
Interoperability with a One-Step Clock
on Receive in 802.1ASbt

Revision 1

Geoffrey M. Garner

Consultant

IEEE 802.1 AVB TG
2014.01.15

gmgarner@alum.mit.edu

Changes in Revision 1

q A “shall” is indicated on slide 5
q The modified MDSyncReceive state machine (slide 12) is corrected
q Minor typos are fixed, and a few changes are made for clarity
q Deleted text indicated via strikethrough
q New text indicated in orange

November 2013 IEEE 802.1 AVB 2

Introduction – 1
q This presentation describes changes needed in 802.1AS (potentially

to be included in 802.1ASbt) for a clock (time-aware system) to
interoperate with a one-step clock
§ The clock interoperating with the one-step clock would need to handle
(process) messages received from the one-step clock
§ However, the clock would not have to be a one-step clock, nor transmit
one-step messages

q This was discussed in previous presentations, most recently in the
initial version and in Revision 1 of [1]
§ Revision 2 of [1] described additional changes needed for 802.1AS
for a clock to transmit one-step messages; this material is not
included and not discussed in the current presentation

q The present presentation expands on Revision 1 of [1] in that the
changes needed for the MDSyncReceive state machine and related
functions are indicated

November 2013 IEEE 802.1 AVB 3

Introduction – 2
q Reference [1] (all revisions) also indicates that if one-step Pdelay

messages are to be handled, we need to decide how information
needed for neighbor rate ratio computation will be transported
§ Here, we review the possible approaches described in [1]

November 2013 IEEE 802.1 AVB 4

Review of Two-Step Handling of Sync and Follow_Up
q When a two-step clock (802.1AS time-aware system) sends Sync and

Follow_Up:
§ originTimestamp field of Sync is set to 0 (all the Sync fields after the header are
shown as reserved in 11.4.3)
§ correctionField of Sync is set to 0 (Table 11-5 of the 802.1ASbt draft
§ PreciseOrigin timestamp field of Follow_Up message contains the timestamp of the
grandmaster (GM) where the Sync information originated, except for any sub-ns
portion
§ correctionField of Follow_Up contains the sum of the sub-ns portion of the
timestamp of the GM where the Sync information originated, the acumulated
residence times in the path, the accumulated mean link delays in the path, and any
asymmetry corrections

q A time-aware system that receives Sync and Follow_Up from a two step
clock does shall do the following on transmitting Sync and Follow_Up
§ Timestamp the outgoing Sync message and compute the residence time, as
indicated in 11.2.14 (MDSyncSend state machine)
§ Add the residence time and mean propagation delay on the incoming link to the
correctionField of the incoming Follow_Up message

§ Transmit the Follow_Up message with the incoming preciseOrigin timestamp and
the new correctionField value computed in the above bullet item

November 2013 IEEE 802.1 AVB 5

Handling of Sync and Follow_Up from One-Step Clock – 1

q 802.1AS does not currently specify a one-step clock
§ The most logical place to go to for a description of what a one-step clock
sends is IEEE 1588

q When a one-step boundary clock sends Sync (it does not send
Follow_Up because it is one-step):
§ The originTimestamp contains the recovered GM time, except for any sub-
ns part
§ The correctionField contains any sub-ns portion of the recovered GM time

§ The correctionField does not contain any residence time corrections, nor
link delays, when the Sync message is transmitted by a BC; these are
included in the correction field only if the Sync message is transmitted by a
transparent clock (TC)

• When the Sync message is transmitted by a BC, these corrections are included
in the originTimestamp (except for any sub-ns part)

November 2013 IEEE 802.1 AVB 6

Handling of Sync and Follow_Up from One-Step Clock – 2

q 802.1AS does not specify one-step on transmission (as stated above)
q For two-step transmission, 802.1AS places all components of the time,

except the GM time excluding any sub-ns portion when it transmits the Sync
information excluding any sub-ns portion, in the correctionField

q It is conceivable that a one-step clock whose Sync messages are being
received might also place all components of time (except the GM time
excluding any sub-ns portion when it transmits the Sync information
excluding any sub-ns portion) in the correctionField
§ The main constraint is that when we add the originTimestamp and
correctionField, the result is the time the Sync message was transmitted
by the next upstream node

q Therefore, we will assume that the time the Sync message was transmitted
by the next upstream node is the sum of the Sync message originTimestamp
and correctionField, for the case where the upstream boundary clock or
ordinary clock is one-step

q Finally, it is assumed that the Follow_Up information TLV is attached to the
Sync message when the transmission is from a one-step clock

