



## Agenda

| Topics                                                                                                                                                                                                                                                                                                                                         | Presented by    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| SECTION 1                                                                                                                                                                                                                                                                                                                                      |                 |
| <ul> <li>✓ Motivation to present at IEEE</li> <li>✓ AFDX® Context</li> <li>✓ AFDX® Historical Background</li> <li>✓ AFDX® Concepts</li> </ul>                                                                                                                                                                                                  | Bruno Pasquier  |
| SECTION 2                                                                                                                                                                                                                                                                                                                                      |                 |
| <ul> <li>✓ AFDX® Detailed Introduction and Mapping to TSN</li> <li>✓ AFDX® Advantages and Challenges</li> <li>✓ AFDX® Evolutions (Overcoming Challenges)</li> <li>– AFDX® +</li> <li>– µAFDX®</li> <li>✓ Example: Network topology for Automotive</li> <li>✓ Key Inventions &amp; Benefits</li> <li>✓ Conclusion AFDX® &amp; µAFDX®</li> </ul> | Stefan Schneele |

## **SECTION 1**

- ✓ Motivation to present at IEEE
- ✓ AFDX® Context
- ✓ AFDX® Historical Background
- ✓ AFDX® Concepts

Presented by Mr. Bruno Pasquier

## Our Motivation to present to IEEE

#### **General TSN goals are:**

- Reliable communication over Ethernet
- Ultra-low latency
- Deterministic end-to-end latency

The Aeronautic Industry was in need for such technology some time ago

- Airbus proposed a solution called Avionics Full Duplex Ethernet (AFDX®)
- Solution was standardized in 2004
- The only deterministic Ethernet solution used for Avionics in Airbus aircrafts
- Presented in the following

#### Our hopes with this presentation:

- Indicate Aeronautic Industry's interest in the TSN standardization
- Incorporate AFDX® parts into TSN to enable safety critical systems & certification
- → Discussion for Letter of Assurance (LOA) started

### AFDX® Context

- √ Focus on aeronautics but,
  - √ Similarities with other domains, in term of:
    - Networks Heterogeneity:
      - Multiple technologies,
    - Complexity:
      - Architecture, configuration, upgrades,...

5

- Costs:
  - Design, maintenance,...

20 May 2015

## AFDX® Historical Background

## End of 90's

- ✓ Aircrafts are still using lot of analog signals and few digital busses like ARINC 419/429, MIL-STD 1553 and ARINC 629 ...
  - Low bandwidths, from 12Kbs to 2Mbs
  - Important wiring,
  - Limited data format, difficulties to support sophisticated communication protocols

**Necessary to consider new needs** 

## AFDX® Historical Background

#### New needs:

- ✓ Bandwidth
  - Important exchanges of data: dataloading of equipment, data base...
- ✓ Need for bidirectional communication to support complex protocol
  - TFTP, ARINC 615, interactive mode, etc...
- ✓ Access to all information
  - Increase the sharing of data: interdependence of the systems are increasing, data base, clock
- √ Flexibility of communication architectures
  - Management of the options, modification of architectures
- ✓ Use of standard protocols of communication
  - Open communications: Systems in the A/C are not isolated, communication with open world

## AFDX® Concepts

## AFDX® = Avionics Full DupleX Switched Ethernet

- ✓ Avionics: Network adapted to the avionics constraints
- ✓ Full DupleX: the subscribers transmit and receive the data at the same time
- ✓ **Switched**: The data are switched, necessary to use AFDX® switch to connect the subscribers
- ✓ Ethernet: conformity to the standard Ethernet 802.3

## Ready for safety critical functions

## AFDX® Concepts

#### ✓ A deterministic network:

- Each subscriber has a free access to the network
- For each VL in Rx, the transfer time of the data is limited and computed by a formal approach (Network calculus)

## ✓ Virtual Link (VL):

- Channel of communication between one transmitter and several receptors, with:
  - Guaranteed bandwidth,
  - Limited latency and jitter,
  - Static path of VLs

## ✓ It was specified under the nomination ARINC 664 Part 7

### **SECTION 2**

- ✓ AFDX® Detailed Introduction and Mapping to TSN
- ✓ AFDX® Advantages and Challenges
- ✓ AFDX® Evolutions
  - AFDX®+
  - µAFDX<sup>®</sup>
- ✓ Example: Network topology for Automotive
- ✓ Key Inventions & Benefits
- ✓ Conclusion AFDX® & µAFDX®

Presented by Mr. Stefan Schneele

### AFDX® Standardization

#### **Specified in Aeronautical Radio Incorporated (ARINC)**

#### **ARINC Specification 664, Aircraft Data Network**

Defines an Ethernet data network for aircraft installation.

It is developed in multiple parts, listed as follows:

- Part 1 Systems Concepts and Overview
- Part 2 Ethernet Physical and Data Link Layer Specifications
- Part 3 Internet-based Protocols and Services
- Part 4 Internet-based Address Structures and Assigned Numbers
- Part 5 Network Interconnection Services and Functional Elements
- Part 6 Reserved
- Part 7 Avionics Full Duplex Switched Ethernet (AFDX®) Network
- Part 8 Upper Layer Services

Defines Ethernet physical parameters & general and specific guidelines for the use of IEEE 802.3 compliant Ethernet.

