

Architecture to enable guaranteed Latency for Streams

Marcel Kiessling Distributed Embedded Systems

IEEE 802.1 Plenary Meeting November, 2014 – San Antonia. TX, USA

Marcel Kießling

1

♦ Recap: Industrial Automation Applications

- Two different Industrial network systems
- Requirements for the network

♦ TSN Streams

- Handling of Streams in an AVB network
- Extensions for TSN

♦ Summary – Missing Parts for using TSN

Recap: Industrial Automation Applications

Within industrial we have to differentiate two Systems:

Closed Systems

Typical used for "Closed-Loop-Applications" like motion control system

- Highest performance requirements
- + Engineered and highly optimized static network with TAS, CT and Preemption
- Goal: lowest possible guaranteed latency (with "no" Jitter)

Open Systems

Typical used for "Control-Applications" like assembly lines

- + Topology can change when applications are added , changed or removed at runtime
- + Guaranteed QoS & guaranteed low latency
- + Goal: Multiple automation applications share dynamically the network

BUT: Industrial networks can also consist of one Closed and multiple Open Systems

SIEMENS

Worst-case effect of all Latency Sources must be considered

Sources of Latency

- ♦ Loss of Frames Infinite End-to-End Latency
- ♦ Priority Traffic from classes with higher priority
- Priority Inversion Traffic from classes with lower priority
- ♦ In-Class Interference Traffic from the same class
- Bridge Delay and other HW dependent effects

Jitter, because latency effects are not constant (e.g. Influences from other traffic, ordering of streams, time sync, ...)

AVB / TSN can avoid or limit the effect for Streams

High Priority for lower latency

Reservation to avoid congestion causing loss of frames

CB can avoid loss of frames in case of a failure

Coordination to influence congestion and in-class interference Preemption to lower Frame Interference (improve bandwidth usage in case of TAS)

Shaper influence Delay and Jitter Low Latency and Shapers are converse requirements

But: Robustness in case of failures?

(robustness in case of failures – no additional delay in normal operation)

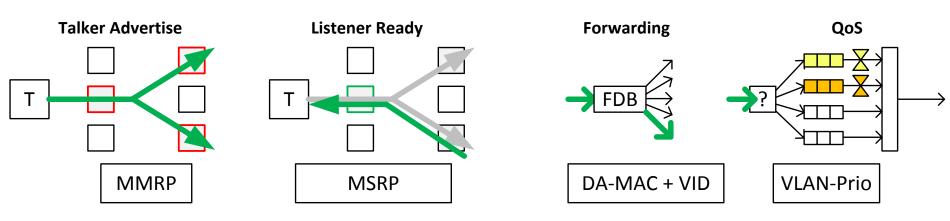
- ♦ Recap: Industrial Automation Applications
 - Two different Industrial network systems
 - Requirements for the network

♦ TSN Streams

- Handling of Streams in an AVB network
- Extensions for TSN

♦ Summary – Missing Parts for using TSN

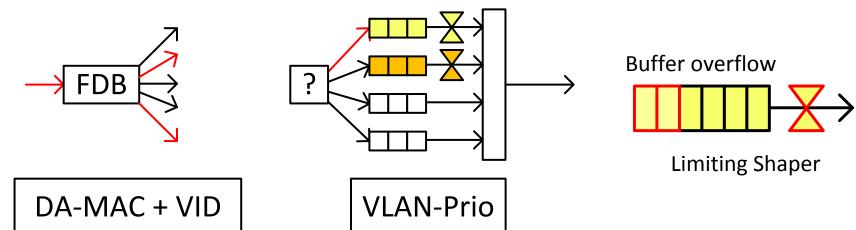
- AVB introduced QoS to Ethernet for AV Applications
 - Distinguished handling of Streams
 - Reservation to prevent "stream"-congestion
- ♦ AVB introduced high accurate timing
 - Enables the use of Ethernet with Jitter for synchronized Playback
 - Usable for other applications (e.g. Measurement)
- But: AVB doesn't provide low latency with guarantees



- ♦ TSN further improves QoS for time-sensitive Applications
 - Improved handling of Streams with Preemption
 - Reservation to prevent "stream"-congestion
- TSN is working on redundant
 high accurate time synchronization
 - Important for time-based systems
- ♦ IETF is starting work in detnet for a Layer3 solution
 - Usage of TSN HW mechanisms for e.g. IP / MPLS / ...
- But: TSN doesn't provide low latency with guarantees
 - Network Latency can get increased by one misbehaving Stream

- ♦ Steps from Stream Reservation to Operation
 - Advertisement of Stream Parameters using Talker Advertise (MMRP Talker Pruning can limit the forwarding Ports)
 - Reservation from Listener using Listener Ready (MSRP Reservation back to talker with path enabling)
 - Forwarding decision based on FDB Entry
 - QoS by VLAN Priority to Queue assignment
 Streams should use an exclusive queue!

