, and
January 17, 2014.

[3] Chris Hall, email of November 19, 2013.
[4] Christian Boiger, email of November 4, 2013

January 2014 IEEE 802.1 TSN 24

