	[bookmark: dtableau][bookmark: dsg]INTERNATIONAL TELECOMMUNICATION UNION
	STUDY GROUP 15

	[bookmark: dnum]TELECOMMUNICATION
STANDARDIZATION SECTOR
STUDY PERIOD 2013-2016
	TD 323 Rev.1 (PLEN/15)

	[bookmark: dorlang]
	English only
Original: English

	[bookmark: dbluepink][bookmark: dmeeting]Question(s):
	10/15
	24 November - 5 December 2014

	[bookmark: dtitle]TD

	[bookmark: dsource]Source:
	Editor G.8021/Y.1341

	[bookmark: dtitle1]Title:
	Draft revised Recommendation ITU-T G.8021/Y.1341 (for Consent, 5 December 2014)

Draft revised Recommendation ITU-T G.8021/Y.1341
Characteristics of Ethernet transport network
equipment functional blocks

Summary
Recommendation ITU-T G.8021/Y.1341 specifies both the functional components and the methodology that should be used in order to specify the Ethernet transport network functionality of network elements; it does not specify individual Ethernet transport network equipment.

	History
	Edition
	Recommendation
	Approval
	Study Group
	

	[bookmark: ihistorye]1.0
	ITU-T G.8021/Y.1341
	2004-08-22
	15
	

	1.1
		ITU-T G.8021/Y.1341 (2004) Amd. 1
	2006-06-06
	15
	

	2.0
	ITU-T G.8021/Y.1341
	2007-12-22
	15
	

	2.1
		ITU-T G.8021/Y.1341 (2007) Amd. 1
	2009-01-13
	15
	

	2.2
		ITU-T G.8021/Y.1341 (2007) Amd. 2
	2010-02-22
	15
	

	3.0
	ITU-T G.8021/Y.1341
	2010-10-22
	15
	

	3.1
		ITU-T G.8021/Y.1341 (2010) Amd .1
	2011-07-22
	15
	

	4.0
	ITU-T G.8021/Y.1341
	2012-05-07
	15
	

	4.1
		ITU-T G.8021/Y.1341 (2012) Amd. 1
	2012-10-29
	15
	

	4.2
		ITU-T G.8021/Y.1341 (2012) Amd. 2
	2013-08-29
	15
	

	5.0
	ITU-T G.8021/Y.1341
	2015-xx-yy
	15
	

	[bookmark: ikeye]Keywords
Atomic functions, equipment functional blocks, Ethernet transport network.

Table of Contents
[bookmark: _Toc368224322][bookmark: _Toc368225060][bookmark: _Toc368225416]	Page
1	Scope		1
2	References		3
3	Definitions		4
4	Abbreviations and acronyms		6
5	Methodology		12
6	Supervision		12
6.1	Defects		12
6.2	Consequent actions		21
6.3	Defect correlations		21
6.4	Performance filters		21
7	Information flow across reference points		21
8	Generic processes for Ethernet equipment		21
8.1	OAM related processes		21
8.2	Queueing process		109
8.3	Filter process		110
8.4	Replicate process		110
8.5	802.3 protocols processes		111
8.6	MAC length check process		113
8.7	MAC frame counter process		114
8.8	Server-specific common processes		114
8.9	QoS related processes		117
9	Ethernet MAC layer (ETH) functions		119
9.1	ETH connection functions (ETH_C)		123
9.3	ETH adaptation functions		155
9.4	ETH diagnostic functions		178
9.5	Server to ETH adaptation functions (<server>/ETH_A)		196
9.6	ETH traffic conditioning and shaping functions (ETH_TCS)		198
9.7	ETH link aggregation functions		203
9.8	ETH MEP and MIP functions		215
10	Ethernet PHY layer functions (ETYn)		217
10.1	ETYn connection functions (ETYn_C)		217
10.2	ETYn trail termination functions (ETYn_TT)		217
10.3	ETYn to ETH adaptation functions (ETYn/ETH_A)		220
10.4	1000BASE-(SX/LX/CX) ETY to Coding sublayer adaptation functions (ETY3/ETC3_A)		225
10.5	ETCn trail termination functions (ETCn_TT)		227
10.6	ETCn to ETH adaptation functions (ETCn/ETH_A)		227
	Page
10.7	ETY4 to Ethernet PP-OS adaptation function (ETY4/ETHPP-OS_A)		227
11	Non-Ethernet server to ETH adaptation functions		230
11.1	SDH to ETH adaptation functions (S/ETH_A)		230
11.2	SDH to ETC adaptation functions (Sn-X/ETC3_A)		251
11.3	S4-64c to ETH-w adaptation functions		256
11.4	PDH to ETH adaptation functions (P/ETH_A)		256
11.5	OTH to ETH adaptation functions (O/ETH_A)		270
11.6	MPLS to ETH adaptation functions (MPLS/ETH_A)		288
11.7	ATM VC to ETH adaptation functions (VC/ETH_A)		289
11.8	RPR to ETH adaptation functions (RPR/ETH_A)		289
Appendix I – Applications and functional diagrams		290
Appendix II – AIS/RDI mechanism for an Ethernet private line over a single SDH or OTH server layer		292
Appendix III – Compound functions		296
Appendix IV – Startup conditions		297
Appendix V – SDL descriptions		298
Appendix VI – Calculation methods for frame loss measurement		299
VI.1	Dual-ended loss measurement		299
VI.2	Single-ended loss measurement		299
Appendix VII – Considerations of the support of a rooted multipoint EVC service		301
VII.1	Port group function		301
VII.2	Configuration of asymmetric VLANs		302
Appendix VIII – Configurations for ingress VID filtering		304
Bibliography		305

Introduction
This Recommendation forms part of a suite of ITU-T Recommendations covering the full functionality of Ethernet transport network architecture and equipment (e.g., Recommendations ITU-T G.8010/Y.1306 and ITU-T G.8012/Y.1308) and follows the principles defined in Recommendation ITU-T G.805.
This Recommendation specifies a library of basic building blocks and a set of rules by which they may be combined in order to describe equipment used in an Ethernet transport network. The building blocks are based on atomic modelling functions defined in Recommendations ITUT G.806 and ITU-T G.809. The library comprises the functional building blocks needed to wholly specify the generic functional structure of the Ethernet transport network. In order to be compliant with this Recommendation, the Ethernet functionality of any equipment which processes at least one of the Ethernet transport layers needs to be describable as an interconnection of a subset of these functional blocks contained within this Recommendation. The interconnections of these blocks should obey the combination rules given.
The specification method is based on functional decomposition of the equipment into atomic and compound functions. The equipment is then described by its equipment functional specification (EFS) which lists the constituent atomic and compound functions, their interconnection and any overall performance objectives (e.g., transfer delay, availability, etc.).

- 346 -
TD 323 Rev.1 (PLEN/15)

	[bookmark: dcontent1]Contact:
	Akira SAKURAI
NEC Corporation
Japan
	Tel: +81-4-7185-7652
Fax: +81-4-7185-6856
Email: a-sakurai@da.jp.nec.com

	[bookmark: dcontent2]Contact:
	Huub van Helvoort
P.R. China
	Tel: +31-649-248-936
Email: huubatwork@gmail.com

	Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of ITU-T.

ii	Rec. ITUT G.8021/Y.1341 (05/2012)
[bookmark: p1rectexte][bookmark: _Toc319901644][bookmark: _Toc328035791][bookmark: _Toc339540498][bookmark: _Toc341956975]Draft revised Recommendation ITU-T G.8021/Y.1341
Characteristics of Ethernet transport network
equipment functional blocks
1	Scope
This Recommendation covers the functional requirements of Ethernet functionality within Ethernet transport equipment.
This Recommendation uses the specification methodology defined in [ITU-T G.806] in general for transport network equipment and is based on the architecture of Ethernet layer networks defined in [ITU-T G.8010], the interfaces for Ethernet transport networks defined in [ITU-T G.8012], and in support of services defined in [ITU-T G.8011]. It also provides processes for Ethernet OAM based on [ITU-T G.8013]. The description is generic and no particular physical partitioning of functions is implied. The input/output information flows associated with the functional blocks serve for defining the functions of the blocks and are considered to be conceptual, not physical.
The functionality defined in this Recommendation can be applied at user-to-network interfaces (UNIs) and network-to-network interfaces (NNIs) of the Ethernet transport network.
Not every functional block defined in this Recommendation is required for every application. Different subsets of functional blocks from this Recommendation and others (e.g., [ITU-T G.783], [ITU-T G.798], [ITU-T G.806] and [b-ITU-T I.732]) may be assembled in different ways according to the combination rules given in these Recommendations (e.g., [ITU-T G.806]) to provide a variety of different capabilities. Network operators and equipment suppliers may choose which functions must be implemented for each application.
The internal structure of the implementation of this functionality (equipment design) need not be identical to the structure of the functional model, as long as all the details of the externally observable behaviour comply with the equipment functional specification (EFS).
Equipment developed prior to the production of this Recommendation may not comply with all the details in this Recommendation.
The equipment requirements described in this Recommendation are generic and no particular physical partitioning of functions is implied. The input/output information flows associated with the functional blocks define the functions of the blocks and are considered to be conceptual, not physical.
Figure 1-1 presents a summary illustration of the set of atomic functions associated with the Ethernet signal transport. These atomic functions may be combined in various ways to support a variety of Ethernet services, some of which are illustrated in Appendix I. In order to reduce the complexity of the figures, the functions for the processing of management communication channels (e.g., SDH DCC or OTH COMMS) are not shown. For DCC or COMMS functions, refer to the specific layer network descriptions.

		Rec. ITUT G.8021/Y.1341 (05/2012)	1
[bookmark: _Ref499017551][image:]
[bookmark: _Toc172093976]Figure 1-1 – Overview of ITU-T G.8021/Y.1341 atomic model functions

2	Rec. ITUT G.8021/Y.1341 (05/2012)
[bookmark: _Toc96922588][bookmark: _Toc98151634][bookmark: _Toc319901645][bookmark: _Toc328035792][bookmark: _Toc339540499][bookmark: _Toc341956976]2	References
The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.
[ITU-T G.707]		Recommendation ITU-T G.707/Y.1322 (2007), Network node interface for the synchronous digital hierarchy (SDH).
[ITU-T G.709]		Recommendation ITU-T G.709/Y.1331 (2012), Interfaces for the optical transport network (OTN).
[ITU-T G.783]		Recommendation ITU-T G.783 (2006), Characteristics of synchronous digital hierarchy (SDH) equipment functional blocks.
[ITU-T G.798]		Recommendation ITU-T G.798 (2012), Characteristics of optical transport network hierarchy equipment functional blocks.
[ITU-T G.805]		Recommendation ITU-T G.805 (2000), Generic functional architecture of transport networks.
[ITU-T G.806]		Recommendation ITU-T G.806 (2012), Characteristics of transport equipment Description methodology and generic functionality.
[ITU-T G.809]		Recommendation ITU-T G.809 (2003), Functional architecture of connectionless layer networks.
[ITU-T G.832]		Recommendation ITU-T G.832 (1998), Transport of SDH elements on PDH
networks – Frame and multiplexing structures.
[ITU-T G.7041]		Recommendation ITU-T G.7041/Y.1303 (2011), Generic framing procedure.
[ITU-T G.7043]		Recommendation ITU-T G.7043/Y.1343 (2004), Virtual concatenation of plesiochronous digital hierarchy (PDH) signals.
[ITU-T G.8001]		Recommendation ITU-T G.8001/Y.1354 (2013), Terms and definitions for Ethernet frames over transport.
[ITU-T G.8010]		Recommendation ITU-T G.8010/Y.1306 (2004), Architecture of Ethernet layer networks.
 [ITU-T G.8011]		Recommendation ITU-T G.8011/Y.1307 (2012), Ethernet service characteristics.
To TSB: Update to the latest 2015 version of G.8011 if it will be available.
 [ITU-T G.8012]		Recommendation ITU-T G.8012/Y.1308 (2004), Ethernet UNI and Ethernet NNI.
[ITU-T G.8013]		Recommendation ITU-T G.8013/Y.1731 (2013), OAM functions and mechanisms for Ethernet based networks.
[ITU-T G.8031]		Recommendation ITU-T G.8031/Y.1342 (2011), Ethernet linear protection switching.
To TSB: Update to the latest 2015 version of G.8031 if it will be available.
 [ITU-T G.8032]		Recommendation ITU-T G.8032/Y.1344 (2012), Ethernet ring protection switching.
[ITU-T G.8040]		Recommendation ITU-T G.8040/Y.1340 (2005), GFP frame mapping into Plesiochronous Digital Hierarchy (PDH).
[ITU-T G.8251]		Recommendation ITU-T G.8251 (2010), The control of jitter and wander within the optical transport network (OTN).
[ITU-T G.8264]		Recommendation ITU-T G.8264 (2014), Distribution of timing information through packet networks.
[ITU-T Z.100]		Recommendation ITU-T Z.100 (2011), Specification and Description Language (SDL).
[IEEE 802.1AB]	IEEE 802.1AB (2009), IEEE Standard for Local and Metropolitan Area Networks: Station and Media Access Control Connectivity Discovery.
[IEEE 802.1AX]	IEEE 802.1AX (2014), IEEE Standard for Local and Metropolitan Area Networks: Link Aggregation.
[IEEE 802.1Q]		IEEE 802.1Q (2014), IEEE Standard for Local and metropolitan area networks – Bridges and Bridged Networks
[IEEE 802.1X]		IEEE 802.1X (2010), IEEE Standard for Local and metropolitan area networks – Port-Based Network Access Control.
[IEEE 802.3]		IEEE 802.3 (2012), IEEE Standard for Ethernet
[MEF 10.3]			MEF Technical Specification 10.3 (2013), Ethernet Service Attributes Phase 3, Metro Ethernet Forum.
[bookmark: _Toc402842181][bookmark: _Toc402842376][bookmark: _Toc530884804][bookmark: _Toc15457783][bookmark: _Toc15458555][bookmark: _Toc15459327][bookmark: _Toc15460505][bookmark: _Toc22628667][bookmark: _Toc23042763][bookmark: _Toc24783241][bookmark: _Toc27284238][bookmark: _Toc27887140][bookmark: _Toc27887884][bookmark: _Toc81793496][bookmark: _Toc84844967][bookmark: _Toc96922589][bookmark: _Toc98151635][bookmark: _Toc319901646][bookmark: _Toc328035793][bookmark: _Toc339540500][bookmark: _Toc341956977][bookmark: _Toc402842182][bookmark: _Toc402842377]3	Definitions
This Recommendation uses the following terms defined elsewhere:
3.1.1	8B/10B transmission code: [IEEE 802.3]
3.1.2	10BASE-F: [IEEE 802.3]
3.1.3	10BASE-T: [IEEE 802.3]
3.1.4	100BASE-FX: [IEEE 802.3]
3.1.5	100BASE-T: [IEEE 802.3]
3.1.6	100BASE-TX: [IEEE 802.3]
3.1.7	100BASE-X: [IEEE 802.3]
3.1.8	1000BASE-CX: [IEEE 802.3]
3.1.9	1000BASE-LX: [IEEE 802.3]
3.1.10	1000BASE-SX: [IEEE 802.3]
3.1.11	1000BASE-T: [IEEE 802.3]
3.1.12	1000BASE-X: [IEEE 802.3]
3.1.13	access point: [ITU-T G.805], [ITU-T G.809]
3.1.14	adaptation: [ITU-T G.809]
3.1.15	adapted information: [ITU-T G.809]
3.1.16	auto-negotiation: [IEEE 802.3]
3.1.17	characteristic information: [ITU-T G.809]
3.1.18	client/server relationship: [ITU-T G.809]
3.1.19	code-group: [IEEE 802.3]
3.1.20	comma: [IEEE 802.3]
3.1.21	connection point: [ITU-T G.805]
3.1.22	connectionless trail: [ITU-T G.809]
3.1.23	consequent actions: [ITU-T G.806]
3.1.24	defect correlations: [ITU-T G.806]
3.1.25	defects: [ITU-T G.806]
3.1.xx	dual-ended: [ITU-T G.8001]
3.1.26	Ethernet flow replication point (ETHF_PP): [ITU-T G.8001]
3.1.27	Ethernet replicated information (ETH_PI): [ITU-T G.8001]
3.1.28	Ethernet termination flow replication point (ETHTF_PP): [ITU-T G.8001]
3.1.29	flow: [ITU-T G.809]
3.1.30	flow domain: [ITU-T G.809]
3.1.31	flow domain flow: [ITU-T G.809]
3.1.32	flow point: [ITU-T G.809]
3.1.33	flow point pool: [ITU-T G.809]
3.1.34	flow termination: [ITU-T G.809]
3.1.35	flow termination sink: [ITU-T G.809]
3.1.36	flow termination source: [ITU-T G.809]
3.1.37	full duplex: [IEEE 802.3]
3.1.38	generic framing procedure (GFP): [ITU-T G.7041]
3.1.39	jabber: [IEEE 802.3]
3.1.40	layer network: [ITU-T G.809]
3.1.41	link: [ITU-T G.805]
3.1.42	link connection: [ITU-T G.805]
3.1.43	link flow: [ITU-T G.809]
3.1.44	media access control (MAC): [IEEE 802.3]
3.1.45	medium attachment unit (MAU): [IEEE 802.3]
3.1.46	network: [ITU-T G.809]
3.1.47	network connection: [ITU-T G.805]
3.1.48	network flow: [ITU-T G.809]
3.1.49	network operator: [b-ITU-T M.3208.1]
3.1.50	network-to-network interface (NNI): [ITU-T G.8001]
3.1.51	non-return-to-zero, invert on ones (NRZI): [IEEE 802.3]
3.1.xx	one-way: [ITU-T G.8001]
3.1.52	ordered set: [IEEE 802.3]
3.1.53	performance filters: [ITU-T G.806]
3.1.54	physical coding sublayer (PCS): [IEEE 802.3]
3.1.55	physical layer entity (PHY): [IEEE 802.3]
3.1.56	physical medium attachment (PMA) sublayer: [IEEE 802.3]
3.1.57	physical medium dependent (PMD) sublayer: [IEEE 802.3]
3.1.58	physical signalling sublayer (PLS): [IEEE 802.3]
3.1.59	port: [ITU-T G.809]
3.1.60	QTag prefix: [IEEE 802.3]
3.1.61	reconciliation sublayer (RS): [IEEE 802.3]
3.1.62	reference point: [ITU-T G.805] [ITU-T G.809]
3.1.63	reference points: [ITU-T G.806]
3.1.64	service provider: [b-ITU-T M.3208.1]
3.1.xx	single-ended: [ITU-T G.8001]
3.1.66	termination connection point: [ITU-T G.805]
3.1.67	termination flow point: [ITU-T G.809]
3.1.68	termination flow point pool: Refer to clause 6.3.5.5 of [ITU-T G.8010]
3.1.69	timing point: [ITU-T G.806]
3.1.70	traffic conditioning function: [ITU-T G.8001]
3.1.71	traffic unit: [ITU-T G.809]
3.1.72	trail: [ITU-T G.805]
3.1.73	trail termination: [ITU-T G.805]
3.1.74	transport: [ITU-T G.809]
3.1.75	transport entity: [ITU-T G.809]
3.1.76	transport processing function: [ITU-T G.809]
3.1.77	twisted pair: [IEEE 802.3]
3.1.xx	two-way: [ITU-T G.8001]
3.1.78	user-to-network interface (UNI): [ITU-T G.8001]
[bookmark: _Toc530884805][bookmark: _Toc15457784][bookmark: _Toc15458556][bookmark: _Toc15459328][bookmark: _Toc15460506][bookmark: _Toc22628668][bookmark: _Toc23042764][bookmark: _Toc24783242][bookmark: _Toc27284239][bookmark: _Toc27887141][bookmark: _Toc27887885][bookmark: _Toc81793497][bookmark: _Toc84844968][bookmark: _Toc96922590][bookmark: _Toc98151636][bookmark: _Toc319901647][bookmark: _Toc328035794][bookmark: _Toc339540501][bookmark: _Toc341956978]4	Abbreviations and acronyms
This Recommendation uses the following abbreviations and acronyms:
[bookmark: _Toc402842183][bookmark: _Toc402842378]1DM		1-way Delay Measurement
A		Adaptation function
AI		Adapted Information
AIS		Alarm Indication Signal
AP		Access Point
APP		Access Point Pool
APS		Automatic Protection Switching
ATM		Asynchronous Transfer Mode
BER		Bit Error Ratio
BN	Bandwidth Notification
BNM	Bandwidth Notification Message
BPDU		Bridge Protocol Data Unit
BS		Bad Second
C		Connection Function
CBR		Constant Bit Rate
CC		Continuity Check
CCM		Continuity Check Message
CFI		Canonical Format Identifier
CI		Characteristic Information
CK		Clock
COMMS	Communications channel
CoS		Class of Service
CP		Connection Point
CRC		Cyclic Redundancy Check
CSF		Client Signal Fail
D		Data
DA		Destination Address
DCC		Data Communication Channel
DCI		Defect Clear Indication
DCN		Data Communication Network
DE		Drop Eligibility
DEI		Drop Eligible Identifier
DEG		Degraded
DEGM		Degraded M
DEGTHR	Degraded Threshold
DM		Delay Measurement
DMM		Delay Measurement Message
DMR		Delay Measurement Reply
EC		Ethernet Connection
ED		Expected Defect
EDM		Expected Defect Message
EFS		Equipment Functional Specification
EPL		Ethernet Private Line
EPLAN		Ethernet Private Local Area Network
ESMC		Ethernet Synchronization Message Channel
ETC		Ethernet Coding
ETH		Ethernet Media Access Control layer network
ETH_CI	Ethernet Media Access Control Characteristic Information
ETHD	Ethernet MAC layer network Diagnostic function
ETHDe	Ethernet MAC layer network Diagnostic function within MEP
ETHDi	Ethernet MAC layer network Diagnostic function within MIP
ETHG	Ethernet MAC layer network Group
ETH-m	Ethernet MAC layer network - multiplexing
ETHx	Ethernet MAC layer network at level x (x = path, tandem connection, section)
ETY		Ethernet physical layer network
ETYn		Ethernet physical layer network of type n
EVC		Ethernet Virtual Connection
EVPL		Ethernet Virtual Private Line
EVPLAN	Ethernet Virtual Private Local Area Network
EXI		Extension Header Identifier
EXM		Extension Header Mismatch
FCS		Frame Check Sequence
FD		Flow Domain
FD		Frame Delay
FDI		Forward Defect Indication
FDF		Flow Domain Flow
FDV		Frame Delay Variation
FF		Flow Forwarding
FOP		Failure Of Protocol
FP		Flow Point
FPP		Flow Point Pool
FS		Frame Start
FT		Flow Termination
GFP		Generic Framing Procedure
GFP-F		Generic Framing Procedure – Frame mapped
GFP-T		Generic Framing Procedure – Transparent mapped
GNM	Generic Notification Message
GS		Good Second
GTCS		Group Traffic Conditioning and Shaping
LACP		Link Aggregation Control Protocol
LAG		Link Aggregation
LAN		Local Area Network
LB		LoopBack
LBM		LoopBack Message
LBR		LoopBack Reply
LCAS		Link Capacity Adjustment Scheme
LCK		Lock
LF		Lost Frames
LFD		Loss of Frame Delineation
LLC		Logical Link Control
LAMP		Link Aggregation – Marker Protocol
LM		Loss Measurement
LMM		Loss Measurement Message
LMR		Loss Measurement Reply
LOC		Loss Of Continuity
LOS		Loss Of Signal
LT		Link Trace
LTM		Link Trace Message
LTR		Link Trace Reply
M_SDU	Media access control Service Data Unit
MAC		Media Access Control
MAU		Medium Attachment Unit
MCC		Maintenance Communication Channel
ME		Maintenance Entity
MEG		Maintenance Entity Group
MEL		Maintenance Entity group Level
MEP		Maintenance entity group End Point
MI		Management Information
MIP		Maintenance entity group Intermediate Point
MMG		Mismerge
MP		Maintenance Point
MPLS		Multi-Protocol Label Switching
NNI		Network-to-Network Interface
OAM		Operations, Administration and Maintenance
ODU		Optical channel Data Unit
ODUj		Optical channel Data Unit – order j
ODUj-Xv	virtual concatenated Optical channel Data Unit – order j
ODUk		Optical channel Data Unit – order k
ODUk-Xv	virtual concatenated Optical channel Data Unit – order k
OO		Out of Order
OPC		OpCode
OPU		Optical channel Payload Unit
OSSP		Organization Specific Slow Protocol
OTH		Optical Transport Hierarchy
OTN		Optical Transport Network
OUI		Organizational Unique Identifier
P		Priority
P11s		1544 kbit/s PDH path layer with synchronous 125 μs frame structure according to [b-ITU-T G.704]
P12s		2048 kbit/s PDH path layer with synchronous 125 μs frame structure according to [b-ITU-T G.704]
P31s		34 368 kbit/s PDH path layer with synchronous 125 μs frame structure according to [ITU-T G.832]
P4s		139 264 kbit/s PDH path layer with synchronous 125 μs frame structure according to [ITU-T G.832]
PA		(Ethernet) Preamble
PCP		Priority Code Point
PCS		Physical Convergence Sublayer
PDH		Plesiochronous Digital Hierarchy
PDU		Protocol Data Unit
PFI		Payload FCS Indicator
PHY		Physical layer entity
PI		replication Information
PLM		Payload Mismatch
PLS		Physical Layer Signalling
PMA		Physical Medium Attachment sublayer
PMD		Physical Medium Dependent sublayer
POH		Path Overhead
PP		replication Point
PP-OS		Preamble, Payload, and Ordered Set information
PRBS		Pseudo-Random Bit Sequence
PSI		Payload Structure Identifier
PT		Payload Type
PTI		Priority Type Identifier
QoS		Quality of Service
R-APS		Ring-Automatic Protection Switching
REC		Received
RES		Reserved
RDI		Remote Defect Indication
RI		Remote Information
RP		Remote Point
RPR		Resilient Packet Ring
RxFCf		Received Frame Count far end
RxFCl		Received Frame Count local
SA		Source Address
SDH		Synchronous Digital Hierarchy
SDU		Service Data Unit
SFD		Start of Frame Delimiter
SL		Synthetic Loss
SLM		Synthetic Loss Message
SLR		Synthetic Loss Reply
SNC		Sub-Network Connection
SSD		Server Signal Degrade
SSF		Server Signal Fail
STM-N		Synchronous Transport Module – level N
svd		saved
TA		Target MAC Address
TCI		Tag Control Information
TCM		Tandem Connection Monitoring
TCP		Trail Connection Point
TCS	Traffic Conditioning and Shaping
TF		Transmitted Frames
TFP		Termination Flow Point
TFPP		Termination Flow Point Pool
TI		Timing Information
TID		Transaction Identifier
TLV		Type, Length, Value
TP		Timing Point
TPID		Tag Protocol Identifier
TSD		Trail Signal Degrade
TSF		Trail Signal Fail
TST		Test
TT		Trail Termination
TTL		Time To Live
TxFCf		Transmitted Frame Count far end
TxFCl		Transmitted Frame Count local
UNI		User-to-Network Interface
UNL		Unexpected maintenance entity group Level
UNM		Unexpected Maintenance entity group end point
UNP		Unexpected Period
UNPr		Unexpected Priority
UPI		(Generic Framing Procedure) User Payload Identifier
UPM		User Payload Mismatch
VID		Virtual local area network Identifier
VC		Virtual Channel (asynchronous transfer mode) or Virtual Container (synchronous digital hierarchy)
VCAT		Virtual Concatenation
VC-m		lower order Virtual Channel – order m
VC-n		higher order Virtual Channel – order n
VC-n-Xc	contiguous concatenated Virtual Channel – order n
VC-n-Xv	virtual concatenated Virtual Channel – order n
VLAN		Virtual Local Area Network
[bookmark: _Toc530884806][bookmark: _Toc15457785][bookmark: _Toc15458557][bookmark: _Toc15459329][bookmark: _Toc15460507][bookmark: _Toc22628669][bookmark: _Toc23042765][bookmark: _Toc24783243][bookmark: _Toc27284240][bookmark: _Toc27887142][bookmark: _Toc27887886][bookmark: _Toc81793498][bookmark: _Toc84844969][bookmark: _Toc96922591][bookmark: _Toc98151637][bookmark: _Toc319901648][bookmark: _Toc328035795][bookmark: _Toc339540502][bookmark: _Toc341956979]5	Methodology and conventions
[bookmark: _Toc402842184][bookmark: _Toc402842379]For the basic methodology to describe transport network functionality of network elements, refer to clause 5 of [ITU-T G.806]. For Ethernet-specific extensions to the methodology, see clause 5 of [ITU-T G.8010].
All process descriptions in clauses 6, 8 and 9 use the SDL methodology defined in [ITU-T Z.100].
Pseudocode in this recommendation uses “switch” statements where each “case” statement is exclusive (i.e. “case” statements do not fall through to each other).

[bookmark: _Toc497287007][bookmark: _Toc530884807][bookmark: _Toc15457786][bookmark: _Toc15458558][bookmark: _Toc15459330][bookmark: _Toc15460508][bookmark: _Toc22628670][bookmark: _Toc23042766][bookmark: _Toc24783244][bookmark: _Toc27284241][bookmark: _Toc27887143][bookmark: _Toc27887887][bookmark: _Toc81793499][bookmark: _Toc84844970][bookmark: _Toc96922592][bookmark: _Toc98151638][bookmark: _Toc319901649][bookmark: _Toc328035796][bookmark: _Toc339540503][bookmark: _Toc341956980]6	Supervision
The generic supervision functions are defined in clause 6 of [ITU-T G.806]. Specific supervision functions for the Ethernet transport network are defined in this clause.
[bookmark: _Toc147308721][bookmark: _Toc319901650][bookmark: _Toc328035797][bookmark: _Toc339540504][bookmark: _Toc341956981]6.1	Defects
[bookmark: _Toc319901651]6.1.1	Summary of detection and clearance conditions for defects
The defect detection and clearance conditions are based on events. Occurrence or absence of specific events may detect or clear specific defects.
In the following:
Valid means a received value is equal to the value configured via the MI input interface(s).
Invalid means a received value is not equal to the value configured via the MI input interface(s).
The events defined for this Recommendation are summarized in Table 6-1. Events, other than APS or R-APS events are generated by processes in the ETHx_FT_Sk function as defined in clause 9.2.1.2. APS events are generated by the subnetwork connection protection process as defined in clause 9.1.2. R-APS events are generated by the ring protection control process as defined in clause 9.1.3. These processes define the exact conditions for these events, Table 6-1 only provides a quick overview.
	Table 6-1 – Overview of events

	Event
	Meaning

	unexpMEL
	Reception of a CCM frame with an invalid MEL value.

	unexpMEG
	Reception of a CCM frame with an invalid MEG value, but with a valid MEL value.

	unexpMEP
	Reception of a CCM frame with an invalid MEP value, but with valid MEL and MEG values.

	unexpPeriod
	Reception of a CCM frame with an invalid periodicity value, but with valid MEL, MEG and MEP values.

	unexpPriority
	Reception of a CCM frame with an invalid priority value, but with valid MEL, MEG, MEP and periodicity values.

	expCCM[i]
	Reception of a CCM frame with valid MEL, MEG, MEP and periodicity values, where an MEP is indexed by "i".

	RDI[i]=x
	Reception by an MEP indexed by “i” of a CCM frame with valid MEL, MEG, MEP and periodicity values and the RDI flag set to x; where x=0 (remote defect clear) and x=1 (remote defect set).

	LCK
	Reception of a LCK frame.

	AIS
	Reception of an AIS frame.

	CSF-LOS
	Reception of a CSF frame that indicates a client loss of signal.

	CSF-FDI
	Reception of a CSF frame that indicates a client forward defect indication.

	CSF-RDI
	Reception of a CSF frame that indicates a client reverse defect indication.

	BS
	Bad second, a second in which the lost frame ratio exceeds the degraded threshold (MI_LM_DEGTHR).

	expAPS
	Reception of a valid APS frame.

	expRAPS
	Reception of a valid R-APS frame.

	APSw
	Reception of an APS frame from the working transport entity.

	APSb
	Reception of an APS frame with incompatible "B" bit value.

	APSr
	Reception of an APS frame with incompatible "Requested Signal" value.

	RAPSpm
	Reception by the RPL owner of an R-APS(NR, RB) frame with a node ID that differs from its own.

