802.1Qcc: Time Sync at User/Network

Rodney Cummings

National Instruments

Agenda

- Problem
- Summary of Qcc UNI concepts
- Discussion to prepare for solution

Problem

802.1AS-Rev / 1588-Rev Features

- Working clock (ARB) and Universal clock (PTP)
- Tools for redundant paths and GMs
 - Each domainNumber is independent
 - Similar to a VLAN ID
 - externalPortConfiguration=TRUE
 - Disables BMCA algorithm for domainNumber
 - Each portState set externally
 - Typically management, but could be another protocol (e.g. IS-IS)

Problems with Working Clocks

Problems with Redundancy

Problem Summary

Ideally we can provide a higher-level domain over which applications using time (users) can agree on:

- Do I want universal clock or working clock?
- Where do I want my application's time to run?
 - Ability to constrain the size of a working clock domain
- What sort of redundancy do I require (paths and GMs)?
 - What combining algorithm(s) do I support?
- To avoid confusing usage of "domain", these slides use TimeRealm

as a temporary term for this concept

Summary of Qcc UNI Benefits

Benefit: User / Network Separation

Application (user) shouldn't care about network details

- DataFrameSpecification
 - Here is frame I would use without AVB/TSN
- NetworkRequirements
 - Here is the latency and redundancy that I require
- Okay network... go make it happen

Benefit: Protocol Independence

- Design for protocol evolution
 - E.g. MRP to MRP-replacement
- Support multiple configuration models
 - Fully-centralized to fully-distributed
- Avoid forcing unrealistic protocol mandates
 - E.g. "End stations shall run my management protocol"
 - E.g. "Bridge/router shall run my application protocol"

Benefit: Configure Network in User

- The user's box contains network-specific features
 - E.g. Network interface of end station has TSN features
- InterfaceCapabilities
 - User tells network: Here's the stuff my interface supports
 - I don't know how to use this stuff... you tell me
- InterfaceConfiguration
 - Network tells user: Configure your stuff this way
- Retains the clean user/network separation

Benefit: StreamID Concept

- Specified in AVB and continued in Qcc (TSN)
- MAC address plus 16-bit Unique ID
- Uniquely identifies the object (stream) in the network
- Used by application layer users (not only the network)
 - Provides a way to know that we are using the same object
 - E.g. IEEE 1722 Talker and Listeners agree on the stream data format using the StreamID

Discussion to Prepare for Solution

Assumptions (1 of 2)

- The benefits of Qcc for data apply to TimeRealm
 - Qcc's UNI can serve as an 'API' for 802.1AS tools
 - UNI applies to use of working clock or redundancy
 - Optional when Universal-only (BMCA-only)
- Qcc enables re-use of protocol roadmaps
 - E.g. Configuration of time redundancy consistent with data redundancy (802.1CB)
 - Don't force end stations to implement management server

Assumptions (2 of 2)

- "Combining algorithm" is network, not user
 - Multiple domainNum are analogous to VIDs and MPLS labels
 - Each 802.1AS system has one (or more) of...

Concept: TimeRealmID

- Analogous to StreamID
 - MAC address and 16-bit unique ID
- Coordinate a single application's TimeRealm
 - Users: Agree on our application requirements
 - Network: Agree on combining algorithm and domainNumbers
- Multiple TimeRealmIDs in network
 - E.g. One ID for IEEE 1722, 2nd ID for OPC-UA, etc
- TimeRealmIDs share time sync resources
 - If requirements are compatible, share domainNumbers
 - Similar to how streams can share a priority and shaper

UNI for TimeRealm

- TimeRealm group: user to network
 - TimeRealmID
 - EndStationInterfaces: Ports in my user that support time sync
 - Requirements: What do I want?
 - Capabilities: What network stuff can I do?
- TimeRealmStatus group: network to user
 - TimeRealmID
 - StatusInfo: ready or fail
 - Configuration: Network configuration for each interface

TimeRealm.Requirements: Assume

- PtpTimescale (boolean)
 - TRUE = PTP (universal clock), FALSE = ARB (working clock)
- NumRedundantTrees (uint8)
 - Num maximally disjoint paths from GM to each slave
 - End-user installed equipment to meet this goal
 - This tells network to go configure it
- NumRedundantGMs (uint8)
 - How many redundant GMs does application require?

TimeRealm.Requirements: Questions

- Who selects the GM, user or network?
 - Fully-distributed: Network
 - All end stations run 802.1AS BMCA and/or PCR4Sync
 - Those protocols pass ClockSource info to network for GM decision
 - E.g. parentDS and timePropertiesDS to carry in Announce
 - Centralized network: User
 - GM passed down as requirement
 - Including whether primary or standby
 - Presumably from the end-user (not an application protocol)
 - Similar to redundant trees/GMs... I know what I installed
 - Many 1588 end-users do this in practice (GM's priority1=0)
 - Recommendation: Support both
 - Group consensus:

TimeRealm.Capabilities: Assume

- MaxDomainNumbers (uint8)
 - How many domainNumbers do I support per interface?
 - All can run as slave; For master see previous slide
- CombinationAlgorithmList
 - List of combination algorithms supported by all interfaces
 - Element is a 24-bit OUI and 8-bit OUI-defined type number
 - Analogous to sequence type of 802.1CB

TimeRealmStatus.Configuration: Assume

- CombinationAlgorithm (uint32)
 - Algorithm to use for all interfaces
- InterfaceList
 - List of configuration for each interface
 - Each element is
 - SlaveDomainList: List of uint8 domainNumber
 - Slave domainNumbers received on this interface
 - MasterDomainList: List of uint8 domainNumber
 - GM domainNumbers transmitted on this interface

TimeRealmStatus.Configuration: Questions

- State machines for GM integration: Not applicable to UNI
 - E.g. When and how do primary/standby GM work?
 - Specified by standard for combo algorithm, not UNI
 - Recommendation: Yes
 - Group consensus:
- Can Master/SlaveDomainList change while running?
 - E.g. Redundant GM(s) added from new TimeRealm
 - Recommendation: Specified by combo algo, not UNI
 - Group consensus:

ClockTarget in Bridges: Question

- Bridges can contain a ClockTarget (time application)
 - Qbv, Qch, etc
 - Not a user in the traditional sense
 - Only requirement is a consistent configuration in all bridges
 - Same domainNumbers, same combo algorithm, etc
 - Multiple TimeRealms use it, so not applicable to UNI
- How do we configure ClockTarget(s)?
 - Recommendation: Specify managed objects
 - For each ClockTarget, domainNumbers and combo algo
 - Group consensus:

Next Steps

- How do we specify the time sync UNI?
- Recommendation: In Qcc, analogous to CB config
 - Draft of preceding slides in Qcc UNI (clause 99)
 - TLV and YANG
 - Phase 1: Map to SRP
 - SRP: Add as optional TLVs to MSRPv1
 - In practice, used with MRP External Control (centralized network)
- Phase 2 (fully distributed) is post-Qcc
 - Map to protocol(s) from new PAR(s)
 - E.g. PCR4Sync
- Group consensus:

Thank You