Defines a deterministic network on data link layer.

## Technical Overview of AFDX® mechanisms

| Standard                       | Group         | Main Feature           |
|--------------------------------|---------------|------------------------|
| Arinc 664 P7 - Section 3.2.6.1 | Redundancy    | Sequence Number        |
| Arinc 664 P7 - Section 3.2.6   | Redundancy    | Two redundant Networks |
| Arinc 664 P7 - Section 4.4     | Enforcement   | Static Routes          |
| Arinc 664 P7 - Section 4.1.1.1 | Enforcement   | Ingress Policing       |
| Arinc 664 P7 - Section 3.2.1   | Enforcement   | Egress Transmission    |
| Arinc 664 P7 - Section 3.2.1   | Enforcement   | Virtual Link           |
| None                           | Certification | Formal verification    |

# AFDX®: Technical Overview Main Features

- AFDX® data network was developed by Airbus for the A380 to address real time issues for safety critical avionics developments
- Goals are:
  - Reliable
    - Through Duplication and Policing
    - Guaranteed Delivery
  - Determinism
    - Bounded Delay

#### **Main Elements**

AFDX® End Systems (E/S):

Network interface card (NIC) to send and receive messages

AFDX® Switches (SW):

Smart hardware equipment for frame policing



20 May 2015

# AFDX®: Technical Overview Redundancy – Independent Networks

#### **ARINC 664 P7 - Section 3.2.6**

#### Two independent networks A + B

- Full duplication of network
  - separate power & different routing of cables
- End-Devices handle redundancy
- Packets duplicated on device only
- Network unaware of duplication / redundancy



#### **Mapping to TSN:**

CB: does duplication/deduplication not just on end system but on switches too

Similar to Presentation <a href="http://www.ieee802.org/1/files/public/docs2014/cb-kiessling-CB-Layer2-Tag-0314-v01.pdf">http://www.ieee802.org/1/files/public/docs2014/cb-kiessling-CB-Layer2-Tag-0314-v01.pdf</a>

# AFDX®: Technical Overview Redundancy – Sequence Numbers

#### ARINC 664 P7 - Section 3.2.6.1

#### Use of sequence numbers for deduplication

- One-Byte sequence number suffix per stream
  - 0 RESET
  - 1-255 sequences
- End-Devices either use
  - "first-valid wins" and forward one packet to application (check for seq no {+0 +1 +2})
  - or forwards both packets to application



#### **Mapping to TSN:**

- CB: sequence number also per stream with 16 bit Ethertag
- CB: sequence history in AFDX® same as CB's tsnSeqRecHistoryLength = 3

Image from Presentation <a href="http://www.ieee802.org/1/files/public/docs2014/cb-kiessling-CB-Layer2-Tag-0314-v01.pdf">http://www.ieee802.org/1/files/public/docs2014/cb-kiessling-CB-Layer2-Tag-0314-v01.pdf</a>

# AFDX®: Technical Overview Enforcement

#### **ARINC 664 P7 - Section 3.2**

#### Virtual Link (VL)

- Multicast communication stream
- Following traffic specification
- Static engineered routes

#### Two lines of defence

- End-Device send conformant traffic (Shaping)
- Every switch enforces conformance (Policing)
- No "healing" of ill-behaving streams, just drop

Every communication in AFDX® is done through a VL

#### **Traffic specification**

- BAG (Bandwidth allocation Gap): minimum delay between two consecutive frames. (1ms..128ms)
- AFDX®+ allows lower BAGs
- MVLS (Maximum VL Size): maximum size of the frame: min 17 octets; max: 1471 octets



#### Mapping to TSN

- BAG: RFC 2210 Tspec Token bucket rate
   r = MVLS / BAG
- MVLS: RFC 2210 Tspec Max. Frame size M

# AFDX®: Technical Overview Enforcement

#### ARINC 664 P7 - Section 4.1.1.1

#### Scheduling in AFDX®

- Standard switching
- Two FIFO queues (high/low) per outgoing port
  - Some shaping on end-devices to keep BAG

#### **Policing per Virtual Link**

- Token Bucket filtering per Virtual Link
  - Up to 4k virtual links on current aircraft
- NO time synchronization



#### **Mapping to TSN:**

- · Standard Ethernet Scheduling
- Ingress Policing with Qci or egress UBS shaping

# AFDX®: Technical Overview Enforcement

#### **Formal Verification**

- Network Calculus is used to find upper bound for:
  - Latency / Jitter
  - Buffer Size
- Accepted for certification in DAL-A Aircraft systems
  - Similar levels to SIL-4 or ASIL-D



- Network hardware needs to meet guaranteed maximum static latency and jitter (technology delay) considering most data are multicast transfer
- Demonstrate all failure modes / absence of unused functions / dead code