The occurrence or absence of these events may detect or clear a defect. An overview of the conditions is given in Table 6-2. The notation "#event=x (K*period)" is used to indicate the occurrence of x events within the period as specified between the brackets; 3.25≤K≤3.5.
Table 6-2 gives a quick overview of the detection and clearance conditions for the various defects. In the following clauses 6.1.2, 6.1.3, 6.1.4 and 6.1.5 the precise conditions are specified using SDL diagrams.
	Table 6-2 – Overview of defect detection and clearance

	Defect
	Defect detection
	Defect clearance

	dLOC[]
	#expCCM[] == 0 (K*MI_CC_Period)
	expCCM[]

	dUNL
	unexpMEL
	#unexpMEL == 0 (K*CCM_Period)

	dUNPr
	unexpPriority
	#unexpPriority == 0 (K*CCM_Period)

	dMMG
	unexpMEG
	#unexpMEG == 0 (K*CCM_Period)

	dUNM
	unexpMEP
	#unexpMEP == 0 (K*CCM_Period)

	dUNP
	unexpPeriod
	#unexpPeriod == 0 (K*CCM_Period)

	dRDI[]
	RDI[] == 1
	RDI[] == 0

	dAIS
	AIS
	#AIS == 0 (K*AIS_Period)

	dLCK
	LCK
	#LCK == 0 (K*LCK Period)

	dCSF-LOS
	CSF-LOS
	#CSF-LOS == 0
(K*CSF_Period or CSF-DCI)

	dCSF-FDI
	CSF-FDI
	#CSF-FDI == 0
(K*CSF_Period or CSF-DCI)

	dCSF-RDI
	CSF-RDI
	#CSF-RDI == 0
(K*CSF_Period or CSF-DCI)

	dDEG
	#BadSecond == 1
(MI_LM_DEGM*1second)
	#BadSecond == 0
(MI_LM_M*1second)

	dFOP-CM
	APSw
	#APSw == 0 (K*normal APS Period)

	dFOP-PM
	APSb or RAPSpm
	expAPS or #RAPSpm == 0
(K*long R-APS frame interval)

	dFOP-NR
	APSr continues more than 50ms
	expAPS

	dFOP-TO
	#expAPS==0 (K * long APS interval) or #expRAPS==0 (K * long R-APS frame interval)
	expAPS or expRAPS

Note that for the case of CCM_Period, AIS_Period, LCK_Period, and CSF_Period the values for the CCM, AIS, LCK, and CSF periods are based on the periodicity as indicated in the CCM, AIS, LCK, or CSF frame that triggered the timer to be started.
For dUNL, dMMG, dUNM, dUNP, dUNPr there may be multiple frames received detecting the same defect but carrying a different periodicity. In that case the longest received period will be used. See the detailed descriptions below.
[bookmark: _Toc319901652]6.1.2	Continuity supervision

Figure 6-1 – dLOC[] detection and clearance process
[bookmark: _Toc319901653]6.1.2.1	Loss of continuity defect (dLOC[])
The loss of continuity defect is calculated at the ETH layer. It monitors the presence of continuity in ETH trails.
Its detection and clearance are defined in Figure 6-1. The timer in Figure 6-1 is set to K*MI_CC_Period, where MI_CC_Period corresponds to the configured CCM period and K is such that 3.25≤K≤3.5.
NOTE – The dLOC entry/exit criteria defined in this version of the Recommendation are different to those defined in previous versions of this Recommendation (i.e., the 2007 and 2010 versions), because they have been aligned with those defined in clause 21 of [IEEE 802.1Q]. This change impacts only the conditions for defect detection and therefore does not affect interoperability between equipment compliant with this version of the Recommendation (and/or with clause 21 of [IEEE 802.1Q]) and those compliant with older versions of this Recommendation.
[bookmark: _Toc319901654]6.1.3	Connectivity supervision

Figure 6-2 – Defect detection and clearance process for dUNL, dMMG,
dUNM, dUNP, dUNPr, dAIS, dLCK, and dCSF
Figure 6-2 shows a generic state diagram that is used to detect and clear the dUNL, dMMG, dUNM, dUNP, dUNPr, dAIS, dLCK and dCSF defects. In this diagram <Defect> needs to be replaced with the specific defect and <Event> with the specific event related to this defect. Furthermore, in Figure 6-2, 3.25≤K≤3.5.
Figure 6-2 shows that the timer is set based on the last received period value, unless an earlier OAM frame triggering <Event> (and therefore the detection of <Defect>) carried a longer period. As a consequence clearing certain defects may take more time than necessary.
[bookmark: _Toc319901655]6.1.3.1	Unexpected MEL defect (dUNL)
The unexpected MEL defect is calculated at the ETH layer. It monitors the connectivity in a maintenance entity group.
Its detection and clearance are defined in Figure 6-2. The <Defect> in Figure 6-2 is dUNL. The <Event> in Figure 6-2 is the unexpMEL event (generated by the CCM reception process in clause 8.1.7.3) and the period is the period carried in the CCM frame that triggered this event, unless an earlier CCM frame triggering an unexpMEL event carried a greater period.
[bookmark: _Toc319901656]6.1.3.2	Mismerge defect (dMMG)
The mismerge defect is calculated at the ETH layer. It monitors the connectivity in a maintenance entity group.
Its detection and clearance are defined in Figure 6-2. The <Defect> in Figure 6-2 is dMMG. The <Event> in Figure 6-2 is the unexpMEG event (as generated by the CCM reception process in clause 8.1.7.3) and the period is the period carried in the CCM frame that triggered the event, unless an earlier CCM frame triggering an unexpMEG event carried a greater period.
[bookmark: _Toc319901657]6.1.3.3	Unexpected MEP defect (dUNM)
The unexpected MEP defect is calculated at the ETH layer. It monitors the connectivity in a maintenance entity group.
Its detection and clearance are defined in Figure 6-2. The <Defect> in Figure 6-2 is dUNM. The <Event> in Figure 6-2 is the unexpMEP event (as generated by the CCM reception process in clause 8.1.7.3) and the period is the period carried in the CCM frame that triggered the event, unless an earlier CCM frame triggering an unexpMEP event carried a greater period.
[bookmark: _Toc319901658]6.1.3.4	Degraded signal defect (dDEG)
This defect is only defined for point-to-point ETH connections.
[image:]
Figure 6-3 – dDEG detection and clearance process
The degraded signal defect is calculated at the ETH layer. It monitors the connectivity of an ETH trail.
Its detection and clearance are defined in Figure 6-3.
Every second the state machine receives the one-second counters for near end received and transmitted frames and determines whether the second was a bad second. The defect is detected if there are MI_LM_DEGM consecutive bad seconds and cleared if there are MI_LM_M consecutive good seconds.
In order to declare a bad second the number of transmitted frames must exceed a threshold (MI_LM_TFMIN). Furthermore, if the frame loss ratio (lost frames/transmitted frames) is greater than MI_LM_DEGTHR, a bad second is declared.
[bookmark: _Toc319901659]6.1.4	Protocol supervision
[bookmark: _Toc319901660]6.1.4.1	Unexpected periodicity defect (dUNP)
The unexpected periodicity defect is calculated at the ETH layer. It detects the configuration of different periodicities at different MEPs belonging to the same MEG.
Its detection and clearance are defined in Figure 6-2. The <Defect> in Figure 6-2 is dUNP. The <Event> in Figure 6-2 is the unexpPeriod event (as generated by the CCM reception process in clause 8.1.7.3) and the period is the period carried in the CCM frame that triggered the event, unless an earlier CCM frame triggering an unexpPeriod event carried a greater period.
[bookmark: _Toc319901661]6.1.4.2	Unexpected priority defect (dUNPr)
The unexpected priority defect is calculated at the ETH layer. It detects the configuration of different priorities for CCM at different MEPs belonging to the same MEG.
Its detection and clearance are defined in Figure 6-2. The <Defect> in Figure 6-2 is dUNPr. The <Event> in Figure 6-2 is the unexpPriority event (as generated by the CCM reception process in clause 8.1.7.3) and the period is the period carried in the CCM frame that triggered the event, unless an earlier CCM frame triggering an unexpPriority event carried a greater period.
[bookmark: _Toc319901662]6.1.4.3	Protection protocol supervision
6.1.4.3.1	Linear or ring protection failure of protocol provisioning mismatch (dFOP-PM)
The failure of protocol provisioning mismatch defect is calculated at the ETH layer. It monitors the provisioning mismatch of:
•	linear protection by comparing B bits of the transmitted and the received APS protocol, or
•	ring protection by comparing the node ID of the RPL owner and the node ID in a received R-APS(NR, RB) frame.
Its detection and clearance are defined in Table 6-2. dFOP-PM is detected:
•	in the case of linear protection, on receipt of an APSb event and cleared on receipt of an expAPS event. These events are generated by the subnetwork connection protection process (clause 9.1.2), or
•	in the case of ring protection, on receipt of an RAPSpm event and cleared on receipt of no RAPSpm event during K times the long R-APS frame intervals defined in [ITU-T G.8032], where 3.25≤K≤3.5. These events are generated by the ring protection control process (clause 9.1.3).
6.1.4.3.2	Linear protection failure of protocol no response (dFOP-NR)
The failure of protocol no response defect is calculated at the ETH layer. It monitors incompletion of protection switching by comparing the transmitted "Requested Signal" values and the received "Requested Signal" in the APS protocol.
Its detection and clearance are defined in Table 6-2. dFOP-NR is detected when an APSr event continues for more than 50ms and it is cleared on receipt of the expAPS event. These events are generated by the subnetwork connection protection process (clause 9.1.2). This defect is not applied in the case of a unidirectional protection switching operation.
6.1.4.3.3	Linear protection failure of protocol configuration mismatch (dFOP-CM)
The failure of protocol configuration mismatch defect is calculated at the ETH layer. It monitors working and protection configuration mismatch by detecting the receipt of the APS protocol from the working transport entity.
Its detection and clearance are defined in Table 6-2. dFOP-CM is detected on receipt of an APSw event and cleared on receipt of no APSw event during K times the normal APS transmission period defined in [ITU-T G.8031], where 3.25≤K≤3.5. These events are generated by the subnetwork connection protection process (clause 9.1.2).
6.1.4.3.4	Linear or ring protection failure of protocol time out (dFOP-TO)
The failure of protocol time out defect is calculated at the ETH layer. It monitors the time out defect of:
•	linear protection by detecting the prolonged absence of expected APS frames, or
•	ring protection by detecting the prolonged absence of expected R-APS frames.
Its detection and clearance are defined in Table 6-2.
In the case of linear protection, dFOP-TO is detected on receipt of no expAPS event during K times the long APS interval defined in [ITU-T G.8031] (where K >= 3.5). dFOP-TO is cleared on receipt of an expAPS event. These events are generated by the subnetwork connection protection process (clause 9.1.2).
In the case of ring protection, dFOP-TO is detected on receipt of no expRAPS event during K times the long R-APS frame intervals defined in [ITU-T G.8032] (where K>=3.5). dFOP-TO is cleared on receipt of an expRAPS event. These events are generated by the ring protection control process (clause 9.1.3).
[bookmark: _Toc319901663]6.1.5	Maintenance signal supervision
[bookmark: _Toc319901664]6.1.5.1	Remote defect indicator defect (dRDI[])
The remote defect indicator defect is calculated at the ETH layer. It monitors the presence of an RDI maintenance signal.
dRDI is detected on receipt of the RDI[]=1 event and cleared on receipt of the RDI[]=0 event. These events are generated by the CCM reception process.
[bookmark: _Toc319901665]6.1.5.2	Alarm indication signal defect (dAIS)
The alarm indication signal defect is calculated at the ETH layer. It monitors the presence of an AIS maintenance signal.
[bookmark: OLE_LINK1]Its detection and clearance conditions are defined in Figure 6-2. The <Defect> in Figure 6-2 is dAIS. The <Event> in Figure 6-2 is the AIS event (as generated by the AIS reception process in clause 9.2.1.2) and the period is the period carried in the AIS frame that triggered the event, unless an earlier AIS frame carried a greater period.
[bookmark: _Toc319901666]6.1.5.3	Locked defect (dLCK)
The locked defect is calculated at the ETH layer. It monitors the presence of a locked maintenance signal.
Its detection and clearance conditions are defined in Figure 6-2. The <Defect> in Figure 6-2 is dLCK. The <Event> in Figure 6-2 is the LCK event (as generated by the LCK reception process in clause 9.2.1.2) and the period is the period carried in the LCK frame that triggered the event, unless an earlier LCK frame carried a greater period.
[bookmark: _Toc319901667]6.1.5.4	Client signal fail defect (dCSF)
The CSF (CSF-LOS, CSF-FDI, and CSF-RDI) defect is calculated at the ETH layer. It monitors the presence of a CSF maintenance signal.
Its detection and clearance conditions are defined in Figure 6-2. The <Defect> in Figure 6-2 is dCSF-LOS, dCSF-FDI, or dCSF-RDI. The <Event> in Figure 6-2 is the CSF event (as generated by the CSF extract process in clause 8.1.17) and the period is the period carried in the CSF frame that triggered the event, unless an earlier CSF frame carried a greater period.
The <Clear_event> in Figure 6-2 is the CSF event which indicates defect clear indication (DCI).
[bookmark: _Toc147308722][bookmark: _Toc319901668][bookmark: _Toc328035798][bookmark: _Toc339540505][bookmark: _Toc341956982]6.2	Consequent actions
For consequent actions see [ITU-T G.806] and the specific atomic functions.
[bookmark: _Toc147308723][bookmark: _Toc319901669][bookmark: _Toc328035799][bookmark: _Toc339540506][bookmark: _Toc341956983]6.3	Defect correlations
For defect correlations see the specific atomic functions.
[bookmark: _Toc147308724][bookmark: _Toc319901670][bookmark: _Toc328035800][bookmark: _Toc339540507][bookmark: _Toc341956984]6.4	Performance filters
[bookmark: _Toc147308725][bookmark: _Toc319901671]6.4.1	One-second performance monitoring filters associated with counts
For further study.
[bookmark: _Toc147308726][bookmark: _Toc319901672]6.4.2	Performance monitoring filters associated with gauges
For further study.
[bookmark: _Toc497287020][bookmark: _Toc530884823][bookmark: _Toc15457802][bookmark: _Toc15458574][bookmark: _Toc15459346][bookmark: _Toc15460524][bookmark: _Toc22628686][bookmark: _Toc23042782][bookmark: _Toc24783260][bookmark: _Toc27284257][bookmark: _Toc27887159][bookmark: _Toc27887903][bookmark: _Toc81793506][bookmark: _Toc84844975][bookmark: _Toc96922597][bookmark: _Toc98151643][bookmark: _Toc319901673][bookmark: _Toc328035801][bookmark: _Toc339540508][bookmark: _Toc341956985]7	Information flow across reference points
See clause 7 of [ITU-T G.806] for the generic description of information flow. For Ethernet-specific information flow, see the description of the functions in clause 9.
[bookmark: _Toc530884824][bookmark: _Toc15457803][bookmark: _Toc15458575][bookmark: _Toc15459347][bookmark: _Toc15460525][bookmark: _Toc22628687][bookmark: _Toc23042783][bookmark: _Toc24783261][bookmark: _Toc27284258][bookmark: _Toc27887160][bookmark: _Toc27887904][bookmark: _Toc81793507][bookmark: _Toc84844976][bookmark: _Toc96922598][bookmark: _Toc98151644][bookmark: _Toc319901674][bookmark: _Toc328035802][bookmark: _Toc339540509][bookmark: _Toc341956986]8	Generic processes for Ethernet equipment
This clause defines processes specific to equipment supporting the Ethernet transport network.
[bookmark: _Toc76268472][bookmark: _Toc81793508][bookmark: _Toc84844977][bookmark: _Toc96922599][bookmark: _Toc98151645][bookmark: _Toc319901675][bookmark: _Toc328035803][bookmark: _Toc339540510][bookmark: _Toc341956987][bookmark: _Toc530884826][bookmark: _Toc15457805][bookmark: _Toc15458577][bookmark: _Toc15459349][bookmark: _Toc15460527][bookmark: _Toc22628689][bookmark: _Toc23042785][bookmark: _Toc24783263][bookmark: _Toc27284260][bookmark: _Toc27887162][bookmark: _Toc27887906]8.1	OAM related processes
[bookmark: _Toc319901676]8.1.1	OAM MEL filter

Figure 8-1 – OAM MEL filter process
The OAM MEL filter process filters incoming ETH OAM traffic units based on the MEL they carry. All traffic units with an MEL equal to or lower than the MEL provided by the MI_MEL signal are discarded.
The criteria for filtering depends on the values of the fields in the M_SDU field of the ETH_CI_D signal.
The ETH OAM traffic unit and complementing P and DE signals will be filtered, if
•	length/type field = OAM Ethertype (89-02 as defined in clause 10 of [ITU-T G.8013]), and
•	MEL field <= MI_MEL
Figure 8-1 shows the OAM MEL filter process for multiple ports. Figure 8-2 shows the filtering process that is running per port.

Figure 8-2 – OAM MEL filter behaviour
[bookmark: _Toc319901677]8.1.2	LCK generation process

[bookmark: _Toc172093977]Figure 8-3 – LCK generation process
The LCK generation process generates ETH_CI traffic units where the ETH_CI_D signal contains the LCK signal. Figure 8-4 defines the behaviour of the LCK generation process.
[image:]
Figure 8-4 – LCK generation behaviour
The LCK generation process continuously generates LCK traffic units; every time the timer expires an LCK traffic unit will be generated. The period between two consecutive traffic units is determined by the MI_LCK_Period input signal. Allowed values are defined in Table 8-1.
Table 8-1 – LCK period values
	3-bits
	Period value
	Comments

	000-011
	Invalid value
	Invalid value for LCK PDUs

	100
	1s
	1 frame per second

	101
	Invalid value
	Invalid value for LCK PDUs

	110
	1 min
	1 frame per minute

	111
	Invalid value
	Invalid value for LCK PDUs

The ETH_CI_D signal contains a source and destination address field and an M_SDU field. The format of the M_SDU field for LCK traffic units is defined in clauses 9.1 and 9.8 of [ITUT G.8013]. The MEL in the M_SDU field is determined by the MI_Client_MEL input parameter.
The values of the source and destination address fields in the ETH_CI_D signal are determined by the local MAC address (SA) and the multicast class 1 DA as described in [ITU-T G.8013] (DA). The value of the multicast class 1 DA is 01-80-C2-00-00-3x, where x is equal to MI_Client_MEL as defined in clause 10.1 of [ITU-T G.8013]. The value of MI_MEP_MAC should be a valid unicast MAC address.
The periodicity (as defined by MI_LCK_Period) is encoded in the three least significant bits of the flags field in the LCK PDU using the values from Table 8-1.
The LCK (SA, Client_MEL, Period) function generates an LCK traffic unit with the SA, MEL and period fields defined by the values of the parameters. Figure 8-5 below shows the ETH_CI_D signal format resulting from the function call from Figure 8-4:
OAM=LCK(
MI_MEP_MAC,
MI_Client_MEL,
MI_LCK_Period
)

Figure 8-5 – LCK traffic unit
The value of the ETH_CI_P signal associated with the generated LCK traffic units is defined by the MI_LCK_Pri input parameter; valid values are in the range 0-7.
The value of the ETH_CI_DE signal associated with the generated LCK traffic units is always set to drop ineligible.
[bookmark: _Toc319901678]8.1.3	Selector process

[bookmark: _Toc172093979]Figure 8-6 – Selector process
The selector process selects the valid signal from the input of the normal ETH_CI signal or the ETH_CI LCK signal (as generated by the LCK generation process). The normal signal is blocked if MI_Admin_State is LOCKED. The behaviour is defined in Figure 8-7.
[image:]
Figure 8-7 – Selector behaviour
[bookmark: _Toc319901679]8.1.4	AIS insert process

[bookmark: _Toc172093980]Figure 8-8 – AIS insert process
Figure 8-8 shows the AIS insert process symbol and Figure 8-9 defines the behaviour. If the aAIS signal is true, the AIS insert process continuously generates ETH_CI traffic units where the ETH_CI_D signal contains the AIS signal until the aAIS signal is false. The generated AIS traffic units are inserted in the incoming stream, i.e., the output stream contains the incoming traffic units and the generated AIS traffic units.
 [image:]
Figure 8-9 – AIS insert behaviour
The period between consecutive AIS traffic units is determined by the MI_AIS_Period parameter. Allowed values are once per second and once per minute; the encoding of these values is defined in Table 8-2. Note that this encoding is the same as for the LCK generation process.
Table 8-2 – AIS period values
	3-bits
	Period Value
	Comments

	000-011
	Invalid Value
	Invalid value for AIS PDUs

	100
	1s
	1 frame per second

	101
	Invalid Value
	Invalid value for AIS PDUs

	110
	1 min
	1 frame per minute

	111
	Invalid Value
	Invalid value for AIS PDUs

The ETH_CI_D signal contains a source and destination address field and an M_SDU field. The format of the M_SDU field for AIS traffic units is defined in clauses 9.1 and 9.7 of [ITUT G.8013]. The MEL in the M_SDU field is determined by the MI_Client_MEL input parameter.
The values of the source and destination address fields in the ETH_CI_D signal are determined by the local MAC address (SA) and the multicast class 1 DA as described in [ITU-T G.8013] (DA). The value of the multicast class 1 DA is 01-80-C2-00-00-3x, where x is equal to MI_Client_MEL as defined in clause 10.1 of [ITU-T G.8013]. The value of MI_MEP_MAC should be a valid unicast MAC address.
The periodicity (as defined by MI_AIS_Period) is encoded in the three least significant bits of the flags field in the AIS PDU using the values from Table 8-2.
The AIS (SA, Client_MEL, Period) function generates an AIS traffic unit with the SA, MEL and period fields defined by the values of the parameters. Figure 8-10 below shows the ETH_CI_D signal format resulting from the function call from Figure 8-9:
OAM=AIS(
MI_MEP_MAC,
MI_Client_MEL,
MI_AIS_Period
)

Figure 8-10 – AIS traffic unit
The value of the ETH_CI_P signal associated with the generated AIS traffic units is defined by the MI_AIS_Pri input parameter; valid values are in the range 0-7.
The value of the ETH_CI_DE signal associated with the generated AIS traffic units is always set to drop ineligible.
[bookmark: _Toc319901680]8.1.5	APS insert process

[bookmark: _Toc172093982]Figure 8-11 – APS insert process
The APS insert process encodes the ETH_CI_APS (APS input signal in Figure 8-11) signal into the ETH_CI_D signal of an ETH_CI traffic unit; the resulting APS traffic unit is inserted into the stream of incoming traffic units, i.e., the outgoing stream consists of the incoming traffic units and the inserted APS traffic units. The ETH_CI_APS signal contains the APS specific information as defined in clause 11.1 of [ITU-T G.8031] (APS format). The behaviour is defined in Figure 8-12.
[image:]
Figure 8-12 – APS insert behaviour
The ETH_CI_D signal contains a source and destination address field and an M_SDU field. The format of the M_SDU field for APS traffic units is defined in clauses 9.1 and 9.10 of [ITUT G.8013]. The MEL in the M_SDU field is determined by the MI_MEL input parameter.
The values of the source and destination address fields in the ETH_CI_D signal are determined by the local MAC address (SA) and the multicast class 1 DA as described in [ITU-T G.8013] (DA). The value of the multicast class 1 DA is 01-80-C2-00-00-3x, where x is equal to MI_MEL as defined in clause 10.1 of [ITU-T G.8013]. The value of MI_MEP_MAC should be a valid unicast MAC address.
The APS(SA, MEL, APS) function generates an APS traffic unit with the SA, MEL and APS fields defined by the values of the parameters. Figure 8-13 below shows the ETH_CI_D signal format resulting from the function call from Figure 8-12:
OAM=APS(
MI_MEP_MAC,
MI_MEL,
APS
)

Figure 8-13 – APS traffic unit
The value of the ETH_CI_P signal associated with the generated APS traffic units is determined by the MI_APS_Pri input parameter; valid values are in the range 0-7.
The value of the ETH_CI_DE signal associated with the generated APS traffic units is always set to drop ineligible.
[bookmark: _Toc319901681]8.1.6	APS extract process

[bookmark: _Toc172093983]Figure 8-14 – APS extract process
The APS extract process extracts ETH_CI_APS signals from the incoming stream of ETH_CI traffic units. ETH_CI_APS signals are only extracted if they belong to the MEL as defined by the MI_MEL input parameter.
If an incoming traffic unit is an APS traffic unit belonging to the MEL defined by MI_MEL, the ETH_CI_APS signal will be extracted from this traffic unit and the traffic unit will be filtered. The ETH_CI_APS is the APS specific information contained in the received traffic unit. All other traffic units will be transparently forwarded. The encoding of the ETH_CI_D signal for APS frames is defined in clause 9.10 of [ITU-T G.8013].
The criteria for filtering are based on the values of the fields within the M_SDU field of the ETH_CI_D signal:
•	length/type field equals the OAM Ethertype (89-02)
•	MEL field equals MI_MEL
•	OAM type equals APS (39), as defined in clause 9.1 of [ITU-T G.8013].
This is defined in Figure 8-15. The function APS(D) extracts the APS specific information from the received traffic unit.

[bookmark: OLE_LINK29][bookmark: OLE_LINK30]Figure 8-15 – APS extract behaviour
[bookmark: _Toc319901682]8.1.7	Continuity check (CC) processes
[bookmark: _Toc319901683]8.1.7.1	Overview

Figure 8-16 – Overview of processes involved with continuity check
Figure 8-16 gives an overview of the processes involved in the CC. The CCM generation process generates the CCM frames if MI_CC_Enable is true. The MI_MEG_ID and MI_MEP_ID are the MEG and MEP IDs of the MEP itself and these IDs are carried in the CCM frame. The CCM frames are generated with a periodicity determined by MI_CC_Period and with a priority determined by MI_CC_Pri. If MI_LMC_Enable is set the CCM frames will also carry loss measurement information. The generated CCM traffic units are inserted in the flow of ETH_CI by the OAM MEP source insertion process.
The CCM frames pass transparently through MIPs.
The OAM MEP sink extraction process extracts the CCM unit from the flow of ETH_CI and the CCM reception process processes the received CCM traffic unit. It compares the received MEG ID with the provisioned MI_MEG_ID, and the received MEP_ID with the provisioned MI_PeerMEP_ID[], that contains the list of all expected peer MEPs in the MEG. Based on the processing of this frame one or more events may be generated that serve as input for the defect detection process (not shown in Figure 8-16).
RDI information is carried in the CCM frame based upon the RI_CC_RDI input. It is extracted in the CCM reception process.
[bookmark: _Toc319901684][bookmark: OLE_LINK31][bookmark: OLE_LINK32]8.1.7.2	CCM generation process
 [image:]
[bookmark: _Toc172093984]Figure 8-17 – CCM generation behaviour
Figure 8-17 shows the state diagram for the CCM generation process. The CCM generation process can be enabled and disabled using the MI_CC_Enable signal, where the default value is FALSE.
The CCM generation process generates and transmits an OAM frame every MI_CC_Period. The allowed values for MI_CC_Period are defined in Table 8-3.
Table 8-3 – CCM period values
	3-bits
	Period value
	Comments

	000
	Invalid value
	Invalid value for CCM PDUs

	001
	3.33ms
	300 frames per second

	010
	10ms
	100 frames per second

	011
	100ms
	10 frames per second

	100
	1s
	1 frame per second

	101
	10s
	6 frames per minute

	110
	1 min
	1 frame per minute

	111
	10 min
	6 frame per hour

The ETH_CI_D signal contains a source and destination address field and an M_SDU field. The format of the M_SDU field is defined in clauses 9.1 and 9.2 of [ITU-T G.8013].
The value of the destination address field (DA) is the multicast class 1 DA as described in [ITUT G.8013]. The value of the multicast class 1 DA is 01-80-C2-00-00-3x, where x is equal to MI_MEL as defined in clause 10.1 of [ITU-T G.8013]. This x will be filled in later by the OAM MEP insertion process and will be undefined in this process. The value of the source address will be filled in later by the OAM MEP insertion process and will be undefined in this process.
The M_SDU field contains a CCM PDU. Figure 8-18 below shows the M_SDU field where the CCM specific values are shown. It shows the traffic unit resulting from the function call in Figure 8-17:
OAM=CCM(
 MI_CC_MEG,
 MI_CC_MEP,
 MI_CC_Period,
 RI_CC_RDI,
 TxFCl,
 RI_CC_RxFCl,
 RI_CC_TxFCf
)
, or if !MI_LMC_Enable:
OAM=CCM(
 MI_CC_MEG,
 MI_CC_MEP,
 MI_CC_Period,
 RI_CC_RDI,
 0,
 0,
 0
)
The value of the ETH_CI_P signal associated with the generated CCM traffic unit is defined by the MI_CC_Pri input parameter; valid values are in the range 0-7.
The value of the ETH_CI_DE signal associated with the generated CCM traffic units is always set to drop ineligible (0).

Figure 8-18 – CCM traffic unit
[bookmark: _Toc319901685]8.1.7.3	CCM reception process
 [image:]
Figure 8-19 – CCM reception behaviour
The CCM reception process processes CCM OAM frames. It checks the various fields of the frames and generates the corresponding events (as defined in clause 6). If the version, MEL, MEG, MEP and period are valid, the values of the frame counters are sent to the performance counter process.
Note that unexpPriority event does not prevent the CCM from being processed, since the MEL, MEG, MEP and period are as expected.
[bookmark: _Toc319901686]8.1.7.4	Counter process
This process counts the number of transmitted and received frames.
The counter process for CCM generation forwards data frames and counts all transmitted ETH_AI frames with priority (P) (i.e., ETH_AI_P) equal to MI_CC_Pri and Drop Eligibility (DE) (i.e., ETH_AI_DE) equal to <false (0)>. The D, P and DE signals are forwarded unchanged as indicated by the dotted lines in Figure 8-16.
[image:]
Figure 8-20 – Counter behaviour for CCM generation
The counter process for CCM reception receives ETH_CI and forwards them as ETH_AI traffic units. It counts this number of received ETH_AI traffic units that have priority (P) (i.e., ETH_AI_P) equal to MI_CC_Pri and drop eligibility (DE) (i.e., ETH_AI_DE) equal to <false (0)>.
[image:]
Figure 8-21 – Counter behaviour for CCM reception
[bookmark: _Toc319901687]8.1.7.5	Proactive loss measurement (LMp) process
This process calculates the number of transmitted and lost frames per second.
[image:]
[bookmark: _Toc172093986]Figure 8-22 – LM process behaviour
It processes the TxFCf, RxFCb, TxFCb, RxFCl values and determines the number of transmitted frames and the number of lost frames. Every second, the number of transmitted and lost frames in that second are sent to the performance monitoring and defect generation processes.
[bookmark: _Toc319901688]8.1.8	Loopback (LB) processes
[bookmark: _Toc319901689]8.1.8.1	Overview
Figure 8-23 shows the different processes inside MEPs and MIPs that are involved in the loopback protocol.
The MEP on-demand OAM source insertion process is defined in clause 9.4.1.1, the MEP on-demand OAM sink extraction process in clause 9.4.1.2, the MIP on-demand OAM sink extraction process in clause 9.4.2.2, and the MIP on-demand OAM source insertion process in clause 9.4.2.1. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D traffic units and the complementing P and D signals going through an MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values in the OAM traffic units. The other processes are defined in this clause.

[bookmark: _Toc172093987]Figure 8-23 – Overview of processes involved with loopback
The LBM protocol is controlled by the LB control process. There are three possible MI signals that can trigger the LB protocol:
•	MI_LB_Discover(P): To discover the MAC addresses of the other MEPs in the same MEG.
•	MI_LB_Series(DA,DE,P,N,Length,Period): to send a series of N LB messages to a particular MEP/MIP; these LB messages are generated every "Period".
•	MI_LB_Test(DA,DE,P,Pattern,Length,Period): to send a series of LB messages carrying a test pattern to a particular MEP; these LB messages are generated every "Period" until the MI_LB_Test_Terminate signal is received.
The details are described later in this clause.
The LBM control protocol triggers the LBM generation process to generate an LBM traffic unit that is received and forwarded by MIPs and received by MEPs in the same MEG. The LBM control process controls the number of LBM generated and the period between consecutive LBM traffic units.
The LBM MIP/MEP reception processes process the received LBM traffic units and as a result the LBR generation process may generate an LBR traffic unit in response. The LBR reception process receives and processes the LBR traffic units. The source address (SA), transaction ID (TID) and TLV values are given to the LBM control process.
The LBM control process processes these received values to determine the result of the requested LB operation. The result is communicated back using the following MI signals:
•	MI_LB_Discover_Result(MACs): reports back the MACs that have responded with a valid LBR.
•	MI_LB_Series_Result(REC,OO): reports back the total number of received LBR frames (REC), as well as counts of specific errors:
–	OO: number of LBR traffic units that were received out of order (OO).
•	MI_LB_Test_Result(Sent, REC, CRC, BER, OO): reports back the total number of LBM frames sent (Sent) as well as the total number of LBR frames received (REC); for the latter counts of specific errors are reported:
–	CRC: number of LBR frames where the CRC in the pattern failed.
–	BER: number of LBR frames where there was a bit error in the pattern.
–	OO: number of LBR frames that were received out of order.
The detailed functionality of the various processes is defined below.
[bookmark: _Toc319901690]8.1.8.2	LB control process
The LB control process can receive several MI signals to trigger the LB protocol; this is shown in Figure 8-24.
 [image:]
Figure 8-24 –LB control behaviour
Figure 8-25 shows the behaviour if the MI_LB_Discover signal is received.
Figure 8-26 shows the behaviour if the MI_LB_Series signal is received.
Figure 8-27 shows the behaviour if the MI_LB_Test signal is received.
NOTE – The state machine (Figure 8-24 combined with Figures 8-25, 8-26 and 8-27) shows that the LB_Discover, LB_Series and LB_Test actions are mutually exclusive. Furthermore, a new instantiation of any of these actions cannot be initiated until the current action is finished.
MI_LB_Discover behaviour
 [image:]
[bookmark: _Toc172093988]Figure 8-25 – LB control discover behaviour
Figure 8-25 shows the behaviour when an MI_LB_Discover(DE,P) signal is received.
First the LBM generation process is requested to generate an LBM frame by sending the LBM(0180-c2-00-00-3x, P, 0, Null, TID) signal to the LBM generation process. The DA is set to the class 1 multicast address as defined in [ITU-T G.8013], where the last part (x) will be overwritten with MEL by the OAM MEP insertion process. There are no TLVs included, hence the TLV parameter is set to Null.
After triggering the transmission of the LBM frame, received RI_LBR is processed for 5 seconds (as governed by the timer). Every time the RI_LBR(SA,rTLV,TID) is received the SA is stored in the set of received MACs.
After 5 seconds all the received SAs are reported back using the MI_LB_Discover_Result(MACs) signal and the LBM control process returns to the Init state.
MI_LB_Series behaviour
[image:]
Figure 8-26 – LB control series behaviour
Figure 8-26 defines the behaviour of the LB control process after the reception of the MI_LB_Series(DA,DE,P,N,Length,Period) signal.
The TLV field of the LBM frames is determined by the Generate(Length) function. Generate(Length) generates a Data TLV with length "Length" of an arbitrary bit pattern to be included in the LBM frame.
After the receipt of the MI_LB_Series signal, the LBM generation process is requested N times to generate an LBM frame (where "Period" determines the interval between two LBM frames); this is done by issuing the LBM(DA,P,DE,TLV,TID) signal.
Whenever an RI_LBR(SA, rTLV, TID) signal is received, the number of received LBR frames is increased (REC++). If the TID value from the RI_LBR signal does not consecutively follow the last received TID value, the counter for out of order frames is incremented by one (OO++).
Five seconds after sending the last LBM frame (i.e., after sending the Nth LBM frame) the REC and OO counters are reported back in the MI_LB_Series_Result signal.
MI_LB_Test Behaviour

Figure 8-27 – LB control test behaviour
Figure 8-27 defines the behaviour of the LB control process after the reception of the MI_LB_Test(DA,DE,P,Pattern,Length,Period) signal.
Every period an LBM frame is generated until the MI_LB_Test_Terminate signal is received. Five seconds after receiving this MI_LB_Test_Terminate signal the "Sent", REC, CRC, BER and OO counters are reported back using the MI_LB_Test_Result signal.
The TLV field of the LBM frames is determined by the Generate(Pattern, Length) function. For pattern the following types are defined:
0: "Null signal without CRC-32"
1: "Null signal with CRC-32"
2: "PRBS 2^31-1 without CRC-32"
3: "PRBS 2^31-1 with CRC-32"
The length parameter determines the length of the generated TLV.
Generate(Pattern, Length) generates a test TLV with length "Length" to be included in the LBM frame. Therefore, this TLV is passed using the LBM(DA,P,DE,TLV,TID) signal to the LBM generation process.
Upon receipt of the RI_LBR(SA,rTLV,TID) remote information, the received LBR counter is incremented by one (REC++). If the TLV contains a CRC (Pattern 1 or 3) the CRC counter is incremented by one if the CRC check fails. The function Check(Pattern, TLV) compares the received test pattern with the expected test pattern. If there is a mismatch, the BER counter is increased. If the TID value from the RI_LBR signal does not follow the last received TID value, the counter for out of order frames is incremented by one (OO++).
[bookmark: _Toc319901691][bookmark: OLE_LINK18][bookmark: OLE_LINK19]8.1.8.3	LBM generation process
[image:]
Figure 8-28 – LBM generation behaviour
The LBM generation process generates a single LBM OAM traffic unit (ETH_CI_D) complemented with ETH_CI_P and ETH_CI_DE signals on receipt of the LBM(DA,P,DE,TLV,TID) signal. The process is defined in Figure 8-28.
From the LBM(DA,P,DE,TLV,TID) signal the P field determines the value of the ETH_CI_P signal, the DE field determines the value of the ETH_CI_DE signal. The DA, TLV and TID fields are used in the construction of the ETH_CI_D signal that carries the LBM traffic unit.
The format of the LBM traffic unit and the values are shown in Figure 8-29.
The values of the SA and MEL fields will be determined by the OAM MEP insertion process, as well as the last part (x) of the DA if the DA is set to 01-80-c2-00-00-3x.

