

.1AS Transparent Clock / Sync Path Calculation

IEEE 802.1 Interim Meeting – May 2015, Pittsburgh Feng Chen, Franz-Josef Goetz Siemens AG

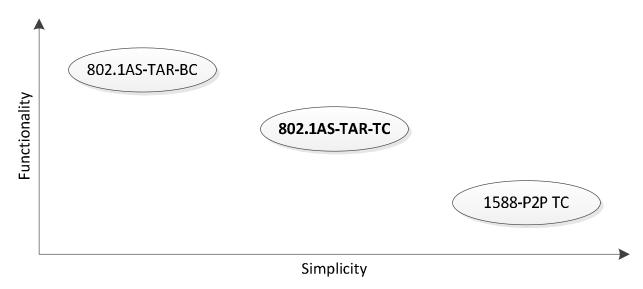
Overview

Proposal for a new type of time-aware systems: Time-Aware Relay – **Transparent Clock (TAR-TC)** process sync like 1588 P2P-TC participate in best master selection and sync tree establishment Grandmaster (best master) selection and spanning tree establishment For time-aware network without redundant GM / sync Tree use current BMCA to select GM per domain use current BMCA to establish spanning tree for forwarding both Announce and Sync msgs For time-aware network with redundant GM / sync tree use a modified lightBMCA to select GM per domain and establish

spanning tree only for forwarding Announce (Announce tree)

use PCE or BLCEs to establish redundant sync trees

Recap


802.1AS defines two types of time-aware systems: Time-aware end station (**TAES**) => IEEE 1588 ordinary clock Time-aware relay (**TAR**) => IEEE 1588 boundary clock - renamed as *Time-Aware Relay Boundary Clock (TAR-BC)?* The group is currently working on a proposal for one-step/TCs* The focus is on one-step, but also relating to TC (a TC-like operation) TC-mode can be activated only under some constraints when both slave and master ports are operating in one-step mode sync rate is the same This implies that such a TC-like operation is not a real TC-implementation, but as a optional operating mode of a BC strictly bound to one-step

http://www.ieee802.org/1/files/public/docs2015/asrev-mjt-one-step-details-0407-v04.pdf

Proposal for A New Type of Time-Aware Systems: 802.1AS Time-Aware Relay Transparent Clock

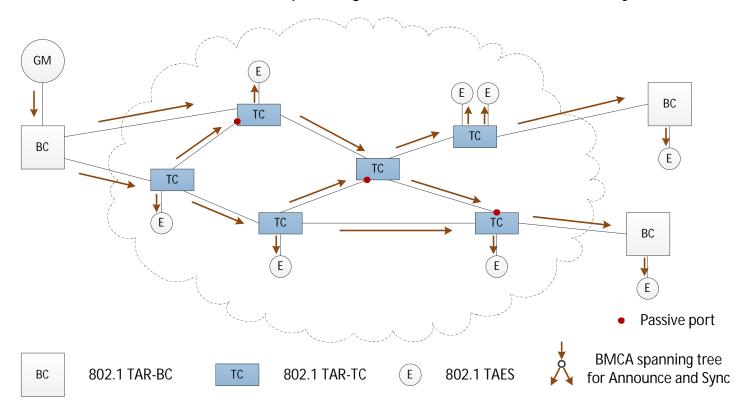
- We propose a third type of time-aware systems: TAR-TC
 - is independent of one-step/two-step operations
 - TC is a system feature, while one/two-step is a port or link feature
 - □ processes sync like a 1588-P2P-TC (see next slide)
 - TC simply forwards sync msgs with minor processing, thus largely reducing the implementation complexity of sync pipeline in contrast to a BC
 - but participates in best master selection and sync tree establishment
 - for ease of management as an improvement from 1588-P2P-TC
 - executes peer delay measurement

Sync Processing in 802.1AS-TAR-TC

■ TCs differ from BCs primarily in sync processing, while TCs simply "forward" received sync msgs with minor modification.

Sync Processing	TAR-BC	TAR-TC	1588 P2P-TC
sourcePortIdentity	changed	unchanged	unchanged
sequenceld	changed	unchanged	unchanged
correctionField	changed	changed	changed
cumulativeScaledRateOffset*	updated	updated	n/a
support of different sync rate	yes	no, only forwarding upon receiving	no, only forwarding upon receiving

 A TAR-TC needs also be involved in logical syntonization by calculating and updating rateRatio, in order to avoid error propagation to downstream nodes (see <u>as-boiger-TC-cumulativeScaledRateOffset-issue-0515-v01.pdf</u>)

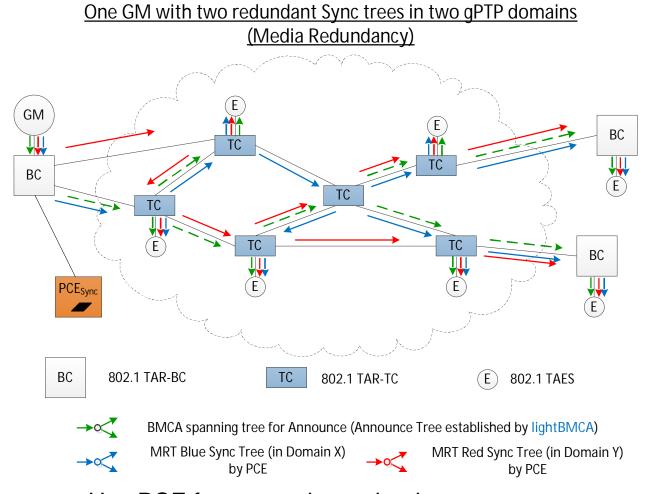

Grandmaster (Best Master) Selection and Spanning Tree Establishment – Current Situation

