TSN Fronthaul Considerations

- David T Chen, Nokia Technology & Innovation
- March 11th, 2015
Motivation / Reasoning to Consider Ethernet for Fronthaul

- Ethernet is a widely adopted & nearly ubiquitous standard technology
- Fronthaul architecture is migrating from traditional RAN where single BBU connects to single/few RRHs to architectures where multiple centralized BBUs connect to multiple RRHs
- To utilize the existing Ethernet Standards, Ecosystem, Operator Network Architectures in the networking items

![Diagram of Radio Base Station System and Ethernet Fronthaul Network]

- Radio Equipment & Network Control (REC) or BBU (Baseband Unit)
- Sync, C&M, User Plane
- Ethernet MAC ("L2")
- Ethernet PHY ("L1")
- Encapsulation

- Radio Equipment (RE) or RRH (Remote Radio Head)
- Sync, C&M, User Plane
- Ethernet MAC ("L2")
- Ethernet PHY ("L1")
- Encapsulation

Network Interface → Ethernet Fronthaul Network → Air Interface
Optimal Functional Split is a Multi-dimensional Tradeoff
There is no one-size-fits-all solution as split may depend on deployment scenario
6 Active 802.1 TSN Projects with 2 New PARs

- 802.1AS Rev Precise Timing Protocol Gen 2 (gPTP Gen 2)
 - A plug-and-play PTP profile that allow bridges, routers, or multi-homed end stations to serve as “time relays”

- 802.1Qbu Transmit Preemption (collaborating w/ 802.3br Interspersing Express Traffic)
 - Allow time sensitive frames to preempt other frames

- 802.1Qbv Time Aware Shaper (TAS) — Scheduled Traffic
 - Every bridge port runs a synchronized, repeating schedule that turns on and off each of the 8 queues with up to ns precision

- 802.1Qca Shortest Path Control & Reservations — Path Distribution
 - ISIS TLVs to compute and distribute multiple paths through a network

- 802.1CB Frame Replication & Elimination — Seamless Redundancy
 - 1+1 duplication for reliability

- 802.1Qcc Stream Reservation Protocol — SRP Enhancements and Performance Improvements
 - A protocol (MSRP) to reserve bandwidth along an L2 path determined by L2 topology protocol, e.g. ISIS

- (New PAR) 802.1Qch Synchronized Queuing and Forwarding

- (New PAR) 802.1Qci Per-Stream Filtering and Policing
Some Thoughts

• Standard network profiles are required for enabling Fronthaul over Ethernet
 - A profile should define end-to-end requirements for the fronthaul
 - To foster availability of appropriate transport in the market
 - Profile creation in 802.1 or MEF forum (tbd), e.g., MEF 22.2 Mobile Backhaul

• How to reach agreements on the profiles to be standardized?
 - Potentially more than one profile is desired
 - IQ functional split may cause real challenges in current TSN framework
 - Some new functional split may relax the requirements to the Ethernet transport

• CPRI Cooperation maybe the appropriate forum to define the profile requirements
 - Strong participation of radio experts from the mobile network vendors

• What role should 802.1 play in this fronthaul profile development?
 - Keep alignment between TSN functionalities and fronthaul requirements