Figure 8-29 – LBM traffic unit
[bookmark: _Toc319901692]8.1.8.4	MIP LBM reception process
[image:]
Figure 8-30 – MIP LBM reception behaviour
The MIP LBM reception process receives ETH_CI traffic units containing LBM PDUs complemented by the P and D signals.
[bookmark: OLE_LINK22][bookmark: OLE_LINK23]The behaviour is defined in Figure 8-30. If the DA field in the traffic unit (D signal) equals the local MAC address (MI_MIP_MAC), the loopback is intended for this MIP and the information is forwarded to the loopback reply generation process using the RI_LBM(D,P,DE) signal; otherwise the information is ignored and no action is taken.
Note that an MIP therefore does not reply to LBM traffic units that have a class 1 multicast address.
[bookmark: _Toc319901693]8.1.8.5	MEP LBM reception process
[image:]
Figure 8-31 – MEP LBM reception behaviour
The MEP LBM reception process receives ETH_CI traffic units containing LBM PDUs complemented by the P and D signals.
The behaviour is defined in Figure 8-31.
If the DA field in the LBM traffic unit (D signal) equals the local MAC address (MI_MEP_MAC), the loopback is intended for this MEP, and the information is forwarded to the loopback reply generation process (RI_LBM(D,P,DE)).
If the DA field in the LBM traffic unit (D signal) is a multicast address, an LBR traffic unit must be generated after a random delay between 0 and 1 second. This is specified by instantiating a separate process, the Send_MC_LBR process. This process chooses a random waiting time between 0 and 1 second and, after waiting for the chosen period of time, the D, P and DE information is forwarded to the loopback reply generation process (RI_LBM(D,P,DE)). Finally, this process instance is terminated.
Since the 0 to 1 second waiting time is performed in a separate process, it does not block the reception and processing of other LBM frames within that waiting period.
[bookmark: _Toc319901694]8.1.8.6	LBR generation process
[image:]
Figure 8-32 – LBR generation behaviour
Note that the LBR generation process is the same for MEPs and MIPs.
Upon receipt of the LBM traffic unit and accompanying signals (RI_LBM(D,P,DE)) from the LBM reception process the LBR generation process generates an LBR traffic unit together with the complementing P and DE signals.
The behaviour is specified in Figure 8-32. The generated traffic unit is the same as the received RI_LBM(D) traffic unit except:
•	the DA of the generated LBR traffic unit is the SA of the received LBM traffic unit, and
•	the Opcode is set to LBR opcode.
NOTE – In the generated LBR, in the OAM (MEP) insertion process, the SA will be overwritten with the local MAC address, and the MEL will be overwritten with MI_MEL.
The resulting LBR traffic unit format is shown in Figure 8-33.

Figure 8-33 – LBR traffic unit
[bookmark: _Toc319901695]8.1.8.7	LBR reception process
[image:]
Figure 8-34 – LBR reception behaviour
The LBR reception process receives LBR traffic units (D signal) together with the complementing P and DE signals. The LBR reception process will inspect the DA field in the received traffic unit; if the DA equals the local MAC address (MI_MEP_MAC) the SA, TID and TLV values will be extracted from the LBR PDU and signalled to the LB control process using the RI_LBR(SA,TID,TLV) signal. The behaviour is defined in Figure 8-34.
[bookmark: _Toc319901696]8.1.9	Loss measurement (LM) processes
[bookmark: _Toc319901697]8.1.9.1	Overview
Figure 8-35 shows the different processes inside MEPs and MIPs that are involved in the on-demand loss measurement protocol.
The MEP on-demand OAM source insertion process is defined in clause 9.4.1.1, the MEP on-demand OAM sink extraction process in clause 9.4.1.2, the MIP on-demand OAM sink extraction process in clause 9.4.2.2, and the MIP on-demand OAM source insertion process in clause 9.4.2.1. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D traffic units together with the complementing P and D signals going through an MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM traffic units.
[image:]
Figure 8-35 – Overview of processes involved with on-demand loss measurement
The on-demand LM control process controls the on-demand LM protocol. The protocol is activated upon receipt of the MI_LM_Start(DA,P,Period) signal and remains activated until the MI_LM_Terminate signal is received.
The result is communicated via the MI_LM_Result(N_TF, N_LF, F_TF, F_LF) signal when the process is terminated by the MI_LM_Terminate signal or when an intermediate result is requested via the MI_LM_Intermediate_Request signal. If the on-demand LM control process activates the multiple monitoring on different CoS levels simultaneously, each result is independently managed per CoS level.
The LMM generation process generates an LMM traffic unit that passes transparently through MIPs, but that will be processed by the LMM reception process in MEPs. The LMR generation process generates an LMR traffic unit in response to the receipt of an LMM traffic unit. The LMR reception process receives and processes the LMR traffic units.
Figure 8-36 shows the different processes inside MEPs and MIPs that are involved in the proactive loss measurement protocol.
The MEP proactive OAM insertion process is defined in clause 9.2.1.1, the MEP OAM proactive extraction process in clause 9.2.1.2, the MIP OAM extraction process in clause 9.4.2.1, and the MIP OAM insertion process in clause 9.4.2.2. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D traffic units and the complementing P and D signals going through an MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM traffic units.

Figure 8-36 – Overview of processes involved with proactive loss measurement
The proactive LM control process controls the proactive LM protocol. If MI_LML_Enable is set the LMM frames are sent periodically. The LMM frames are generated with a periodicity determined by MI_LM_Period and with a priority determined by MI_LM_Pri. The result (N_TF, N_LF, F_TF, F_LF) is reported via an LMR reception. If the proactive LM control process activates the multiple monitoring on different CoS levels simultaneously, each result is independently managed per CoS level.
The behaviour of the processes is defined below.
[bookmark: _Toc319901698]8.1.9.2	LM control process
The behaviour of the on-demand LM control process is defined in Figure 8-37.
[image:]
Figure 8-37 – On-demand LM control behaviour
Upon receipt of the MI_LM_Start(DA,P,Period), the LM protocol is started. Every period the generation of an LMM frame is triggered (using the LMM(DA,P,0) signal) until the MI_LM_Terminate signal is received.
The received counters are used to count the near-end and far- end transmitted and lost frames. This result is reported using the MI_LM_Result(N_TF, N_LF, F_TF, F_LF) signal after the receipt of the MI_LM_Terminate signal or of the MI_LM_Intermediate_Request signal.
[image:]
Figure 8-38 – Proactive LM control behaviour
The behaviour of the proactive LM control process is defined in Figure 8-38. If the MI_LML_Enable is asserted, the process starts to generate LMM frames (using the LMM(MI_LM_MAC_DA, MI_LM_Pri, 1) signal). The result (N_TF, N_LF, F_TF, F_LF) is reported via an LMR reception.
[bookmark: _Toc319901699]8.1.9.3	LMM generation process
This process generates an LMM traffic unit on receipt of the LMM(DA,P,Type) signal.
[image:]
Figure 8-39 – LMM generation behaviour
The LMM traffic unit contains a source and destination address field and an M_SDU field. The format of the M_SDU field for LMM traffic units is defined in clauses 9.1 and 9.12 of [ITUT G.8013].
The LMM traffic unit is generated by the LMM generate function in Figure 8-39. Figure 8-40 shows the resultant LMM traffic unit. The type signal is set to 1 if it is the proactive OAM, or set to 0 if it is the on-demand OAM operation.

	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=LMM(DA)

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=
Undef
	Version=1
	Opcode=43 (LMM)

	17
	0
	0
	0
	0
	0
	0
	0
	Type
	TLV Offset =12
	TxFCf=LMM(Tx)

	21
	TxFCf Continued
	Reserved for RxFCf in LMR=0

	25
	Reserved Continued
	Reserved for TxFCb in LMR=0

	29
	Reserved Continued
	END TLV=0
	

Figure 8-40 – LMM traffic unit
[bookmark: _Toc319901700]8.1.9.4	LMM reception process
This process processes received LMM traffic units. It checks the destination address, the DA must be either the local MAC address or it should be a multicast class 1 destination address. If this is the case the LMM reception process writes the Rx Counter value to the received traffic unit in the RxFCf field, and forwards the received traffic unit and complementing P and DE signals as remote information to the LMR generation process.
[image:]
Figure 8-41 – LMM reception behaviour
[bookmark: _Toc319901701]8.1.9.5	LMR generation process
The LMR generation process generates an LMR traffic unit on receipt of RI_LMM signals. The LMR traffic unit is based on the received LMM traffic unit (as conveyed in the RI_LMM_D signal), however:
•	the SA of the LMM traffic unit becomes the DA of the LMR traffic unit
•	the Opcode is set to LMR
•	the TxFCb field is assigned the value of the Tx counter.
NOTE – In the generated LMR, in the OAM (MEP) insertion process, the SA will be overwritten with the local MAC address, and the MEL will be overwritten with MI_MEL.
Note that the RxFCf field is already assigned a value by the LMM reception process.
[image:]
Figure 8-42 – LMR generation behaviour
Figure 8-43 shows the resultant LMR traffic unit.

Figure 8-43 – LMR traffic unit
[bookmark: _Toc319901702]8.1.9.6	LMR reception process
This process processes received LMR traffic units. If the DA equals the local MAC address, it extracts the counter values TxFCf, RxFCf, TxFCb from the received traffic unit as well as the SA field. These values together with the value of the Rx counter(RxFCl) are forwarded as RI signals.
[image:]
Figure 8-44 – LMR reception behaviour
[bookmark: _Toc319901703]8.1.9.7	Counter process
This process counts the number of transmitted and received frames.
The counter process for LMM/LMR generation receives ETH_AI and forwards it. It counts the number of ETH_AI traffic units received with ETH_AI_DE to <false (0)>.
[image:]
Figure 8-45 – Counter behaviour for LMM/LMR generation
The counter process for LMM/LMR reception receives ETH_CI and forwards them as ETH_AI traffic units. It counts this number of ETH_AI instances with ETH_AI_DE equal to <false (0)>.
[image:]
Figure 8-46 – Counter behaviour for LMM/LMR reception
NOTE 1 – To maintain the same behaviour with the earlier versions of this Recommendation, the counter process for LMM/LMR generation and reception excludes the counting of OAM frames which are applicable to both proactive and on-demand performance monitoring (i.e., LMM, LMR, DMM, DMR, 1DM, SLM, SLR and 1SL).
NOTE 2 - The current version of this Recommendation assumes that this process activates the needed TxFCl and RxFCl frame counters before any ETH-LM measurement is initiated.The mechanisms for activating these counters as well as the behaviour when an ETH-LM measurement is initiated before these counters are activated are outside the scope of this version of the Recommendation.
[bookmark: _Toc319901704]8.1.10	Single-ended delay measurement (DM) processes
[bookmark: _Toc319901705]8.1.10.1	Overview
Figure 8-47 shows the different processes inside MEPs and MIPs that are involved in the on-demand single-ended delay measurement protocol.
NOTE - In previous versions of this recommendation, single-ended delay measurement was known as delay measurement. With regard to those definitions, refer to [ITU-T G.8001].

The MEP on-demand OAM source insertion process is defined in clause 9.4.1.1, the MEP on-demand OAM sink extraction process in clause 9.4.1.2, the MIP on-demand OAM sink extraction process in clause 9.4.2.2, and the MIP on-demand OAM source insertion process in clause 9.4.2.1. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D traffic units and the complementing P and D signals going through an MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM traffic units.
[image:]
Figure 8-47 – Overview of processes involved with on-demand single-ended delay measurement
The on-demand DM control process controls the on-demand DM protocol. The protocol is activated upon receipt of the MI_DM_Start(DA,P,Test ID,Length,Period) signal and remains activated until the MI_DM_Terminate signal is received. The result is communicated via the MI_DM_Result(count, B_FD[], F_FD[] ,N_FD[]) signal when the process is terminated by the MI_DM_Terminate signal or when an intermediate result is requested via the MI_DM_Intermediate_Request signal. If the on-demand DM control process activates the multiple monitoring on different CoS levels simultaneously, each result is independently managed per CoS level. Optional test ID TLVs can be utilized to distinguish each measurement if multiple measurements are simultaneously activated in an ME. If the protocol is used in multipoint-to-multipoint environments, the multicast class 1 address can be used for a DA and the test result is independently managed per peer node.
The DMM generation process generates DMM traffic units that pass through MIPs transparently, but are received and processed by DMM reception processes in MEPs. The DMR generation process may generate a DMR traffic unit in response. This DMR traffic unit also passes transparently through MIPs, but is received and processed by DMR reception processes in MEPs.
At the source MEP side, the DMM generation process stamps the value of the local time to the TxTimeStampf field in the DMM message when the first bit of the frame is transmitted. Note well that at the sink MEP side, the DMM reception process stamps the value of the local time to the RxTimeStampf field in the DMM message when the last bit of the frame is received.
The DMR generation and reception process stamps with the same way as the DMM generation and reception process.
Figure 8-48 shows the different processes inside MEPs and MIPs that are involved in the proactive single-ended delay measurement protocol.
The MEP proactive OAM insertion process is defined in clause 9.2.1.1, the MEP OAM proactive extraction process in clause 9.2.1.2, the MIP OAM extraction process in clause 9.4.2.1, and the MIP OAM insertion process in clause 9.4.2.2. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D traffic units and the complementing P and D signals going through an MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM traffic units.
[image:]
Figure 8-48 – Overview of processes involved with proactive single-ended delay measurement
The proactive DM control process controls the proactive DM protocol. If MI_DM_Enable is set the DMM frames are sent periodically. The DMM frames are generated with a periodicity determined by MI_DM_Period and with a priority determined by MI_DM_Pri. The result (B_FD, F_FD, N_FD) is reported via a DMR reception. If the proactive DM control process activates the multiple monitoring on different CoS levels simultaneously, each result is independently managed per CoS level. Optional test ID TLVs can be utilized to distinguish each measurement if multiple measurements are simultaneously activated in an ME. If the protocol is used in multipoint-to-multipoint environments, the multicast class 1 address can be used for a DA and the test result is independently managed per peer node.
[bookmark: _Toc319901706]8.1.10.2	DM control process
The behaviour of the on-demand DM control process is defined in Figure 8-49.
[image:]
Figure 8-49 – On-demand DM control behaviour
Upon receipt of the MI_DM_Start(DA,P,Test ID,Length,Period), the DM protocol is started. Every period the generation of a DMM frame is triggered (using the DMM(DA,P,0,Test ID TLV,TLV) signal) until the MI_DM_Terminate signal is received. The TLV field of the DMM frames can have two types of TLVs. The first one is the test ID TLV, which is optionally used for a discriminator of each test and the value Test ID is included in the TLV. The second one is the data TLV, which is determined by the Generate(Length) function. Generate(Length) generates a data TLV with length "Length" of an arbitrary bit pattern to be included in the DMM frame.
Upon receipt of a DMR traffic unit the delay value recorded by this particular DMR traffic unit is calculated. This result is reported using the MI_DM_Result(count, B_FD[], F_FD[] ,N_FD[]) signal after the receipt of the MI_DM_Terminate signal or of the MI_DM_Intermediate_Request signal. Note that the measurements of F_FD and N_FD are not supported by peer MEP if both TxTimeStampb and TxTimeStampf are zero.
[image:]
Figure 8-50 – Proactive DM control behaviour
The behaviour of the proactive DM control process is defined in Figure 8-50. If the MI_DM_Enable is asserted, the process starts to generate DMM frames (using the DMM(MI_DM_MAC_DA,MI_DM_Pri,1, Test ID TLV,TLV) signal). The result (B_FD, F_FD, N_FD) is reported via a DMR reception.
[bookmark: _Toc319901707]8.1.10.3	DMM generation process
The behaviour of the DMM generation process is defined in Figure 8-51.
[image:]
Figure 8-51 – DMM generation behaviour
Upon receiving the DMM(DA,P,Type,Test ID TLV,TLV), a single DMM traffic unit is generated together with the complementing P and DE signals. The DA of the generated traffic unit is determined by the DMM(DA) signal. The TxTimeStampf field is assigned the value of the local time.
The P signal value is defined by DMM(P). The DE signal is set to 0. The type signal is set to 1 if it is the proactive OAM, or set to 0 if it is the on-demand OAM operation. The test ID signal is determined by the DMM(Test ID TLV) signal. The TLV signal is determined by the DMM(TLV) signal.If both the test ID TLV and data TLV are included in the DMM PDU, it is recommended that the test ID TLV be located at the beginning of the optional TLV field. It makes for easier classification of the test ID in the received PDUs.
	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=DMM(DA)

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=
Undef
	Version=1
	Opcode=47 (DMM)

	17
	0
	0
	0
	0
	0
	0
	0
	Type
	TLV Offset =32
	TxTimeStampf=Local Time

	21
	
	

	25
	
	0 (Reserved for DMM receiving equipment)

	29
	
	

	33
	
	0 (Reserved for DMR)

	37
	
	

	41
	
	0 (Reserved for DMR receiving equipment)

	45
	

	49
	
	Test ID TLV=DMM(Test ID TLV) if exists

	53
	Test ID TLV Continued
	Data TLV= DMM (TLV) if exists

	57
	

	61
	

	:
	

	last
	
	END TLV (0)

Figure 8-52 – DMM traffic unit
[bookmark: _Toc319901708]8.1.10.4	DMM reception process
[bookmark: OLE_LINK12][bookmark: OLE_LINK13]The DMM reception process processes the received DMM traffic units and the complementing P and DE signals. The behaviour is defined in Figure 8-53.

Figure 8-53 – DMM reception behaviour
First the DA is checked, it should be the local MAC address or a multicast class 1 address, otherwise the frame is ignored.
If the DA is the local MAC or a multicast class 1 address the RxTimeStampf field is assigned the value of the local time and traffic unit and the complementing P and DE signals are forwarded as remote information to the DMR generation process.
[bookmark: _Toc319901709]8.1.10.5	DMR generation process
The DMR generation process generates a DMR traffic unit and its complementing P and DE signals. The behaviour is defined in Figure 8-54.

Figure 8-54 – DMR generation behaviour
Upon receipt of the remote information containing a DMM traffic unit, the DMR generation process generates a DMR traffic unit and forwards it to the OAM insertion process.
As part of the DMR generation the:
–	DA of the DMR traffic unit is the SA of the original DMM traffic unit.
–	The Opcode is changed into DMR Opcode.
–	The TxTimeStampb field is assigned the value of the local time.
–	All the other fields (including TLVs and padding after the end TLV) are copied from the remote information containing the original DMM traffic unit.
The resulting DMR traffic unit is shown in Figure 8-55.
NOTE – In the generated DMR, in the OAM (MEP) insertion process, the SA will be overwritten with the local MAC address, and the MEL will be overwritten with MI_MEL.
The TLVs are copied from the remote information containing the original DMM traffic unit. If multiple TLVs exist, the order of the TLVs is unchanged.
	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=SA(RI_DMM(D))

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=
Undef
	Version= Version
(RI_DMM(D))
	Opcode=46 (DMR)

	17
	Flags=
Flags(RI_DMM(D))
	TLV Offset=
TLV Offset(RI_DMM(D))
	TxTimeStampf=TxTimeStampf(RI_DMM(D))

	21
	
	

	25
	
	RxTimeStampf=RxTimeStampf(RI_DMM(D))

	29
	
	

	33
	
	TxTimeStampb=Local Time

	37
	
	

	41
	
	0 (Reserved for DMR reception process)

	45
	

	49
	
	Test ID TLV=Test ID(RI_DMM(D)) if exists

	53
	Test ID TLV Continued
	Data TLV= TLV (RI_DMM(D)) if exists

	57
	

	61
	

	:
	

	last
	
	END TLV=
END TLV(RI_DMM(D))

Figure 8-55 – DMR traffic unit
[bookmark: _Toc319901710]8.1.10.6	DMR reception process
[bookmark: OLE_LINK14][bookmark: OLE_LINK15]The DMR reception process processes the received DMR traffic units and the complementing P and DE signals. The behaviour is defined in Figure 8-56.
 [image:]
Figure 8-56 – DMR reception behaviour
Upon receipt of a DMR traffic unit the DA field of the traffic unit is checked. If the DA field equals the local MAC address, the DMR traffic unit is processed further, otherwise it is ignored.
If the DMR traffic unit is processed, the TxTimeStampf, RxTimeStampf, TxTimeStampb and test ID are extracted from the traffic unit and signalled together with the local time.
[bookmark: _Toc319901711]8.1.11	Dual-ended delay measurement (1DM) processes
[bookmark: _Toc319901712]8.1.11.1	Overview
Figure 8-57 shows the different processes inside MEPs and MIPs that are involved in the on-demand dual-ended delay measurement protocol.
NOTE - In previous versions of this recommendation, dual-ended delay measurement was known as one-way delay measurement. With regard to those definitions, refer to [ITU-T G.8001].
The MEP on-demand OAM source insertion process is defined in clause 9.4.1.1, the MEP on-demand OAM sink extraction process in clause 9.4.1.2, and the MIP on-demand OAM sink extraction process in clause 9.4.2.2. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D traffic units and the complementing P and DE signals going through an MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM traffic units.
 [image:]
Figure 8-57 – Overview of processes involved with on-
demand dual-ended delay measurement
The on-demand 1DM protocol is controlled by the on-demand 1DM Control_So and 1DM Control_Sk processes. The on-demand 1DM Control_So process triggers the generation of 1DM traffic units upon receipt of an MI_1DM_Start(DA,P,Test ID,Length,Period) signal. The on-demand 1DM Control_Sk process processes the information from received 1DM traffic units after receiving the MI_1DM_Start(SA,P,Test ID) signal. The result is communicated by the sink MEP when the on-demand 1DM Control_Sk process is terminated by the MI_1DM_Terminate signal or when an intermediate result is requested via the MI_1DM_Intermediate_Request signal.
The 1DM generation process generates 1DM messages that pass transparently through MIPs and are received and processed by the 1DM reception process in MEPs.
At the source MEP side, the 1DM generation process stamps the value of the local time to the TxTimeStampf field in the 1DM message when the first bit of the frame is transmitted. Note well that at the sink MEP side, the 1DM reception process records the value of the local time when the last bit of the frame is received.
Figure 8-58 shows the different processes inside MEPs and MIPs that are involved in the proactive dual-ended delay measurement protocol.
[image:]
Figure 8-58 – Overview of processes involved with
proactive dual-ended delay measurement
The MEP proactive-OAM source insertion process is defined in clause 9.2.1.1, the MEP proactive OAM sink extraction process in clause 9.2.1.2, and the MIP on-demand OAM sink extraction process in clause 9.4.2.2.
The proactive 1DM Control_So process triggers the generation of 1DM traffic units if MI_1DM_Enable signal is set. The 1DM frames are generated with a periodicity determined by MI_1DM_Period and with a priority determined by MI_1DM_Pri. The result (N_FD) is reported via a 1DM reception by the 1DM Control_Sk process.
[bookmark: _Toc319901713]8.1.11.2	1DM Control_So Process
Figure 8-59 shows the behaviour of the on-demand 1DM Control_So Process. Upon receipt of the MI_1DM_Start(DA,P,Test ID,Length,Period) signal the 1DM protocol is started. The protocol will run until the receipt of the MI_1DM_Terminate signal.
If the DM protocol is running every period (as specified in the MI_1DM_Start signal) the generation of a 1DM message is triggered by generating the 1DM(DA,P,0,Test ID TLV,TLV) signal towards the 1DM generation process. The TLV field of the 1DM frames can have two types of TLVs. The first one is the test ID TLV, which is optionally used for a discriminator of each test and the value Test ID is included in the TLV. The second one is the data TLV, which is determined by the Generate(Length) function. Generate(Length) generates a data TLV with length "Length" of an arbitrary bit pattern to be included in the 1DM frame.
 [image:]
Figure 8-59 – On-demand 1DM Control_So behaviour
 [image:]
Figure 8-60 – Proactive 1DM Control_So behaviour
The behaviour of the proactive 1DM control process is defined in Figure 8-60.
If the MI_1DM_Enable is asserted, the process starts to generate 1DM frames (using the 1DM(MI_1DM_MAC_DA,MI_1DM_Pri,1, Test ID TLV,TLV) signal.
[bookmark: _Toc319901714]8.1.11.3	1DM generation process
 [image:]
Figure 8-61 – 1DM generation behaviour
Figure 8-61 shows the 1DM generation process. Upon receiving the 1DM(DA,P,Type,Test ID TLV,TLV) signal a single 1DM traffic unit is generated by the OAM=1DM (DA,P,Type, LocalTime, Test ID TLV, TLV) call.
Together with this 1DM traffic unit the complementing P and DE signals are generated. The DA of the generated 1DM traffic unit is determined by the 1DM(DA) signal. The TxTimeStampf field is assigned the value of the local time. The value of the P signal is determined by the 1DM(P) signal. The DE signal is set to 0. The type signal is set to 1 if it is the proactive OAM, or set to 0 if it is the on-demand OAM operation. The test ID signal is determined by the 1DM(Test ID TLV) signal. The TLV signal is determined by the 1DM(TLV) signal.
The resulting traffic unit is shown in Figure 8-62.
NOTE – In the generated 1DM traffic unit, in the OAM (MEP) insertion process, the SA will be assigned the local MAC address, and the MEL will be assigned by MI_MEL.
If both the test ID TLV and data TLV are included in the 1DM PDU, it is recommended that the test ID TLV be located at the beginning of the optional TLV field. It makes for easier classification of the test ID in the received PDUs.
	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=1DM(DA)

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=
Undef
	Version=1
	Opcode=45 (1DM)

	17
	0
	0
	0
	0
	0
	0
	Type
	TLV Offset =16
	TxTimeStampf=Local Time

	21
	
	

	25
	
	0 (Reserved for 1DM receiving equipment)

	29
	
	

	33
	
	Test ID TLV=1DM(Test ID TLV) if exists

	37
	Test ID TLV Continued
	Data TLV=1DM(TLV) if exists

	41
	

	45
	

	:
	

	last
	
	END TLV (0)

Figure 8-62 – 1DM traffic unit
[bookmark: _Toc319901715]8.1.11.4	1DM reception process
The 1DM reception process processes the received 1DM traffic units and the complementing P and DE signals. The behaviour is defined in Figure 8-63.
 [image:]
Figure 8-63 – 1DM reception behaviour
Upon receipt of a 1DM traffic unit the DA field is checked. The 1DM traffic unit is processed if the DA is equal to the local MAC address or multicast class 1 MAC address. Otherwise, the traffic unit is ignored.
If the 1DM traffic unit is processed the SA and TxTimeStampf fields are extracted and forwarded to the 1DM Control_Sk process together with the local time using the 1DM(rSA,rP,TxTimeStampf,RxTimef,rTestID) signal.
[bookmark: _Toc319901716]8.1.11.5	1DM Control_Sk Process
Figure 8-64 shows the behaviour of the on-demand 1DM Control_Sk process. The MI_1DM_Start(SA,P,TestID) signal starts the processing of 1DM messages coming from an MEP with SA as the MAC address. The protocol runs until the receipt of the MI_1DM_Terminate signal.
While running the process processes the received 1DM(rSA,rP,TxTimeStampf,RxTimef,rTestID) information. First the rSA is compared with the SA from the MI_1DM_Start (SA) signal. If the rSA is not equal to this SA, the information is ignored. Next the rP is compared with the priority from the MI_1DM_Start (P) signal. If the rP is not equal to this P, the information is ignored. Finally the rTestID is compared with the TestID from the MI_1DM_Start (Test ID) signal. If the MI_1DM_Start (Test ID) signal is configured and rTestID is available but both values are different, the information is ignored. Otherwise the delay from the single received 1DM traffic unit is calculated. This result is reported using the MI_1DM_Result(count, N_FD[]) signal after the receipt of the MI_1DM_Terminate signal or of the MI_1DM_Intermediate_Request signal.
[image:]
Figure 8-64 – On-demand 1DM Control_Sk process
 [image:]
Figure 8-65 – Proactive 1DM Control_Sk process
The behaviour of the proactive 1DM Control_Sk Process is defined in Figure 8-65. If the MI_1DM_Enable is asserted, the result (N_FD) is reported via a 1DM reception.
[bookmark: _Toc319901717]8.1.12	Test (TST) processes
[bookmark: _Toc319901718]8.1.12.1	Overview
Figure 8-66 shows the different processes inside MEPs and MIPs that are involved in the test protocol.
The MEP on-demand OAM source insertion process is defined in clause 9.4.1.1, the MEP on-demand OAM sink extraction process in clause 9.4.1.2, the MIP on-demand OAM sink extraction process in clause 9.4.2.2. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D traffic units together with the complementing P and DE signals going through an MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM traffic units.
[image:]
Figure 8-66 – Overview of processes involved with the test protocol
The TST protocol is controlled by the TST Control_So and TST Control_Sk processes. The TST Control_So process triggers the generation of TST traffic units after the receipt of an MI_TST_Start(DA,DE,P,Pattern,Length,Period) signal. The TST Control_Sk process processes the information from received TST traffic units after receiving the MI_TST_Start(SA,Pattern) signal.
The TST generation process generates TST messages that pass transparently through MIPs and are received and processed by the TST reception process in MEPs.
The processes are defined below.
[bookmark: _Toc319901719]8.1.12.2	TST Control_So process
Figure 8-67 defines the behaviour of the TST Control_So process. This process starts the transmission of TST traffic units after receiving the MI_Test(DA,DE,P,Pattern,Length,Period) signal. Each transmission of TST traffic units is triggered by the generation of the TST(DA,P,DE,TLV,TID) signal. This is continued until the receipt of the MI_Test_Terminate signal. After receiving this signal the number of triggered TST traffic units is reported back using the MI_Test_Result(Sent) signal.
The TLV field of the TST frames is determined by the Generate(Pattern, Length) function. For "Pattern" the following types are defined:
0: "Null signal without CRC-32"
1: "Null signal with CRC-32"
2: "PRBS 2^31-1 without CRC-32"
3: "PRBS 2^31-1 with CRC-32"
The length parameter determines the length of the generated TLV.
Generate(Pattern, Length) generates a test TLV with length "Length" to be included in the TST frame. Therefore, this TLV is passed using the TST(DA,P,DE,TLV,TID) signal to the TST generation process.
[image:]
Figure 8-67 – TST Control_So behaviour
[bookmark: _Toc319901720]8.1.12.3	TST generation process
Figure 8-68 defines the behaviour of the TST generation process.
[image:]
Figure 8-68 – TST generation behaviour
Upon receiving the TST(DA,P,DE,TLV,TID), a single TST traffic unit is generated together with the complementing P and DE signals. The TST traffic unit is generated by:
OAM=TST(DA,TLV,TID).
The DA of the generated TST traffic unit is determined by the TST(DA) signal. The transaction identifier field gets the value of TST(TID); the TLV field is populated with TST(TLV). The resulting TST traffic unit is shown in Figure 8-69.
NOTE – In the generated TST traffic unit, in the OAM (MEP) insertion process, the SA will be assigned the local MAC address, and the MEL will be assigned by MI_MEL.
The P signal is determined by the TST(P) signal.
The DE signal is determined by the TST(DE) signal.

	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=TST(DA)

	2
	
	SA=Undefined

	3
	

	4
	Ethertype=89-02
	MEL=
Undef
	Version=0
	Opcode=37(TST)

	5
	Flags=0
	TLV Offset =4
	Transaction Identifier=TST(TID)

	6
	Transaction Identifier Continued
	TST(TLV)

	7
	
	

	8
	
	

	9
	
	END TLV=0
	

Figure 8-69 – TST traffic unit
[bookmark: _Toc319901721]8.1.12.4	TST reception process
Figure 8-70 defines the behaviour of the TST reception process.

Figure 8-70 – TST reception behaviour
First the DA is checked, it should be the local MAC address (as configured via MI_MEP_MAC) or a multicast class 1 address, otherwise the frame is ignored.
If the DA is the local MAC or a multicast class 1 address the SA, TID and TLV fields from the TST traffic unit are forwarded using the TST signal.
[bookmark: _Toc319901722]8.1.12.5	TST Control_Sk process
Figure 8-71 shows the behaviour of the TST Control_Sk process. The MI_TST_Start (SA) signal starts the processing of TST messages coming from an MEP with SA as the MAC address. The protocol is running until the receipt of the MI_TST_Terminate signal.
While running, the process processes the received TST(rSA,rTLV,TID) information. First the rSA is compared with the SA from the MI_TST_Start (SA) signal. If the rSA is not equal to this SA, the information is ignored. Otherwise the received information is processed.
First, the received TST counter is incremented by one (REC++). Furthermore, if the TLV contains a CRC (Pattern 1 or 3), the CRC counter is incremented by one (CRC++) if the CRC check fails. The function Check(Pattern, TLV) compares the received test pattern with the expected test pattern. If there is a mismatch the BERR counter is incremented by one. If the TID value from the RI_LBR signal does not follow the last received TID value the counter for out of order frames is incremented by one (OO++).
[image:]
Figure 8-71 – TST Control_Sk behaviour
[bookmark: _Toc319901723]8.1.13	Link trace (LT) processes
[bookmark: _Toc319901724]8.1.13.1	Overview
Figure 8-72 shows the different processes involved in the link trace protocol.

Figure 8-72 – LT protocol overview
The link trace protocol is started upon receipt of an MI_LT(TA, TTL, P) signal. The result of the process will be communicated back via the MI_LT_Result(Results) signal.
The LM control will trigger the transmission of an LTM traffic unit and then wait for the LTR traffic units that are sent in reply to this LTM traffic unit.
The LTM traffic unit is processed by MIP LTM reception processes and by MEP LTM reception processes. Depending on the DA given in the MI_LT(TA, TTL, P) signal these processes may decide to trigger the transmission of an LTR traffic unit back to the source of the LTM traffic unit.
NOTE – In the 2008 version of Recommendation ITU-T G.8013/Y.1731 the LTM traffic unit is received by an ETH-LT responder process which solely resides in a network element and acts as an alternative process for LTM MIP reception. Similarly, the trigger of sending an LTR traffic unit is decided by the ETH-LT responder.
[bookmark: _Toc319901725]8.1.13.2	LT control process
Figure 8-73 shows the behaviour of the LT control process.
 [image:]
Figure 8-73 – LT control behaviour
After receiving the MI_LT(TA, TTL, P) input signal, the transmission of an LTM traffic unit is triggered. In the "Waiting for LTR" state, the LTM control process waits for the LTR traffic units that will be sent in response. The waiting period is five seconds. For each received LTR traffic unit the TID value in the received LTM traffic unit is compared with the one that was sent in the LTM traffic unit. If they are equal, the SA, TTL and TLV values are stored in the results. These results are communicated back using the MI_LT_Results signal after the five second waiting period is over.
[bookmark: _Toc319901726]8.1.13.3	LTM generation process
Figure 8-74 shows the behaviour of the LTM generation process.
[image:]
Figure 8-74 – LTM generation behaviour
The LTM generation process generates an LTM traffic unit with the function:
OAM=LTM(TA, TTL, TID) and the result is shown in Figure 8-75.
NOTE – In the generated LTM traffic unit, in the OAM (MEP) insertion process, the SA will be assigned the local MAC address, and the MEL will be assigned by MI_MEL. The value of the multicast class 2 DA is 0180-C2-00-00-3y, where y is equal to {MI_MEL + 8} as defined in clause 10.1 of [ITU-T G.8013]. The usage of flags is specified in clause 9.5.2 of [ITU-T G.8013].

