Mechanism of delay asymmetry measurement

802.1 ASbt, 201411 IEEE 802 plenary

Lu Huang, China Mobile (huanglu@chinamobile.com) Liuyan Han, China Mobile (hanliuyan@chinamobile.com)

- CM's solution
- Suggestion

Introduction of CM's solution(1)

- Pre-condition
 - Synchronized frequency through sync-E
 - Enable PTP, enable BMC
 - Redundant synchronization path for every node

Key points

- Precondition
 - Frequency synchronization
- Command from NMS to device
 - Start phase1 test, test port index
 - Start phase2 test, test port index
 - Set asymmetry compensation value
- Device specification
 - Port could be set as "test mode", when under test mode port doesn't join PTP calculation nor affect time synchronization
 - Report test status: phase1 test start/end, phase2 test start/end
 - Report asymmetry compensation value
 - Report error if happened in phase1 or phase2 test

Agenda

- CM's solution
- Suggestion

Suggestion for ASbt

- Precondition requirement
 - Frequency synchronization
- Define new port mode
 - Asymmetry test mode
- Define interaction between device and NMS
 - Commands from NMS to device
 - Start phase1 test
 - Start phase2 test
 - Set asymmetry compensation as mentioned
 - Reports from device to NMS
 - Phase1 test start/end
 - Phase2 test start/end
 - Asymmetry compensation
 - Any error if happend

Discussion on data collection and asymmetry calculation

- Option 1: calculation absolute asymmetry value
 - Collect t2-t1 in phase1 test, collect multiple sets of data for precision
 - Collect t2'-t1' in phase2 test , collect multiple sets of data for precision
 - Calculate absolute asymmetry value
 - (t2'-t1') (t2-t1)
- Option 2: calculation asymmetry ratio
 - Collect t1,t2,t3,t4 in phase1 test , collect multiple sets of data for precision
 - Collect t1',t2',t3',t4' in phase2 test , collect multiple sets of data for precision
 - Calculate asymmetry ratio
 - Delay_ms/delay_sm = (t2+t4'-t1-t3')/(t2'+t4-t1'-t3)

In my own option, option 2, asymmetry ratio, maybe is better than absolute asymmetry value, because ratio is more stable when environment changes after a long period Thank you Q&A