

Description of Explicit Topologies

János Farkas janos.farkas@ericsson.com

March 18, 2014

Format A: Port ID Based

- > This is the format of 802.1Qca D0.6
- Format A is based on listing Bridge Ports that are part of the topology, where a Bridge Port is identified by an IS-IS System ID, Circuit ID tuple
- The connectivity provided by a Bridge Port is included in the topology if the Port ID is included; therefore, each bridge or station connected to the same LAN is also included in the topology
- Format A only requires ordering for a loose hop of a p2p path that mixes loose and strict hops
 - Ordering is not required either in fully specified or in completely loose cases
 - A tree (mp2mp) is always either fully specified or completely loose
- Otherwise, Format A does not require any particular ordering of the hops, but ordering is allowed in case of p2p paths
- > Tie-breaking for a link: use the numerically lower System ID

Format **B**: Order Based

- Format B is based on the ordered list of Nodal IDs for describing all kinds of topologies
- A chain (or ear) out of the topology is described by an ordered list
 - A p2p path is a single chain
 - The smallest chain is a single link
- Arbitrary order between chains
- Each node involved in the topology appears at least once in the descriptor
- The System ID is the Nodal ID for IS-IS

Parallel Links

- Port ID has to be also supported in case of Format B in order to be able to distinguish parallel links between a pair of bridges
- Therefore, the same TLV structure can be used for both formats

Circuit

ECT

Loose

Exclude

End

Root

> 802.1Qca D0.6

Descriptor

MRT Root GADAG Root

This 'translated' version is

Example Network

A Fully Specified Spanning Tree

Format A

Format B exact order for each chain

topology description | 2014-03-18 | Page 7 Circuit ID has to be used for parallel links in every case

A Fully Specified Spanning Tree Format **A** Peculiarities

Format A

A Fully Specified Spanning Tree Format **A** Peculiarities – cont'd

Format A

Format A arbitrary order

66, 4; Circuit

77 bytes

Redundant items do not cause any issue

A Fully Specified Spanning Tree Format **B** Peculiarities

A Completely Loose Tree

A Fully Specified P2P Path

Format A (802.1Qca D0.6) allows exact order of System IDs for p2p paths: Exact order has to be followed if Circuit ID is not present

topology description | 2014-03-18 | Page 12

A Mixed P2P Path (Mixed Strict and Loose Hops)

topology description | 2014-03-18 | Page 13 Circuit ID has to be used for parallel links in every case

A Mixed P2P Path Format **A** Peculiarities

A Mixed P2P Path Format **A** Peculiarities – cont'd

Format A (802.1Qca D0.6) allows exact order of System IDs for p2p paths: Exact order has to be followed if Circuit ID is not present

topology description | 2014-03-18 | Page 15

A GADAG Example

topology description | 2014-03-18 | Page 16

GADAG Description

Format B specific order

11; GADAG Root
22
33
11; GADAG Root
22
44
66
77
55
33
66
88
77
22
66
66
33
77
33

Format A arbitrary order

11, 2; Circuit,
GADAG Root
22, 2; Circuit
22, 3; Circuit
22, 4; Circuit
33, 1; Circuit
44, 3; Circuit
55, 1; Circuit
66, 2; Circuit
66, 4; Circuit
66, 5; Circuit
77, 1; Circuit
77, 3; Circuit
88, 2; Circuit
143 bytes

133 bytes

GADAG Description Format **A** Peculiarities

Format A

11, 2; Circuit,
GADAG Root
22, 2; Circuit
22, 3; Circuit
22, 4; Circuit
33, 1; Circuit
44, 3; Circuit
55, 1; Circuit
66, 2; Circuit
66, 4; Circuit
66, 5; Circuit
77, 1; Circuit
77, 3; Circuit
88, 2; Circuit

Format A

11, 2; Circuit, GADAG Root 22, 3; Circuit 33, 1; Circuit 22, 2; Circuit 44, 3; Circuit 66, 4; Circuit 77, 3; Circuit 55, 1; Circuit 66, 5; Circuit 88, 2; Circuit 22, 4; Circuit 66, 2; Circuit 77, 1; Circuit ear order

1

- > Each edge of the graph is specified by the outbound port
- > Arbitrary order can be applied; therefore,
- The graph can be described bridge by bridge and port by port topology description | 2014-03-18 | Page 18

GADAG Description Format **B** Peculiarities

Format B specific order

topology description | 2014-03-18 | Page 19

133 bytes

Shared Media LAN Example

Format B Format A exact order for each chain arbitrary order 11, 3; Circuit, End 11; End 44, 3; Circuit, End 33 55, 1; Circuit, End 22, 4; Circuit DIS 88, 1; Circuit, End 66 22, 4; Circuit 3**33**2 44; End **22**[3 Pseudonode ID. 4 5 ≥ 4 33 55 bytes 1 244 552 55; End 22, 4; Circuit 1 2**77**3 3664 77 ISO 10589: A shared media 66 LAN is identified by the System ID 88; End of the Designated Intermediate System TÌT 2 (DIS) and by a Pseudonode ID, which 88 85 bytes is a Circuit ID local to the DIS.

topology description | 2014-03-18 | Page 20

Shared Media LAN Example Format **A** Peculiarities

Shared Media LAN Example Format **B** Peculiarities

Format B exact order for each chain

Note

- > 802.1Qca is not about p2p paths
- Mixing strict and loose hops in an explicit tree makes it too complicated
- Mixing strict and loose hops in a p2p path may be not that useful
- Order is only mandatory for a loose hop, because it is related to the preceding hop
- Ordering is unnecessary if it is not allowed to mix strict and loose hops

Programming

Format A

- Basy
- > PCE
 - e.g. go through the topology sequentially per bridge per port
- > Bridge
 - Just include the hops to the topology

Format B

- More complex
- > PCE
 - Longest possible chains to be find
 - Encode the chain as ordered list
- > Bridge
 - It has to be detected when a chain begins and ends
 - Worst case: each link is an individual chain

Summary

The original intention determines the pros and cons

- Format A: describe a generic graph, network topology
- Format B: describe a p2p path

• Format A

- > Easier to program
- Shared media LAN
 - Simple, in-line with IS-IS
- Size
 - Can be 2 bytes smaller per hop

Format B

- > Easier to read by human
- Shared media LAN
 Messy
- Size
 - 2 bytes larger in worst case (single hop chain)
- Same TLV structure can be used for the two formats