Figure 8-75 – LTM traffic unit
[bookmark: _Toc319901727]8.1.13.4	MIP LTM reception process
Figure 8-76 shows the behaviour of the MIP LTM reception process.
 [image:]
Figure 8-76 – MIP LTM reception behaviour
Upon receipt of an LTM traffic unit, first the TTL is checked, only LTM traffic units with a TTL>0 are processed. Thereafter, the target MAC (TMAC) of the LTM traffic unit is checked.
There are two reasons to send back an LTR traffic unit. The first is if the TMAC in the LTM traffic unit is the MAC address of the MIP itself.
The second reason is summarized in Figure 8-65 as Forward(TMAC(D)). This function returns true if:
•	the network element that the MIP LTM reception process resides in would forward a normal data traffic unit with its DA equal to the TMAC to a single port (forwarding port), and
•	the MIP LTM reception process resides in the egress port which equals to the "forwarding port" (LTM in egress port), or the MIP LTM reception process resides in the ingress port which does not equal to the "forwarding port" (LTM in ingress port).
Furthermore, after triggering the transmission of an LTR traffic unit, the LTM traffic unit is forwarded if the TMAC was not the MAC of the MIP and if the TTL>0.
[bookmark: _Toc319901728]8.1.13.5	MEP LTM reception process
Figure 8-77 shows the behaviour of the MEP LTM reception process.
[image:]
Figure 8-77 – MEP LTM Reception Behaviour
Upon receipt of an LTM traffic unit first the TTL is checked, only LTM traffic units with a TTL>0 are processed. Thereafter the Target MAC (TMAC) of the LTM traffic unit is checked. Conditions to send back an LTR traffic unit are similar with ones for MIP LTM reception process. The first is if the TMAC in the LTM traffic unit is the MAC address of the MEP itself. The second is summarized in Figure 8-77 as Forward(TMAC(D)). This function returns true if:
•	the network element the MEP LTM reception process resides in would forward a normal data traffic unit with its DA equal to the TMAC to a single port (forwarding port), and
•	the MEP LTM reception process resides in the egress port which equals to the "forwarding port" (LTM in egress port), or the MEP LTM reception process resides in the ingress port which does not equal to the "forwarding port" (LTM in ingress port).
Note that the LTM traffic unit is not forwarded anymore regardless of the value of TMAC.
[bookmark: _Toc319901729]8.1.13.6	LTR generation process
Figure 8-78 shows the behaviour of the LTR generation process.
[image:]
Figure 8-78 – LTR generation behaviour
The LTR generation process generates the LTR traffic unit to be sent back, based on the LTM traffic unit. The DA of the LTR traffic unit is the originating MAC (Orig MAC) as contained in the LTM traffic unit. The opcode is the LTR Opcode. The resulting LTR traffic unit is shown in Figure 8-79. The SA and MEL will be overwritten by the OAM insertion process. The LTR traffic unit is sent back after a random delay between 0 and 1 second. The usage of flags is specified in clause 9.6.2 of [ITU-T G.8013].
The resulting frame is shown in Figure 8-79.
NOTE – In the generated LTR, in the OAM (MEP) insertion process, the SA will be overwritten with the local MAC address, and the MEL will be overwritten with MI_MEL.

Figure 8-79 – LTR traffic unit
[bookmark: _Toc319901730]8.1.13.7	LTR reception process
Figure 8-80 shows the behaviour of the LTR reception process.
[image:]
Figure 8-80 – LTR reception behaviour
The LTR reception process checks the DA of the received LTR traffic unit and passes the SA, TTL, TID and TLV fields from the LTR traffic unit to the LT control process.
[bookmark: _Toc172112946][bookmark: _Toc319901731]8.1.14	Single-ended synthetic loss measurement (SL) processes
[bookmark: _Toc172112947][bookmark: _Toc319901732]8.1.14.1	Overview
Figure 8-81 shows the different processes inside MEPs and MIPs that are involved in the on-demand single-ended synthetic loss measurement protocol.
NOTE - In previous versions of this recommendation, single-ended synthetic loss measurement was known as synthetic loss measurement. With regard to those definitions, refer to [ITU-T G.8001].

The MEP on-demand OAM insertion process is defined in clause 9.4.1.1, the MEP OAM ondemand extraction process in clause 9.4.1.2, the MIP OAM extraction process in clause 9.4.2.1, and the MIP OAM insertion process in clause 9.4.2.2. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D traffic units and the complementing P and D signals going through an MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM traffic units.
[image:]
Figure 8-81 – Overview of processes involved with an on-demand
single-ended synthetic loss measurement protocol
The SL protocol is controlled by the on-demand SL control process.
The on-demand SL control process is activated upon receipt of the MI_SL_Start(DA,P,Test_ID,Length,Period) signal and remains activated until the MI_SL_Terminate signal is received. The measured synthetic loss values are output via the MI_SL_Result(N_TF,N_LF,F_TF,F_LF) signal when the process is terminated by the MI_SL_Terminate signal or when an intermediate result is requested via the MI_SL_Intermediate_Request signal.
The SLM generation process generates SLM traffic units that pass through MIPs transparently, but are received and processed by SLM reception processes in MEPs. The SLR generation process may generate an SLR traffic unit in response. This SLR traffic unit also passes transparently through MIPs, but is received and processed by SLR reception processes in MEPs.
Figure 8-82 shows the different processes inside MEPs and MIPs that are involved in the proactive single-ended synthetic loss measurement protocol.
The MEP proactive OAM insertion process is defined in clause 9.2.1.1, the MEP OAM proactive extraction process in clause 9.2.1.2, the MIP OAM extraction process in clause 9.4.2.1, and the MIP OAM insertion process in clause 9.4.2.2. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D traffic units and the complementing P and D signals going through an MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM traffic units.
[image:]
Figure 8-82 – Overview of processes involved with a proactive
single-ended synthetic loss measurement protocol
The SL protocol is controlled by the proactive SL control processes.
The proactive SL control process is activated upon receipt of the MI_SL_Enable signal and remains activated until the signal is deactivated. The measured results are output every 1s using the RI_SL_Result (N_TF, N_LF, F_TF, F_LF) signal.
[bookmark: _Toc172112948][bookmark: _Toc319901733]8.1.14.2	SL control process
The behaviour of the on-demand SL control process is defined in Figure 8-83. There are multiple instances of the on-demand SL control process, each handling an independent stream of SLM frames.
 [image:]
Figure 8-83 – On-demand SL control behaviour
Upon receipt of the MI_SL_Start(DA,P,Test_ID,Length,Period), the SL protocol is started. Every designated period the generation of an SLM frame is triggered (using the SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) signal), until the MI_SL_Terminate signal is received. The MEP_ID is the MI_MEP_ID of the MEP itself. The TLV field of the SLM frames is determined by the Generate(Length) function. Generate(Length) generates a data TLV with length "Length" of an arbitrary bit pattern, as described in clause 8.1.8.2. If the length is 0, the TLV is set to NULL.
Upon receipt of an SLR traffic unit, the received counter values are used to count the near-end and far-end transmitted and lost synthetic frames. This result is reported using the MI_SL_Result(N_TF,N_LF,F_TF,F_LF) signal after the receipt of the MI_SL_Terminate signal or of the MI_SL_Intermediate_Request signal.
The behaviour of the proactive SL Control process is defined in Figure 8-84. There are multiple instances of the proactive SL Control process, each handling an independent stream of SLM frames.
[image:]
Figure 8-84 – Proactive SL control behaviour
Upon receipt of the MI_SL_Enable, the SL protocol is started. Every designated MI_SL_Period the generation of an SLM frame is triggered (using the SLM(MI_SL_MAC_DA,MI_SL_Pri,MI_MEP_ID,MI_SL_Test_ID,TxFCl,TLV) signal). The TLV field of the SLM frames is determined by the Generate(MI_SL_Length) function. Generate(MI_SL_Length) generates a data TLV with MI_SL_ Length of an arbitrary bit pattern, as described in clause 8.1.8.2. If the MI_SL_Length is 0, the TLV is set to NULL.
Upon receipt of an SLR traffic unit, the received counter values are used to count the near-end and far-end transmitted and lost synthetic frames. The calculation is performed every 1s and the RI_SL_Result(N_TF, N_LF, F_TF, N_LF) signal is generated.
[bookmark: _Toc172112949][bookmark: _Toc319901734]8.1.14.3	SLM generation process
The behaviour of the SLM generation process is defined in Figure 8-85.
[image:]
Figure 8-85 – SLM generation behaviour
Upon receiving the SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV), a single SLM traffic unit is generated together with the complementing P and DE signals. The DA, Source_MEP_ID, Test_ID and TxFCf of the generated traffic unit are determined by the DA, MEP_ID, Test_ID and TxFCl respectively in the SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) signal. If not NULL, the specified TLV is appended to the traffic unit as shown in Figure 8-86.
The P signal value is defined by SLM(P). The DE signal is set to 0.

	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=SLM(DA)

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=Undef
	Version=0
	Opcode=55 (SLM)

	17
	Flags=0
	TLV Offset = 16
	Source_MEP_ID = SLM(MI_MEP_ID)

	21
	0 (reserved for Responder_MEP_ID)
	Test_ID = SLM(Test_ID)

	25
	Test_ID Continued
	TxFCf = SLM(TxFCl)

	29
	TxFCf Continued
	Reserved for TxFCb

	33
	Reserved Continued
	TLV = SLM(TLV) if exists

	37
	

	41
	

	45
	

	:
	

	last
	
	END TLV (0)

Figure 8-86 – SLM traffic unit
[bookmark: _Toc172112950][bookmark: _Toc319901735]8.1.14.4	SLM reception process
The SLM reception process processes the received SLM traffic units and the complementing P and DE signals. The behaviour is defined in Figure 8-87.
[image:]
Figure 8-87 – SLM reception behaviour
First the DA is checked, it should be the local MAC address or a multicast class 1 address, otherwise the frame is ignored.
If the DA is the local MAC or a multicast class 1 address, the MEP_ID and the Test_ID fields are extracted from the traffic unit. The local received counter RxFCl maintained per MEP_ID and Test_ID values, is incremented. The received OAM information, P and DE signals, as well as the local TxFCb value are forwarded as remote information to the SLR generation process using the RI_SLM(OAM,P,DE, TxFCb) signal.
NOTE – The SLM reception process allocates and maintains local resources for the counter RxFCl per MEP_ID and Test_ID. To facilitate the automatic release of local resources, a timer for monitoring no receipt of SLM can be utilized. The SLM reception process must ensure that there is no discontinuity in RxFCl for a given MEP ID and Test ID for a given interval (e.g., 5 minutes) after the last received SLM for that MEP ID and Test ID. A detailed mechanism for the release is out of the scope of this recommendation.
[bookmark: _Toc172112951][bookmark: _Toc319901736]8.1.14.5	SLR generation process
The SLR generation process generates an SLR traffic unit and its complementing P and DE signals. The behaviour is defined in Figure 8-88.
 [image:]
Figure 8-88 – SLR generation behaviour
Upon receipt of the RI_SLM (OAM,P,DE,TxFCb) signal containing an SLM traffic unit, the SLR generation process generates an SLR traffic unit and forwards it to the MEP OAM insertion process.
As part of the SLR generation:
–	the DA of the SLR traffic unit is the SA of the original SLM traffic unit
–	the Opcode is changed into SLR Opcode
–	the responder MEP_ID is set to MI_MEP_ID
–	TxFCb field is assigned the TxFCb value passed in the SLR(TxFCb)
–	the other fields and optional TLVs are copied from the SLM.
The resulting SLR traffic unit is shown in Figure 8-89.
NOTE – In the generated SLR, in the OAM (MEP) insertion process, the SA will be overwritten with the local MAC address, and the MEL will be overwritten with MI_MEL.
	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=SA(RI_SLM (OAM))

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=Undef
	Version=0
	Opcode=54(SLR)

	17
	Flags=Flags
(RI_SLM(OAM))
	TLV Offset =
TLV Offset((RI_SLM(OAM))
	Source_MEP_ID = Source_MEP_ID((RI_SLM(OAM))

	21
	Responder_MEP_ID = MI_MEP_ID
	Test_ID = Test_ID((RI_SLM(OAM))

	25
	Test_ID Continued
	TxFCf = TxFCf((RI_SLM(OAM))

	29
	TxFCf Continued
	TxFCb = (RI_SLM(TxFCb))

	33
	TxFCb Continued
	TLV = TLV((RI_SLM(OAM)) if exists

	37
	

	41
	

	45
	

	:
	

	last
	
	END TLV =
END TLV(RI_SLM(OAM))

Figure 8-89 – SLR traffic unit
[bookmark: _Toc172112952][bookmark: _Toc319901737]8.1.14.6	SLR reception process
The SLR reception process processes the received SLR traffic units and the complementing P and DE signals. The behaviour is defined in Figure 8-90.
[image:]
Figure 8-90 – SLR reception behaviour
Upon receipt of an SLR traffic unit, the DA field of the traffic unit is checked. If the DA field equals the local MAC address, the SLR traffic unit is processed further, otherwise it is ignored.
If the SLR traffic unit is processed, Test_ID, TxFCf, TxFCb, responder MEP_ID,are extracted from the traffic unit and signalled, using the RI_SLR(MEP_ID, Test_ID,TxFCf,TxFCb) signal.
[bookmark: _Toc319901738]8.1.15	Dual-ended synthetic loss measurement (1SL) processes
[bookmark: _Toc319901739]8.1.15.1	Overview
Figure 8-91 shows the different processes inside MEPs and MIPs that are involved in the on-demand dual-ended synthetic loss measurement protocol.
NOTE - In previous versions of this recommendation, dual-ended synthetic loss measurement was known as one-way synthetic loss measurement. With regard to those definitions, refer to [ITU-T G.8001].
The MEP on-demand OAM source insertion process is defined in clause 9.4.1.1, the MEP on-demand OAM sink extraction process in clause 9.4.1.2, the MIP on-demand OAM sink extraction process in clause 9.4.2.2. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D traffic units and the complementing P and DE signals going through an MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM traffic units.
[image:]
Figure 8-91 – Overview of processes involved with on-demand
dual-ended synthetic loss measurement
The on-demand 1SL protocol is controlled by the on-demand 1SL Control_So and 1SL Control_Sk processes. The on-demand 1SL Control_So process triggers the generation of 1SL traffic units upon receipt of an MI_1SL_Start(DA,P, Test_ID,Length,Period) signal. The on-demand 1SL Control_Sk process processes the information from received 1SL traffic units after receiving the MI_1SL_Start(SA,Test_ID) signal. The result is communicated by the sink MEP when the process is terminated by the MI_1SL_Terminate signal or when an intermediate result is requested via the MI_1SL_Intermediate_Request signal.
The 1SL generation process generates 1SL messages that pass transparently through MIPs and are received and processed by the 1SL reception process in MEPs.
Figure 8-92 shows the different processes inside MEPs and MIPs that are involved in the proactive dual-ended synthetic loss measurement protocol.
[image:]
Figure 8-92 – Overview of processes involved with proactive
dual-ended synthetic loss measurement
The MEP proactive-OAM source insertion process is defined in clause 9.2.1.1, the MEP proactive OAM sink extraction process in clause 9.2.1.2, and the MIP on-demand OAM sink extraction process in clause 9.2.2.2.
The proactive 1SL protocol is controlled by the proactive 1SL Control_So and 1SL Control_Sk processes. The proactive 1SL Control_So process triggers the generation of 1SL traffic units if MI_1SL_Enable signal is set. The 1SL frames are generated with a periodicity determined by MI_1SL_Period and with a priority determined by MI_1SL_Pri. The result is reported every one second by the 1SL Control_Sk process.
[bookmark: _Toc319901740]8.1.15.2	1SL Control_So process
Figure 8-93 shows the behaviour of the on-demand 1SL Control_So process. Upon receipt of the MI_1SL_Start(DA,P,Test_ID, Length, Period) signal the 1SL protocol is started. The protocol will run until the receipt of the MI_1SL_Terminate signal.
If the 1SL protocol is running, every period (as specified in the MI_1SL_Start signal) the generation of a 1SL message is triggered by generating the 1SL(DA,P,MEP_ID,Test_ID,TxFCl,TLV) signal towards the 1SL generation process. The MEP_ID is the MI_MEP_ID of the MEP itself. The TLV is determined by the Generate(Length) function. Generate(Length) generates a data TLV with length "Length" of an arbitrary bit pattern, as described in clause 8.1.8.2. If the length is 0, the TLV is set to NULL.

Figure 8-93 – On-demand 1SL Control_So behaviour
The behaviour of the proactive 1SL control process is defined in Figure 8-94.
If the MI_1SL_Enable is asserted, the process starts to generate 1SL frames (using the 1SL (MI_1SL_MAC_DA, MI_1SL_Pri, MI_MEP_ID, MI_1SL_Test_ID, TxFCl, TLV) signal.
[image:]
Figure 8-94 – Proactive 1SL Control_So behaviour
[bookmark: _Toc319901741]8.1.15.3	1SL generation process
[image:]
Figure 8-95 – 1SL generation behaviour
Figure 8-95 shows the 1SL generation process. Upon receiving the 1SL(DA, P, MEP_ID, Test_ID, TxFCl, TLV) signal, a single 1SL traffic unit is generated, along with the complementing P and DE signals.
The DA, source_MEP_ID, Test_ID and TxFCl of the generated traffic unit are determined by the DA, MEP_ID, Test_ID and TxFCl respectively in the 1SL(DA,P,MEP_ID,Test_ID,TxFCl,TLV) signal. If not NULL, the specified TLV is appended to the traffic unit as shown.
The value of the P signal is determined by the 1SL(P) signal. The DE signal is set to 0.
The resulting traffic unit is shown in Figure 8-96.
NOTE – In the generated 1SL traffic unit, in the OAM (MEP) insertion process, the SA will be assigned the local MAC address, and the MEL will be assigned by MI_MEL.
	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=1SL(DA)

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=Undef
	Version=0
	Opcode=53 (1SL)

	17
	Flags=0
	TLV Offset = 16
	Source_MEP_ID = 1SL(MI_MEP_ID)

	21
	0 (not used)
	Test_ID = 1SL(Test_ID)

	25
	Test_ID Continued
	TxFCf = 1SL(TxFCl)

	29
	TxFCf Continued
	0 (Reserved)

	33
	0 (Reserved)
	TLV = 1SL(TLV) if exists

	37
	

	41
	

	45
	

	:
	

	last
	
	END TLV (0)

Figure 8-96 – 1SL traffic unit
[bookmark: _Toc319901742]8.1.15.4	1SL reception process
The 1SL reception process processes the received 1SL traffic units and the complementing P and DE signals. The behaviour is defined in Figure 8-97.
[image:]
Figure 8-97 – 1SL Reception behaviour
Upon receipt of a 1SL traffic unit, the DA field is checked. The 1SL traffic unit is processed if the DA is equal to the local MAC address or a multicast class 1 address and ignored otherwise.
If the 1SL traffic unit is processed, the SA, source_MEP_ID, Test_ID and TxFCf fields are extracted and the appropriate RxFCl counter is incremented. The values are forwarded to the 1SL Control_Sk Process using the 1SL(rSA, rMEP_ID, rTest_ID, TxFCf, RxFCl) signal.
[bookmark: _Toc319901743]8.1.15.5	1SL Control_Sk process
Figure 8-98 shows the behaviour of the on-demand 1SL Control_Sk process. The MI_1SL_Start(SA,Test_ID) signal starts the processing of 1SL messages coming from an MEP with SA as the MAC address. The protocol runs until the receipt of the MI_1SL_Terminate signal.
While running, the process processes the received 1SL(rSA, rMEP_ID, rTest_ID, TxFCf, RxFCl) information. First the rSA is compared with the SA from the MI_1SL_Start (SA,Test_ID) signal. If the rSA is not equal to this SA, the information is ignored. Next the rTest_ID is compared with the Test_ID from the MI_1SL_Start (SA,Test_ID) signal. If the Test_ID signal is configured and rTest_ID is available but both values are different, the information is ignored. Otherwise the loss from the single received 1SL traffic unit is calculated. This result is reported using the MI_1SL_Result(N_TF, N_LF) signal after receiving the MI_1SL_Terminate signal or of the MI_1SL_Intermediate_Request signal.
[image:]
Figure 8-98 – On-demand 1SL Control_Sk process
The behaviour of the proactive 1SL Control_Sk process is defined in Figure 8-99. If the MI_1SL_Enable is asserted, the result (N_TF, N_LF) is reported every one second.
[image:]
Figure 8-99 – Proactive 1SL Control_Sk process
[bookmark: _Toc319901744]8.1.16	CSF insert process
[image:]
Figure 8-100 – CSF insert process
Figure 8-100 shows the CSF insert process symbol and Figure 8-101 defines the behaviour. If any of the aCSF-RDI, aCSF-FDI or aCSF-LOS signals are true, the CSF insert process continuously generates ETH_CI traffic units where the ETH_CI_D signal contains the CSFtraffic unit until the condition no longer holds, ie all of aCSF-RDI, aCSF-FDI and aCSF-LOS are false. At this point, CSF traffic unit(s) with DCI (Defect Clear Information) are generated indicating that the defect has been cleared, if MI_CSFdciEnable = True.
NOTE – Figure 8-zz+1 shows a case where a single CSF traffic unit with DCI is generated. However, the detail transmission condition (eg. transmission period, the number of traffic unit) is out of scope of this recommendation.
The generated CSF traffic units are inserted in the incoming stream, i.e., the output stream contains the incoming traffic units and the generated CSF traffic units.
[image:]
Figure 8-101 – CSF insert behaviour
If exactly one of aCSF-RDI, aCSF-FDI and aCSF-LOS are set, the getCSFType() function returns RDI, FDI or LOS as appropriate. The behaviour of getCSFType() when more than one of the conditions are set is for further study.
NOTE - As described in [ITU-T Y.1731], triggering CSF is client and application specific. Ideally all clients and applications should ensure that at most one of the conditions is set at any given time.
The period between consecutive CSF traffic units is determined by the MI_CSF_Period parameter. Allowed values are once per second and once per minute; the encoding of these values is defined in Table 8-4. Note that these encoding are the same as for the LCK/AIS generation process.
Table 8-4 – CSF period values
	3-bits
	Period value
	Comments

	000
	Invalid value
	Invalid value for CSF PDUs

	001
	FFS
	FFS

	010
	FFS
	FFS

	011
	FFS
	FFS

	100
	1s
	1 frame per second

	101
	FFS
	FFS

	110
	1 min
	1 frame per minute

	111
	FFS
	FFS

The ETH_CI_D signal contains a source and destination address field and an M_SDU field. The format of the M_SDU field for CSF traffic units is defined in clauses 9.1 and 9.21 of [ITUT G.8013]. The MEL in the M_SDU field is determined by the MI_ MEL input parameter.
The values of the source and destination address fields in the ETH_CI_D signal are determined by the local MAC address (SA) and the multicast class 1 DA as described in [ITU-T G.8013] (DA). The value of the multicast class 1 DA is 01-80-C2-00-00-3x, where x is equal to MI_MEL as defined in clause 10.1 of [ITU-T G.8013]. The value of MI_MEP_MAC should be a valid unicast MAC address.
The CSF_Type is encoded in the three bits of the flags field in the CSF PDU using the values from Table 8-5.
Table 8-5 – CSF type values
	Value
	Type
	Comments

	000
	LOS
	Client loss of signal

	001
	FDI/AIS
	Client forward defect indication

	010
	RDI
	Client reverse defect indication

	011
	DCI
	Client defect clear indication

The periodicity (as defined by MI_CSF_Period) is encoded in the three least significant bits of the flags field in the CSF PDU using the values from Table 8-4.
The CSF (SA, MEL, type, period) function generates a CSF traffic unit with the SA, MEL, type and period fields defined by the values of the parameters. Figure 8-102 below shows the ETH_CI_D signal format resulting from the function call from Figure 8-101:
	OAM=CSF(
MI_MEP_MAC,
MI_MEL,
CSF_Type,
MI_CSF_Period
)
	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=01-80-C2-00-00-3x, where x=MI_MEL

	5
	
	SA=MI_MEP_MAC

	9
	

	13
	Ethertype=89-02
	MEL=
MI_ MEL
	Version=0
	Opcode=52 (CSF)

	17
	0
	0
	CSF
Type
	Period=
MI_CSF_Period
	TLV Offset = 0
	END TLV=0
	

Figure 8-102 – CSF traffic unit
[bookmark: _Toc319901745]8.1.17	CSF extract process

Figure 8-103 – CSF extract process
The CSF extract process extracts ETH_CI_CSF signals from the incoming stream of ETH_CI traffic units. ETH_CI_CSF signals are only extracted if they belong to the MEL as defined by the MI_MEL input parameter.
If an incoming traffic unit is a CSF traffic unit belonging to the MEL defined by MI_MEL, the ETH_CI_CSF signal will be extracted from this traffic unit and the traffic unit will be filtered. The ETH_CI_CSF is the CSF specific information contained in the received traffic unit. All other traffic units will be transparently forwarded. The encoding of the ETH_CI_D signal for CSF frames is defined in clause 9.12 of [ITU-T G.8013].
The criteria for filtering are based on the values of the fields within the M_SDU field of the ETH_CI_D signal:
•	length/type field equals the OAM Ethertype (89-02)
•	MEL field equals MI_MEL
•	OAM type equals CSF (52), as defined in clause 9.12 of [ITU-T G.8013].
This is defined in Figure 8-103. The function CSF(D) extracts the CSF specific information from the received traffic unit.
[image:]
Figure 8-104 – CSF extract behaviour
[bookmark: _Toc169516242][bookmark: _Toc169516244][bookmark: _Toc169516245][bookmark: _Toc169516251][bookmark: _Toc169516338][bookmark: _Toc169516339][bookmark: _Toc169516345][bookmark: _Toc81793509][bookmark: _Toc84844978][bookmark: _Toc96922600][bookmark: _Toc98151646][bookmark: _Toc319901746][bookmark: _Toc328035804][bookmark: _Toc339540511][bookmark: _Toc341956988]
8.1.18	BNM insert process
[image:]
Figure 8-xx – BNM insert process
Figure 8-xx shows the BNM symbol and Figure 8-xx+1defines the behaviour. The NominalBW and CurrentBW are continuously signalled from the server layer, and contain respectively the nominal full transmission bandwidth of the link at the server layer, and the current available transmission bandwidth.
NOTE – The NominalBW and CurrentBW are generated by adaptation functions of some specific server layer technology such as microwave links.
When MI_BNM_Enable is set, the BNM insert process monitors the current and nominal transmission bandwidths, and when the current transmission bandwidth falls below the nominal bandwidth for a given hold time, it generates ETH_CI traffic units where the ETH_CI_D signal contains a BNM traffic unit. If MI_BNM_Enable_Always is set, ETH_CI traffic units where the ETH_CI_D signal contains a BNM traffic unit are also transmitted periodically when there is no degradation. If MI_BNM_Enable_SF is set, ETH_CI traffic units where the ETH_CI_D signal contains a BNM traffic unit are also transmitted periodically when the link fails in the tranmit direction (i.e., when the current transmission bandwidth is 0).
When the current transmission bandwidth changes, MI_BNM_Hold_Time specifies the hold time before the first notification is sent. Allowed values are between 0 and 10s (in increments of 10ms). At the end of the hold time, a number of BNM notifications containing the new value are sent quickly (the exact number and period is implementation-specific) in order to increase the reliability of the notification.
NOTE – BNM notifications are expected to be used where the server layer is a microwave link that uses adaptive bandwidth modulation. A hold time is used to prevent notifications if the degradation is very short, such as might be caused by an object passing through the line of sight of the microwave link. The applicability of BNM notifications to other technologies is for further study.
The traffic units are generated with the Source MAC specified by MI_MEP_MAC, the MEG level specified by MI_Client_MEL, and the priority specified by MI_BNM_Pri. During degradation or link failure, they are generated periodically at the period specified by MI_BNM_Period; allowed values are 1s, 10s and 1min. BNM_Fast_Period and BNM_Fast_Count in the Figure 8-xx+1 are implementation specific parameters that allow sending a number of the first BNM frames more quickly. The value of BNM_Fast_Period must be less than or equal to MI_BNM_Period. If MI_BNM_PortID is set, the Port ID field is set to the value specified in MI_BNM_PortID. Otherwise the Port ID field is set to 0 to indicate that no Port ID was configured.
The generated BNM traffic units are inserted in the incoming stream, i.e., the output stream contains the incoming traffic units and the generated BNM traffic units.
The BNM insert process continues generating BNM traffic units until the current bandwidth is restored to the nominal bandwidth. At that point a number of the final BNM traffic units are generated with the current bandwidth set equal to the nominal bandwidth. If MI_BNM_Enabled_Always is not set, generation of BNM traffic units then ceases. Otherwise, BNM traffic units continue to be generated periodically at the period specified by MI_BNM_Period.
[image:]
Figure 8-xx+1 – BNM insert behaviour

To prevent very frequent changes in the notified bandwidth, server layer should avoid reporting consecutive changes of the CurrentBW within an implementation specific time: the filtering mechanism is implementation and server layer specific.
The BNM(SA, MEL, Period, NominalBW, CurrentBW, PortID) function generates an ETH_CI traffic unit containing a source and destination address field and an M_SDU field. The source address is set to the given SA, and the destination address is set to the multicast class 1 DA as described in [ITUT G.8013]. The format of the M_SDU field for BNM traffic units is defined in [ITUT G.8013]. The MEL, Period, Current Bandwidth, Nominal Bandwidth and Port ID fields are set to the given values. Figure 8-xx+2 below shows the ETH_CI_D signal format resulting from the function call from Figure 8-xx+1:
OAM=BNM(
MI_MEP_MAC,
MI_Client_MEL,
MI_BNM_Period,
NominalBW
ReportedBW,
PortID
)
	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=01-80-C2-00-00-3x, where x=MI_MEL

	5
	
	SA=MI_MEP_MAC

	9
	

	13
	Ethertype=89-02
	MEL=
MI_ MEL
	Version=0
	Opcode=32 (GNM)

	17
	0
	0
	0
	0
	0
	Period=
MI_BNM_Period
	TLV Offset = 13
	Sub Opcode=1 (BNM)
	Nominal Bandwidth

	21
	Nominal Bandwidth Continued
	Current Bandwidth

	25
	Current Bandwidth Continued
	Port ID

	29
	Port ID Continued
	End TLV (0)

Figure 8-xx+2 – BNM traffic unit

NOTE - the Period field in the generated BNM Traffic Unit is always set to MI_BNM_Period, even for the initial traffic units generated after the expiry of the hold time, which are transmitted at an implementation-specific faster period. This ensures the correct operation of the BNM extract process in the receiving MEP.

8.1.19	BNM extract process
The BNM extract process processes the received BNM traffic units and the complementing P and DE signals.
 [image:]
Figure 8-yy – BNM extract process
Figure 8-yy shows the BNM extract process symbol and Figure 8-yy+1 defines the behaviour. When BNM traffic units are received, if the DA is equal to the MEP’s MAC, or it is a multicast class 1 address, then the SA, Port ID, Current Bandwidth and Nominal Bandwidth are extracted from the traffic unit and, if different to the previous values, are passed to the Management System via the MI_BW_Report(SA, PortID, NominalBW, CurrentBW) signal.
NOTE - Use of BNM for protection switching is for further study.
[image:]
Figure 8-yy+1 – BNM extract behaviour
Based on the received BNM frames and/or timer expiration the MEP is able to report the following information:
· Full bandwidth conditions when c_bw = n_bw ≠ 0
· Degraded conditions when c_bw < n_bw and c_bw ≠ 0
· Link faults conditions when c_bw = 0 and n_bw ≠ 0
· Unknown link conditions when c_bw = n_bw = 0
NOTE - the c_bw/n_bw is the value in MI_BW_Report, not the value in the BNM.
When the MEP reports unknown link conditions, the management system, if needed, can correlate this information with other network information (e.g., the network topology, the alarms, and SF status of this or other links) to determine which is the actual condition of the link.
A timer is used in the BNM Extract process to detect when BNM traffic units are no longer being received. This is set to K times the period extracted from the Period field in the last received traffic unit. The BNM Extract process therefore does not require any local Management Information (MI) to set the period.

