DELAYS AND PDV IN AN ETHERNET FRONTHAUL NETWORK

János Farkas and Balázs Varga
janos.farkas@ericsson.com balazs.a.varga@ericsson.com

December 16, 2015
Assumptions

- Only frame preemption is used out of the TSN tools (no 802.1Qbv)
 - Express: CPRI traffic
 - Preemptable: all the rest of the traffic
- CPRI flows are allowed to race each other at every hop
- Playout buffer is used for outbound traffic at the edge bridge in order to cope with Packet Delay Variation (PDV)
 - Note: *Packet* Delay Variation is used for Ethernet *frames* as PDV is a well-known term and acronym

This presentation investigates the calculation possibilities of delay and PDV in the Ethernet transport network for frames of CPRI flows
EFFECTS OF FRAME PREEMPTION

- Worst case delay: 124 Bytes
 - The serving time of 124 Bytes is the worst case delay that an express frame carrying CPRI traffic can suffer in a bridge due to preempting background traffic
 - It is 114.4 ns for 10 Gbps outbound link, it is 11.44 ns for 100 Gbps link
- Best case is 0, if no need to preempt
- Therefore, frame preemption delay causes PDV
- The per hop frame preemption delays are accumulated
- PDV due to frame preemption can be calculated

\[PDV_{\text{preemption}} = \sum_{j} t_j^{124B} \]

i.e. by summing the service time of 124 Bytes for the outbound link of each hop \(j \)

- Frame preemption may cause 572 ns PDV in a 5-hop diameter network comprising 10 Gbps links
Delay calculation per CPRI flow:

- **Propagation delay:** on passed link (inc. serialization); depends on link length (5usec/km)
- **Bridging delay:** on passed bridge; depends on bridge implementation (non-blocking!)

 Note: no queuing delay for CPRI

- **Racing delay:** racing event may occur at an egress port; depends on relative arrival time of racing frames and their size

 Note: racing can be treated as a special queuing delay.

- **Playout buffer delay:** re-shaper/de-PDV buffer; depends on configuration (T_{buffer})

\[Delay_{tr} = \sum_i d_{link_i} + \sum_j d_{sw_j} + \sum_r d_r + T_{buffer} \]

Assumptions:

- Symmetric up/down
- Static value
- Change only
 - if network topology or nodes changed
 - rerouting (skew)

of racing may differ up/down
PDV calculation per CPRI flow:

- Propagation: no PDV caused
- Bridging: implementation specific (non-blocking bridge is assumed)
 Note: no queuing PDV for time critical traffic. If TSN function(s) cause PDV it should be added for a given solution.
- Racing: depends on solution characteristics
 Note: Racing can be treated as a factor causing special queuing PDV.
- Playout: can eliminate PDV partly / entirely

\[
PDV_{tr}^{max} = 0 + \sum_j PDV_{sw}^{max} + \sum_j t_j^{124B} + \sum_r PDV_r^{max} - T_{de-PDV}
\]

- Propagation
- Bridging
- Racing
- Playout

depends on bridge implementation