November 2013 IEEE 802.1 AVB 7

Additional Point for Two-Step Clocks

q If a clock is two-step, the correctionField of Sync ought to not contain
timing information (i.e., it ought to be zero)
§ This is because IEEE 1588 – 2008 (subclause 9.5.9.4) and IEEE 802.1AS
– 2011 (subclause 11.2.14.2.1) specify that the Sync correctionField shall
be set to zero on transmit
§ However, it would be safest to check the correctionField of Sync anyway
since, given that we are describing interaction with one-step clocks, which
are not specified in 802.1AS, we might also have non-standard behavior
that results in the Sync correctionField being non-zero when transmitted
from a two-step boundary clock; for example

• The message could have come from a system that inter-operates with
one-step clocks and leaves the Sync correctionField intact

• There could be a one-step transparent clock in between the upstream
two-step boundary clock and the receiving boundary clock

§ Therefore, when receiving messages from a two-step clock, the
correctionFields of the Sync and Follow_Up messages should be added to
the preciseOriginTimestamp to obtain the time the Sync message was
transmitted by the next upstream node

November 2013 IEEE 802.1 AVB 8

Summary of Changes to Handle One-Step on Receive (See R1 of [1]) - 1

q Allow twoStepFlag to be FALSE on receive, in Table 11-4
q Also in Table 11-4, now must pay attention to twoStepFlag on receive

(and not ignore it on receive)
§ Note that information in Table 11-4 is moved to Table 10-6 in 802.1ASbt/
D0.3

q In Table 11-5, need to indicate that the correctionField of Sync now
can contain corrections for fractional ns, residence times, and link
delays (and any asymmetry corrections) in the case where the
messages are from a one-step clock
§ However, the correctionField may contain timing information in the two-
step case as indicated on the previous slide; therefore, it will be included in
computing the GM time

q In MDSyncReceiveSM state machine (11.2.13 and Figure 11-6),
need to add logic for case where twoStepFlag is FALSE
§ If twoStepFlag is FALSE, do not wait for Follow_Up; process the
correctionField in Sync as the Follow_Up correctionField would be
processed.

November 2013 IEEE 802.1 AVB 9

Summary of Changes to Handle One-Step on Receive (See R1 of [1]) - 1

q If twoStepFlag is TRUE, the correctionField of Sync should be added
to the preciseOriginTimestamp and correctionField of the Follow_Up
message to obtain the GM time when the Sync message was
transmitted from the next node upstream

q In the MDSyncReceive state machine, step (a) of the function
setMDSyncReceive() must set the followUpCorrectionField member
of the MDSyncReceive structure equal to the sum of the
correctionFields of the most recently received Follow_Up message
and the corresponding most recently received Sync message (the
present function sets this member equal to the correctionField of the
most recently received Follow_Up message

q MDSyncSendSM state machine does not change, as messages are
sent as two-step

November 2013 IEEE 802.1 AVB 10

Current MDSyncReceive State Machine

November 2013 IEEE 802.1 AVB 11

rcvdSync = FALSE;
A = rcvdSyncPtr->logMessageInterval;

upstreamSyncInterval =(109)*2A;
followUpReceiptTimeoutTime = currentTime + upstreamSyncInterval;

WAITING_FOR_FOLLOW_UP

rcvdSync && portEnabled
&& pttPortEnabled &&

asCapable

rcvdSync = FALSE;
rcvdFollowUp = FALSE;

DISCARD

rcvdFollowUp = FALSE;
txMDSyncReceivePtr = setMDSyncReceive (rcvdFollowUpPtr);

txMDSyncReceive (txMDSyncReceivePtr);

WAITING_FOR_SYNC

rcvdFollowUp &&
(rcvdFollowUpPtr->sequenceId
== rcvdSyncPtr->sequenceId)

rcvdSync && portEnabled && pttPortEnabled && asCapable

currentTime >=
followUpReceiptTimeoutTime

BEGIN || (rcvdSync && (!portEnabled || !pttPortEnabled || !asCapable))

rcvdSync && portEnabled
&& pttPortEnabled &&

asCapable

New MDSyncReceive State Machine

November 2013 IEEE 802.1 AVB 12

rcvdSync = FALSE;
A = rcvdSyncPtr->logMessageInterval;

upstreamSyncInterval =(109)*2A;
followUpReceiptTimeoutTime = currentTime + upstreamSyncInterval;

WAITING_FOR_FOLLOW_UP

rcvdSync &&
portEnabled &&

pttPortEnabled &&
asCapable &&
twoStepFlag

rcvdSync = FALSE;
rcvdFollowUp = FALSE;