8.1.20	Expected Defect (ED) processes
8.1.20.1		Overview
Figure 8-zz shows the different processes inside MEPs that are involved in Expected Defect Message signals carried in MCC protocol data units.
In the source side of ETHx to MCC adaptation function, EDM signals are generated in EDM generation process when MI_EDM_Enable is set. MCC generation process encapsulates the signals into MCC PDUs and generates ETH_AI_D traffic units together with the complementing P and DE signals. In the sink side, the MCC reception process receives ETH_AI traffic units and extracts EDM signals from MCC PDUs. Finally EDM reception process terminates the signals and generates MI_EDM_Received (MEP_ID, Duration) signals to EMF function.
[image:]
Figure 8-zz – Overview of Expected Defect processes
8.1.20.2		EDM Generation Process
[image:]
Figure 8-zz+1 –EDM Generation process
Figure 8-zz+1 shows the EDM Generation process symbol and Figure 8-zz+2 defines the behaviour. When MI_EDM_Enable is set, the process generates EDM signal. Based on the EDM signals, MCC PDUs are generated at the MCC Generation process. As a result, MCC PDUs are signalled to peer MEPs that CCM transmission will be interrupted or has not yet commenced, and hence that Loss of Continuity defects and consequent actions should be suppressed.
EDM signals are generated periodically at the specified period and containing the specified Duration until MI_EDM_Enable is unset.
[image:]
Figure 8-zz+2 – EDM Generation behaviour
In the MCC Generation process, ETH_AI traffic units containing a source and destination address field and an M_SDU field are generated. The format of the M_SDU field for MCC and EDM information is defined in [ITUT G.8013]. The EDM signal contains the MEP ID set to MI_MEP_ID and the Expected Defect Duration set to MI_EDM_Duration. In addition, MCC PDUs are generated with the priority set to MI_MCC_Pri, the SA set to the local MAC address by MI_MEP_MAC and the MEL set to MI_MEL. The value of the multicast class 1 DA is 0180-C2-00-00-3x, where x is equal to MI_MEL, as defined in clause10.1 of [ITU-T G.8013]. Figure 8-zz+3 shows the ETH_CI_D signal format resulting from the EDM Generation process and MCC Generation process.
	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=01-80-C2-00-00-3x, where x=MI_MEL

	5
	
	SA=MI_MEP_MAC

	9
	

	13
	Ethertype=89-02
	MEL= MI_ MEL
	Version=0
	Opcode=41 (MCC)

	17
	Flags=0
	TLV Offset = 10
	OUI=00-19-A7

	21
	OUI Continued
	SubOpcode=1 (EDM)
	MEP ID=MI_MEP_ID

	25
	Expected Duration=MI_EDM_Duration

	25
	END TLV (0)
	

Figure 8-zz+3 – EDM traffic unit

8.1.20.3		EDM Reception Process
[image:]
Figure 8-zz+4 –EDM Reception process
Figure 8-zz+4 shows the EDM Reception process symbol and Figure 8-zz+5 defines the behaviour. When EDM signals are received, then the MEP ID and Expected Defect Duration are extracted from the EDM signals and passed to the EMF via the MI_EDM_Received (MEP_ID, Duration) signal.
[image:]
Figure 8-zz+5 –EDM Reception behaviour

NOTE - It is expected that the EMF handles the MI_EDM_Received (MEP_ID, Duration) signal by unsetting MI_CC_Enable in the corresponding ETHx_FT_Sk or ETHG_FT_Sk function as appropriate, for the specified duration, if it has been configured to enable this functionality by the user. Further examples can be found in Appendix IX.

8.2	Queueing process
The queueing process buffers the received ETH_CI_D for output (see Figure 8-105). The queueing process is also responsible for discarding frames if their rate at the ETH_CI_D is higher than the <server>_AI_D can accommodate, as well as for maintaining PM counters for discarded frames. Additional performance monitor counters (MI_PM_count) per [IEEE 802.1Q] are for further study.

[bookmark: _Toc172093990]Figure 8-105 – Queueing process
The queueing process is configured using the MI_Queue_Config input parameter. This parameter specifies the mapping of ETH_CI_D into the available queues based on the value of the ETH_CI_P signal.
Furthermore, it specifies whether the value of the ETH_CI_DE signal should be taken into account when discarding frames. If this needs to be taken into account, ETH_CI with ETH_CI_DE set to drop eligible should have a higher probability of being discarded than ETH_CI with ETH_CI_DE set to drop ineligible.
[bookmark: _Toc81793512][bookmark: _Toc84844979][bookmark: _Toc96922601][bookmark: _Toc98151647][bookmark: _Toc319901747][bookmark: _Toc328035805][bookmark: _Toc339540512][bookmark: _Toc341956989]8.3	Filter process

[bookmark: _Toc172093991]Figure 8-106 – Filter process
The filter process maintains the filter action for each of the 33 group MAC addresses indicating control frames as defined in clause 6.3 of [ITU-T G.8012]. Valid filter actions are "pass" and "block". The filter action for these 33 MAC addresses can be configured separately. If the destination address of the incoming ETH_CI_D matches one of the above addresses, the filter process shall perform the corresponding configured filter action:
•	Block: The frame is discarded by the filter process.
•	Pass: The frame is passed unchanged through the filter process.
If none of the above addresses match, the ETH_CI_D is passed.
Valid filter actions for specific services are indicated in [ITU-T G.8011] as the service attributes. The default filter action value shall be "pass" for all frames with the exception of MAC control frames for which the default value shall be "block".
[bookmark: _Toc76268483][bookmark: _Toc81793513][bookmark: _Toc84844980][bookmark: _Toc96922602][bookmark: _Toc98151648][bookmark: _Toc319901748][bookmark: _Toc328035806][bookmark: _Toc339540513][bookmark: _Toc341956990]8.4	Replicate process
See Figure 8-107.

[bookmark: _Toc172093992]Figure 8-107 – Replicate processes
The <Srv>/ETH_A_So replicate process shall:
•	replicate ETH_CI traffic units received on the input from the queueing process and deliver them as ETH_PI to the ETHF_PP interface and the 802.3 protocols process;
•	replicate ETH_CI traffic units received on the input from the ETH_TFP and deliver them as ETH_PI to the ETHTF_PP interface and the 802.3 protocols process.
The <Srv>/ETH_A_Sk replicate process shall:
•	replicate ETH_CI traffic units received on the input from the 802.3 protocols process and deliver them to the ETH_TFP and to the filter process;
•	deliver ETH_PI traffic units received on the input from the ETHF_PP interface to the ETH_TFP;
•	deliver ETH_PI traffic units received on the input from the ETHTF_PP to the filter process.
[bookmark: _Toc76268487][bookmark: _Toc76268492][bookmark: _Toc76268494][bookmark: _Toc81793514][bookmark: _Toc84844981][bookmark: _Toc96922603][bookmark: _Toc98151649][bookmark: _Toc319901749][bookmark: _Toc328035807][bookmark: _Toc339540514][bookmark: _Toc341956991]8.5	802.3 protocols processes
802.3 protocols processes include source and sink handling of MAC control and optionally IEEE 802.3 slow protocols, as shown in Figure 8-108. The following subclauses specify processes for each of the illustrated process blocks.

[bookmark: _Toc172093993]Figure 8-108 – 802.3 protocols processes
[bookmark: _Toc81793515][bookmark: _Toc319901750]8.5.1	MAC control process
The Ethernet MAC control function specified in clause 31 of [IEEE 802.3] shall be implemented in all interfaces conforming to this Recommendation.
The process intercepts all MAC control frames, other frames are passed through unchanged. MAC control frames are characterized by the length/type value that is used (88-08). Every MAC control frame contains an Opcode. MAC control frames are handled based on the value of the Opcode. If the Opcode is not supported, the frame is discarded. If the Opcode is supported, the frame is processed by the corresponding MAC control function. In Annex 31A of [IEEE 802.3], the Opcode assignment is defined.
[bookmark: _Toc76268501][bookmark: _Toc81793516][bookmark: _Toc319901751]8.5.1.1	802.3 pause processes
[bookmark: _Toc76268502]The pause process handles MAC control frames with the Opcode value 00-01, as described in Annex 31B of [IEEE 802.3]. There are two kinds of pause processes: pause transmit process and pause receive process.
[bookmark: _Toc81793517]8.5.1.1.1	Pause transmit process

[bookmark: _Toc172093994]Figure 8-109 – Pause transmit process
If enabled (MI_TxPauseEnable = true), this optional process generates pause frames according to clause 31 and Annexes 31A and 31B of [IEEE 802.3].
The generation of the pause frame is triggered as soon as a CI_PauseTrigger is received. The CI_PauseTrigger primitive that has triggered the pause frame generation conveys the pause_time parameter used in the generated pause frame.
The CI_PauseTrigger is generated as a result of the IEEE 802.3 service interface signal MA_CONTROL.request described in clause 31.3.1 of [IEEE 802.3]. The generation of the MA_CONTROL.request is outside of the scope of this Recommendation.
[bookmark: _Toc76268503][bookmark: _Toc81793518]8.5.1.1.2	Pause receive process

[bookmark: _Toc172093995]Figure 8-110 – Pause receive process
On receipt of a pause request control frame, no action shall be performed (i.e., the pause request control frame shall be silently discarded).
[bookmark: _Toc81793519][bookmark: _Toc319901752]8.5.2	802.3 slow protocols processes
[bookmark: _Toc76268506]This optional process inspects all slow protocol frames, other frames are passed through unchanged. Slow protocol frames are characterized by the length/type value that is used (88-09). Every slow protocol frame contains a subtype field that distinguishes between different slow protocols. Table 57A-3 of [IEEE 802.3] defines the assignment of subtypes to protocols. The processing of the slow protocol frames depends on the value of the subtype field. There are three options:
•	Illegal: The subtype field contains an illegal value (>10) and is discarded.
•	Unsupported: The subtype field indicates a protocol that is not supported and the frame is passed through.
•	Supported: The subtype field indicates a protocol that is supported, the frame is processed by the corresponding protocol function.
[bookmark: _Toc81793520][bookmark: _Toc319901753]8.5.2.1	LACP process
The LACP process inserts and extracts LACP PDUs. LACP PDUs have a subtype=1. The LACP PDUs are processed and generated by the aggregation control process in the ETY-Np/ETH-LAG-Na_A adaptation function (clause 9.7.1.1, see Figures 9-66 and 9-68).
[bookmark: _Toc76268507][bookmark: _Toc81793521][bookmark: _Toc319901754]8.5.2.2	LAMP process
[bookmark: _Toc76268508]The LAMP process inserts and extracts LAMP PDUs. LAMP PDUs have a subtype=2. The LAMP PDUs are processed and generated by the Aggregation Control Process in the ETY-Np/ETH-LAG-Na_A adaptation function (clause 9.7.1.1, see Figures 9-66 and 9-68).
[bookmark: _Toc81793522][bookmark: _Toc319901755]8.5.2.3	OAM process
The OAM process generates and processes OAM frames according to clause 57 of [IEEE 802.3]. The OAM PDUs have subtype=3.
[bookmark: _Toc214354004][bookmark: _Toc319901756]8.5.2.4	OSSP Process
The organization specific slow protocol (OSSP) process inserts and extracts OSSP PDUs. The OSSP PDUs have subtype=10. The OSSP process provides a messaging channel for other protocols. The OSSP multiplexes multiple protocols using an organizational unique identifier (OUI).
The OSSP source process encodes input PDU signals into OSSP frames. An OSSP PDU has:
DA=01-80-C2-00-00-02(hex)
SA=Local MAC address
Ethertype=88-09 (hex)
Slow Protocol Type=0A(hex)
OUI= Identifying Specific Protocol
PDU=PDU for the protocol
The OSSP sink process will decode the OUI and PDU information from the incoming frame. The PDU will be forwarded to the protocol function identified by the decoded OUI. If there is no protocol process associated with the OUI the PDU is discarded.
The supported OUI's are defined below.
8.5.2.4.1	ITU slow protocols
The ITU slow protocols use OUI=0x0019A7. The ITU-T slow protocol process allows for multiplexing multiple ITU defined protocols by using an ITU-T subtype.
The ITU slow protocols source process takes an incoming PDU and will create an ITU-T slow protocol PDU by prepending the incoming PDU with an ITU-T subtype. The resulting ITU-T slow protocol PDU is forwarded to the OSSP process.
ITU slow protocols sink process takes an incoming ITU-T slow protocol PDU and removes the ITU-T subtype from it. The resulting PDU is forwarded to the protocol process identified by the removed ITU-T subtype. If there is no protocol process associated with the ITU-T subtype the PDU is discarded.
Supported ITU-T subtypes:
01: Ethernet synchronization message channel (ESMC) as defined in [ITU-T G.8264].
[bookmark: _Toc319901757][bookmark: _Toc328035808][bookmark: _Toc339540515][bookmark: _Toc341956992]8.6	MAC length check process

[bookmark: _Toc172093996]Figure 8-111 – MAC length check function
This process checks whether the length of the MAC frame is allowed. When the processed signal is ETYn_AI frames shorter than 64 bytes are discarded. Frames longer than MI_MAC_Length are discarded.
Note that frames shorter than 64 bytes are only foreseen on non-ETYn interfaces in connection with removal of VLAN tags. Such frames must be padded to a length of 64-bytes according to clause 4 of [IEEE 802.3].
Table 8-6 shows the values corresponding to the IEEE defined frame lengths.
Table 8-6 – IEEE 802.3 MI_MAC_Length values
	Frame type
	MI_MAC_Length

	Basic
	1518

	Q-tagged
	1522

	Envelope
	2000

[bookmark: _Toc319901758][bookmark: _Toc328035809][bookmark: _Toc339540516][bookmark: _Toc341956993]8.7	MAC frame counter process

[bookmark: _Toc172093997]Figure 8-112 – MAC frame count function
This process passes MAC frames and counts the number of frames that are passed.
MI_pOctetsTransmittedOK[1..Np] as per clause 30 of [IEEE 802.3].
MI_pFramesTransmittedOK[1..Np] as per clause 30 of [IEEE 802.3].
[bookmark: _Toc81793526][bookmark: _Toc84844985][bookmark: _Toc96922607][bookmark: _Toc98151653][bookmark: _Toc319901759][bookmark: _Toc328035810][bookmark: _Toc339540517][bookmark: _Toc341956994][bookmark: _Ref497117217][bookmark: _Toc497287025][bookmark: _Ref526576698][bookmark: _Toc530884845][bookmark: _Toc15457824][bookmark: _Toc15458596][bookmark: _Toc15459368][bookmark: _Toc15460546][bookmark: _Toc22628708][bookmark: _Toc23042804][bookmark: _Toc24783282][bookmark: _Toc27284279][bookmark: _Toc27887181][bookmark: _Toc27887925]8.8	Server-specific common processes
[bookmark: _Toc81793527][bookmark: _Toc84844986][bookmark: _Toc96922608][bookmark: _Toc98151654]For some server signals MAC FCS generation is not supported. This will be defined in the serverspecific adaptation functions.
[bookmark: _Toc126646774][bookmark: _Toc319901760]8.8.1	MAC FCS generation process

Figure 8-113 – MAC FCS generation process
The MAC FCS is calculated over the ETH_CI traffic unit and is inserted into the MAC FCS fields of the frame as defined in clause 4.2.3 of [IEEE 802.3].
[bookmark: _Toc126646775][bookmark: _Toc319901761]8.8.2 	MAC FCS check process

Figure 8-114 – MAC FCS check process
The MAC FCS is calculated over the ETH_CI traffic unit and checked as specified in clause 4.2.4.1.2 of [IEEE 802.3]. If errors are detected, the frame is discarded. Errored frames are indicated by FrameCheckSequenceErrors.
[bookmark: _Toc126646776][bookmark: _Toc319901762]8.8.3	802.1AB/X protocols processes
802.1AB/X protocols processes include source and sink handling of 802.1AB and 802.1X protocols, as shown in Figures 8-79 and 8-80. These processes are used in ETYn/ETH_A functions.
The following clauses specify processes for each of the illustrated process blocks.
[bookmark: _Toc126646777][bookmark: _Toc319901763]8.8.3.1	802.1X protocol process
The 802.1X protocol block implements the port-based network access control as per [IEEE 802.1X].

Figure 8-115 – 802.1X protocols processes
In the sink direction, the multiplexer separates the 802.1X PDUs from the rest of the frames based on MAC address 01-80-C2-00-00-03. The former are delivered to the 802.1X process, the latter are passed on in the sink direction. In the source direction, 802.1X PDUs are multiplexed with the rest of the frames.
In the function descriptions in which it appears, the 802.1X process is optional.
[bookmark: _Toc126646778][bookmark: _Toc319901764]8.8.3.2	802.1AB protocol process
The 802.1AB protocol block implements the link layer discovery protocol as per [IEEE 802.1AB].

Figure 8-116 – 802.1AB protocols processes
In the sink direction, the multiplexer separates the 802.1AB PDUs from the rest of the frames. The former are delivered to the 802.1AB process, the latter are passed on in the sink direction. In the source direction, 802.1AB PDUs are multiplexed with the rest of the frames. Frames are defined by: MAC address 01-80-C2-00-00-0E, Ethertype 88-CC.
In the function description in which it appears, the 802.1AB process is optional.
[bookmark: _Toc126646779][bookmark: _Toc319901765]8.8.4	Link quality supervision
Counts of transmitted and received octets and frames are maintained in <Srv>/ETH_A functions per the requirements of clause 30 of [IEEE 802.3]. Discarded jabber frames are counted in ETYn/ETH_A_So functions.
Additional link quality performance monitors as per clause 30 of [IEEE 802.3] are for further study.
[bookmark: _Toc126646780][bookmark: _Toc319901766]8.8.5	FDI/BDI generation and detection
For further study.
[bookmark: _Toc214354015][bookmark: _Toc319901767]8.8.6	ETH-specific GFP-F process
[bookmark: _Toc214354016][bookmark: _Toc319901768]8.8.6.1	ETH-specific GFP-F source process
See clause 8.5.4.1.1 of [ITU-T G.806]. GFP pFCS generation is disabled (FCSenable=false). The UPI value for frame-mapped Ethernet shall be inserted (as defined in Table 6-3 of [ITU-T G.7041]). The Ethernet frames are inserted into the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041]. Client management frame insertion is governed by the consequent actions.
Consequent actions
aCSF-RDI CI_SSFrdi and CSFrdifdiEnable and CSFEnable
aCSF-FDI CI_SSFfdi and CSFrdifdiEnable and CSFEnable
aCSF-LOS CI_SSF and CSFEnable
[bookmark: _Toc214354017][bookmark: _Toc319901769]8.8.6.2	ETH-specific GFP-F sink process
See clause 8.5.4.1.2 of [ITU-T G.806]. GFP pFCS checking, GFP p_FCSError, p_FDis are not supported (FCSdiscard=false). The UPI value for frame-mapped Ethernet shall be expected (as defined in Table 6-3 of [ITU-T G.7041]). The Ethernet frames are extracted from the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041]. The generic defects and consequent actions are extended as follows.
Defects
dCSF-RDI: GFP client signal fail-remote defect indication (dCSF-RDI) is raised when a GFP client management frame with the RDI UPI (as defined in Table 6-4 of [ITU-T G.7041]) is received. dCSF-RDI is cleared when no such GFP client management frame is received in N x 1000 ms (a value of 3 is suggested for N), a valid GFP client data frame is received, or a GFP client management frame with the DCI UPI is received.
dCSF-FDI: GFP client signal fail-forward defect indication (dCSF-FDI) is raised when a GFP client management frame with the FDI UPI (as defined in Table 6-4 of [ITU-T G.7041]) is received. dCSF-FDI is cleared when no such GFP client management frame is received in N x 1000 ms (a value of 3 is suggested for N), a valid GFP client data frame is received, or a GFP client management frame with the DCI UPI is received.
dCSF-LOS: GFP client signal fail-loss of signal (dCSF-LOS) is raised when a GFP client management frame with the LOS UPI (as defined in Table 6-4 of [ITU-T G.7041]) is received. dCSF-LOS is cleared when no such GFP client management frame is received in N x 1000 ms (a value of 3 is suggested for N), a valid GFP client data frame is received, or a GFP client management frame with the DCI UPI is received.
Consequent actions
aSSFrdi dCSF-RDI and CSFrdifdiEnable
aSSFfdi dCSF-FDI and CSFrdifdiEnable
aSSF GFP_SF or dUPM or dCSF-LOS
Defect correlations
cCSF (dCSF-RDI or dCSF-FDI or dCSF-LOS) and (not dUPM) and (not GFP_SF) and CSF_Reported.
The GFP_SF term refers collectively to the set of defects detected in the Common GFP-F sink process (see clause 8.5.3.2 of [ITU-T G.806]), the server-specific GFP-F sink process (see clause 8.5.2.2 of [ITU-T G.806]), or the server-specific process (see clause 11) with the consequent action of aGFP_SF. This includes dEXM, dLFD, any server-specific defects related to the GFP-F mapping, and server layer TSF.
[bookmark: _Toc319901770][bookmark: _Toc328035811][bookmark: _Toc339540518][bookmark: _Toc341956995]8.9	QoS related processes
[bookmark: _Toc319901771]8.9.1	Queue
The queue process stores received ETH_CI traffic units and associated signals, and forwards a traffic unit if requested to do so by the connected process.

Figure 8-117 – Queue process
There are several parameters on the queue:
•	Queue depth: The maximum size of the queue in bytes. An incoming ETH_CI traffic unit is dropped if there is insufficient space to hold the whole unit.
•	Dropping threshold: If the queue is filled beyond this threshold, incoming ETH_CI traffic units accompanied by the ETH_CI_DE signal set are dropped.
[bookmark: _Toc319901772]8.9.2	Priority splitter
The priority splitter process forwards received ETH_CI onto different output ports depending on the value of the ETH_CI_P signal.

Figure 8-118 – Priority splitter function
The mapping of ETH_CI_P values to output ports of the priority splitter function needs to be configured.
[bookmark: _Toc319901773]8.9.3	Priority merger
The priority merger process forwards received ETH_CI on one of its input ports to a single output port.

Figure 8-119 – Priority merger function
Nothing has to be configured on this process.
[bookmark: _Toc319901774]8.9.4	Conditioner
The conditioner determines the conformance of the incoming ETH_CI traffic units. The level of conformance is expressed as one of three colours; green, yellow or red.

Figure 8-120 – Conditioner process
Red conformance means that the ETH_CI traffic unit is discarded; yellow conformance means that for the ETH_CI traffic units the associated ETH_CI_DE signal is set to true; green conformance means that the ETH_CI traffic unit is forwarded unchanged and the ETH_CI_DE signal is set to false.
Compliance for a bandwidth profile is described by four parameters. The parameters are:
1)	Committed information rate (CIR) expressed as bits per second. CIR must be 0.
2)	Committed burst size (CBS) expressed as bytes. When CIR > 0, CBS must be ≥ maximum transmission unit size allowed to enter the function.
3)	Excess information rate (EIR) expressed as bits per second. EIR must be 0.
4)	Excess burst size (EBS) expressed as bytes. When EIR > 0, EBS must be ≥ maximum Ethernet frame allowed to enter the network.
Two additional parameters are used to determine the behaviour of the bandwidth profile algorithm. The algorithm is said to be in colour-aware mode when each incoming Ethernet frame already has a level of conformance colour associated with it and that colour is taken into account in determining the level of conformance to the bandwidth profile parameters. The bandwidth profile algorithm is said to be in colour-blind mode when the level of conformance colour (if any) already associated with each incoming Ethernet frame, is ignored in determining the level of conformance. Colour-blind mode support is required at the UNI. Colour-aware mode is optional at the UNI.
1)	Coupling flag (CF) must have only one of two possible values, 0 or 1.
2)	Colour mode (CM) must have only one of two possible values, "colour-blind" and "colour-aware".
All these parameters have to be configured at the conditioner function. The conformance algorithm is defined in [MEF 10.3].
[bookmark: _Toc319901775]8.9.5	Scheduler
The scheduler process forwards ETH_CI from its input ports to the corresponding output ports of the scheduler function according to a specified scheduling algorithm.

Figure 8-121 – Scheduler process
The scheduling algorithm and its parameters must be configured.
The scheduling algorithms are for further study.
[bookmark: _Toc319901776][bookmark: _Toc328035812][bookmark: _Toc339540519][bookmark: _Toc341956996]9	Ethernet MAC layer (ETH) functions
Figure 1-1 illustrates all the ETH layer network, server and client adaptation functions. The information crossing the ETH flow point (ETH_FP) is referred to as the ETH characteristic information (ETH_CI). The information crossing the ETH access point (ETH_AP) is referred to as ETH adapted information (ETH_AI).
ETH sublayers can be created by expanding an ETH_FP as illustrated in Figure 9-1.
[image:]
[bookmark: _Ref126640830]Figure 9-1 – ETH sublayering
Figure 9-1 illustrates the basic flow termination and adaptation functions involved and the possible ordering of these functions. The ETHx/ETH-m functions multiplex ETH_CI streams. The ETHx and ETHG flow termination functions insert and extract the proactive ITU-T G.8013/Y.1731 OAM information (e.g., CCM). The ETHDy flow termination functions insert and extract the on-demand ITU-T G.8013/Y.1731 OAM information (e.g., LBM, LTM). The ETHx/ETH and ETHG/ETH adaptation functions insert and extract the administrative and control ITU-T G.8013/Y.1731 OAM information (e.g., LCK, APS).
Any combination that can be constructed by following the directions in the figure is allowed. Some recursion is allowed as indicated by the arrows upwards; the number next to the arrow defines the number of recursions allowed.
Note that the ETHx sublayers in Figure 9-1 correspond to the ETH0 (top), ETH1 (middle) and ETH2 (bottom) in Figure 7-5 of [ITU-T G.8010].
NOTE - ETHx/ETHG adaptation function is not included in Figure 9-1 because this atomic function is not used in ETH MEP and MIP functions described in clause 9.8.

ETH characteristic information
The ETH_CI is a stream of ETH_CI traffic units complemented with ETH_CI_P, ETH_CI_DE, ETH_CI_SSF and ETH_CI_SSD signals. An ETH_CI traffic unit defines the ETH_CI_D signal as illustrated in Figure 9-2. Each ETH_CI traffic unit contains a source address (SA) field, a destination address (DA) field and an M_SDU field, this can be further decomposed into a length/type field and a payload field; the payload field may be padded.

Figure 9-2 – ETH characteristic information
The SA and DA field contain 48 byte MAC addresses as defined in [IEEE 802.3].
There are two types of ETH_CI traffic units: data traffic units and OAM traffic units. If the L/T field equals the OAM Etype value (89-02 as defined in clause 10 of [ITU-T G.8013]) the ETH_CI traffic unit is an ETH_CI OAM traffic unit, otherwise it is an ETH_CI data traffic unit.
The payload field of an ETH_CI OAM traffic unit can be decomposed into the maintenance entity group level field (MEL), the version field (Ver), the Opcode field (Opc), the flags field (F), the TLV offset field (Offs) and Opcode specific fields. This structure of ETH_CI OAM traffic units is defined in clause 9 of [ITU-T G.8013].
Functions for traffic units
The following functions are used in this Recommendation to indicate the various fields of a traffic unit:
	SA(Traffic_Unit): returns the value of the SA field in the traffic unit.
	DA(Traffic_Unit): returns the value of the DA field in the traffic unit.
	Etype(Traffic_Unit): returns the value of the Ethertype field in the traffic unit.
	OPC(OAM Traffic_Unit): returns the value of the Opcode field in the OAM traffic unit; returns an undefined value if the traffic unit is not an OAM traffic unit.
	MEL(OAM Traffic_Unit): returns the value of the maintenance entity group level field in the OAM traffic unit; returns an undefined value if the traffic unit is not an OAM traffic unit.
Flags(OAM Traffic_Unit): returns the value of the flags field in the OAM traffic unit; returns an undefined value if the traffic unit is not an OAM traffic unit.
NOTE – The ETH_CI contains no VID field as the ETH_CI is defined per VLAN.
ETH adapted information
The ETH_AI is a stream of ETH_AI traffic units complemented with the following signals: ETH_AI_P, ETH_AI_DE, ETH_AI_TSF and ETH_AI_TSD. The ETH_AI traffic units define the ETH_AI_D signal. The ETH_AI traffic unit structure is shown in Figure 9-3.

Figure 9-3 – ETH adapted information
The ETH_AI traffic unit contains the M_SDU and the DA and SA fields. The M_SDU field can be further decomposed into L/T, payload and PAD fields. These fields are the same as in ETH_CI traffic units.
There are four types of ETH_AI traffic units: untagged data, tagged data, untagged OAM and tagged OAM traffic units. The untagged and tagged types are defined in [IEEE 802.1Q]. The OAM traffic units are defined in [ITU-T G.8013].
The L/T field determines the type of the ETH_AI traffic unit:
•	If the L/T field contains the OAM Ethertype value, the traffic unit is an untagged OAM traffic unit; otherwise,
•	if the L/T field contains one of the tag protocol identifier (TPID) values indicated in Figure 9-3, and the succeeding field to the tag control information (TCI) value corresponds to the OAM Ethertype value, the traffic unit is a tagged OAM traffic unit; otherwise,
•	if the L/T field contains neither the OAM Ethertype value nor the TPID values, the traffic unit is an untagged data traffic unit; otherwise,
•	the traffic unit is a tagged data traffic unit.
The payload field of an ETH_AI OAM traffic unit can be decomposed into the maintenance entity group level field (MEL), the version field (Ver), the Opcode field (Opc), the flags field (F), TLV offset field (Offs) and Opcode specific fields. This structure of ETH_AI OAM traffic units is the same as ETH_CI OAM traffic units defined in clause 9 of [ITU-T G.8013].
There are two types of tagged traffic units: C-VLAN tagged and S-VLAN tagged. Each of these types has its own TPID value, 81-00 for C-VLAN tagged and 88-a8 for S-VLAN tagged as defined in clause 9.5 of [IEEE 802.1Q].
In a tagged frame (C-VLAN and S-VLAN tagged) a tag control information (TCI) field follows the TPID field. This field consists of a priority code point (PCP), VLAN ID (VID) and canonical format identifier (CFI) for C-VLAN tagged traffic units, or drop eligible indicator (DEI) field for S-VLAN tagged traffic units.
The PCP field may be used to carry the ETH_CI_P and ETH_CI_DE signal values from an ETH_FP. The DEI field may be used to carry the ETH_CI_DE signal from an ETH_FP.
All ETH_AI traffic units may come from one ETH_FP or different ETH_FPs (in the case of multiplexing in ETHx/ETH-m_A function). In the latter case the VID field value is used to identify the ETH_FP where the traffic unit is associated.
Note that because of the stacking of ETH sublayers, ETH_CI of a client ETH sublayer is encapsulated in ETH_AI to be transferred via a server ETH sublayer. Figure 9-4 shows an ETH_CI OAM traffic unit encapsulated in an ETH_AI data traffic unit. The grey fields constitute the original ETH_CI OAM traffic unit. The encapsulating traffic unit is no longer an OAM traffic unit, but a tagged traffic unit. Adding a VLAN tag hides the OAM information, and transforms an ETH_CI OAM traffic unit into a tagged ETH_AI Data traffic unit.

Figure 9-4 – Tagged ETH_AI carrying ETH_CI OAM
This ETH_AI tagged traffic unit will be transformed into an ETH_CI data traffic unit by the ETHx_FT source function, resulting in an ETH_CI data traffic unit carrying a client layer ETH_CI OAM traffic unit.
[bookmark: _Toc319901777][bookmark: _Toc328035813][bookmark: _Toc339540520][bookmark: _Toc341956997][bookmark: _Toc126646782]9.1	ETH connection functions (ETH_C)
The information flow and processing of the ETH_C function is defined with reference to Figures 95 and 9-6. The ETH_C function connects ETH characteristic information from its input ports to its output ports. As the process does not affect the nature of characteristic information, the reference points on either side of the ETH_C function are the same as illustrated in Figure 9-5.
The connection process is unidirectional and as such no differentiation in sink and source is required.
In addition, the ETH_C function supports the following protection schemes:
–	1+1 unidirectional SNC/S protection without APS protocol.
–	1+1 unidirectional SNC/S protection with an APS protocol.
–	1+1 bidirectional SNC/S protection with an APS protocol.
–	1:1 bidirectional SNC/S protection with an APS protocol.
–	Ring protection with an APS protocol.
The protection functionality is described in clauses 9.1.2 and 9.1.3.
NOTE 1 – The SNC/S protection processes have a dedicated sink and source behaviour.
Symbol
The ETH connection function, as shown in Figure 9-5, forwards ETH_CI signals at its input ports to its output ports.

Figure 9-5 – ETH_C symbol
The actual forwarding is performed using flow forwarding processes ETH_FF interconnecting the input and output ports.
Interfaces
	Table 9-1 – ETH_C interfaces

	Inputs
	Outputs

	Per ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_APS
ETH_CI_SSF
ETH_CI_SSD

ETH_C_MP:
ETH_C_MI_Create_FF
ETH_C_MI_Modify_FF
ETH_C_MI_Delete_FF

ETH_C_MP per flow forwarding process:
ETH_C_MI_FF_Set_PortIds
ETH_C_MI_FF_ConnectionType
ETH_C_MI_FF_Flush_Learned
ETH_C_MI_FF_Flush_Config
ETH_C_MI_FF_Group_Default
ETH_C_MI_FF_ETH_FF
ETH_C_MI_FF_Ageing
ETH_C_MI_FF_Learning
ETH_C_MI_FF_STP_Learning_State[i]

ETH_C_MP per SNC/S protection process:
ETH_C_MI_PS_WorkingPortId
ETH_C_MI_PS_ProtectionPortId
ETH_C_MI_PS_ProtType
ETH_C_MI_PS_OperType
ETH_C_MI_PS_HoTime
ETH_C_MI_PS_WTR
ETH_C_MI_PS_ExtCMD ETH_C_MI_PS_BridgeType
ETH_C_MI_PS_SD_Protection

ETH_C_MP per Ring protection process:
ETH_C_MI_RAPS_RPL_Owner_Node
ETH_C_MI_RAPS_RPL_Neighbour_Node
ETH_C_MI_RAPS_Propagate_TC[1…M]
ETH_C_MI_RAPS_Compatible_Version
ETH_C_MI_RAPS_Revertive
ETH_C_MI_RAPS_Sub_Ring_Without_
 Virtual_Channel
ETH_C_MI_RAPS_HoTime
ETH_C_MI_RAPS_WTR
ETH_C_MI_RAPS_GuardTime
ETH_C_MI_RAPS_ExtCMD
ETH_C_MI_RAPS_RingID
	Per ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_APS

Processes
The processes associated with the ETH_C function are depicted in Figure 9-6.
ETH_CI traffic units are forwarded between input and output ETH flow points by means of an ETH flow forwarding process. ETH flow points may be allocated within a protection group.
NOTE 2 – Neither the number of input/output signals to the connection function, nor the connectivity, is specified in this Recommendation. That is a property of individual network elements.

Figure 9-6 – ETH connection function with ETH_FF processes
The flow forwarding process ETH_FF is described in clause 9.1.1.
Defects 					None.
Consequent actions 		None.
Defect correlations 		None.
Performance monitoring 	None.
[bookmark: _Toc319901778]9.1.1	ETH flow forwarding process (ETH_FF)
The ETH flow forwarding process, as shown in Figure 9-6, forwards ETH_CI signals at its input ports to its output ports. The forwarding may take into account the value of the DA field of the ETH_CI traffic unit.

Figure 9-7 – ETH flow forwarding process
Figure 9-7 shows the ETH_FF in the case of the individual VLAN learning (IVL) mode. In this mode each ETH_FF has its own address table. Figure 9-8 shows the process for the case of the shared VLAN learning (SVL) mode. In this mode two or more ETH_FF share the address table process.