20 May 2015

## AFDX® Advantages

- ✓ High Bandwidth with an upgrade of the data size
- ✓ Protocols and physical layers nearest to COTS standards (Ethernet, IP and tools: network analysers)
- ✓ Determinism is ensured by the set of the AFDX® switches and not by the subscriber behaviour
- ✓ Simplification of the evolution of communication by the loading of a new configuration and by the access to all data
- ✓ Asynchronous approach between the functions which allow a high independence between the subscribers (simplification of the Safety demonstrations)

## AFDX® Challenges

- ✓ Request for further simplification of the technology: AFDX® End System and Switch
- √ 1<sup>st</sup> Implementation of AFDX<sup>®</sup> End System and Switches are not compatible with "simple" equipment (e.g., sensors/actuators)
- ✓ Necessity to manage the configuration (definition of the VL set and its static path on the topology) and validation of its determinism to answer to certification demonstration
- ✓ Latency time (Pessimist approach of the Network Calculus, ms.)

Necessary to propose a solution to extend the AFDX<sup>®</sup> concept usage domain by μAFDX<sup>®</sup> and AFDX<sup>®</sup>+

### AFDX® Evolutions

## **AFDX®+:** Federative ADCN mixing AFDX® and best effort Ethernet

- ✓ Increase the bandwidth to 1 / 10 / .. Gbps (high transfer and decrease the latency)
- ✓ Mix on the same support operational (AFDX® traffic) and service (TCP/IP/ Ethernet) communication
- ✓ Remove Gateway function between Avionics & Cabin World = unified network



**COTS, Ethernet** 

**IMA, LRU** 

## µAFDX® Principle

The μAFDX® network is based on Ethernet frames from one subscriber switched by μStar toward all the other subscribers.

The mains properties of the µAFDX® technology are:

- Communication without any collision
- Guaranteed latency
- A communication without Master
- · A broadcast communication, which allows all subscribers to receive all data ex-changed



## μAFDX<sup>®</sup> Robustness



#### The Robustness of µAFDX® is based on:

- · Communication without any collision.
- Simplification of the mechanism in the µStar
  - The mechanism in Rx is limited to a round robin to read the frame
  - The mechanism in Tx is limited to repeat on each output port the frame (A broadcast communication)
  - No configuration
  - No verification of Ethernet frame through the CRC
  - Limitation of the buffer to 1 frame in each Rx port (avoid babbling)
- No propagation failure in case of problem on a subscriber or on the cable.

#### **Mapping to TSN:**

- E/S to Star communication:
  - similar to Cyclic queueing and forwarding (Qch)
- Star to E/S communication:
  - similar to Time-Aware-Shaper (Qbv)



## μAFDX® Hybride ADCN - μStar Configuration "Link 1 to 10"



## µAFDX® Performance Data for different use case examples







**200 μs** for μES to μES/AFDX<sup>®</sup> **100 μs** for AFDX<sup>®</sup> to μES

## **Key Inventions and Benefits**

|        | Inventions                                            | Capabilities                                              | Benefits                    |
|--------|-------------------------------------------------------|-----------------------------------------------------------|-----------------------------|
| AFDX®  | Virtual Links to transfer data                        | Reduced Physical Links                                    | Reduces Weight              |
|        | Maximum bandwidth allocation to each virtual link     | Controlled Date Flow                                      | Uninterrupted Flow of Data  |
|        | Deterministic behavior of Packet<br>Switching Network | Guaranteed data delivery within bounded delay             | Mixed Critical Applications |
|        | Redundancy Check                                      | Higher Reliability of Network                             | No Information Loss         |
|        | Data integrity check                                  | Error Free data                                           | No Malfunction              |
| μAFDX® | Reduced Complexities of an End<br>System              | Cater to applications with low communication requirements | Reduced Size and Cost       |
|        | Facilitation of synchronization via network           | Synchronous Data Transmission                             | Time- critical Applications |
|        | Simple and Safer µSwitch                              | Master Slave, Private Bus                                 | Replace CAN and ARINC429    |

## Conclusion AFDX® and AFDX®+ and µAFDX®

- AFDX® is a mature technology for safety critical system used in several A/C programs by Airbus and e.g. Boeing
- AFDX® + and μAFDX® are completely specified and demonstrated up to TRL 6
- µAFDX® is a solution for real time systems with very few complexity and almost zero configuration
- Low latencies in µseconds can be achieved with µAFDX®
- Several mechanisms TSN targets for are similar to the AFDX®, AFDX®+ and µAFDX® solutions

#### Our proposal:

- Have AFDX® and µAFDX® in TSN standard
- We are open for discussion and looking forward to your feedback

#### Conclusion

## Who is using AFDX®?

✓ Airbus: A380, A350, A400M









Sukhoi: RRJ100



**COMAC: ARJ21** 



Agusta Westland: AW101, AW149, AW 169, AH64



**Bombardier: Global Express, Cseries** 



Irkut: MS-21





20.05.2015 28

# Thank you

## Example: Current Network Topology in Automotive



## Example: The Ethernet Backbone Idea for Automotive

