802.1CM conference call

CPRI requirements for Ethernet Fronthaul
CPRI TWG Status of Work

Assumed Types of Traffic

Synchronization

- Timing synchronization of Radio Access Network (RAN) wide
- Frequency synchronization of Radio Access Network (RAN) wide
- Master node of synch may not be REC but other node (e.g. PTP grand-master)

User Plane

- "IQ data" (and Real-Time vendor specific control signal) for current CPRI function split between REC and RE
- No CPRI framing encapsulation assumed
- One QoS type is required for now
- Different function split(s) may be necessary for next step
 - Multiple QoS types may be necessary

C&M Plane

- Control and Management signal between REC and RE
- "best effort" type QoS is assumed
- Link management
 - Ethernet OAM
 - "best effort" type QoS is assumed
- Background traffic
 - Only "best effort" type QoS is assumed for a first profile

The simplest but the most typical (useful) network model

User Plane Requirement Work Status

Maximum End to End Latency :

- 100μs (including fiber length, PDV, bridges delay,...)
- Minimum maximum distance* to be supported for full performance RE/REC system:
 - CPRI current working assumption: 10km
 - Such requirement should be given by operators

Maximum PDV :

- 5μs or 10% of the E2E latency
- Further discussions needed

PLR :

- Actual PLR caused by bit error, congestion, out of delay packet: 10⁻⁶...10⁻⁹
- Further studies required to evaluate the impact on the performance

^{*}Geographical distance between REC and RE, not fiber length accumulation between REC and RE

Next steps

- Frequency synchronization
 - Agree on possible solutions and derive requirements
- Time alignment
 - Agree on the time alignment goals and derive requirements
- Latency/PDV/PLR
 - Balance these interacting requirements
 - Evaluate the PLR impact on the performance
- Remaining requirements