Figure 9-8 – ETH flow forwarding process in SVL mode
Address table process
The Address table process maintains a list of tuples (Address, {ports}). This list may be configured using the MI_FF_ETH_FF input signal and by the learning process.
A tuple received from the learning process is only stored in the address table process if there is no entry present for that MAC address that has been configured by the MI_FF_ETH_FF input signal.
The MI_FF_Ageing is used to provision the ageing time period for entries configured from the learning process. Entries received from the learning process are removed from the address table ageing time period after it was received. If before the ageing time period has expired a new entry for the same MAC address is received, the ageing time period starts again.
There is one specific value of MI_FF_Ageing: "never". This means that the entries received from the learning process are never removed.
All the tuples received from the learning process can be cleared using the MI_FF_Flush_Learned command.
All the tuples that are entered via the MI_FF_ETH_FF can be cleared using the MI_FF_Flush_Config command. Individual entries are removed via the MI_FF_ETH_FF signal.
The address table process processes address requests from the forwarding process, and responds with the tuple (Address, {port}) for the specified address. For unicast MAC addresses, if the tuple does not exist the port set ({port}) is empty. For multicast MAC addresses, if the tuple does not exist the port set ({port}) contains the ports as configured using the MI_FF_Group_Default input signal.
Learning process
If the value of MI_FF_Learning is enabled, the learning process reads the SA field of the incoming ETH_CI traffic unit, and forwards a tuple (Address, {port}) to the address table process. The address contains the value of the SA field of the ETH_CI traffic unit, and the port is the port on which the traffic unit was received.
If the value of MI_FF_Learning is disabled, the learning process does not submit information to the addresstable process.
In both cases the ETH_CI itself is forwarded unchanged to the output of the learning process.
Forwarding process
The parameters of MI_Create_FF, MI_Modify_FF, and MI_Delete_FF are used to provision the flow forwarding process.
The MI_FF_Set_PortIds parameter is used to provision TBD.
The MI_FF_ConnectionType parameter is used to provision TBD.
The MI_FF_STP_LearningState[i] input signal is provisioned per port [i]; it can be used to configure a specific port to be in the learning state. If a port is in the learning state this means that all frames received on that port will be discarded by the learning process, and therefore not forwarded to the forwarding process; however the (Address, {port}) tuple may be submitted to the address table process before the frame is dropped (depending on the value of MI_FF_Learning).
The forwarding process reads the DA field of the incoming ETH_CI traffic unit and sends this to the address table process, the addresstable will send a tuple (Address, {port}) back in response. It will forward the ETH_CI on all ports listed in the port set field of the tuple. If the port set is empty, the ETH_CI will be forwarded on all ports (flooding). In all cases the ETH_CI is never forwarded on the same port as it was received on.
[bookmark: _Toc147308754][bookmark: _Toc319901779]9.1.2	Subnetwork connection protection process
SNC protection with sublayer monitoring based on TCM is supported.
Figure 9-9 shows the involved atomic functions in SNC/S. The ETHx_FT_Sk provides the TSF/TSD protection switching criterion via the ETHx/ETH_A_Sk function (SSF/SSD) to the ETH_C function.
[image:]
Figure 9-9 – SNC/S atomic functions
NOTE - Since SNC/S is ETH subnetwork protection with sublayer monitoring, ETHx flow termination and ETHx/ETH adaptation functions in Figure 9-9 correspond to ETHT (tandem connection) sublayer where this abbreviation is described in Amendment 1 to [ITU-T G.8010].
The protection functions at both ends operate the same way, by monitoring the working and protection subnetwork connections for defects, evaluating the system status taking into consideration the priorities of defect conditions and of external switch requests, and switching the appropriate subnetwork flow point (i.e., working or protection) to the protected (sub)network flow point.
The signal flows associated with the ETH_C SNC protection process are described with reference to Figure 9-10. The protection process receives control parameters and external switch requests at the MP reference point. The report of status information at the MP reference point is for further study.

Figure 9-10 – SNC/S protection process
Source direction
For a 1+1 architecture, the CI coming from the normal (protected) ETH_FP is bridged permanently to both the working and protection ETH_FP.
For a 1:1 architecture, the CI coming from the normal (protected) ETH_FP is switched to either the working or the protection ETH_FP. A switch-over from working to protection ETH_FP or vice versa is initiated by the switch initiation criteria defined below.
Sink direction
For a 1+1 or 1:1 architecture, the CI coming from either the working or protection ETH_FP is switched to the normal (protected) ETH_FP. A switch-over from working to protection ETH_FP or vice versa is initiated by the switch initiation criteria defined below.
Switch initiation criteria
Automatic protection switching is based on the defect conditions of the working and protection (sub)network connections, for SNC/S protection server signal fail (SSF) and server signal degrade (SSD).
In order to allow interworking between nested protection schemes, a hold-off timer is provided. The hold-off timer delays switch initiation, in case of signal fail, in order to allow a nested protection to react and clear the fault condition. The hold-off timer is started by the activation of signal fail and runs for the hold-off time. Protection switching is only initiated if signal fail is still present at the end of the hold-off time. The hold-off time shall be provisionable between 0 and 10 s in steps of 100 ms; this is defined in clause 11.12 of [ITU-T G.8031].
Protection switching can also be initiated by external switch commands received via the MP or a request from the far end via the received ETH_CI_APS. Depending on the mode of operation, internal states (e.g. wait-to-restore) may also affect a switch-over.
See the switching algorithm described in [ITU-T G.8031].
Switching time
Refer to [ITU-T G.8031].
Switch restoration
In the revertive mode of operation, the protected signal shall be switched back from the protection (sub)network connection to the working (sub)network connection when the working (sub)network connection has recovered from the fault.
To prevent frequent operation of the protection switch due to an intermittent fault, a failed working (sub)network connection must become fault-free for a certain period of time before it is used again. This period, called the wait-to-restore (WTR) period, should be of the order of 5-12 minutes and should be capable of being set. The WTR is defined in clause 11.13 of [ITU-T G.8031].
In the non-revertive mode of operation no switch back to the working (sub)network connection is
performed when it has recovered from the fault.
Configuration
The following configuration parameters are defined in [ITU-T G.8031]:
	ETH_C_MI_PS_WorkingPortId configures the working port.
	ETH_C_MI_PS_ProtectionPortId configures the protection port.
	ETH_C_MI_PS_ProtType configures the protection type.
	ETH_C_MI_PS_OperType configures to be in revertive mode.
	ETH_C_MI_PS_HoTime configures the hold-off timer.
	ETH_C_MI_PS_WTR configures the wait-to-restore timer.
	ETH_C_MI_PS_ExtCMD configures the protection group command.
	ETH_C_MI_PS_BridgeType configures the type of bridge used for 1:1 SNC protection switching.
	ETH_C_MI_PS_SD_Protection configures the ability of an SNC protection switching process to trigger protection switching upon SD.
Defects
The function detects dFOP-PM, dFOP-CM, dFOP-NR and dFOP-TO defects in case the APS protocol is used.
Consequent actions		
	None.
Defect correlations
	cFOP-PM dFOP-PM and (not CI_SSF)
	cFOP-CM dFOP-CM and (not CI_SSF)
	cFOP-NR dFOP-NR and (not CI_SSF)
	cFOP-TO dFOP-TO and (not dFOP-CM) and (not CI_SSF)

[bookmark: _Toc319901780]9.1.3	Ring protection control process
Ring protection with inherent, sub-layer, or test trail monitoring is supported.
Figure 9-11 shows a subset of the atomic functions involved, and the signal flows associated with the ring protection control process. This is only an overview of the Ethernet ring protection control process as specified in [ITU-T G.8032]. The ETH_FT_Sk provides the TSF protection switching criterion via the ETHDi/ETH_A_Sk function (SSF). [ITU-T G.8032] specifies the requirements, options and the ring protection protocol supported by the ring protection control process.
[image:]
Figure 9-11 – Ring protection atomic functions and control process
Configuration
The following configuration parameters are defined in [ITU-T G.8032]:
	ETH_C_MI_RAPS_RPL_Owner_Node configures the node type.
	ETH_C_MI_RAPS_RPL_Neighbour_Node configures the adjacency of a node to the RPL owner.
	ETH_C_MI_RAPS_Propagate_TC[1…M] configures the flush logic of an interconnection node.
	ETH_C_MI_RAPS_Compatible_Version configures the backward compatibility logic.
	ETH_C_MI_RAPS_Revertive configures the revertive mode.
	ETH_C_MI_RAPS_Sub_Ring_Without_Virtual_Channel configures the sub-ring type.
	ETH_C_MI_RAPS_HoTime configures the hold-off timer.
	ETH_C_MI_RAPS_WTR configures the wait-to-restore timer.
	ETH_C_MI_RAPS_GuardTime configures the guard timer.
	ETH_C_MI_RAPS_ExtCMD configures the protection command.
	ETH_C_MI_RAPS_RingID configures the Ring ID.
Defects
The function detects dFOP-PM and dFOP-TO in case the R-APS protocol is used.
[bookmark: OLE_LINK2]Consequent actions
	None.
Defect correlations
	cFOP-PM dFOP-PM and (not CI_SSF)
	cFOP-TO dFOP-TO and (not CI_SSF)
NOTE – cFOP-TO is not reported if a ring port has a link level failure, or is administratively disabled or blocked from R-APS message reception.
[bookmark: _Toc252194530][bookmark: _Toc252198964][bookmark: _Toc252199186][bookmark: _Toc252199891][bookmark: _Toc252200138][bookmark: _Toc252200363][bookmark: _Toc252206007][bookmark: _Toc252207056][bookmark: _Toc252212978][bookmark: _Toc252216869][bookmark: _Toc252478609][bookmark: _Toc126646785][bookmark: _Toc319901781]9.2	ETH termination functions
[bookmark: _Toc147308758][bookmark: _Toc319901782]9.2.1	ETHx flow termination functions (ETHx_FT)
The bidirectional ETH flow termination (ETHx_FT) function is performed by a co-located pair of ETH flow termination source (ETHx_FT_So) and sink (ETHx_FT_Sk) functions.
[bookmark: _Toc319901783]9.2.1.1	ETHx flow termination source function (ETHx_FT_So)
Symbol
[image:]
Figure 9-12 – ETHx_FT_So symbol
Interfaces
	Table 9-2 – ETHx_FT_So interfaces

	Inputs
	Outputs

	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE

ETH_RP:
ETH_RI_CC_RxFCl
ETH_RI_CC_TxFCf
ETH_RI_CC_RDI
ETH_RI_CC_Blk
ETH_RI_LMM(OAM,P,DE)
ETH_RI_LMR(rSA,TxFCf,RxFCf,TxFCb,RxFCl) [1...MLM]
ETH_RI_DMM(OAM,P,DE)
ETH_RI_DMR(rSA,TxTimeStampf,
 RxTimeStampf,TxTimeStampb,RxTimeb,
 rTestID)[1...MDM]
ETH_RI_SLM(OAM,P,DE,TxFCb)
ETH_RI_SLR(rMEP_ID,rTest_ID,
 TxFCf, TxFCb) [1...MSL]

ETH_TP:
ETHx_FT_So_TI_TimeStampl

ETHx_FT_So_MP:
ETHx_FT_So_MI_MEL
ETHx_FT_So_MI_MEP_MAC
ETHx_FT_So_MI_CC_Enable
ETHx_FT_So_MI_LMC_Enable
ETHx_FT_So_MI_MEG_ID
ETHx_FT_So_MI_MEP_ID
ETHx_FT_So_MI_CC_Period
ETHx_FT_So_MI_CC_Pri
ETHx_FT_So_MI_LML_Enable[1...MLM]
ETHx_FT_So_MI_LM_MAC_DA[1...MLM]
ETHx_FT_So_MI_LM_Period[1...MLM]
ETHx_FT_So_MI_LM_Pri[1...MLM]
ETHx_FT_So_MI_DM_Enable[1...MDM]
ETHx_FT_So_MI_DM_MAC_DA[1...MDM]
ETHx_FT_So_MI_DM_Test_ID[1...MDM]
ETHx_FT_So_MI_DM_Length[1...MDM]
ETHx_FT_So_MI_DM_Period[1...MDM]
ETHx_FT_So_MI_DM_Pri[1...MDM]
ETHx_FT_So_MI_1DM_Enable[1...M1DM]
ETHx_FT_So_MI_1DM_MAC_DA[1...M1DM]
ETHx_FT_So_MI_1DM_Test_ID[1...M1DM]
ETHx_FT_So_MI_1DM_Length[1...M1DM]
ETHx_FT_So_MI_1DM_Period[1...M1DM]
ETHx_FT_So_MI_1DM_Pri[1...M1DM]
ETHx_FT_So_MI_SL_Enable[1...MSL]
ETHx_FT_So_MI_SL_MAC_DA[1...MSL]
ETHx_FT_So_MI_SL_Test_ID[1...MSL]
ETHx_FT_So_MI_SL_Length[1...MSL]
ETHx_FT_So_MI_SL_Period[1...MSL]
ETHx_FT_So_MI_SL_Pri[1...MSL]
ETHx_FT_So_MI_1SL_Enable[1...M1SL]
ETHx_FT_So_MI_1SL_MAC_DA[1...M1SL]
ETHx_FT_So_MI_1SL_Test_ID[1...M1SL]
ETHx_FT_So_MI_1SL_Length[1...M1SL]
ETHx_FT_So_MI_1SL_Period[1...M1SL]
ETHx_FT_So_MI_1SL_Pri[1...M1SL]
ETHx_FT_So_MI_Exp_Defect
ETHx_FT_So_MI_Exp_Defect_Duration
ETHx_FT_So_MI_EDM_Pri
ETHx_FT_So_MI_EDM_Period
	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_RP:
ETH_RI_LM_Result(N_TF,N_LF,F_TF,F_LF) [1...MLM]
ETH_RI_DM_Result(B_FD,F_FD,N_FD) [1...MDM]
ETH_RI_SL_Result(N_TF,N_LF,F_TF,F_LF) [1...MSL]

Processes
[image:]
Figure 9-13 – ETHx_FT_So process
MEP proactive OAM insertion process
This process inserts the OAM traffic units in the stream of ETH_CI, sets the MEL field to MI_MEL and sets the SA field to MI_MEP_MAC.
If the DA of the OAM traffic unit is a class 1 multicast DA, the OAM insertion process updates the DA to reflect the correct MEL.
[image:]
Figure 9-14 – OAM MEP insertion behaviour
CCM generation process
This process is defined in clause 8.1.7 where the CC protocol is defined. Clause 8.1.7.2 defines the CCM generation process.
Block process
When RI_CC_Blk is raised, the block process will discard all ETH_CI information it receives. If RI_CC_Blk is cleared, the received ETH_CI information will be passed to the output port.
Counter process
This process is defined in clauses 8.1.7.4 and 8.1.9.7. It is used to count frames for proactive loss measurements with CCM and proactive LM protocols, respectively.
Proactive LM control
This process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.2 defines the proactive LM control process.
LMM generation
This process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.3 defines the LMM generation process.
LMR generation
This process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.5 defines the LMR generation process.
LMM Mux
The LMM Mux process interleaves the signal sets LMM(DA,P,1) from the input ports (X, Y, Z).
Proactive DM control
This process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.2 defines the DM control process.
DMM generation
This process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.3 defines the DMM generation process.
DMR generation
This process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.5 defines the DMR generation process.
DMM Mux
The DMM Mux process interleaves the signal sets DMM(DA,P,1,Test ID TLV, TLV) from the input ports (X, Y, Z).
Proactive 1DM Control_So
This process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.2 defines the 1DM Control_So process.
1DM generation
This process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.3 defines the 1DM generation process.
1DM Mux
The 1DM Mux process interleaves the signal sets 1DM(DA,P,1,Test ID TLV, TLV) from the input ports (X, Y, Z).
Proactive SL control
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.2 defines the SL control process.
SLM generation
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.3 defines the SLM generation process.
SLR Generation
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.5 defines the SLR generation process.
SLM Mux
The SLM Mux process interleaves the signal sets SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) from the input ports (X, Y, Z).
Proactive 1SL Control_So
This process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.2 defines the 1SL Control_So process.
1SL generation
This process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.3 defines the 1SL generation process.
1SL Mux
The 1SL Mux process interleaves the signal sets 1SL(DA,P, MEP_ID,Test_ID, TxFCl, TLV) from the input ports (X, Y, Z).
Expected Defect Generation process
This process is defined in clause 8.1.20.1.
Defects						None.
Consequent actions		None.
Defect correlations			None.
Performance monitoring	None.
[bookmark: _Toc319901784]9.2.1.2	ETHx flow termination sink function (ETHx_FT_Sk)
The ETHx_FT_Sk process diagram is shown in Figure 9-15.
Symbol
[image:]
Figure 9-15 – ETHx_FT_Sk symbol
Interfaces
Table 9-3 – ETHx_FT_Sk interfaces
	Inputs
	Outputs

	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_RP:
ETH_RI_LM_Result(
N_TF,N_LF,F_TF,F_LF) [1...MLM]
ETH_RI_DM_Result(B_FD,F_FD,N_FD) [1...MDM]
ETH_RI_SL_Result(N_TF,N_LF,F_TF,F_LF) [1...MSL]

ETH_TP:
ETHx_FT_Sk_TI_TimeStampl

ETHx_FT_Sk_MP:
ETHx_FT_Sk_MI_CC_Enable
ETHx_FT_Sk_MI_LMC_Enable
ETHx_FT_Sk_MI_1Second
ETHx_FT_Sk_MI_LM_DEGM
ETHx_FT_Sk_MI_LM_M
ETHx_FT_Sk_MI_LM_DEGTHR
ETHx_FT_Sk_MI_LM_TFMIN
ETHx_FT_Sk_MI_MEL
ETHx_FT_Sk_MI_MEG_ID
ETHx_FT_Sk_MI_PeerMEP_ID[i]
ETHx_FT_Sk_MI_CC_Period
ETHx_FT_Sk_MI_CC_Pri
ETHx_FT_Sk_MI_GetSvdCCM
ETHx_FT_Sk_MI_1DM_Enable[1...M1DM]
ETHx_FT_Sk_MI_1DM_MAC_SA[1...M1DM]
ETHx_FT_Sk_MI_1DM_Pri[1...M1DM]
ETHx_FT_Sk_MI_1DM_Test_ID[1...M1DM]
ETHx_FT_Sk_MI_1SL_Enable[1...M1SL]
ETHx_FT_Sk_MI_1SL_MAC_SA[1...M1SL]
ETHx_FT_Sk_MI_1SL_Test_ID[1...M1SL]
ETHx_FT_Sk_MI_MEP_MAC
	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH_AI_TSF
ETH_AI_TSD
ETH_AI_AIS

ETH_RP:
ETH_RI_CC_RxFCl
ETH_RI_CC_TxFCf
ETH_RI_CC_RDI
ETH_RI_CC_Blk
ETH_RI_LMM(OAM,P,DE)
ETH_RI_LMR(rSA,TxFCf,RxFCf,TxFCb,RxFCl) [1...MLM]
ETH_RI_DMM(OAM,P,DE)
ETH_RI_DMR(rSA,TxTimeStampf,
 RxTimeStampf,TxTimeStampb,RxTimeb,
 rTestID) [1...MDM]
ETH_RI_SLM(OAM,P,DE,TxFCb)
ETH_RI_SLR(rMEP_ID,rTest_ID,TxFCf, TxFCb) [1...MSL]

ETHx_FT_Sk_MP:
ETHx_FT_Sk_MI_cLOC[i]
ETHx_FT_Sk_MI_cUNL
ETHx_FT_Sk_MI_cMMG
ETHx_FT_Sk_MI_cUNM
ETHx_FT_Sk_MI_cDEG
ETHx_FT_Sk_MI_cUNP
ETHx_FT_Sk_MI_cUNPr
ETHx_FT_Sk_MI_cRDI
ETHx_FT_Sk_MI_cSSF
ETHx_FT_Sk_MI_cLCK
ETHx_FT_Sk_MI_pN_TF
ETHx_FT_Sk_MI_pN_LF
ETHx_FT_Sk_MI_pF_TF
ETHx_FT_Sk_MI_pF_LF
ETHx_FT_Sk_MI_pF_DS
ETHx_FT_Sk_MI_pN_DS
ETHx_FT_Sk_MI_pB_FD
ETHx_FT_Sk_MI_pB_FDV
ETHx_FT_Sk_MI_pF_FD
ETHx_FT_Sk_MI_pF_FDV
ETHx_FT_Sk_MI_pN_FD
ETHx_FT_Sk_MI_pN_FDV
ETHx_FT_Sk_MI_SvdCCM
ETHx_FT_Sk_MI_BW_Report(SA, PortID, NominalBW, CurrentBW)

NOTE - If the delay measurement message rate is smaller than one second, there will be more than one set of primitive values (i.e. pB_FD, pB_FDV, pF_FD, pF_FDV, pN_FD, pN_FDV) for some 1-second period. If the delay measurement message rate is larger than one second, there will be no set of primitive values for some 1-second period.

Processes
[image:]

Figure 9-16 – ETHx_FT_Sk process
MEP proactive OAM extraction process
The MEP proactive OAM extraction process extracts OAM traffic units that are processed in the ETHx_FT_Sk process from the stream of traffic units according to the following pseudo code:

if (TYPE=<ETHOAM>) and (MEL=MI_MEL) then
 switch(OPC) {
 case <CCM>: extract ETH-CCM OAM traffic unit and forward to CCM Port
 case <AIS>: extract ETH-AIS OAM traffic unit and forward to AIS Port
 case <LCK>: extract ETH-LCK OAM traffic unit and forward to LCK Port
 case <LMM>: extract ETH-LMM OAM traffic unit and forward to LMM Port
 case <LMR>: extract ETH-LMR OAM traffic unit and forward to LMR Port
 case <DMM>: extract ETH-DMM OAM traffic unit and forward to DMM Port
 case <DMR>: extract ETH-DMR OAM traffic unit and forward to DMR Port
 case <1DM>: extract ETH-1DM OAM traffic unit and forward to 1DM Port
 case <SLM>: extract ETH-SLM OAM traffic unit and forward to SLM port
 case <SLR>: extract ETH-SLR OAM traffic unit and forward to SLR port
 case <1SL>: extract ETH-1SL OAM traffic unit and forward to 1SL Port
 case <GNM>: switch(SubOPC) {
 case <BNM>: extract ETH-BN OAM traffic unit and forward to BNM Port
 default: forward ETH_CI traffic unit to Data port
 }
 default: forward ETH_CI traffic unit to Data port
}
elseif (TYPE=<ETH0AM>) and (MEL<MI_MEL) and (OPC=CCM) then
 extract ETH-CCM OAM traffic unit and forward to CCM Port
else
forward ETH CI traffic unit to Data Port
endif
NOTE – Further filtering of OAM traffic units is performed by the OAM MEL filter process which forms part of the ETH adaptation functions specified in clause 9.3.
ETH_AIS reception process
This process generates the AIS event upon receipt of the AIS traffic unit from the OAM MEP extraction process.
ETH_LCK reception process
This process generates the LCK event upon receipt of the LCK traffic unit from the OAM MEP extraction process.
LMM reception
This process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.4 defines the LMM reception process.
LMR reception
This process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.6 defines the LMR reception process.
LMR Demux
The LMR Demux process de-interleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P signal can be used for the selection of the port.
DMM reception
This process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.4 defines the DMM reception process.
DMR reception
This process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.6 defines the DMR reception process.
DMR Demux
The DMR Demux process de-interleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1DM reception
This process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.4 defines the 1DM reception process.
1DM Demux
The 1DM Demux process de-interleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
Proactive 1DM Control_Sk
This process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.5 defines the 1DM Control_Sk process.
SLM reception
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.4 defines the SLM reception process.
SLR reception
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.6 defines the SLR reception process.
SLR Demux
The SLR Demux process de-interleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1SL reception
This process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.4 defines the 1SL reception process.
1SL Demux
The 1SL Demux process de-interleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
Proactive 1SL Control_Sk
This process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.5 defines the 1SL Control_Sk process.
Block process
When aBlk is raised, the block process will discard all ETH_CI information it receives. If aBLK is cleared, the received ETH_CI information will be passed to the output port.
LMp process
This process is defined in clause 8.1.7.5.
Defect generation process
This process detects and clears the defects (dLOC[i], dUNL, dMMG, dUNM, dDEG, dUNP, dUNPr, dRDI[i], dAIS, dLCK) as defined in clause 6, where [i] = maintenance entity.
CCM reception process
This process is defined in clause 8.1.7.3.
Counter process
This process is defined in clauses 8.1.7.4 and 8.1.9.7. It is used to count frames for proactive loss measurements with CCM and proactive LM protocols, respectively.
BNM Extract process
This process is defined in clause 8.1.19.
Defects
This function detects dLOC[i], dUNL, dMMG, dUNM, dDEG, dUNP, dUNPr, dRDI[i], dAIS, dLCK.
Consequent actions
aBLK			(dUNL or dMMG or dUNM)
Note that dUNP and dUNPr does not contribute to aBLK because a mismatch of periodicity is not considered to be a security issue.
aTSF			(dLOC[1..n] and MI_CC_Enable) or (dAIS and not(MI_CC_Enable)) or (dLCK and not(MI_CC_Enable)) or dUNL or dMMG or dUNM or CI_SSF
aTSD			dDEG[1] and (not aTSF)
aAIS			aTSF
aRDI			aTSF
Defect correlations
cLOC[i]		dLOC[i] and (not dAIS) and (not dLCK) and (not CI_SSF) and (MI_CC_Enable)
cUNL			dUNL
cMMG			dMMG
cUNM			dUNM
cDEG[1]		dDEG[1] and (not dAIS) and (not dLCK) and (not CI_SSF) and (not (dLOC[1..n] or dUNL or dMMG or dUNM)) and (MI_CC_Enable))
cUNP			dUNP
cUNPr			dUNPr
cRDI			(dRDI[1..n]) and (MI_CC_Enable)
cSSF			CI_SSF or dAIS
cLCK			dLCK and (not dAIS)
Performance monitoring
pN_TF			N_TF
pN_LF			N_LF
pF_TF			F_TF
pF_LF			F_LF
pN_DS			aTSF
pF_DS			aRDI[1]
pB_FD			B_FD
pB_FDV		B_FDV
pF_FD			F_FD
pF_FDV		F_FDV
pN_FD			N_FD
pN_FDV		N_FDV
NOTE – A detail calculation formula for FDV is for further study.
[bookmark: _Toc319901785]9.2.2	ETH group flow termination functions (ETHG_FT)
The bidirectional ETH group flow termination (ETHG_FT) function is performed by a co-located pair of ETH group flow termination source (ETHG_FT_So) and sink (ETHG_FT_Sk) functions.
[bookmark: _Toc319901786]9.2.2.1	ETH group flow termination source function (ETHG_FT_So)
Symbol
[image:]
Figure 9-17 – ETHG_FT_So symbol
Interfaces
	Table 9-4 – ETHG_FT_So interfaces

	Inputs
	Outputs

	ETH_AP:
ETH_AI_D[1...M]
ETH_AI_P[1...M]
ETH_AI_DE[1...M]

ETH_RP:
ETH_RI_CC_RxFCl
ETH_RI_CC_TxFCf
ETH_RI_CC_RDI
ETH_RI_CC_Blk
ETH_RI_LMM(OAM,P,DE)
ETH_RI_LMR(rSA,TxFCf,RxFCf,TxFCb,RxFCl) [1...MLM]
ETH_RI_DMM(OAM,P,DE)
ETH_RI_DMR(rSA,TxTimeStampf,
 RxTimeStampf,TxTimeStampb,RxTimeb,
 rTestID) [1...MDM]
ETH_RI_SLM(OAM,P,DE,TxFCb)
ETH_RI_SLR(rMEP_ID,rTest_ID,
 TxFCf, TxFCb) [1...MSL]

ETH_TP:
ETHG_FT_So_TI_TimeStampl

ETHG_FT_So_MP:
ETHG_FT_So_MI_MEL
ETHG_FT_So_MI_MEP_MAC
ETHG_FT_So_MI_CC_Enable
ETHG_FT_So_MI_LMC_Enable
ETHG_FT_So_MI_MEG_ID
ETHG_FT_So_MI_MEP_ID
ETHG_FT_So_MI_CC_Period
ETHG_FT_So_MI_CC_Pri
ETHG_FT_So_MI_LML_Enable[1...MLM]
ETHG_FT_So_MI_LM_MAC_DA[1...MLM]
ETHG_FT_So_MI_LM_Period[1...MLM]
ETHG_FT_So_MI_LM_Pri [1...MLM]
ETHG_FT_So_MI_DM_Enable [1...MDM]
ETHG_FT_So_MI_DM_MAC_DA [1...MDM]
ETHG_FT_So_MI_DM_Test_ID [1...MDM]
ETHG_FT_So_MI_DM_Length [1...MDM]
ETHG_FT_So_MI_DM_Period [1...MDM]
ETHG_FT_So_MI_DM_Pri [1...MDM]
ETHG_FT_So_MI_1DM_Enable [1...M1DM]
ETHG_FT_So_MI_1DM_MAC_DA [1...M1DM]
ETHG_FT_So_MI_1DM_Test_ID [1...M1DM]
ETHG_FT_So_MI_1DM_Length [1...M1DM]
ETHG_FT_So_MI_1DM_Period [1...M1DM]
ETHG_FT_So_MI_1DM_Pri [1...M1DM]
ETHG_FT_So_MI_SL_Enable [1...MSL]
ETHG_FT_So_MI_SL_MAC_DA [1...MSL]
ETHG_FT_So_MI_SL_Test_ID [1...MSL]
ETHG_FT_So_MI_SL_Length [1...MSL]
ETHG_FT_So_MI_SL_Period [1...MSL]
ETHG_FT_So_MI_SL_Pri [1...MSL]
ETHG_FT_So_MI_1SL_Enable [1...M1SL]
ETHG_FT_So_MI_1SL_MAC_DA [1...M1SL]
ETHG_FT_So_MI_1SL_Test_ID [1...M1SL]
ETHG_FT_So_MI_1SL_Length [1...M1SL]
ETHG_FT_So_MI_1SL_Period [1...M1SL]
ETHG_FT_So_MI_1SL_Pri [1...M1SL]
ETHG_FT_So_MI_Exp_Defect
ETHG_FT_So_MI_Exp_Defect_Duration
ETHG_FT_So_MI_EDM_Pri
ETHG_FT_So_MI_EDM_Period
	ETH_TFP:
ETH_CI_D[1...M]
ETH_CI_P[1...M]
ETH_CI_DE[1...M]

ETH_RP:
ETH_RI_LM_Result(N_TF,N_LF,F_TF,F_LF) [1...MLM]
ETH_RI_DM_Result(B_FD,F_FD,N_FD)
[1...MDM]
ETH_RI_SL_Result(N_TF,N_LF,F_TF,F_LF) [1...MSL]

Processes
[image:]
Figure 9-18 – ETHG_FT_So process
MEP proActive OAM insertion process
This process inserts the OAM traffic units in the stream of ETH_CI, sets the MEL field to MI_MEL and sets the SA field to MI_MEP_MAC. This process resides only in the lowest number in the contiguous range of ETH_FPs or a selected ETH_FP within the group of arbitrary ETH_FPs. The detail of the OAM insertion behaviour is described in clause 9.2.1.1.
CCM generation process
This process is defined in clause 8.1.7 where the CC protocol is defined. Clause 8.1.7.2 defines the CCM generation process.
Block process
When RI_CC_Blk is raised, the block process will discard all ETH_CI information within the group of co-located flow points. If RI_CC_Blk is cleared, the received ETH_CI information will be passed to the output port.
Counter process
This process is defined in clauses 8.1.7.4 and 8.1.9.7. It is used to count frames for proactive loss measurements with CCM and proactive LM protocols, respectively.
Proactive LM control
This process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.2 defines the proactive LM control process.
LMM generation
This process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.3 defines the LMM generation process.
LMR generation
This process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.5 defines the LMR generation process.
LMM Mux
The LMM Mux process interleaves the signal sets LMM(DA,P,1) from the input ports (X, Y, Z).
Proactive DM control
This process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.2 defines the DM control process.
DMM generation
This process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.3 defines the DMM generation process.
DMR generation
This process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.5 defines the DMR generation process.
DMM Mux
The DMM Mux process interleaves the signal sets DMM(DA,P,1,Test ID TLV, TLV) from the input ports (X, Y, Z).
Proactive 1DM Control_So
This process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.2 defines the 1DM Control_So process.
1DM generation
This process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.3 defines the 1DM generation process.
1DM Mux
The 1DM Mux process interleaves the signal sets 1DM(DA,P,1,Test ID TLV, TLV) from the input ports (X, Y, Z).
Proactive SL control
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.2 defines the SL control process.
SLM generation
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.3 defines the SLM generation process.
SLR generation
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.5 defines the SLR generation process.
SLM Mux
The SLM Mux process interleaves the signal sets SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) from the input ports (X, Y, Z).
Proactive 1SL Control_So
This process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.2 defines the 1SL Control_So process.
1SL generation
This process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.3 defines the 1SL generation process.
1SL Mux
The 1SL Mux process interleaves the signal sets 1SL(DA,P,Test_ID,MEP_ID,TxFCl, TLV) from the input ports (X, Y, Z).
Expected Defect Generation process
This process is defined in clause 8.1.20.1.
Defects						None.
Consequent actions		None.
Defect correlations			None.
Performance monitoring	None.
[bookmark: _Toc319901787]9.2.2.2	ETH group flow termination sink function (ETHG_FT_Sk)
The ETHG_FT_Sk process diagram is shown in Figure 9-19.
Symbol
[image:]
Figure 9-19 – ETHG_FT_Sk symbol
Interfaces
Table 9-5 – ETHG_FT_Sk interfaces
	Inputs
	Outputs

	ETH_TFP:
ETH_CI_D[1...M]
ETH_CI_P[1...M]
ETH_CI_DE[1...M]
ETH_CI_SSF

ETH_RP:
ETH_RI_LM_Result(
N_TF,N_LF,F_TF,F_LF) [1...MLM]
ETH_RI_DM_Result(
B_FD,F_FD,N_FD) [1...MDM]
ETH_RI_SL_Result(
N_TF,N_LF,F_TF,F_LF) [1...MSL]

ETH_TP:
ETHG_FT_Sk_TI_TimeStampl

ETHG_FT_Sk_MP:
ETHG_FT_Sk_MI_CC_Enable
ETHG_FT_Sk_MI_LMC_Enable
ETHG_FT_Sk_MI_1Second
ETHG_FT_Sk_MI_LM_DEGM
ETHG_FT_Sk_MI_LM_M
ETHG_FT_Sk_MI_LM_DEGTHR
ETHG_FT_Sk_MI_LM_TFMIN
ETHG_FT_Sk_MI_MEL
ETHG_FT_Sk_MI_MEG_ID
ETHG_FT_Sk_MI_PeerMEP_ID[i]
ETHG_FT_Sk_MI_CC_Period
ETHG_FT_Sk_MI_CC_Pri
ETHG_FT_Sk_MI_GetSvdCCM
ETHG_FT_Sk_MI_1DM_Enable [1...M1DM]
ETHG_FT_Sk_MI_1DM_MAC_SA [1...M1DM]
ETHG_FT_Sk_MI_1DM_Pri [1...M1DM]
ETHG_FT_Sk_MI_1DM_Test_ID [1...M1DM]
ETHG_FT_Sk_MI_1SL_Enable [1...M1SL]
ETHG_FT_Sk_MI_1SL_MAC_SA [1...M1SL]
ETHG_FT_Sk_MI_1SL_Test_ID [1...M1SL]
ETHG_FT_Sk_MI_MEP_MAC
	ETH_AP:
ETH_AI_D[1...M]
ETH_AI_P[1...M]
ETH_AI_DE[1...M]
ETH_AI_TSF
ETH_AI_TSD
ETH_AI_AIS

ETH_RP:
ETH_RI_CC_RxFCl
ETH_RI_CC_TxFCf
ETH_RI_CC_RDI
ETH_RI_CC_Blk
ETH_RI_LMM(OAM,P,DE)
ETH_RI_LMR(rSA,TxFCf,RxFCf,TxFCb,RxFCl) [1...MLM]
ETH_RI_DMM(OAM,P,DE)
ETH_RI_DMR(rSA,TxTimeStampf,
 RxTimeStampf,TxTimeStampb,RxTimeb,
 rTestID) [1...MDM]
ETH_RI_SLM(OAM,P,DE,TxFCb)
ETH_RI_SLR(rMEP_ID,rTest_ID,TxFCf, TxFCb) [1...MSL]

ETHG_FT_Sk_MP:
ETHG_FT_Sk_MI_cLOC[i]
ETHG_FT_Sk_MI_cUNL
ETHG_FT_Sk_MI_cMMG
ETHG_FT_Sk_MI_cUNM
ETHG_FT_Sk_MI_cDEG
ETHG_FT_Sk_MI_cUNP
ETHG_FT_Sk_MI_cUNPr
ETHG_FT_Sk_MI_cRDI
ETHG_FT_Sk_MI_cSSF
ETHG_FT_Sk_MI_cLCK
ETHG_FT_Sk_MI_pN_TF
ETHG_FT_Sk_MI_pN_LF
ETHG_FT_Sk_MI_pF_TF
ETHG_FT_Sk_MI_pF_LF
ETHG_FT_Sk_MI_pF_DS
ETHG_FT_Sk_MI_pN_DS
ETHG_FT_Sk_MI_pB_FD
ETHG_FT_Sk_MI_pB_FDV
ETHG_FT_Sk_MI_pF_FD
ETHG_FT_Sk_MI_pF_FDV
ETHG_FT_Sk_MI_pN_FD
ETHG_FT_Sk_MI_pN_FDV
ETHG_FT_Sk_MI_SvdCCM
ETHG_FT_Sk_MI_BW_Report(SA, PortID, NominalBW, CurrentBW)

NOTE - If the delay measurement message rate is smaller than one second, there will be more than one set of primitive values (i.e. pB_FD, pB_FDV, pF_FD, pF_FDV, pN_FD, pN_FDV) for some 1-second period. If the delay measurement message rate is larger than one second, there will be no set of primitive values for some 1-second period.