DISCARD

rcvdFollowUp = FALSE;
txMDSyncReceivePtr = setMDSyncReceive (rcvdFollowUpPtr);

txMDSyncReceive (txMDSyncReceivePtr);

WAITING_FOR_SYNC

rcvdFollowUp &&
(rcvdFollowUpPtr->sequenceId
== rcvdSyncPtr->sequenceId)

rcvdSync && portEnabled && pttPortEnabled &&
asCapable & twoStepFlag

currentTime >=
followUpReceiptTimeoutTime

BEGIN || (rcvdSync && (!portEnabled || !pttPortEnabled || !asCapable))

rcvdSync && portEnabled
&& pttPortEnabled &&

asCapable

rcvdSync = FALSE;
A = rcvdSyncPtr->logMessageInterval;

upstreamSyncInterval =(109)*2A;
txMDSyncReceivePtr = setMDSyncReceive (rcvdSyncPtr);

txMDSyncReceive (txMDSyncReceivePtr);

WAITING_FOR_SYNC

rcvdSync && portEnabled
&& pttPortEnabled &&

asCapable && !twoStepFlag

rcvdSync && portEnabled &&
pttPortEnabled && asCapable &&

!twoStepFlag

rcvdSync && portEnabled && pttPortEnabled &&
asCapable & !twoStepFlag

rcvdSync && portEnabled &&
pttPortEnabled && asCapable &&

twoStepFlag

Sync Message Tables

q The Sync message structure (subclause 11.4.3) must be shown
separately for the one-step and two-step cases

q If twoStepFlag is TRUE, the Sync message is as it is shown in 11.4.3
(Table 11-8)
§ In this case, the originTimestamp field, which follows the header, is shown
as reserved

q If twoStepFlag is FALSE, the Sync message looks like the Follow_Up
message (Table 11-9), except that the preciseOriginTimestamp is
labeled originTimestamp
§ In this case, the Follow_Up information TLV is present

November 2013 IEEE 802.1 AVB 13

Processing of Pdelay Messages – 1 (taken from [1])

q Need to decide what to do regarding the Pdelay messages
§ Both Pdelay_Resp and Pdelay_Resp_Follow_Up messages are used in nearest
neighbor rate ratio measurement

§ In one-step Pdelay, only Pdelay_Resp is sent, and it carries difference between its
send time and the Pdelay_Req receipt time

• This is sufficient information for propagation delay measurement, but not for
neighbor rate ratio measurement

§ Some possible solutions are
• Don’t handle one-step Pdelay messages on receive (i.e., only handle one-step
Sync)

• Carry the responseOriginTimestamp (i.e., the timestamp of the sending of
Pdelay_Resp) in the requestReceiptTimestamp field of Pdelay_Resp

– This can be done because IEEE 1588 specifies that in the one-step case the
requestReceiptTimestamp field is set to zero, and the difference t3 – t2 is carried in the
correctionField

– But this would not allow any sub-ns component of the timestamp of sending
Pdelay_Resp to be carried

– Also, this would be a specification in 802.1AS; it would be necessary that the one-step
system that sends Pdelay_Resp complies with this (probably would want to request this
be added to 1588v3)

July 2012 IEEE 802.1 AVB 14

Processing of Pdelay Messages – 2 (taken from [1])

q Need to decide what to do regarding the Pdelay messages (cont.)
§ Some possible solutions (cont.)

• Carry the responseOriginTimestamp in a TLV attached to Pdelay_Resp
– In this approach, a TLV of the same length must be added to Pdelay_Req so that

Pdelay_Req and Pdelay_Resp have the same length
– This is done to ensure that there is no error in measured propagation delay in the event

there is an unknown or undetected asymmetry that depends on message length
– This Pdelay_Req TLV would likely not carry any useful information; its purpose would be

only to ensure that Pdelay_Req and Pdelay_Resp have the same length

• Invent a new mechanism for neighbor rate ratio measurement for this case (i.e.,
other than the new mechanisms above)

• Others?
§ The intent is that the AVB TG would pick a solution for measuring rate ratio (either
one of the above or another solution)

• It is not intended to have multiple options

July 2012 IEEE 802.1 AVB 15

References – 1

[1] Geoffrey M. Garner, Discussion of Assumptions for 802.1ASbt
Features, presentation for IEEE 802.1 AVB TG, July 16, 2012,
Revision 1, July 16, 2012, Revision 2, July 19, 2012.

November 2013 IEEE 802.1 AVB 16

