Enhancements to Traffic Scheduling and DCBX

Anoop Ghanwani, Dell
Joe White, Dell
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCBX</td>
<td>Data Center Bridging eXchange</td>
</tr>
<tr>
<td>ETS</td>
<td>Enhanced Transmission Selection</td>
</tr>
<tr>
<td>RoCE</td>
<td>RDMA over Converged Ethernet</td>
</tr>
<tr>
<td>SP</td>
<td>Strict Priority</td>
</tr>
<tr>
<td>TC</td>
<td>Traffic Class</td>
</tr>
<tr>
<td>TSA</td>
<td>Traffic Selection Algorithm</td>
</tr>
</tbody>
</table>
Overview

• Review of traffic scheduling and DCBX in 802.1Q-2012
• Use cases that benefit from strict priority
• Limitations of 802.1Q-2012 TSAs
• Proposed enhancements to TSAs and DCBX
Review of 802.1Q-2012

• A TC is assigned a TSA
 – Strict priority
 – Credit-based shaper
 – ETS
 – Vendor-specific
Review of 802.1Q-2012 (2)

• ETS, Clause 37.3
 – TCs configured for ETS receive bandwidth in proportion to a configured weights for bandwidth that is available to ETS classes
 • After SP and credit shaper classes have received service
 – If one of the TCs is not using all of its assigned bandwidth, excess bandwidth is used by other TCs
 – How excess bandwidth is shared is NOT specified
Review of 802.1Q-2012 (3)

• DCBX is used for capabilities advertisement and configuration
 – Mapping of priority to TC
 – Specify TSA for each TC
 – For ETS classes, specify Bandwidth % for each TC
Use Cases for Strict Priority

• SP is important for low latency applications
 – High frequency trading
 – RoCE applications, e.g. Microsoft SMB Direct
 – Control traffic, e.g. heartbeats, sync messages

• In many deployments using SP with more than one queue is desirable
Limitations of 802.1Q-2012 TSAs

• Strict priority
 – No way to limit the bandwidth consumed by a TC
 • May be required by SLA
 – Starvation of lower TCs is possible

• Credit-based shaper
 – Not configurable via DCBX
 – Limits the bandwidth that can be consumed by a TC

• ETS
 – Latency properties
 • Different TCs will likely experience similar latency
 – Excess bandwidth distribution
 • Excess bandwidth distributed is not specified
 • An implementation using WRR would assign it in proportion to bandwidth %
Addressing the Limitations of TSAs in 802.1Q-2012

• Two new controls
 – Minimum bandwidth guarantee (MinBG)
 – Maximum bandwidth limit (MaxBL)

• These can be applied to TCs with SP or ETS
Minimum Bandwidth Guarantee

• Each queue in the system will first receive access to its MinBG
 – In order of priority
 – This allows a lower priority queue to receive service up to a certain bandwidth, once all higher priority queues have received their MinBG

• Once the MinBG is satisfied for all TCs, the system reverts to “normal” operation
 – TCs are serviced in the order determined by the TSAs
Maximum Bandwidth Limit

• Any queue that has achieved its MaxBL is removed from service
 – Stops receiving more service even if there is no other traffic in the system
 – Addressed by credit-based shaper in 802.1Qav
Example #1

<table>
<thead>
<tr>
<th>TC/Queue</th>
<th>TSA</th>
<th>MinBG</th>
<th>MaxBL</th>
<th>Offered load</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>SP</td>
<td>-</td>
<td>60%</td>
<td>100%</td>
<td>60%</td>
</tr>
<tr>
<td>2</td>
<td>SP</td>
<td>10%</td>
<td>40%</td>
<td>100%</td>
<td>20%</td>
</tr>
<tr>
<td>1</td>
<td>ETS</td>
<td>10%</td>
<td>-</td>
<td>100%</td>
<td>10%</td>
</tr>
<tr>
<td>0</td>
<td>ETS</td>
<td>10%</td>
<td>-</td>
<td>100%</td>
<td>10%</td>
</tr>
</tbody>
</table>

• First, TC 2, 1, 0 each receive their MinBG in that order
• Next, TC 3 is serviced till it reaches MaxBL
• Finally, TC 2 receives the remainder
 – Does not exceed its MaxBL
• The order of service is important as it impacts latency
Example #2

<table>
<thead>
<tr>
<th>TC/Queue</th>
<th>TSA</th>
<th>MinBG</th>
<th>MaxBL</th>
<th>Offered load</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>SP</td>
<td>60%</td>
<td>60%</td>
<td>40%</td>
<td>40%</td>
</tr>
<tr>
<td>2</td>
<td>SP</td>
<td>10%</td>
<td>40%</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>1</td>
<td>ETS</td>
<td>10%</td>
<td>-</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>0</td>
<td>ETS</td>
<td>10%</td>
<td>-</td>
<td>100%</td>
<td>30%</td>
</tr>
</tbody>
</table>

- First, TC 3 receives 40%, within MinBG & MaxBL
- Next, TC 2 receives 10%, its MinBG
- Next, TC 0 receives 10%, its MinBG
- Next, TC 2 receives 20%, offered load within MaxBL
- Next, TC 0 receives 20%, the remainder
Proposed Enhancements to TSAs and DCBX

• TSAs
 – Define the behavior of MinBG and MaxBL as they apply to SP and ETS

• DCBX
 – Define new TLVs in DCBX to configure MinBG and MaxBL for each TC
Next Steps

• Motion to create a PAR to enhance 802.1Q?
Earlier work in IEEE 802.1

• Similar concepts have been discussed before
THANK YOU