1-step for 802.1AS Details
(v1, 7-April-2015)

Michael Johas Teener
mikejt@broadcom.com
Agenda

- Review of current proposal
- New work
- Next steps
Most changes in Clause 11 (full-duplex point-to-point) media dependent layer
- port can be “1step-capable”
- if so capable, port can be in “1step-operation”

Intention is that media independent layer is almost the same
- existing path unchanged
- need to propagate the received sequenceld

Notes and annex to explain implications of mixed 1step/2step networks
Media independent

- Clause 10 updates:
 - PortSyncSync, MDSynchSend and MDSynchReceive new items
 - rxSequenceld - holds sequenceld from current slave port
 - 1stepSlave - set if slave port is operating in one step mode
 - rxRateRatio* - the rateRatio received on the current slave port
 - rxSourcePortIdentity* - the sourcePortIdentity received on the current slave port
 - *May want to have different PortSyncSend and PortSyncReceive structures
 - just to make things clear
• 802.1AS uses the Follow_Up to carry useful information
 • move it to the Sync

Table 11-10—Follow_Up information TLV

<table>
<thead>
<tr>
<th>Bits</th>
<th>Octets</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>87654321</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>tlvType</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87654321</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>lengthField</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87654321</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>organizationId</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87654321</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>organizationSubType</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87654321</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>cumulativeScaledRateOffset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87654321</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>gmTimeBaseIndicator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87654321</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>lastGmPhaseChange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87654321</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>scaledLastGmFreqChange</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MDSyncReceiveSM

• No changes for 1step except:
 • populating the MDSyncReceive structure from the Sync event message
 • including the TLV
 • set the 1stepOperation flag if appropriate
 • include the sequenceld value
MDSyncSendSM

• If port is operating in 1Step mode:
 • if MDSynchSend.1StepOperation set then
 • we know the slave port is 1Step and we want to operate like a 1588 transparent clock (1step TC)
 • if MDSynchSend.1Step not set then
 • we operate just like a 802.1AS port except we send a one step synch (1step master)
 • details follow

• If a port is not operating in 1Step mode:
 • no changes from 802.1AS-2011
MDSendSynchSM (1step TC)

- Build sync from MDSendSync structure
 - uses the upstreamTxTime and egress timestamp (and other latency info) to add the residence time to the correction field
 - uses rxSequenceld for the sequenceld
 - uses rxSourcePortIdentity for sourcePortIdentity
 - uses rxRateRatio for cumulativeScaledRateOffset
- Requirement that send synch happen “as soon as possible after receive synch”
MDSendSyncSM (1step master)

• Slave port is 2step, so we need to synthesize the 1step

• Build sync from MDSendSync structure
 • uses the upstreamTxTime and egress timestamp (and other latency info) to add the residence time to the correction field (same as before)
 • uses sequenceld for the sequenceld
 • uses sourcePortIdentity for sourcePortIdentity
 • uses rateRatio for cumulativeScaledRateOffset

• In other words, same values as used in 2step
Two-step pDelay

• pDelay is infrequent
 • 1 per second, NOT duplicated for domains (or at least it shouldn’t be)
 • low processing load

• pDelay is NOT relayed
 • processing is local anyway, hardly anything to be gained with one-step
"Legacy" compatibility

- One-step *receive* capability included in BMCA
- Use the twoStepFlag in the common header
 - If twoStepFlag is false in an announce message, then the port sending it can *receive* one-step sync
 - Current 802.1AS requires that twoStepFlag always be true, and ignored on reception

<table>
<thead>
<tr>
<th>announce transmitter</th>
<th>twoStepFlag set (only accept two step)</th>
<th>twoStepFlag clear (can receive one step)</th>
</tr>
</thead>
<tbody>
<tr>
<td>two step only</td>
<td>ignored, will send back only two step</td>
<td>ignored, will send back only two step</td>
</tr>
<tr>
<td>(802.1AS-2011 or 802.1AS-REV two step only)</td>
<td>$1\text{stepOperation} = \text{false}$</td>
<td>$1\text{stepOperation} = \text{false}$</td>
</tr>
<tr>
<td>one step rx OK</td>
<td>accepted, will send back only two step</td>
<td>accepted, will send back one step ONLY if capable</td>
</tr>
<tr>
<td>(802.1AS rev one step capable)</td>
<td>$1\text{stepOperation} = \text{false}$</td>
<td>$1\text{stepOperation} = \text{true}$</td>
</tr>
</tbody>
</table>
Notes on hybrid operation

• “Hybrid operation” means the path back to the GM includes both 1step and 2step links.

• There are three fields in sync/follow-up that now have possibly different meanings:
 • sequenceld
 • sourcePortIdentity
 • cumulativeScaledRateOffset
sequenceID

• as far as I can tell, sequenceID is not relevant end-to-end, it’s just a link parameter
 • only used to correlate sync with corresponding follow-up
• for a “TC path” (1step slave port, 1step master port), sequenceId is repeated ...
 • never tested or validated
 • but always incrementing at nearest upstream BC (2step port) or GM
for a “TC path” the cumulative rate ratio is unchanged … the residence time is so short, this should not be significant

- I’ve asked Geoff to do some simulations to test this hypothesis
sourcePortIdentity

- the sourcePortIdentity is the identifier of the closest upstream GM or BC
- for 802.1AS-2011, all TAS’s are BCs
- for 802.1AS-rev, I propose that a “TC path” is NOT a BC
 - meaning that sourcePortIdentity is just like the 1588 meaning
- it’s possible we could redefine sourcePortIdentity for 802.1AS-rev
 - it could be “grand master identity”
 - but that would be breaking 1588, perhaps
1588 implications

- 1588 has no concept of different ports doing different things
 - like 1step and 2step in the same device
 - but then they don’t define ethernet and wifi ports, either

- Port capabilities in announce messages
 - help their plug-and-play, they were thinking about things like this for profile interoperation

- We will have to go to them with this idea as part of their new layered structure
 - they might actually like the idea
All done!