■ The current BMCA runs within a single gPTP domain to select a single GM establish a spanning tree and set port roles forward sync msgs along the established tree - receive from slave port and send over master port transmit announce msgs also based on this tree - periodic announcing via master ports ☐ The current BMCA in gPTP works for time-aware network without redundancy we propose that TAR-TC should also participate in BMCA => make management much easier (in comparison to 1588 P2P-TC not involved in BMCA) with BMCA, TAR-TCs will have no interoperation issues with existing timeaware systems using already defined mechanisms in AS.

BMCA for Time-Aware Network without Redundancy

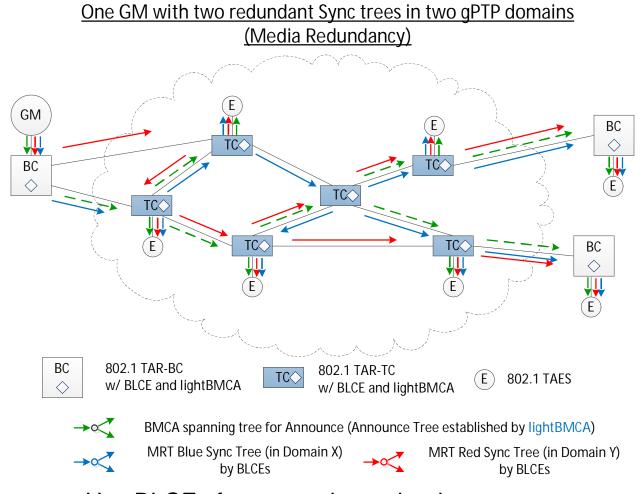
One GM with one spanning tree for both Announce and Sync

- Run the BMCA at all nodes in the same domain to select the Grandmaster and to establish the spanning tree.
- □ Forward Annouce and Sync msgs on the same spanning tree established by BMCA
 □ If TAR-TCs exist, they can only participate in BMCA as not-GM-capable nodes



Grandmaster (Best Master) Selection and Spanning Tree Establishment for Redundant Synchronization

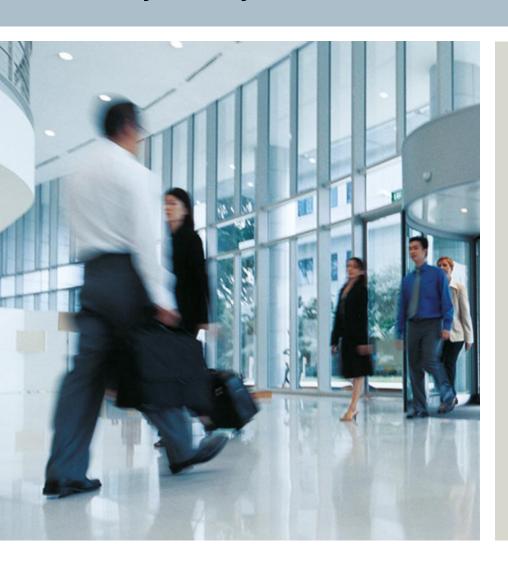
 Problem: The current BMCA does not support redundancy no support for redundant sync trees, e.g. MRT
 ■ Proposals: use separate spanning trees for announce and sync ■ run BMCA per domain to select the GM and to establish a spanning tree
like today, except that
- only announce msgs are transmitted based on this tree (may call it <i>Announce Tree</i>)
 no port roles are determined by BMCA for sync forwarding (i.e. BMCA spanning tree not used as sync tree)
=> call it lightBMCA
 perform path calculation for (redundant) sync trees (may be defined outside of AS-Rev)
with either a centralized model with PCE
or a decentralized model with BLCEs


Centralized Sync Path Calculation with PCE for Time-Aware Network with Redundancy

Use PCE for computing redundant sync trees

Decentralized Sync Path Calculation with BLCEs for Time-Aware Network with Redundancy

Use BLCEs for computing redundant sync trees



Summary

Proposal to define transparent clock in 802.1 AS-Rev: TAR-TCs
 allow a simplified sync processing (sync forwarding with time-correction)
have no requirements on performing local time synchronization
most functions defined in ClockMaster and ClockSlave can be eliminated
support logical syntonization (updating rateRatio)
perform peer delay measurement
 participate in best master selection and sync tree establishment (BMCA)
GM selection and spanning tree establishment for time-aware systems (incl. TAR-TC)
if not requiring redundancy, run existing BMCA (no changes needed)
If requiring redundancy:
run a lightBMCA to selects GM and to establish a spanning tree only for
announcing process
perform sync path calculation for redundant sync trees in either a
centralized way with PCE (for Sync) or a decentralized way with BLCEs
(for Sync)

Thank you for your attention!

Feng Chen

PD TI ATS TM5 1

Gleiwitzer Str. 555

90475 Nürnberg

Phone: +49 (911) 895-4955

Fax: +49 (911) 895-3762

E-Mail: chen.feng@siemens.com

siemens.com/answers