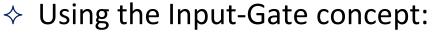
1 - Reservation


Marcel Kießling

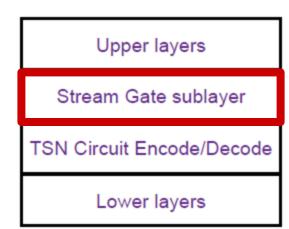
^{2 -} Operation

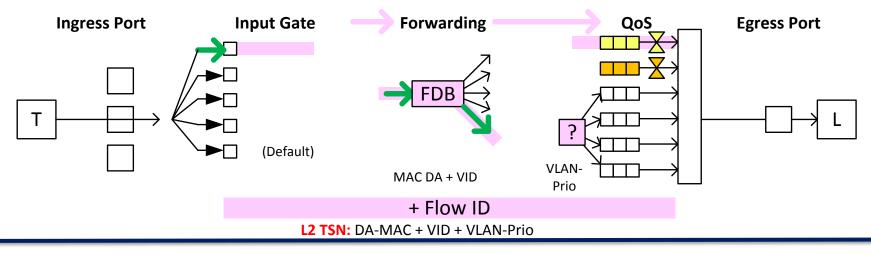
♦ <u>No guarantees</u> for low forwarding Delay

- Shaper limits the forwarding rate
- Queue can get filled due to Failures
- Latency of the Stream Class increases (infinite Latency in case of dropped frames due to congestion)
- All Streams in the class/queue are affected
 Forwarding
 QoS


The Connection between Stream and Queue is missing ...

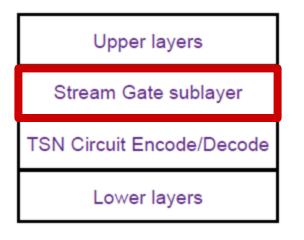
IEEE 802.1 Plenary Meeting November, 2014 – San Antonia. TX, USA Marcel Kießling

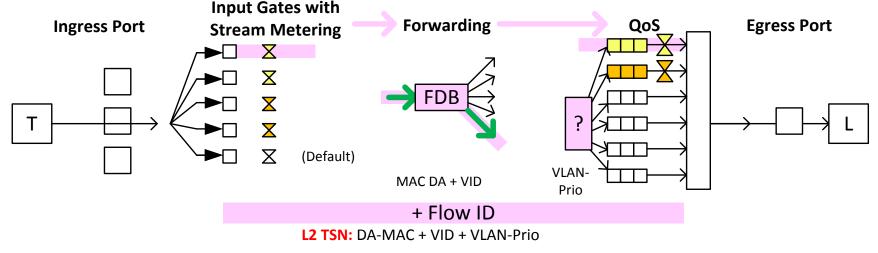

SIEMENS



- Streams should use one exclusive class for transmission
- ♦ Gates can identify specific traffic (Streams)
 - ✤ L2 TSN: Based on DA-MAC and VID and VLAN Priority

http://www.ieee802.org/1/files/public/docs2014/cb-nfinn-input-gates-0914-v01.pdf





- Streams should use the exclusively class for transmission
- ♦ Gates can identify specific traffic (Streams)
 - Stream Metering can be assigned to a Gate
 - TAS mechanism to open/close Input Gates
 A possible way to define CQF

<u>cb-nfinn-input-gates-0914-v01.pdf</u>

- ♦ Recap: Industrial Automation Applications
 - Two different Industrial network systems
 - Requirements for the network
- ♦ TSN Streams
 - Handling of Streams in an AVB network
 - Extensions for TSN

♦ Summary – Missing Parts for using TSN

Current Status:

Qbv TAS for engineered, high performance systems **UBS** for multiple traffic types

Qch CQF as improved AV Shaper (Naming: peristaltic shaper -> <u>S</u>cheduled <u>Q</u>ueuing and <u>F</u>orwarding -> <u>C</u>yclic <u>Q</u>ueuing and <u>F</u>orwarding)

Q SP (Strict Priority) with highest priority for Streams

Policing Stream Metering requirement from automotive and industrial automation for guaranteed latency

- For TAS to guarantee "lowest" latency (engineered behavior)
- For UBS/CQF to guarantee latency (protection for streams)
- ♦ For SP to guarantee latency (protection for lower priority traffic)

TAS Systems

Ensure that the right traffic is forwarded in the right (configured) time **Guarantees** for the scheduled traffic

UBS Systems

Limit the error propagation – don't affected other Applications Guarantees independently for every Application

SP Systems

Guarantees independently for every Application Jitter makes accurate bandwidth measurement difficult

Primary Goal:

Guaranteed Latency not only in fault-free conditions This is very important in multi-service networks

Measurement per stream/class to limit the effect of failures