802.1AS Security

Rodney Cummings, Rob Mixer, Sundeep Chandhoke National Instruments

Agenda

Overview of security work in IEEE 1588

What problems do we want to solve for 802.1AS?

Overview of 1588 Work

IEEE 1588 Security: History

- Security Subcommittee as part of 1588-Rev project
 - Security is an optional feature of 1588
- Started with analysis from IETF TICTOC, RFC 7384
 - https://tools.ietf.org/html/rfc7384
- 1588 Security created requirements from that
 - Uploaded to http://www.ieee802.org/1/files/public/docs2015/as-cummings-ieee-1588-security-requirements-0115-v41.pdf
- 1588 'standing document' contains assumptions
 - Overview in these slides; For details, join 1588
 - https://ieee-sa.centraldesktop.com/1588public

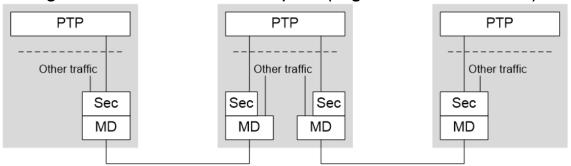
RFC 7384: Summary of Threats

Threat	In RFC 7384	Examples of mitigation
Manipulation	3.2.1, 5.2, 5.9	Integrity protection, Redundant paths
Spoofing	3.2.2, 5.1, 5.3, 5.4	Authentication & authorization
Replay attack	3.2.3, 5.5, 7.5.2	Sequence numbering
Rogue master attack	3.2.4, 5.1, 5.4	Authentication & authorization
Packet removal	3.2.5, 5.9	Redundant paths
Packet delay manipulation	3.2.6, 5.8, 5.9	Redundant paths
L2/L3 DOS attack (non-time)	3.2.7	(outside 1588 scope)
Crypt performance attack	3.2.8	(outside 1588 scope)
Time protocol DOS attack	3.2.9, 5.1, 5.4	Authentication & authorization
Source attack (e.g. GPS)	3.2.10	Redundant GMs

RFC 7384: Summary of Other Issues

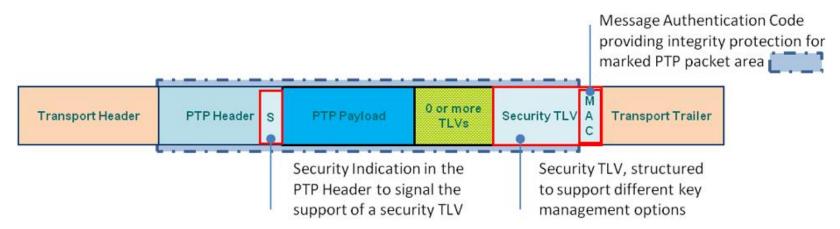
- Key freshness, unicast or multicast (5.6)
- Performance (5.7)
 - No degradation in quality of time
 - Practical impact on computation load, storage, bandwidth, etc.
- Confidentiality (5.8): Not a major concern with time sync
- Mix of secured and unsecured clocks (5.10)
- Some security mechanisms need synced time (7.5)
 - This can be a catch-22
- Key management: Declared to be out-of-scope (8)

IEEE 1588 Standing Doc: Overview


Solutions categorized into four 'prongs'

Prong A: PTP Integrated

Interface between media dependent and media independent (PTP) layers


Prong B: PTP External Transport (e.g. IPSec, MACSec)

- Prong C: Architectural Guidance (e.g. redundant paths/GMs)
- Prong D: Monitoring and Management Guidance

IEEE 1588 Standing Doc: Prong A

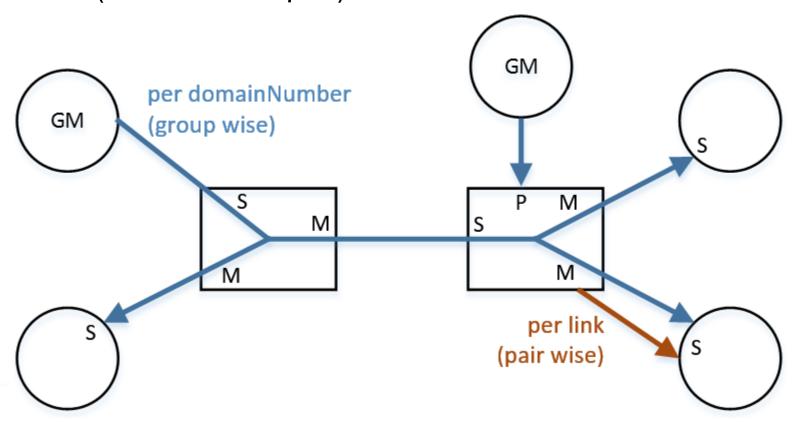
- Assumption: Key management protocol selected by industry/application, for non-PTP packets
 - Power using GDOI (<u>RFC 6407</u>)
 - Telecom/Enterprise using TESLA (<u>RFC 4082</u>)
- 1588 specifies a Security TLV for its messages

1588 uses the keys, but distribution is outside its scope

802.1AS Discussion

What Problems to Solve for 802.1AS?

- Goal: Fill in subsequent slides as we discuss
 - Answer questions, add/delete/change text, ...
- Defer discussion of specific solutions / mechanisms
- Ideally apply to other aspects of TSN (e.g. streams)
 - Defer this discussion as well
- Possible guiding question: How is 802.1AS different?
 - Helps to decide what we are <u>not</u> doing


- Layer-2 typically excludes attacks from the Internet
 - Nevertheless, local network is not always physically secure
 - E.g. Disgruntled employee installs MITM/DOS device
- 802.1AS uses subset of 1588 options:
 BC, P2P, pDelay, multiple slaves per GM
 - Narrows solution space
 - More to secure: Each master-slave exchange
 - RFC 7384 did not focus on this 'hop-by-hop'

- Some 802.1AS applications use fixed configuration
 - Topology fixed, GMs fixed, paths fixed, port states fixed...
 - Describe use of static FDB filters, ACLs, ...?
 - 2014 Automotive Ethernet presentation
 - http://standards.ieee.org/events/automotive/2014/19_Ethernet_Car_Security.pdf
- Use rate-limiting for 802.1AS messages?

- 802.1AS applications can use redundancy
 - Describe how this mitigates many attacks?
- 802.1AS Working Clock mitigates time source attack?
 - Uses local oscillator of GM, so GPS attack is not relevant

- Assume security is all-or-nothing option?
 - No mix of secured and unsecured in 802.1AS domain
- Prioritize subtle attacks over complete loss of time?
 - Many cyber-physical apps can handle complete loss
 - Prioritize spoofing/manipulation over DOS?

 Is key association per domainNumber, or link (master/slave pair)?

- Key management: Protocol to generate/distribute/update keys (e.g. 802.1X, GDOI)
- 802.1AS supports two models
 - Plug&play (BMCA, PCR4Sync)
 - Centrally managed
- 802.1AS key mgmt. approach works for both models?
- Select a single key management protocol?
 - Excludes use of 802.1AS in industries that use another
- Create mechanisms to negotiate key mgmt. protocol?
 - This would presumably apply to plug&play only

TBD

Other Items to Capture

• TBD

Other Items to Capture

• TBD