802.1AS Security

Rodney Cummings, Rob Mixer, Sundeep Chandhoke
National Instruments
Agenda

- Overview of security work in IEEE 1588
- What problems do we want to solve for 802.1AS?
Overview of 1588 Work
IEEE 1588 Security: History

• Security Subcommittee as part of 1588-Rev project
 • Security is an optional feature of 1588
• Started with analysis from IETF TICTOC, RFC 7384
 • https://tools.ietf.org/html/rfc7384
• 1588 Security created requirements from that
• 1588 'standing document' contains assumptions
 • Overview in these slides; For details, join 1588
 • https://ieee-sa.centraldesktop.com/1588public
RFC 7384: Summary of Threats

<table>
<thead>
<tr>
<th>Threat</th>
<th>In RFC 7384</th>
<th>Examples of mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manipulation</td>
<td>3.2.1, 5.2, 5.9</td>
<td>Integrity protection, Redundant paths</td>
</tr>
<tr>
<td>Spoofing</td>
<td>3.2.2, 5.1, 5.3, 5.4</td>
<td>Authentication & authorization</td>
</tr>
<tr>
<td>Replay attack</td>
<td>3.2.3, 5.5, 7.5.2</td>
<td>Sequence numbering</td>
</tr>
<tr>
<td>Rogue master attack</td>
<td>3.2.4, 5.1, 5.4</td>
<td>Authentication & authorization</td>
</tr>
<tr>
<td>Packet removal</td>
<td>3.2.5, 5.9</td>
<td>Redundant paths</td>
</tr>
<tr>
<td>Packet delay manipulation</td>
<td>3.2.6, 5.8, 5.9</td>
<td>Redundant paths</td>
</tr>
<tr>
<td>L2/L3 DOS attack (non-time)</td>
<td>3.2.7</td>
<td>(outside 1588 scope)</td>
</tr>
<tr>
<td>Crypt performance attack</td>
<td>3.2.8</td>
<td>(outside 1588 scope)</td>
</tr>
<tr>
<td>Time protocol DOS attack</td>
<td>3.2.9, 5.1, 5.4</td>
<td>Authentication & authorization</td>
</tr>
<tr>
<td>Source attack (e.g. GPS)</td>
<td>3.2.10</td>
<td>Redundant GMs</td>
</tr>
</tbody>
</table>
RFC 7384: Summary of Other Issues

• Key freshness, unicast or multicast (5.6)
• Performance (5.7)
 • No degradation in quality of time
 • Practical impact on computation load, storage, bandwidth, etc
• Confidentiality (5.8): Not a major concern with time sync
• Mix of secured and unsecured clocks (5.10)
• Some security mechanisms need synced time (7.5)
 • This can be a catch-22
• Key management: Declared to be out-of-scope (8)
IEEE 1588 Standing Doc: Overview

• Solutions categorized into four 'prongs'
 • Prong A: PTP Integrated
 • Prong B: PTP External Transport (e.g. IPSec, MACSec)
 • Prong C: Architectural Guidance (e.g. redundant paths/GMs)
 • Prong D: Monitoring and Management Guidance
IEEE 1588 Standing Doc: Prong A

• Assumption: Key management protocol selected by industry/application, for non-PTP packets
 • Power using GDOI (RFC 6407)
 • Telecom/Enterprise using TESLA (RFC 4082)
• 1588 specifies a Security TLV for its messages

• 1588 uses the keys, but distribution is outside its scope
802.1AS Discussion
What Problems to Solve for 802.1AS?

• Goal: Fill in subsequent slides as we discuss
 • Answer questions, add/delete/change text, ...

• Defer discussion of specific solutions / mechanisms
• Ideally apply to other aspects of TSN (e.g. streams)
 • Defer this discussion as well

• Possible guiding question: How is 802.1AS different?
 • Helps to decide what we are not doing
How Is 802.1AS Different?

- Layer-2 typically excludes attacks from the Internet
 - Nevertheless, local network is not always physically secure
 - E.g. Disgruntled employee installs MITM/DOS device
- 802.1AS uses subset of 1588 options: BC, P2P, pDelay, multiple slaves per GM
 - Narrows solution space
 - More to secure: Each master-slave exchange
 - RFC 7384 did not focus on this 'hop-by-hop'
How Is 802.1AS Different?

• Some 802.1AS applications use fixed configuration
 • Topology fixed, GMs fixed, paths fixed, port states fixed...
 • Describe use of static FDB filters, ACLs, ...
 • 2014 Automotive Ethernet presentation

• Use rate-limiting for 802.1AS messages?
How Is 802.1AS Different?

- 802.1AS applications can use redundancy
 - Describe how this mitigates many attacks?
- 802.1AS Working Clock mitigates time source attack?
 - Uses local oscillator of GM, so GPS attack is not relevant
How Is 802.1AS Different?

• Assume security is all-or-nothing option?
 • No mix of secured and unsecured in 802.1AS domain

• Prioritize subtle attacks over complete loss of time?
 • Many cyber-physical apps can handle complete loss
 • Prioritize spoofing/manipulation over DOS?
How Is 802.1AS Different?

• Is key association per domainNumber, or link (master/slave pair)?
How Is 802.1AS Different?

- Key management: Protocol to generate/distribute/update keys (e.g. 802.1X, GDOI)
- 802.1AS supports two models
 - Plug&play (BMCA, PCR4Sync)
 - Centrally managed
- 802.1AS key mgmt. approach works for both models?
- Select a single key management protocol?
 - Excludes use of 802.1AS in industries that use another
- Create mechanisms to negotiate key mgmt. protocol?
 - This would presumably apply to plug&play only
How Is 802.1AS Different?

• TBD
Other Items to Capture

• TBD
Other Items to Capture

- TBD