

APPLICABILITY OF Qbu AND Qbv TO FRONTHAUL

János Farkas and Balázs Varga janos.farkas@ericsson.com balazs.a.varga@ericsson.com

November 11, 2015

OUTLINE

- Common Public Radio Interface (CPRI) traffic
 vs background (BG) traffic
 - IEEE 802.1Qbu Frame Preemption (with IEEE 802.3br IET)
 - IEEE 802.1Qby Enhancements for Scheduled Traffic
 - -802.1Qbu and 802.1Qbv with guard band
- Concurring CPRI flows

EVALUATED USE CASE

Tree topology comprised of 10 Gbps links

> Switching delay: 1500 ns ± 5 ns variation

> CPRI traffic

- Rate: 1.228 Gbps

- Payload: 300 bytes

- Period: 1954 ns

› Background traffic

-CBR

> Payload: 1500 bytes

> Period: 9770 ns

- VBR

> Payload: rnd 1000-1500 bytes

> Period: 5000 ns ± 500 ns

CPRI VS BACKGROUND TRAFFIC

- The effects of background traffic on CPRI are investigated first
- There is no race condition between CPRI flows in these cases
 - The simulation set-up is designed to avoid CPRI race conditions
 - Frames of CPRI flows always arrive at the switches in the same order and they are always served by the switches in the same order
- Packet Delay Variation (PDV) is determined as the difference between the largest and the smallest delay that frames of a given flow suffer

FRAME PREEMPTION EVENT POSSIBILITIES

- 64-byte fragment size is used in all cases (10 Gbps link)
- - Preemption Delay = 13.6ns
 - FCS + IFG + remaining bits of current octet
- 1. Preemption req. in the middle 2. Preemption req. at the beginning
 - transmission of BG frame just started
 - Preemption Delay = 67.2ns

Preemption req. too late - Max Delay = 60.8ns

- Preemption is not possible if frame < 124 bytes
 - Max Delay = 114.4ns

FRAME PREEMPTION RESULTS

73.

no variation in switching delay

Flow	Min delay [ns]	Max delay [ns]	PDV [ns]
B2	13832.4	13832.4	
A2	19693.2	19760.4	67.
A1	26154.0	26227.5	73.

26827.5

26754.0

B1

0	B2	13532.4	13532.4	0
2	A2	19693.2	19760.4	67.2
5	A1	25854.0	25953.5	99.5
5	B1	26154.0	26265.1	111.1

ENHANCEMENTS FOR SCHEDULED TRAFFIC

RE-A1

RE-B1

RE-B1

RE-B2

RE-B2

RE-B2

RE-B2

RE-B2

RE-B2

RE-B2

RE-B2

Traffic source synchronization inaccuracy: ± 10 ns

Gate on 900-byte background at SW3: Gate on 900-byte background at SW2:

Flow	Min delay [ns]	Max delay [ns]	PDV [ns]
B2	12812	12842	29.9
A2	19680	19719	39.5
A1	25840	25888	47.9
B1	26150	26198	47.9
BG	28484.0	30453.1	1970.3

FRAME PREEMPTION AND ENHANCEMENTS FOR SCHEDULED TRAFFIC WITH GUARD BAND

50 ns guard band

)	No	variation	in	switching	delay
----------	----	-----------	----	-----------	-------

- VBR background
- 50ns guard band: max PDV = 17.2ns

Flow	Min de	elay [ns]	Max delay [ns]	PDV [ns]
B2		13832.4	13832.4	0
A2		19702.4	19719.6	17.2
A1		26164.4	26181.6	17.2
B1		26764.4	26781.6	17.2

> 70ns guard band: PDV = 0 (no PDV due to BG traffic)
Applicability of 802.1Qbu and 802.1Qbv to fronthaul | 2015-11-11 | Page 8

FRAME PREEMPTION AND ENHANCEMENTS FOR SCHEDULED TRAFFIC WITH GUARD BAND

- No variation in switching delay
- VBR background
- 50ns guard band: max PDV = 17.2ns B1
- Min delay [ns] Max delay [ns] PDV [ns] **Flow** 13532.4 13532.4 A2 19702.4 19719.6 17.2 **A1** 25863.2 25880.4 17.2 26154.0 25154.0 0

> 70ns guard band: PDV = 0 (no PDV due to BG traffic)
Applicability of 802.1Qbv and 802.1Qbv to fronthaul | 2015-11-11 | Page 9

CONCURRENT EXPRESS FRAMES

Effect of frame A on frame B depending on the relative arrival of frame B to frame A

CPRI FLOWS MAY RACE AT EACH HOP

- Racing shuffles order
- This causes PDV

Traffic source synchronization inaccuracy: ± 10 ns

DELAYING AT INGRESS TO THE NETWORK

Traffic source synchronization inaccuracy: ± 10 ns

Indeterminate order: PDV = 280ns

Deterministic order: PDV = 0ns

SUMMARY

- > 802.1Qbu Frame Preemption (with 802.3br)
 - It is essential for being able to cope with large background frames
 - Its worst-case PDV can be calculated
- > 802.1Qbv Enhancements for Scheduled Traffic
 - It can be used to cope with background traffic
- > 802.1Qbu and 802.1Qbv with guard band
 - Zero PDV can be achieved

Concurrent CPRI flows

- Indeterminate order can cause significant PDV
- This effect can be avoided by assuring deterministic order, e.g., by intentional delaying

ACKNOWLEDGEMENTS

The authors thank Csaba Simon, Maliosz Markosz, József Bíró, Miklós Máté, Árpád Nagy, and István Moldován for their contributions.

ERICSSON