Peristaltic Shaper: updates, multiple speeds

Michael Johas Teener Broadcom, <u>mikejt@broadcom.com</u>

2014-01-23

IEEE 802.1 Time-Sensitive Networking TG

Agenda

- Objectives review
- History
- Baseline design and assumptions
- Higher speed links
 - What do we want?
 - What can we get?
 - How do we mix speeds?
 - Suggestions

Objectives review

Deterministic distributed delays for all streams

- really, this time I mean it!
- queues distributed between bridges evenly

Scalable delays with link speed

 10x shorter delays for Class A traffic over links with a 10x speed increase

Multiple traffic classes

- Equivalent to AVB
- This time we will make sure the "observation interval" is programmable!

Use Gen 1 SRP or future SRP/IS-IS 802.1Qcc

History

See my old presentation for details, but ...

- This is an old idea, made feasible by scheduled queues and preemption and ingress policing and class-based QoS and SRP
- <u>http://www.ieee802.org/1/files/public/docs2012/</u> new-avb-mjt-back-to-the-future-1112-v01.pdf

Unknowns:

- Interaction of multiple speed links on the path
- Interoperation with current credit-based shaper

Basic operation

Ensure that the cycle time is greater than the sum of the longest interfering frame plus all the isochronous

IEEE 802.1 Time-Sensitive Networking TG

Adding preemption

Now the cycle time must be greater than the longest interfering *fragment* plus all the isochronous traffic

if the max isoch traffic is 75% of the available BW, then the fragment could be almost 400 bytes for 100Mbs links

IEEE 802.1 Time-Sensitive Networking TG

Assumptions

Within a single "SR Domain"

- All devices in a path are "time aware systems"
 - e.g., support 802.1AS/PtP
- ... and are in the same timing domain
 - e.g., use the same grand master
- ... and share the same "cycle" duration phase
 - e.g., a cycle starts at the same time for all participating devices

... then ...

worst case delay = cycle duration

Multiple speeds?

- Wrong question ...
- Streams have two parameters of interest: bandwidth <u>and</u> worst-case delay
- Right question: multiple traffic classes?
 - Where multiple traffic classes correspond to multiple delay classes
 - E.g., Class A is 250us/hop

Multiple delay classes

- Each traffic class / delay class
 corresponds to a different cycle duration
 - Class cycle duration = worst case delay
- A useful simplification (at least for me) is to assume all cycle durations are integer multiples of each other ...
 - all set by MIB, but validate by SRP domain
 - Class S1 = 250 μ s cycle duration/delay default?
 - Class S2 = 25 μ s cycle duration/delay?

It might look like ...

IEEE 802.1 Time-Sensitive Networking TG

Bandwidth reservation

- Bandwidth measurement same as Qav
 - "observation interval" = cycle duration
 - ... but ...

• Frame size limits are a bit complex:

- depends on lowest bandwidth on path
- different streams with the same class will have different frame size limits depending on the path

Calculation of bandwidth limits per class

- possible to set *per link*
- path reservation process needs to determine limits and report

Buffer implications (and max frame sizes)

- Class bandwidth limit and cycle duration drive max buffering required per port
 - 75 Mb/s @ 250 μ s \approx 2500 bytes
 - 7.5 Gb/s @ 250 µs ≈ 250,000 bytes !!!
- Going the other way ...
 - 7.5 Gb/s @ 2.5 μ s \approx 2500 bytes
 - 75 Mb/s @ 2.5 µs ≈ 25 bytes !!!

Good stuff

- Really simple to implement
- Really provides deterministic delays
- Really has fixed upper limit to buffers
- Really limits delivery jitter
- With appropriate defaults, is completely compatible with existing SRP and planned improvements

Bad stuff

Path dependent frame size limits possible

- Small delays and lower link speeds don't mix
 - (but you knew that already, so is that a problem?)
- Can't automatically get shorter delays with faster links
 - Need to use a shorter cycle duration/class, requiring shorter frames
 - Forcing shorter frames is already an issue

Improvements

- Possible to run a single cycle duration for all classes
 - Delays for lower class can reduced but the available bandwidth for that class gets reduced
 - remember, max bandwidth = cycle duration * link speed and cycle duration = delay
 - if cycle duration is constant, then bandwidth scales with link speed
 - if cycle duration becomes link dependent (gets shorter with link speed increase), then bandwidth for that cycle drops with link speed increase
 - But that might be OK!

Next steps

- Is it important that we reduce delays for a particular class depending on per-hop link speed?
 - If so, validate concepts for link speed dependent cycle duration
 - I will report back in a couple of weeks
- No matter what, I think the peristaltic shaper is important
 - Think about a PAR, or can we slip it into Qbv?
- Need to evaluate interoperation with Qav
 - Credit based shaper sucks, I'd like to deprecate it