One-Step, TCs, and AS-REV

Michael Johas Teener
mikejt@broadcom.com
Problem

• 1588 uses “transparent clocks” (TC) for best performance
 • peer-delay form can have equivalent performance with 802.1AS
 • but only if both 1588 and 802.1AS implementations are optimized
 • existing implementations are all one-step
 • that I’m aware off

• It would be nice to minimize differences between 1588 peer-delay TCs and 802.1AS TAS
 • meeting an 802.1AS TAS with one-step is the same as a 1588 peer-delay TC
 • at least for the “sync pipeline” that might be implemented in hardware
TC/TAS differences

- TC does not participate in BMCA, TAS does ... TAS is basically a BC (boundary clock)
- TC alters ONLY the correction field and the MAC SA in sync messages
- TAS also changes sequenceId, sourcePortIdentity
• Frankly, all devices, even TC’s should participate in BMCA, even minimally, otherwise management is difficult
 • Ask 1588 to consider making TCs participate in BMCA at a minimal level
• Regardless, BMCA processing is “control plane” and is not part of the synch pipeline

So, not really an issue
- TCs do not alter the sequence #
 - incremented only at the GM
 - TCs never add a sync

- TASs are spec’d like BCs
 - synthesize a sync on master ports if a synch is greatly delayed on the slave port (more than 30% over an expected sync interval)
 - need an independent sequence #
... but for one-step TAS

• Perhaps one-step master port is different:
 • sync transmit ASAP after sync receive
 • never synthesize a sync, just set a “late” flag for slave port for management
 • I note that we don’t already do that?

• Perhaps we just drop the sync timeout function completely?
 • Either follow received sequenceld (for “TC” master port), or synthesize (for “BC” master port)
 • Changes to portSyncSend actions

 This is my preferred approach
sourcePortIdentity

- sourcePortIdentity is not really useful in a sync from a one-step TC/TAS except as an indicator of the source of sync time (BC or GM)
 - seems like it's mainly useful for end-to-end delay processing, not used in 802.1AS
 - prefer that one-step 802.1AS master ports repeat sourcePortIdentity from slave port
Conclusion

• One-step 802.1AS TAS can act like 1588 P2P TC if both master and slave ports on the sync path are *both* one step
 • if slave port is two-step, TAS is as currently defined
 • if master port is two-step, TAS is as currently defined

• It’s a straight-forward operation
 • I’ll help Geoff get it in the draft

• There are NO requirements placed on systems that do not implement it
from January: “Legacy” compatibility

- One-step **receive** capability included in BMCA
- Use the twoStepFlag in the common header
 - If twoStepFlag is false in an announce message, then the port sending it can *receive* one-step sync
 - Current 802.1AS requires that twoStepFlag always be true, and ignored on reception

<table>
<thead>
<tr>
<th>announce transmitter</th>
<th>twoStepFlag set (only accept two step)</th>
<th>twoStepFlag clear (can receive one step)</th>
</tr>
</thead>
<tbody>
<tr>
<td>announce receiver</td>
<td>ignored, will send back only two step</td>
<td>ignored, will send back only two step</td>
</tr>
</tbody>
</table>

| two step only | accepted, will send back only two step |
| (802.1AS-2011 or 802.1AS-REV two step only) |

| one step rx OK | accepted, will send back one step ONLY if capable |
| (802.1AS rev one step capable) |