Processes
[image:]
Figure 9-20 – ETHG_FT_Sk process
MEP proactive OAM extraction process
The MEP proactive OAM extraction process extracts OAM traffic units that are processed in the ETHx_FT_Sk process from the stream of traffic units. This process resides only in the lowest number in the contiguous range of ETH_FPs or a selected ETH_FP within the group of arbitrary ETH_FPs (AIS reception, LCK reception, LMp, and defect generation processes as well). The details of this process are described in clause 9.2.1.2.
AIS reception process
This process generates the AIS event upon receipt of the AIS traffic unit from the OAM MEP extraction process.
LCK reception process
This process generates the LCK event upon receipt of the LCK traffic unit from the OAM MEP extraction process.
LMM reception
This process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.4 defines the LMM reception process.
LMR reception
This process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.6 defines the LMR reception process.
LMR Demux
The LMR Demux process de-interleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P signal can be used for the selection of the port.
DMM reception
This process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.4 defines the DMM reception process.
DMR reception
This process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.6 defines the DMR reception process.
DMR Demux
The DMR Demux process de-interleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1DM reception
This process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.4 defines the 1DM reception process.
1DM Demux
The 1DM Demux process de-interleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
Proactive 1DM Control_Sk
This process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.5 defines the 1DM Control_Sk process.
SLM reception
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.4 defines the SLM reception process.
SLR reception
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.6 defines the SLR reception process.
SLR Demux
The SLR Demux process de-interleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1SL reception
This process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.4 defines the 1SL reception process.
1SL Demux
The 1SL Demux process de-interleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
Proactive 1SL Control_Sk
This process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.5 defines the 1SL Control_Sk process.
Block process
When aBlk is raised, the block process will discard all ETH_CI information within the group of co-located flow points. If aBLK is cleared, the received ETH_CI information will be passed to the output port.
LMp process
This process is defined in clause 8.1.7.4.
Defect generation process
This process detects and clears the defects (dLOC[i], dUNL, dMMG, dUNM, dDEG, dUNP, dUNPr, dRDI[i], dAIS, dLCK) as defined in clause 6, where [i] = maintenance entity.
CCM reception process
This process is defined in clause 8.1.7.3.
Counter process
This process is defined in clauses 8.1.7.4 and 8.1.9.7. It is used to count frames for proactive loss measurements with CCM and proactive LM protocols, respectively.
BNM Extract process
This process is defined in clause 8.1.19.

Defects 					See clause 9.2.1.2.
Consequent actions		See clause 9.2.1.2.
Defect correlations			See clause 9.2.1.2.
Performance monitoring	See clause 9.2.1.2.
[bookmark: _Toc126646795][bookmark: _Toc319901788][bookmark: _Toc328035814][bookmark: _Toc339540521][bookmark: _Toc341956998]9.3	ETH adaptation functions

NOTE – For all adaptation functions, MI_Active signal is provided to activate or deactivate the function. This signal is used in case that multiple adaptation functions are connected to a single access point and one of the functions is exclusively selected by configuration. All process figures in this Recommendation don’t explicitly describe this signal for the sake of the readability.

[bookmark: _Toc126646796][bookmark: _Toc319901789]9.3.1	ETH to client adaptation functions (ETH/<client>_A)
For further study.
[bookmark: _Toc126646800][bookmark: _Toc319901790]9.3.2	ETH to ETH adaptation functions (ETHx/ETH_A)
[bookmark: _Toc126646801][bookmark: _Toc319901791]9.3.2.1	ETH to ETH adaptation source function (ETHx/ETH_A_So)
This function maps client ETH_CI traffic units into server ETH_AI traffic units.
Symbol
[image:]
Figure 9-21 – ETHx/ETH_A_So symbol
Interfaces
Table 9-6 – ETHx/ETH_A_So interfaces
	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_APS
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

ETHx/ETH_A_So_MP:
ETHx/ETH_A_So_MI_Active
ETHx/ETH_A_So_MI_MEP_MAC
ETHx/ETH_A_So_MI_Client_MEL
ETHx/ETH_A_So_MI_LCK_Period
ETHx/ETH_A_So_MI_LCK_Pri
ETHx/ETH_A_So_MI_Admin_State
ETHx/ETH_A_So_MI_MEL
ETHx/ETH_A_So_MI_APS_Pri
ETHx/ETH_A_So_MI_CSF_Period
ETHx/ETH_A_So_MI_CSF_Pri
ETHx/ETH_A_So_MI_CSF_Enable
ETHx/ETH_A_So_MI_CSFrdifdiEnable
ETHx/ETH_A_So_MI_CSFdciEnable
	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE

Processes
 [image:]
Figure 9-22 – ETHx/ETH_A_So process
LCK generation process
As defined in clause 8.1.2.
Selector process
As defined in clause 8.1.3.
OAM MEL filter process
As defined in clause 8.1.1.
CSF insert process
As defined in clause 8.1.16.
APS insert process
As defined in clause 8.1.5.
When this process is activated, LCK admin state shall be unlocked. See clause 7.5.2.2 of [ITUT G.8010].
Defects						None.
Consequent actions
aCSF-LOS CI_SSF and MI_CSFEnable
aCSF-RDI CI_SSFrdi and MI_CSFrdifdiEnable and MI_CSFEnable
aCSF-FDI CI_SSFfdi and MI_CSFrdifdiEnable and MI_CSFEnable
Defect correlations			None.
Performance monitoring	None.
[bookmark: _Toc126646802][bookmark: _Toc319901792]9.3.2.2	ETH to ETH adaptation sink function (ETHx/ETH_A_Sk)
This function retrieves client ETH_CI traffic units from server ETH_AI traffic units.
Symbol
[image:]
Figure 9-23 – ETHx/ETH_A_Sk symbol
Interfaces
Table 9-7 – ETHx/ETH_A_Sk interfaces
	Inputs
	Outputs

	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH_AI_TSF
ETH_AI_TSD
ETH_AI_AIS

ETHx/ETH_A_Sk_MP:
ETHx/ETH_A_Sk_MI_Active
ETHx/ETH_A_Sk_MI_MEP_MAC
ETHx/ETH_A_Sk_MI_Client_MEL
ETHx/ETH_A_Sk_MI_LCK_Period
ETHx/ETH_A_Sk_MI_LCK_Pri
ETHx/ETH_A_Sk_MI_Admin_State
ETHx/ETH_A_Sk_MI_AIS_Period
ETHx/ETH_A_Sk_MI_AIS_Pri
ETHx/ETH_A_Sk_MI_MEL
ETHx/ETH_A_Sk_MI_CSF_Reported
ETHx/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_APS
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi
ETH_CI_SSD

ETHx/ETH_A_Sk_MP:
ETHx/ETH_A_Sk_MI_cCSF

Processes
[image:]
Figure 9-24 – ETHx/ETH_A_Sk process
APS extract process
As defined in clause 8.1.6.
CSF extract process
As defined in clause 8.1.17.
OAM MEL filter process
As defined in clause 8.1.1.
AIS insert process
As defined in clause 8.1.4.
LCK generation process
As defined in clause 8.1.2.
Selector process	
As defined in clause 8.1.3.
Defects
dCSF-LOS – See clause 6.1.5.4.
dCSF-RDI – See clause 6.1.5.4.
dCSF-FDI – See clause 6.1.5.4.
Consequent actions
aSSF (AI_TSF or dCSF-LOS) and (not MI_Admin_State == Locked)
aSSFrdi			dCSF-RDI and MI_CSFrdifdiEnable
aSSFfdi			dCSF-FDI and MI_CSFrdifdiEnable
aAIS AI_AIS
Defect correlations	
cCSF		(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not AI_TSF) and MI_CSF_Reported
Performance monitoring		None.
[bookmark: _Toc126646803][bookmark: _Toc319901793]9.3.3	ETH to ETH multiplexing adaptation functions (ETHx/ETH-m_A)
This adaptation function multiplexes different ETH_CI streams into a single ETH_AI stream in the source direction and demultiplexes the ETH_AI stream into individual ETH_CI streams.
Symbol
[image:]
Figure 9-25 – ETHx/ETH-m_A symbol
The ETHx/ETH-m_A (Figure 9-25) function is further decomposed into separate source and sink adaptation functions that are interconnected as shown in Figure 9-26.
[image:]
Figure 9-26 – ETHx/ETH-m_A source and sink symbols
[bookmark: _Toc126646804][bookmark: _Toc319901794]9.3.3.1	ETH to ETH multiplexing adaptation source function (ETHx/ETH-m_A_So)
This function multiplexes individual ETH_CI streams into a single ETH_AI stream.
Symbol
[image:]
Figure 9-27 – ETHx/ETH-m_A_So symbol
Interfaces
Table 9-8 – ETHx/ETH-m_A_So interfaces
	Inputs
	Outputs

	ETH_FP:
ETH_CI_D[1...M]
ETH_CI_P[1...M]
ETH_CI_DE[1...M]
ETH_CI_SSF[1]
ETH_CI_SSFrdi[1]
ETH_CI_SSFfdi[1]

ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETHx/ETH-m_A_So_MP:
ETHx/ETH-m_A_So_MI_Active
ETHx/ETH-m_A_So_MI_MEP_MAC
ETHx/ETH-m_A_So_MI_Client_MEL[1…M]
ETHx/ETH-m_A_So_MI_LCK_Period[1…M]
ETHx/ETH-m_A_So_MI_LCK_Pri[1…M]
ETHx/ETH-m_A_So_MI_Admin_State
ETHx/ETH-m_A_So_MI_VLAN_Config[1...M]
ETHx/ETH-m_A_So_MI_Etype
ETHx/ETH-m_A_So_MI_PCP_Config
ETHx/ETH-m_A_So_MI_MEL
ETHx/ETH-m_A_So_MI_CSF_Period
ETHx/ETH-m_A_So_MI_CSF_Pri
ETHx/ETH-m_A_So_MI_CSF_Enable
ETHx/ETH-m_A_So_MI_CSFrdifdiEnable
ETHx/ETH-m_A_So_MI_CSFdciEnable
	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes
[image:]
Figure 9-28 – ETHx/ETH-m_A_So process
LCK generation process
As defined in clause 8.1.2. Each FP has its LCK generation process.
Selector process
As defined in clause 8.1.3. The normal CI is blocked if Admin_State = LOCKED.
VID Mux process
The VID MUX process interleaves the signal sets (P, D, DE) from the input ports (X, Y, Z). For each incoming signal set on forwarding the signal set, a VID signal is generated. The value of the VID signal is based on the port on which the signal set is received and the configuration from the MI_VLAN_Config input parameter.
The MI_VLAN_Config input parameter determines for every input port the associated VID value. The allowed values for the VID signal are untagged, priority tagged and 1-4094. The following restriction applies to the allowed MI_VLAN_Config values:
•	every VID value is only used once.
Note that IEEE 802.1 standards do not allow IEEE bridges to generate priority tagged frames. Priority tagged frames are only generated by end stations. However a C-VLAN bridge may create S-VLAN priority tagged frames.
VLAN tag process
This process inserts a VLAN tag into the M_SDU field of the incoming D signal. The Ethertype used is determined by the value of the MI_Etype input parameter. The MI_PCP_Config signal determines the encoding of the P and DE signals in the VLAN tag. This parameter defines a mapping from P value to PCP value in the case of C-VLAN tags, and from P value to PCP and DEI value in the case of S-VLAN tags.
The VID signal determines the VID value in the VLAN tag. If the VID signal equals priority tagged, the VID value used is 0. If the VID signal equals untagged, no VLAN tag is inserted in the M_SDU field.
P replicate process
The P replicate process replicates the incoming P signal to both output ports without changing the value of the signal.
DE generation process
The DE generation process generates a DE signal with the value drop ineligible.
Replicate process
As defined in clause 8.4.
OAM MEL filter process
As defined in clause 8.1.1.
CSF insert process
As defined in clause 8.1.16. The ETHx/ETH-m adaptation function generates a single OAM flow while it can accommodate multiple ETH APs. In the case of using multiple APs, the CSF signal is supported at only a representative OAM flow.
Defects						None.
Consequent actions
aCSF-LOS CI_SSF and MI_CSFEnable
aCSF-RDI CI_SSFrdi and MI_CSFrdifdiEnable and MI_CSFEnable
aCSF-FDI CI_SSFfdi and MI_CSFrdifdiEnable and MI_CSFEnable
Defect correlations			None.
Performance monitoring	None.
[bookmark: _Toc126646805][bookmark: _Toc319901795]9.3.3.2	ETH to ETH multiplexing adaptation sink function (ETHx/ETH-m_A_Sk)
Symbol
[image:]
Figure 9-29 – ETHx/ETH-m_A_Sk symbol
Interfaces
Table 9-9 – ETHx/ETH-m_A_Sk interfaces
	Inputs
	Outputs

	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH_AI_TSF
ETH_AI_AIS

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHx/ETH-m_A_Sk_MP:
ETHx/ETH-m_A_Sk_MI_Active
ETHx/ETH-m_A_Sk_MI_MEP_MAC
ETHx/ETH-m_A_Sk_MI_Client_MEL[1…M]
ETHx/ETH-m _A_Sk_MI_LCK_Period[1…M]
ETHx/ETH-m _A_Sk_MI_LCK_Pri[1…M]
ETHx/ETH-m_A_Sk_MI_Admin_State
ETHx/ETH-m_A_Sk_MI_AIS_Period[1…M]
ETHx/ETH-m_A_Sk_MI_AIS_Pri[1…M]
ETHx/ETH-m_A_Sk_MI_VLAN_Config[1...M]
ETHx/ETH-m_A_Sk_MI_P_Regenerate
ETHx/ETH-m_A_Sk_MI_PVID
ETHx/ETH-m_A_Sk_MI_PCP_Config
ETHx/ETH-m_A_Sk_MI_Etype
ETHx/ETH-m_A_Sk_MI_MEL
ETHx/ETH-m_A_Sk_MI_CSF_Reported
ETHx/ETH-m_A_Sk_MI_CSFrdifdiEnable
ETHx/ETH-m_A_Sk_MI_Frametype_Config
ETHx/ETH-m_A_Sk_MI_Filter_Config
	ETH_FP:
ETH_CI_D[1...M]
ETH_CI_P[1...M]
ETH_CI_DE[1...M]
ETH_CI_SSF[1...M]
ETH_CI_SSFrdi[1]
ETH_CI_SSFfdi[1]

ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETHx/ETH-m_A_Sk_MP:
ETHx/ETH-m_A_Sk_MI_cCSF

Processes
 [image:]
Figure 9-30 – ETHx/ETH-m_A_Sk process
Replicate process
As defined in clause 8.4.
Filter process
As defined in clause 8.3.
Frame type filter process
The frame type filter process filters the ETH_CI depending on the value of the MI_frametype_Config input parameter. There are three possible values for this parameter:
•	All Frames
•	Only VLAN Tagged
•	Only Untagged and Priority Tagged.
If the value of MI_frametype_Config equals "All Frames", all ETH_CI is passed through. For the other two values, the process inspects the M_SDU field of the ETH_CI_D signal. It inspects the length/type field and, if applicable, the VID field.
If MI_frametype_Config is set to "Only Untagged and Priority Tagged", all frames with L/T equals MI_Etype and VID in the range 1…4094 are filtered.
If MI_frametype_Config is set to "Only VLAN Tagged", all frames with L/T not equal to MI_Etype and all frames with L/T equal to MI_Etype and VID equal to zero are filtered.
CSF extract process
As defined in clause 8.1.17. The ETHx/ETH-m adaptation function generates a single OAM flow while it can accommodate multiple ETH APs. In the case of using multiple APs, the CSF signal is supported at only a representative OAM flow.
OAM MEL filter process
As defined in clause 8.1.1.
VLAN tag process
The VLAN tag process inspects the incoming D signal; if the value in the L/T field is equal to the value provisioned by the MI_Etype input parameter a VLAN tag is present in the D signal.
If there is no VLAN tag present the VID signal gets the value presented by the MI_PVID input parameter.
If there is a VLAN tag present the VLAN tag process extracts the P, DE and VID information from this VLAN tag. The VID value is taken from the VID field in the VLAN tag. The P and DE values are decoded from the PCP field of the VLAN tag (C-VLAN) or from the PCP and DEI fields of the VLAN tag (S-VLAN), using the decoding information presented via the MI_PCP_Config input parameter. The P value is presented to the P selector process and the DE value is presented to the DE selector process.
DE selector process
This process forwards the incoming DE signal. If there is no incoming DE signal present, it generates a DE signal with the value drop ineligible.
P selector process
This process forwards the P signal coming from the VLAN tag process. If this signal is not present, the P signal coming from the OAM MEL process is forwarded.
P regeneration process
This process regenerates the incoming P signal, based on the MI_P_Regenerate input signal. The MI_P_Regenerate signal specifies a mapping table from P value to P value.
VID Demux process	
The VID Demux process de-interleaves the incoming signal set (DE, P, D) to the different ports (X, Y, Z in Figure 9-30). The VID signal determines the port to be selected, based on the MI_Vlan_Config input parameter.
The MI_Vlan_Config parameter specifies the possible VID values for the ports to be used. If there is no port assigned to a specific VID value and this VID value is used, the VID Demux process will filter the incoming signal set.
Disabling the ingress VID filtering is modelled by setting MI_Vlan_Config [1…4094]. Refer to Appendix VIII.
AIS insert process
As defined in clause 8.1.4.
LCK generation process
As defined in clause 8.1.2. Each FP has its own LCK generation process.
Selector process
As defined in clause 8.1.3. The normal CI is blocked if Admin_State = LOCKED.
Defects
dCSF-LOS – See clause 6.1.5.4.
dCSF-RDI – See clause 6.1.5.4.
dCSF-FDI – See clause 6.1.5.4.
Consequent actions
aSSF[1]	 		(AI_TSF or dCSF_LOS) and (not MI_Admin_State == Locked)
aSSFrdi	[1]		dCSF-RDI and MI_CSFrdifdiEnable
aSSFfdi[1]		dCSF-FDI and MI_CSFrdifdiEnable
aSSF[2…M] AI_TSF and (not MI_Admin_State == Locked)
aAIS AI_AIS
Defect correlations
cCSF		(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not AI_TSF) and MI_CSF_Reported
Performance monitoring	None.
[bookmark: _Toc126646806][bookmark: _Toc319901796]9.3.4	ETH group to ETH adaptation functions (ETHG/ETH_A)
[bookmark: _Toc126646807][bookmark: _Toc319901797]9.3.4.1	ETH group to ETH adaptation source function (ETHG/ETH_A_So)
Symbol
[image:]
Figure 9-31 – ETHG/ETH_A_So symbol
Interfaces
Table 9-10 – ETHG/ETH_A_So interfaces
	Inputs
	Outputs

	ETH_FP:
ETH_CI_D[1…M]
ETH_CI_P[1…M]
ETH_CI_DE[1…M]
ETH_CI_APS
ETH_CI_SSF[1]
ETH_CI_SSFrdi[1]
ETH_CI_SSFfdi[1]

ETHG/ETH_A_So_MP:
ETHG/ETH_A_So_MI_Active
ETHG/ETH_A_So_MI_MEP_MAC
ETHG/ETH_A_So_MI_Client_MEL[1..M]
ETHG/ETH_A_So_MI_LCK_Period[1…M]
ETHG/ETH_A_So_MI_LCK_Pri[1…M]
ETHG/ETH_A_So_MI_Admin_State
ETHG/ETH_A_So_MI_MEL
ETHG/ETH_A_So_MI_APS_Pri
ETHG/ETH_A_So_MI_CSF_Period
ETHG/ETH_A_So_MI_CSF_Pri
ETHG/ETH_A_So_MI_CSF_Enable
ETHG/ETH_A_So_MI_CSFrdifdiEnable
ETHG/ETH_A_So_MI_CSFdciEnable
	ETH_AP:
ETH_AI_D[1...M]
ETH_AI_P[1...M]
ETH_AI_DE[1...M]

Processes
[image:]
Figure 9-32 – ETHG/ETH_A_So process
LCK generation process
As defined in clause 8.1.2. There is a single LCK generation process for each ETH.
Selector process
As defined in clause 8.1.3. The normal CI of each input is blocked if Admin_State = LOCKED.
OAM MEL filter process
As defined in clause 8.1.1.
APS insert process
As defined in clause 8.1.5.
CSF insert process
As defined in clause 8.1.16.
Defects						None.
Consequent actions
aCSF-LOS CI_SSF and MI_CSFEnable
aCSF-RDI CI_SSFrdi and MI_CSFrdifdiEnable and MI_CSFEnable
aCSF-FDI CI_SSFfdi and MI_CSFrdifdiEnable and MI_CSFEnable
Defect correlations			None.
Performance Monitoring	None.
[bookmark: _Toc126646808][bookmark: _Toc319901798]9.3.4.2	ETH group to ETH adaptation sink function (ETHG/ETH_A_Sk)
Symbol
[image:]
Figure 9-33 – ETHG/ETH_A_Sk symbol
Interfaces
Table 9-11 – ETHG/ETH_A_Sk interfaces
	Inputs
	Outputs

	ETH_AP:
ETH_AI_D[1...M]
ETH_AI_P[1...M]
ETH_AI_DE[1...M]
ETH_AI_TSF
ETH_AI_TSD
ETH_AI_AIS

ETHG/ETH_A_Sk_MP:
ETHG/ETH_A_Sk_MI_Active
ETHG/ETH_A_Sk_MI_MEP_MAC
ETHG/ETH_A_Sk_MI_Client_MEL[1…M]
ETHG/ETH_A_Sk_MI_LCK_Period[1…M]
ETHG/ETH_A_Sk_MI_LCK_Pri[1…M]
ETHG/ETH_A_Sk_MI_Admin_State
ETHG/ETH_A_Sk_MI_AIS_Period[1…M]
ETHG/ETH_A_Sk_MI_AIS_Pri[1…M]
ETHG/ETH_A_Sk_MI_MEL
ETHG/ETH_A_Sk_MI_CSF_Reported
ETHG/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_FP:
ETH_CI_D[1…M]
ETH_CI_P[1…M]
ETH_CI_DE[1…M]
ETH_CI_APS
ETH_CI_SSF[1…M]
ETH_CI_SSD
ETH_CI_SSFrdi[1]
ETH_CI_SSFfdi[1]

ETHG/ETH_A_Sk_MP:
ETHG/ETH_A_Sk_MI_cCSF

Processes
[image:]
Figure 9-34 – ETHG/ETH_A_Sk process
APS extract process
As defined in clause 8.1.6.
CSF extract process
As defined in clause 8.1.17.
OAM MEL filter process
As defined in clause 8.1.1.
AIS insert process
As defined in clause 8.1.4. There is a single AIS insert process for each ETH.
LCK generation process
As defined in clause 8.1.2. There is a single LCK generation process for each ETH.
Selector process
As defined in clause 8.1.3. The normal CI of each input is blocked if Admin_State = LOCKED.
Defects
dCSF-LOS – See clause 6.1.5.4.
dCSF-RDI – See clause 6.1.5.4.
dCSF-FDI – See clause 6.1.5.4.
Consequent actions
aSSF[1] 		(AI_TSF or dCSF_LOS) and (not MI_Admin_State == Locked)
aSSFrdi	[1]		dCSF-RDI and MI_CSFrdifdiEnable
aSSFfdi[1]		dCSF-FDI and MI_CSFrdifdiEnable
aSSF[2…M] AI_TSF and (not MI_Admin_State == Locked)
aAIS AI_AIS
Defect correlations	
cCSF		(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not AI_TSF) and MI_CSF_Reported
Performance monitoring		None.
[bookmark: _Toc319901799]9.3.5	ETHx to ETH group adaptation functions (ETHx/ETHG_A)
This adaptation function multiplexes different ETH_CI streams in the ETH group into a single ETH_AI stream and demultiplexes the ETH_AI stream into individual ETH_CI streams.
Symbol
[image:]
Figure 9-35 – ETHx/ETHG_A symbol
The ETHx/ETHG_A (Figure 9-35) function is further decomposed into separate source and sink adaptation functions that are interconnected as shown in Figure 9-36.
[image:]
Figure 9-36 – ETHx/ETHG_A source and sink symbols
[bookmark: _Toc254377647][bookmark: _Toc319901800]9.3.5.1	ETHx to ETH group adaptation source function (ETHx/ETHG_A_So)
This function multiplexes individuals ETH_CI streams in the ETH group into a single ETH_AI stream.
Symbol
[image:]
Figure 9-37 – ETHx/ETHG_A_So symbol
Interfaces
Table 9-12 – ETHx/ETHG_A_So interfaces
	Inputs
	Outputs

	ETH_FP:
ETH_CI_D[1...M]
ETH_CI_P[1...M]
ETH_CI_DE[1...M]

ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETHx/ETHG_A_So_MP:
ETHx/ETHG_A_So_MI_Active
ETHx/ETHG_A_So_MI_MEP_MAC
ETHx/ETHG_A_So_MI_Client_MEL[1…M]
ETHx/ETHG_A_So_MI_LCK_Period[1…M]
ETHx/ETHG_A_So_MI_LCK_Pri[1…M]
ETHx/ETHG_A_So_MI_Admin_State
ETHx/ETHG_A_So_MI_VLAN_Config[1...M]
ETHx/ETHG_A_So_MI_Etype
ETHx/ETHG_A_So_MI_PCP_Config
ETHx/ETHG_A_So_MI_MEL
	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes

Figure 9-38 – ETHx/ETHG_A_So process
LCK generation process
As defined in clause 8.1.2. Each FP has its LCK generation process.
Selector process
As defined in clause 8.1.3. The normal CI is blocked if Admin_State = LOCKED.
VID Mux process
The VID MUX process interleaves the signal sets (P, D, DE) from the input ports (X, Y, Z). The detail of this process is described in clause 9.3.3.1.
VLAN tag process
This process inserts a VLAN tag into the M_SDU field of the incoming D signal. The detail of this process is described in clause 9.3.3.1.
P replicate process
The P replicate process replicates the incoming P signal to both output ports without changing the value of the signal.
DE generation process
The DE generation process generates a DE signal with the value drop ineligible.
Replicate process
As defined in clause 8.4.
OAM MEL filter process
As defined in clause 8.1.1.
Defects						None.
Consequent actions		None.
Defect correlations			None.
Performance monitoring	None.
[bookmark: _Toc254377648][bookmark: _Toc319901801]9.3.5.2	ETHx to ETH group adaptation sink function (ETHx/ETHG_A_Sk)
Symbol
[image:]
Figure 9-39 – ETHx/ETHG_A_Sk symbol
Interfaces
Table 9-13 – ETHx/ETHG_A_Sk interfaces
	Inputs
	Outputs

	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH_AI_TSF
ETH_AI_AIS

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHx/ETHG_A_Sk_MP:
ETHx/ETHG_A_Sk_MI_Active
ETHx/ETHG_A_Sk_MI_MEP_MAC
ETHx/ETHG_A_Sk_MI_Client_MEL[1…M]
ETHx/ETHG_A_Sk_MI_LCK_Period[1…M]
ETHx/ETHG_A_Sk_MI_LCK_Pri[1…M]
ETHx/ETHG_A_Sk_MI_Admin_State
ETHx/ETHG_A_Sk_MI_AIS_Period[1…M]
ETHx/ETHG_A_Sk_MI_AIS_Pri[1…M]
ETHx/ETHG_A_Sk_MI_VLAN_Config[1...M]
ETHx/ETHG_A_Sk_MI_P_Regenerate
ETHx/ETHG_A_Sk_MI_PVID
ETHx/ETHG_A_Sk_MI_PCP_Config
ETHx/ETHG_A_Sk_MI_Etype
ETHx/ETHG_A_Sk_MI_MEL
ETHx/ETHG_A_Sk_MI_Frametype_Config
ETHx/ETHG_A_Sk_MI_Filter_Config
	ETH_FP:
ETH_CI_D[1...M]
ETH_CI_P[1...M]
ETH_CI_DE[1...M]
ETH_CI_SSF[1...M]

ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

Processes
[image:]
Figure 9-40 – ETHx/ETHG_A_Sk process
Replicate process
As defined in clause 8.4.
Filter Process
As defined in clause 8.3.
Frame type filter process
The frame type filter process filters the ETH_CI depending on the value of the MI_frametype_Config input parameter. The details of this process is described in clause 9.3.3.2.
OAM MEL filter process
As defined in clause 8.1.1.
VLAN tag process
The VLAN tag process inspects the incoming D signal. The detail of this process is described in clause 9.3.3.1.
DE selector process
This process forwards the incoming DE signal. If there is no incoming DE signal present, it generates a DE signal with the value drop ineligible.
P selector process
This process forwards the P signal coming from the VLAN tag process. If this signal is not present, the P signal coming from the OAM MEL process is forwarded.
P regeneration process
This process regenerates the incoming P signal, based on the MI_P_Regenerate input signal. The MI_P_Regenerate signal specifies a mapping table from P value to P value.
VID Demux process
The VID Demux process de-interleaves the incoming signal set (DE, P, D) to the different ports (X, Y, Z in Figure 9-40). The detail of this process is described in clause 9.3.3.1.
AIS insert process
As defined in clause 8.1.4.
LCK generation process
As defined in clause 8.1.2. Each FP has its own LCK generation process.
Selector process
As defined in clause 8.1.3. The normal CI is blocked if Admin_State = LOCKED.
Defects						None.
Consequent actions		aSSF AI_TSF and (not MI_Admin_State == Locked)
						aAIS AI_AIS
Defect correlations			None.
Performance monitoring	None.

9.3.6	ETH to MCC adaptation functions (ETHx/MCC_A)
9.3.6.1	ETH to MCC adaptation source function (ETHx/MCC_A_So)
This function maps MCC traffic units into server ETH_AI traffic units. It also provides a maintenance communication channel for EMF via a management reference point.
Symbol
[image:]
Figure 9-x – ETHx/MCC_A_So symbol
Interfaces
Table 9-y – ETHx/MCC_A_So interfaces
	Inputs
	Outputs

	MCC_CP:
MCC_CI_D

ETHx/MCC_A_So_MP:
ETHx/MCC_A_So_MI_Active
ETHx/MCC_A_So_MI_MEL
ETHx/MCC_A_So_MI_MEP_MAC
ETHx/MCC_A_So_MI_MCC_Pri
ETHx/MCC_A_So_MI_MEP_ID
ETHx/MCC_A_So_MI_EDM_Enable
ETHx/MCC_A_So_MI_EDM_Period
ETHx/MCC_A_So_MI_EDM_Duration

	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE

Processes
 [image:]
Figure 9-x+1 – ETHx/MCC_A_So process
MCC generation process
MCC generation process generates MCC traffic units based on the data signals from MCC_connection point or EDM generation process. The data signals from MCC connection point are received at DCN (Data Communication Network) port, and the signals from EDM generation are received at EDM port.
This process builds an MCC traffic unit from the received data signals, MI_MEL for MAC DA and MEG level, MI_MEP_MAC for MAC SA and MI_MCC_Pri signals. Figure 9-x+2 descirbes the behaviour of MCC traffic unit generation.

 [image:]
Figure 9-x+2 – MCC generation behaviour

NOTE – The OUI value for ITU is 00-19-A7; the SubOPC value for EDM is assigned in [ITU-T G.8013]. The SubOPC value for DCN is for further study.

EDM generation process
As defined in clause 8.1.20.1.

Defects						None.
Consequent actions			None.
Defect correlations			None.
Performance monitoring	None.

9.3.6.2	ETH to MCC adaptation sink function (ETHx/MCC_A_Sk)
This function retrieves MCC_CI traffic units from server ETH_AI traffic units. It also provides a maintenance communication channel for EMF via a management reference point.

Symbol
[image:]
Figure 9-x+3 – ETHx/MCC_A_Sk symbol
Interfaces
Table 9-y+1 – ETHx/MCC_A_Sk interfaces
	Inputs
	Outputs

	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE

ETHx/MCC_A_Sk_MP:
ETHx/MCC_A_Sk_MI_Active
ETHx/MCC_A_Sk_MI_MEP_MAC
ETHx/MCC_A_Sk_MI_MEL

	MCC_CP:
MCC_CI_D

ETHx/MCC_A_Sk_MP:
ETHx/MCC_A_Sk_MI_EDM_received
(MEP_ID, Duration)

Processes
[image:]
Figure 9-x+4 – ETHx/MCC_A_Sk process
MCC reception process
This process extracts MCC traffic units that are processed in the ETHx/MCC_A_Sk process according to the following pseudo code:

if (TYPE=<ETHOAM>) and (MEL=MI_MEL) and ((DA=Class 1) or (DA=MI_MEP_MAC))
and (OPC=MCC)then
 switch(OUI) {
 case <ITU>: {
 switch(SubOPC) {
 case <DCN>: extract ETH-MCC OAM traffic unit and forward to DCN Port
 case <EDM>: extract ETH-MCC OAM traffic unit and forward to EDM Port
 default : discard the traffic unit
 }
 default: outside the scope of this Recommendation
}
else
 discard the traffic unit
endif

NOTE – The OUI value for ITU is 00-19-A7; the SubOPC value for EDM is assigned in [ITU-T G.8013]. The SubOPC value for DCN is for further study.
EDM reception process
As defined in clause 8.1.20.2.
Defects						None.
Consequent actions					None.
Defect correlations					None.
Performance monitoring		None.

