

Requirements of Industrial Automation for Time Synchronization

IEEE 802 Plenary Meeting – Jan. 2015, Atlanta Feng Chen, Siemens AG Franz-Josef Goetz, Siemens AG

Outline

- Additional Parameter Sets for Industrial Automation in gPTP
 - for Universal Time
 - for Working Clock
- Redundancy for Working Clock Synchronization
 - Assumptions on architecture and approaches
 - Industrial requirements
 - Two Use-cases
 - Media redundancy
 - Media + GM redundancy

Additional Parameter Sets for Industrial Automation

Parameters	For Universal Time	For Working Clock
Hop count	up to 128	up to 64
Sync accuracy at the last hop	<± 100 μs	<± 1 µs
Sync interval	125 ms	31.25 ms
Forwarding delay of Sync msgs in bridges	< 10 ms	< 1 ms
Frequency tolerance (quartz or oscillator quality in term of frequency stability)	<± 50 ppm	<± 50 ppm
Max. frequency drift rate *	3 ppm/sec	3 ppm/sec

^{*} due to temperature changes, shock, vibration or aging, @SyncMaster, modelled as sine curve)

Redundancy for Working Clock Synchronization

Assumptions on Architecture and Approaches

- use different domain numbers for redundant GMs and redundant sync trees, thus each of redundant sync msg is transported within its own gPTP instance
- execute the following operations outside gPTP
 - computation of redundant sync trees with an interface to directly set domain-specific port roles in gPTP, e.g. using ISIS (similar as specified for PCR)
 - determination of redundant GMs, e.g. primary and hot standby GMs
 - allocation of domain numbers for redundant GMs/sync trees
 - protocol of collecting information from gPTP and feeding configurations back to gPTP
 - use of redundant sync information to adjust local clocks at time-aware endstations

Industrial Requirements for Redundancy in Working Clock Synchronization

- Static configurations for synchronization Working Clock is engineered!
 - GMs (incl. hot-standby GM if using GM redundancy) are pre-chosen
 - Redundant sync trees are pre-calculated
 - gPTP Announce messages are NOT used to select GM and to establish sync tree
 - gPTP Announce messages can be still used to distribute GM information!
- Redundancy is primarily used in Working Clock synchronization to handle single failure
 - In normal operations, end-stations always receive multiple sync msgs via redundant paths from either the same or redundant GMs
 - Algorithms of using redundant information are application-specific
 - In case of single failure, sync msgs received on other unaffected paths are still available,
 thus reconfiguration by re-choosing GM or re-computing sync tree is NOT needed
 - Automatic reconfiguration through gPTP is NOT desired because reconfiguration time over 64 hops in AS violates max. hold-over time (e.g. 100 ms)
 - MTTR (Mean Time to Repair) << MTBF (Mean Time between Failures)
 - Signaling of detected failures (e.g. via announce or sync timeouts) is still needed for diagnostics

Use-cases of Redundant WC Synchronization 1. Media Redundancy - Normal

One GM with two Sync trees in two gPTP domains (d1 and d2)

Use-cases of Redundant WC Synchronization 1. Media Redundancy - Single Failure

Single Sync-Path Failure

Use-cases of Redundant WC Synchronization 2. Media + GM Redundancy - Topology

Use-cases of Redundant WC Synchronization 2. Media + GM Redundancy - Normal

One primary GM and one hot-standby GM with four Sync trees in four gPTP domains (d1, d2, d3 and d4)

Use-cases of Redundant WC Synchronization

 PLC_4

2. Media + GM Redundancy - Single Failure S/A

Media+GM redundancy provides high-availability with extra robustness against single GM or bridge failure

If one GM fails (or is disconnected due to bridge failure), the other one is still active

S/A

If the primary GM fails, the hot-standby GM must keep transmitting timing even when its clock lose synchronization with the primary **GM**

<u>Single Bridge Failure with Connection to one GM</u>

GM_{pri}@PLC₁

GM_{hot}@PLC₂

PLC₃

Summary

Version 2 gPTP Extensions

- interface to set gPTP port role (master, slave, passive, ...) per domain
- interface to set GM role (grandmaster, hot-stand-by, ...)
- domain specific forwarding of sync messages on time-aware bridges
- guaranteed short forwarding & residence time for sync messages in time aware systems
 - < 1ms for working clock</p>
 - < 10ms for universal time</p>