[bookmark: _Toc147308764][bookmark: _Toc319901802][bookmark: _Toc328035815][bookmark: _Toc339540522][bookmark: _Toc341956999][bookmark: _Toc81793533][bookmark: _Toc84844991][bookmark: _Toc96922613][bookmark: _Toc98151659]9.4	ETH diagnostic functions
[bookmark: _Toc147308765][bookmark: _Toc319901803]9.4.1	ETH diagnostic flow termination functions for MEPs (ETHDe_FT)
The bidirectional ETHDe flow termination (ETHDe_FT) function is performed by a co-located pair of ETHDe flow termination source (ETHDe_FT_So) and sink (ETHDe_FT_Sk) functions.
[bookmark: _Toc319901804]9.4.1.1	ETH diagnostic flow termination source function for MEPs (ETHDe_FT_So)
The ETHDe_FT_So process diagram is shown in Figure 9-41.
Symbol
[image:]
Figure 9-41 – ETHDe_FT_So symbol
Interfaces
Table 9-14 – ETHDe_FT_So interfaces
	Inputs
	Outputs

	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE

ETH_RP:
ETH_RI_LMM(D,P,DE)
ETH_RI_LMR(rSA,TxFCf,RxFCf,TxFCb,RxFCl)
ETH_RI_LBM(D,P,DE)
ETH_RI_LBR(SA,rTLV,TID)
ETH_RI_DMM(D,P,DE)
ETH_RI_DMR(rSA,TxTimeStampf,RxTimeStampf,
TxTimeStampb,RxTimeb,rTestID)
ETH_RI_LTM(D,P,DE)
ETH_RI_LTR(SA,TTL,TID,TLV)
ETH_RI_SLM(OAM,P,DE,TxFCb)
ETH_RI_SLR(rMEP_ID,rTest_ID,TxFCf,TxFCb)

ETH_TP:
ETHDe_FT_So_TI_TimeStampl

ETHDe_FT_So_MP:
ETHDe_FT_So_MI_LM_Start(DA,P,Period)
ETHDe_FT_So_MI_LM_Intermediate_Request
ETHDe_FT_So_MI_LM_Terminate
ETHDe_FT_So_MI_LB_Discover(P)
ETHDe_FT_So_MI_LB_Series(DA,DE,P,N, Length, Period)
ETHDe_FT_So_MI_LB_Test
(DA,DE,P,Pattern, Length, Period)
ETHDe_FT_So_MI_LB_Test_Terminate
ETHDe_FT_So_MI_DM_Start(DA,P,Test ID,Length,Period)
ETHDe_FT_So_MI_DM_Intermediate_Request
ETHDe_FT_So_MI_DM_Terminate
ETHDe_FT_So_MI_1DM_Start(DA,P,Test ID,Length,Period)
ETHDe_FT_So_MI_1DM_Terminate
ETHDe_FT_So_MI_TST(DA,DE,P,Pattern, Length, Period)
ETHDe_FT_So_MI_TST_Terminate
ETHDe_FT_So_MI_LT(TA,TTL.P)
ETHDe_FT_So_MI_MEP_MAC
ETHDe_FT_So_MI_MEL
ETHDe_FT_So_MI_MEP_ID

ETHDe_FT_So_MI_SL_Start(DA,P,Test_ID,Length,Period)
ETHDe_FT_So_MI_SL_Intermediate_Request
ETHDe_FT_So_MI_SL_Terminate
ETHDe_FT_So_MI_1SL_Start(
 DA,P,Test_ID,Length,Period)
ETHDe_FT_So_MI_1SL_Terminate
	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETHDe_FT_So_MP:
ETHDe_FT_So_MI_LM_Result(N_TF, N_LF, F_TF, F_LF)
ETHDe_FT_So_MI_LB_Discover_Result(MACs)
ETHDe_FT_So_MI_LB_Series_Result(REC,ERR,OO)
ETHDe_FT_So_MI_LB_Test_Result
(Sent, REC, CRC, BER, OO)
ETHDe_FT_So_MI_DM_Result(count,B_FD[],F_FD[],N_FD[])
ETHDe_FT_So_MI_TST_Result(Sent)
ETHDe_FT_So_MI_LT_Results(Results)
ETHDe_FT_So_MI_SL_Result(N_TF,N_LF,F_TF,F_LF)

Processes
[image:]
Figure 9-42 – ETHDe_FT_So process
MEP on-demand OAM insertion process
The MEP on-demand OAM insertion process inserts OAM traffic units that are generated in the ETHDe_FT_So process into the stream of traffic units.
For all ETH_CI_D received on any but the data input port, the SA field is overwritten with the MI_MEP_MAC value. In the M_SDU field, the MEL field is overwritten with the MI_MEL value.
If the DA of the OAM traffic unit is a class 1 or class 2 multicast DA the OAM insertion process updates the DA to reflect the right MEL.
This ensures that every generated OAM field has the correct SA, DA and MEL.
LB control
This process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.2 defines the LB control process.
LBM generation
This process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.3 defines the LBM generation process.
LBR generation
This process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.6 defines the LBR generation process.
On-demand LM control
This process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.2 defines the on-demand LM control process.
LMM generation
This process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.3 defines the LMM generation process.
LMR generation
This process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.5 defines the LMR generation process.
LMM Mux
The LMM Mux process interleaves the signal sets LMM(DA,P,0) from the input ports (X, Y, Z).
Counter process
This process is defined in clause 8.1.9.7 and used to count frames for on-demand loss measurements with the on-demand LM protocol.
On-demand DM control
This process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.2 defines the DM control process.
DMM generation
This process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.3 defines the DMM generation process.
DMR generation
This process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.5 defines the DMR generation process.
DMM Mux
The DMM Mux process interleaves the signal sets DMM(DA,P,0,Test ID TLV, TLV) from the input ports (X, Y, Z).
On-demand 1DM Control_So
This process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.2 defines the 1DM Control_So process.
1DM generation
This process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.3 defines the 1DM generation process.
1DM Mux
The 1DM Mux process interleaves the signal sets 1DM(DA,P,0,Test ID TLV, TLV) from the input ports (X, Y, Z).
TST Control_So
This process is defined in clause 8.1.12 where the TST protocol is defined. Clause 8.1.12.2 defines the TST control process.
TST generation
This process is defined in clause 8.1.12 where the TST protocol is defined. Clause 8.1.12.3 defines the TST generation process.
LT control
This process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.2 defines the LT control process.
LTM generation
This process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.3 defines the LTM generation process.
LTR generation
This process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.6 defines the LTR generation process.
On-demand SL control
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.2 defines the SL control process.
SLM generation
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.3 defines the SLM generation process.
SLR generation
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.5 defines the SLR generation process.
SLM Mux
The SLM Mux process interleaves the signal sets SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) from the input ports (X, Y, Z).
On-demand 1SL Control_So
This process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.2 defines the 1SL Control_So process.
1SL generation
This process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.3 defines the 1SL generation process.
1SL Mux
The 1SL Mux process interleaves the signal sets 1SL(DA,P, MEP_ID,Test_ID, TxFCl, TLV) from the input ports (X, Y, Z).
Defects						None.
Consequent actions		None.
Defect correlations			None.
Performance monitoring	None.
[bookmark: _Toc319901805]9.4.1.2	ETH diagnostic flow termination sink function for MEPs (ETHDe_FT_Sk)
The ETHDe_FT_Sk process diagram is shown in Figure 9-43.
Symbol
[image:]
Figure 9-43 – ETHDe_FT_Sk symbol
Interfaces
Table 9-15 – ETHDe_FT_Sk interfaces
	Inputs
	Outputs

	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETHDe_FT_Sk_MP:
ETHDe_FT_Sk_MI_MEL
ETHDe_FT_Sk_MI_MEP_MAC
ETHDe_FT_Sk_MI_1DM_Start(SA,P,Test ID)
ETHDe_FT_Sk_MI_1DM_Intermediate_Request
ETHDe_FT_Sk_MI_1DM_Terminate
ETHDe_FT_Sk_MI_TST_Start(SA,Pattern)
ETHDe_FT_Sk_MI_1SL_Intermediate_Request
ETHDe_FT_Sk_MI_TST_Terminate
ETHDe_FT_Sk_MI_1SL_Start(
 SA,MEP_ID, Test_ID)
ETHDe_FT_Sk_MI_1SL_Terminate

ETH_TP:
ETHDe_FT_Sk_TI_TimeStampl

	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE

ETH _RP:
ETH_RI_LMM(D,P,DE)
ETH_RI_LMR(TxFCf,RxFCb,TxFCb,RxFCl)
ETH_RI_LMR(rSA,TxFCf,RxFCf,TxFCb,RxFCl)
ETH_RI_LBM(D,P,DE)
ETH_RI_LBR(SA,rTLV,TID)
ETH_RI_DMM(D,P,DE)
ETH_RI_DMR(
rSA,TxTimestampf,RxTimeStampf,
TxTimeStampb,RxTimeb,rTest ID)
ETH_RI_LTM(D,P,DE)
ETH_RI_LTR(SA,TTL,TID,TLV)
ETH_RI_SLM(OAM,P,DE,TxFCb)
ETH_RI_SLR(
 rMEP_ID,rTest_ID,TxFCf,TxFCb)

ETHDe_FT_Sk_MP:
ETHDe_FT_Sk_MI_1DM_Result(
 count,N_FD[])
ETHDe_FT_Sk_MI_TST_Result(
 REC,CRC,BER,OO)
ETHDe_FT_Sk_MI_1SL_Result(N_TF,N_LF)

Processes
[image:]Figure 9-44 – ETHDe_FT_Sk processes
MEP on-demand OAM extraction process
The MEP on-demand OAM extraction process extracts OAM traffic units that are processed in the ETHDe_FT_Sk process from the stream of traffic units as defined in the following pseudo code:

if (TYPE=<ETHOAM>) and (MEL=MI_MEL) then
 switch(OPC) {
 case <LMM>: if (Flag.Type=0) then
 extract ETH-LMM OAM traffic unit and forward to LMM Port
 endif
 case <LMR>: if (Flag.Type=0) then
 extract ETH-LMR OAM traffic unit and forward to LMR Port
 endif
 case <DMM>: if (Flag.Type=0) then
extract ETH-DMM OAM traffic unit and forward to DMM Port
 endif
 case <DMR>: if (Flag.Type=0) then
extract ETH-DMR OAM traffic unit and forward to DMR Port
 endif
 case <1DM>: extract ETH-1DM OAM traffic unit and forward to 1DM Port
 case <LTM>: extract ETH-LTM OAM traffic unit and forward to LTM Port
 case <LTR>: extract ETH-LTR OAM traffic unit and forward to LTR Port
 case <LBM>: extract ETH-LBM OAM traffic unit and forward to LBM Port
 case <LBR>: extract ETH-LBR OAM traffic unit and forward to LBR Port
 case <TST>: extract ETH-TST OAM traffic unit and forward to TST Port
 case <SLM>: extract ETH-SLM OAM traffic unit and forward to SLM port
 case <SLR>: extract ETH-SLR OAM traffic unit and forward to SLR port
 case <1SL>: extract ETH-1SL OAM traffic unit and forward to 1SL Port
 default: forward ETH_CI traffic unit to Data port
 }
else
 forward ETH_CI_traffic unit to Data Port
endif
NOTE 1 – Further filtering of OAM traffic units is performed by the OAM MEL filter process which forms part of the ETH adaptation functions specified in clause 9.3.
NOTE 2 – If both ETHDe_FT and ETHx_FT are involved in synthetic loss measurements, the MEP on-demand OAM extraction process needs to determine which flow termination the received ETH-SLM PDU belongs to. Mechanism details are for further study.
MEP LBM reception
This process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.5 defines the LBM MEP reception process.
LBR reception
This process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.7 defines the LBR reception process.
LMM reception
This process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.4 defines the LMM reception process.
LMR reception
This process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.6 defines the LMR reception process.
LMR Demux
The LMR Demux process de-interleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P signal can be used for the selection of the port.
Counter process
This process is defined in clause 8.1.9.7 and used to count frames for on-demand loss measurements with on-demand LM protocol.
DMM reception
This process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.4 defines the DMM reception process.
DMR reception
This process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.6 defines the DMR reception process.
DMR Demux
The DMR Demux process de-interleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1DM reception
This process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.4 defines the 1DM reception process.
1DM Demux
The 1DM Demux process de-interleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1DM Control_Sk
This process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.5 defines the 1DM Control_Sk process.
TST reception
This process is defined in clause 8.1.12 where the TST protocol is defined. Clause 8.1.12.4 defines the TST reception process.
TST Control_Sk
This process is defined in clause 8.1.12 where the TST protocol is defined. Clause 8.1.12.5 defines the TST Control_Sk process.
MEP LTM reception
This process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.5 defines the MEP LTM reception process.
LTR reception
This process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.7 defines the LTR reception process.
SLM reception
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.4 defines the SLM reception process.
SLR reception
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.6 defines the SLR reception process.
SLR Demux
The SLR Demux process de-interleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1SL reception
This process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.4 defines the 1SL reception process.
1SL Demux
The 1DM Demux process de-interleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1SL Control_Sk
This process is defined in clause 8.1.15 where the 1SL protocol is defined. Clause 8.1.15.5 defines the 1SL control_Sk process.
Defects						None.
Consequent actions		None.
Defect correlations			None.
Performance monitoring	None.
[bookmark: _Toc319901806]9.4.2	ETH diagnostic flow termination functions for MIPs (ETHDi_FT)
[bookmark: _Toc319901807]9.4.2.1	ETH diagnostic flow termination source function for MIPs (ETHDi_FT_So)
Symbol
[image:]
Figure 9-45 – ETHDi_FT_So symbol
Interfaces
Table 9-16 – ETHDi_FT_So interfaces
	Inputs
	Outputs

	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE

ETH_RP:
ETH_RI_LBM(D,P,DE)
ETH_RI_LTM(D,P,DE)

ETHDi_FT_So_MP:
ETHDi_FT_So_MI_MEL
ETHDi_FT_So_MI_MIP_MAC
	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

Processes

Figure 9-46 – ETHDi_FT_So process
MIP OAM insertion
The MIP OAM insertion process inserts OAM traffic units that are generated in the ETHDi_FT_So process into the stream of traffic units.
For all ETH_CI_D received on any but the data input port, the SA field is overwritten with the MI_MIP_MAC value. In the M_SDU field the Ethertype value is overwritten with the OAM Ethertype value (89-02) and the MEL field is overwritten with the MI_MEL value.
This ensures that every generated OAM field has the correct SA, Ethertype and MEL.
LBR generation
This process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.6 defines the LBR generation process.
LTR generation
This process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.6 defines the LTR generation process. This process may be regarded as the LT responder which is located outside of this MIP independently, however, the process itself is the same.
Defects						None.
Consequent actions		None.
Defect correlations			None.
Performance monitoring	None.
[bookmark: _Toc319901808]9.4.2.2	ETH diagnostic flow termination sink function for MIPs (ETHDi_FT_Sk)
Symbol
[image:]
Figure 9-47 – ETHDi_FT_Sk symbol
Interfaces
Table 9-17 – ETHDi_FT_Sk interfaces
	Inputs
	Outputs

	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETHDi_FT_Sk_MP:
ETHDi_FT_Sk_MI_MEL
ETHDi_FT_Sk_MI_MIP_MAC
	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE

ETH_RP:
ETH_RI_LBM(D,P,DE)
ETH_RI_LTM(D,P,DE)

Processes

Figure 9-48 – ETHDi_FT_Sk process
MIP OAM extraction process
The MIP OAM extraction process extracts OAM traffic units that are processed in the ETHDi_FT_Sk process from the stream of traffic units as defined in the following pseudo code:

if (TYPE=<ETHOAM>) and (MEL=MI_MEL) then
 switch(OPC) {
 case <LBM>: extract ETH-LBM OAM traffic unit
 forward one copy of ETH-LBM OAM traffic unit to LBM Port
 forward one copy of ETH-LBM OAM traffic unit to Data Port
 case <LTM>: extract ETH-LTM OAM traffic unit and forward to LTM Port
 default: forward ETH_CI traffic unit to Data port
 }
else
forward ETH CI traffic unit to Data Port
endif
NOTE – Further filtering of OAM traffic units is performed by the OAM MEL filter process which forms part of the ETH adaptation functions specified in clause 9.3.
MIP OAM insertion process
The MIP OAM insertion process inserts OAM traffic units that are generated in the ETHDi_FT_Sk process into the stream of traffic units.
For all ETH_CI_D received on any but the data input port, the SA field is overwritten with the MI_MIP_MAC value. In the M_SDU field the Ethertype value is overwritten with the OAM Ethertype value (89-02) and the MEL field is overwritten with the MI_MEL value.
This ensures that every generated OAM field has the correct SA, Ethertype and MEL.
MIP LBM reception process
This process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.4 defines the LBM MIP reception process.
MIP LTM reception process
This process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.4 defines the MIP LTM reception process. This process may be regarded as the LT responder which is located outside of this MIP independently, however, the process itself is the same.
Defects						None.
Consequent actions		None.
Defect correlations			None.
Performance monitoring	None.
[bookmark: _Toc252206031][bookmark: _Toc252207080][bookmark: _Toc252213002][bookmark: _Toc252216893][bookmark: _Toc252478633][bookmark: _Toc147308766][bookmark: _Toc319901809]9.4.3	ETHD to ETH adaptation functions (ETHD/ETH_A)
The ETHD/ETH adaptation function is an empty function; it is included to satisfy the modelling rules.
The bidirectional ETHD/ETH adaptation function is performed by a co-located pair of ETHD/ETH adaptation source (ETHD/ETH_A_So) and sink (ETHD/ETH_A_Sk) functions.
[bookmark: _Toc319901810]9.4.3.1	ETHD to ETH adaptation source function (ETHD/ETH_A_So)
The ETHD/ETH_A_So function symbol is shown in Figure 9-49 and the process in Figure 9-50.
[image:]
Figure 9-49 – ETHD/ETH_A_So symbol
Interfaces
Table 9-18 – ETHD/ETH_A_So interfaces
	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

See specific OAM process for additional inputs
	ETH_AP:
ETHD_AI_D
ETHD_AI_P
ETHD_AI_DE

See specific OAM process for additional inputs

Processes

Figure 9-50 – ETHD/ETH_A_So process
Defects						None.
Consequent actions		None.
Defect correlations			None.
Performance monitoring	None.
[bookmark: _Toc319901811]9.4.3.2	ETHD to ETH adaptation sink function (ETHD/ETH_A_Sk)
The ETHD/ETH_A_Sk function symbol is shown in Figure 9-51 and the process in Figure 9-52.
Symbol
[image:]
Figure 9-51 – ETHD/ETH_A_Sk symbol
Interfaces
Table 9-19 – ETHD/ETH_A_Sk interfaces
	Inputs
	Outputs

	ETH_AP:
ETHD_AI_D
ETHD_AI_P
ETHD_AI_DE
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

Processes
The ETHD/ETH_A_Sk process diagram is shown in Figure 9-52.

Figure 9-52 – ETHD/ETH_A_Sk process
[bookmark: _Toc214354063][bookmark: _Toc319901812][bookmark: _Toc198036119][bookmark: _Toc199132242]9.4.4	ETHDi to ETH adaptation functions (ETHDi/ETH_A)
The ETHDi/ETH inserts and extracts the R-APS information into or from the stream of ETH_CI.
[bookmark: _Toc214354064][bookmark: _Toc319901813]9.4.4.1	ETHDi to ETH adaptation source function (ETHDi/ETH_A_So)
This function allows the insertion of R-APS information into a stream of ETH_CI.
Symbol
[image:]
Figure 9-53 – ETHDi/ETH_A_So symbol
Interfaces
Table 9-20 – ETHDi/ETH_A_So interfaces
	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_RAPS

ETHDi/ETH_A_So_MP:
ETHDi/ETH_A_So_MI_Active
ETHDi/ETH_A_So_MI_MEL
ETHDi/ETH_A_So_MI_RAPS_Pri
ETHDi/ETH_A_So_MI_MIP_MAC
	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE

Processes

Figure 9-54 – ETHDi/ETH_A_So process
[bookmark: _Toc198036120][bookmark: _Toc199132243][bookmark: _Toc214354065]RAPS insert
The RAPS insert process encodes the ETH_CI_RAPS signal into the ETH_CI_D signal of an ETH_CI traffic unit; the resulting RAPS traffic unit is inserted into the stream of incoming traffic units, i.e., the outgoing stream consist of the incoming traffic units and the inserted RAPS traffic units. The ETH_CI_RAPS signal contains the RAPS specific information as defined in [ITUT G.8032].
The ETH_CI_D signal contains a source and destination address field and an M_SDU field. The format of the M_SDU field for RAPS traffic units is determined by the ETH_CI_RAPS signal. The MEL in the M_SDU field is determined by the MI_MEL input parameter.
The values of the source and destination address fields in the ETH_CI_D signal are determined by the local MAC address of the maintenance entity group intermediate point (MIP) (MI_MIP_MAC) and the ring multicast address as described in [ITU-T G.8032]. The value of the ring multicast MAC address is 01-19-A7-00-00-01. The value of MI_ MIP_MAC should be a valid unicast MAC address.
The value of the ETH_CI_P signal associated with the generated RAPS traffic units is determined by the MI_RAPS_Pri input parameter.
The value of the ETH_CI_DE signal associated with the generated RAPS traffic units is set to drop ineligible.
[bookmark: _Toc198036121][bookmark: _Toc199132244][bookmark: _Toc214354066][bookmark: _Toc319901814]9.4.4.2	ETHDi to ETH adaptation sink function (ETHDi/ETH_A_Sk)
This function extracts the RAPS information from the RAPS traffic units without filtering the traffic unit.
Symbol
[image:]
Figure 9-55 – ETHDi/ETH_A_Sk symbol
Interfaces
Table 9-21 – ETHDi/ETH_A_Sk interfaces
	Inputs
	Outputs

	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH_AI_TSF

ETHDi/ETH_A_Sk_MP:
ETHDi/ETH_A_Sk_MI_Active
ETHDi/ETH_A_Sk_MI_MEL
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_RAPS
ETH_CI_SSF

NOTE – Currently in this Recommendation, for the ETHDi_FT_Sk, no consequent action for the ETH_CI_SSF input has been defined. However the consequent action should be ETH_AI_TSF output to propagate the failure information.
Processes

Figure 9-56 – ETHDi/ETH_A_Sk process
[bookmark: _Toc198036122][bookmark: _Toc199132245][bookmark: _Toc214354067]RAPS extract
The RAPS extract process extracts ETH_CI_RAPS signals from the incoming stream of ETH_CI traffic units without filtering the RAPS traffic unit. ETH_CI_RAPS signals are only extracted if they belong to the MEL as defined by the MI_MEL input parameter.
If an incoming traffic unit is an RAPS traffic unit belonging to the MEL defined by MI_MEL, the traffic unit will be duplicated. The original RAPS traffic unit will be transparently forwarded and the ETH_CI_RAPS signal will be extracted from the duplicate. The ETH_CI_RAPS is the RAPS specific information contained in the received traffic unit. All other traffic units will be transparently forwarded without being duplicated. The encoding of the ETH_CI_D signal for RAPS frames is defined in clause 9.10 of [ITU-T G.8013].
The criteria for filtering are based on the values of the fields within the M_SDU field of the ETH_CI_D signal:
•	length/type field equals the OAM Ethertype (89-02)
•	MEL field equals MI_MEL
•	OAM type equals RAPS (40), as defined in clause 9.1 of [ITU-T G.8013].
Defects						None.
Consequent actions		aSSF AI_TSF
Defect correlations			None.
Performance monitoring	None.
[bookmark: _Toc126646816][bookmark: _Toc319901815][bookmark: _Toc328035816][bookmark: _Toc339540523][bookmark: _Toc341957000]9.5	Server to ETH adaptation functions (<server>/ETH_A)
Figure 9-57 presents a high level view of the processes that are present in a generic server to ETH adaptation function (<server>/ETH). The information crossing the <server>/ETH termination flow point (ETH_TFP) is referred to as the ETH characteristic information (ETH_CI). The information crossing the server layer access point (<server>_AP) is referred to as the server-specific adapted information (<server>_AI). Note that for some server signals not all processes need to be present, as defined in the server specific adaptation functions.

Note – This interface is shown for reference only. It corresponds to the ISS interface in the IEEE 802 model.
Figure 9-57 – Server to ETH adaptation functions
The following generic processes are specified: "Filter" in clause 8.3, "Queues" in clause 8.2, "Replicate" in clause 8.4, and "802.3 Protocols" in clause 8.5. Server-specific processes are specified in server-specific clauses.
NOTE 1 – Filtering in the <server>/ETH_A sink adaptation function is not applied to frames forwarded to the ETH_TFP. The processes connected to this ETH_TFP should filter ETH_CI or process it.
NOTE 2 – Queueing of frames in the source direction is also not applied for frames from the ETH_TFP. If queueing of frames in the sink direction is required when traffic conditioning is applied, this will be included in the traffic conditioning function.
NOTE 3 – For the EPL service defined in [ITU-T G.8001] ETH_TFP is unconnected. For services supporting ETH_TFP in the source direction, prioritization of frames received across the ETH_FP and ETH_TFP interfaces will be required. Such prioritization is for further study.
NOTE 4 – Server to ETH adaptation functions may have the processes of AIS insert (see clause 8.1.4) and LCK generation (see clause 8.1.2), and BNM insert (see clause 8.1.18). Note that Figure 9-57 and related figures in clauses 9.7, 10 and 11 do not explicitly depict those features to avoid introducing the description complexity.
[bookmark: _Toc126646817][bookmark: _Toc319901816][bookmark: _Toc328035817][bookmark: _Toc339540524][bookmark: _Toc341957001]9.6	ETH traffic conditioning and shaping functions (ETH_TCS)
[bookmark: _Toc319901817]9.6.1	ETH traffic conditioning and shaping functions (ETH_TCS)
[bookmark: _Toc319901818]9.6.1.1	ETH traffic shaping function (ETH_TCS_So)
Symbol

Figure 9-58 – ETH_TCS_So symbol
Interfaces
Table 9-22 – ETH_TCS_So interfaces
	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_TCS_So_MP:
ETH_TCS_So_MI_Prio_Config
ETH_TCS_So_MI_Queue_Config[]
ETH_TCS_So_MI_Sched_Config
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

Processes

Figure 9-59 – ETH_TCS_So process
Priority splitter
As defined in clause 8.9.2.
Queue
As defined in clause 8.9.1.
Scheduler
As defined in clause 8.9.5.
Priority merger
As defined in clause 8.9.3.
Defects						None.
Consequent actions		None.
Defect correlations			None.
Performance monitoring	None.
[bookmark: _Toc319901819]9.6.1.2	ETH traffic conditioning function (ETH_TCS_Sk)
Symbol

Figure 9-60 – ETH_TCS_Sk symbol
Interfaces
Table 9-23 – ETH_TCS_Sk interfaces
	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_TCS_Sk_MP:
ETH_TCS_Sk_MI_Prio_Config
ETH_TCS_Sk_MI_Cond_Config[]
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

Processes

Figure 9-61 – ETH_TCS_Sk processes
Priority splitter
As defined in clause 8.9.2.
Conditioner
As defined in clause 8.9.4.
Priority merger
As defined in clause 8.9.3.
Defects						None.
Consequent actions		None.
Defect correlations			None.
Performance monitoring	None.
[bookmark: _Toc319901820]9.6.2	ETH group traffic conditioning and shaping functions (ETH_GTCS)
[bookmark: _Toc319901821]9.6.2.1	ETH group traffic shaping function (ETH_GTCS_So)
Symbol

Figure 9-62 – ETH_GTCS_So symbol
Interfaces
Table 9-24 – ETH_GTCS_So interfaces
	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_GTCS_So_MP:
ETH_GTCS_So_MI_Prio_Config[]
ETH_GTCS_So_MI_Queue_Config[][]
ETH_GTCS_So_MI_Sched_Config
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

Processes

Figure 9-63 – ETH_GTCS_So processes
Priority splitter
As defined in clause 8.9.2.
Queue
As defined in clause 8.9.1.
Scheduler
As defined in clause 8.9.5.
Priority merger
As defined in clause 8.9.3.
Defects						None.
Consequent actions		None.
Defect correlations			None.
Performance monitoring	None.
[bookmark: _Toc319901822]9.6.2.2	ETH group traffic conditioning function (ETH_GTCS_Sk)
For ETH group traffic, the traffic conditioning process is performed per flow point but there is no correlation between each process. Threfore, an ETH_GTCS_Sk function can be modelled by multiple ETH_TCS_Sk functions and no specific function is defined in this Recommendation.
[bookmark: _Toc126646820][bookmark: _Toc319901823][bookmark: _Toc328035818][bookmark: _Toc339540525][bookmark: _Toc341957002]9.7	ETH link aggregation functions
The ETH link aggregation functions model the link aggregation functionality as described in [IEEE 802.1AX] (moved from clause 43 of IEEE 802.3-2005). The definitions in the present clause provide references to the appropriate generic process definitions in clause 8 of [ITU-T G.806] where necessary.
The generic model used is shown in Figures 9-64 and 9-65. Figure 9-64 shows the simplified model for the case of one single aggregator, while Figure 9-65 shows the generic model for the case of several aggregators. Np denotes the number of ETYn_AP interfaces (interfaces to the IEEE 802.3 PHY layer), while Na is the number of ETH-LAG_FP interfaces (interfaces to the IEEE 802.3 MAC layer).

Figure 9-64 – Simplified model of Ethernet link aggregation with
decomposition of ETH-LAG-Np-Na_TT function for Na=1

Figure 9-65 – Generic model of Ethernet link aggregation with
decomposition of ETH-LAG-Np-Na_TT function
[bookmark: _Toc126646821][bookmark: _Toc319901824]9.7.1	ETH link aggregation layer trail termination function (ETH-LAG-Np-Na_TT)
The ETH-LAG-Np-Na_TT function is decomposed as shown in Figures 9-66 and 9-68.
NOTE – ETH-LAG-Np-Na_TT functions always consist of a pair of identically-sized source and sink functions (i.e., a source function with certain values of Na/Np and a sink function with the same Na/Np values), as per [IEEE 802.3].
[bookmark: _Toc126646822][bookmark: _Toc319901825]9.7.1.1	ETH link aggregation adaptation source function (ETYn-Np/ETH-LAG-Na_A_So)
Symbol
[image:]
Figure 9-66 – ETYn-Np/ETH-LAG-Na_A_So symbol
Interfaces
Table 9-25 – ETYn-Np/ETH-LAG-Na_A_So interfaces
	Inputs
	Outputs

	ETH-LAG_FP:
ETH-LAG-Na_CI_D =
 ETH-LAG_CI[1..Na]_D
ETH-LAG-Na_CI_P =
 ETH-LAG_CI[1..Na]_P
ETH-LAG-Na_CI_DE =
 ETH-LAG_CI[1..Na]_DE
ETH-LAG-Na_CI_Clock =
 ETH-LAG_CI[1..Na]_Clock

ETYn-Np/ETH-LAG-Na _A_So_MP:
ETYn-Np/ETH-LAG-Na_A_So_
 MI_Active
ETYn-Np/ETH-LAG-Na_A_So_
 MI_TxPauseEnable
ETYn-Np/ETH-LAG-Na_A_So_
 MI_Agg[1..Na]_AP_List
ETYn-Np/ETH-LAG-Na_A_So_
 MI_AggPort[1..Np]_
 ActorAdmin_State

	ETYn_AP:
ETYn-Np_AI_Data = ETYn_AI[1..Np]_Data
ETYn-Np_AI_Clock = ETYn_AI[1..Np]_Clock

ETYn-Np/ETH-LAG-Na _A_So_MP:
ETYn-Np/ETH-LAG-Na_A_So_
 MI_Agg[1..Na]_
 ActorSystemID
 ActorSystemPriority
 ActorOperKey
 PartnerSystemID
 PartnerSystemPriority
 PartnerOperKey
 DataRate
 CollectorMaxDelay
ETYn-Np/ETH-LAG-Na_A_So_
 MI_AggPort[1..Np]_
 ActorOperKey
 PartnerOperSystemPriority
 PartnerOperSystemID
 PartnerOperKey
 ActorPort
 ActorPortPriority
 PartnerOperPort
 PartnerOperPortPriority
 ActorOperState
 PartnerOperState
ETYn-Np/ETH-LAG-Na_A_So_
 MI_pAggOctetsTxOK[1..Na]
ETYn-Np/ETH-LAG-Na_A_So_
 MI_pAggFramesTxOK[1..Na]
ETYn-Np/ETH-LAG-Na_A_So_
 MI_pFramesTransmittedOK[1..Np]
ETYn-Np/ETH-LAG-Na_A_So_
 MI_pOctetsTransmittedOK[1..Np]

NOTE 1 – The signals MI_Agg[1..Na]_… and MI_AggPort[1..Np]_… represent the attributes of the "Aggregator" and "Aggregator Port" objects of the same name in the model in clause 6.3 of [IEEE 802.1AX]. As an example, the output MI_Agg[k]_PartnerSystemID corresponds to the IEEE read-only attribute aAggPartnerSystemID for aggregator object #k.
NOTE 2 – For the purposes of Ethernet transport equipment, the above table contains the minimum set of aggregator and aggregator port inputs and outputs to be supported. This set is a subset of the IEEE 802.1AX model, of which some attributes have been omitted because they are specific to the IEEE management philosophy or for simplification in transport equipment. All parameters not explicitly settable per the table above take their default values as per [IEEE 802.1AX].
NOTE 3 – this is the minimum set of common requirements that transport equipment must fulfil.
Processes
A process diagram of this function is shown in Figure 9-67.
[image:]
Figure 9-67 – ETYn-Np/ETH-LAG-Na_A_So processes
The input MI_Agg[1..Na]_AP_List defines for each aggregator, which ports (access points) are provisioned to be assigned to it. The AP_List attributes for all aggregators are disjunct lists.
The system shall assign a unique value for the parameter aAggActorAdminKey for each aggregator in the system. The system shall also assign the value used for each aggregator to the parameter aAggPortActorAdminKey of all ports in its assigned port list (AP_List).
NOTE 4 – This automated AdminKey assignment is a simplification of the IEEE provisioning model where the keys are provisioned explicitly for each port and aggregator.
NOTE 5 – Automated assignment of PartnerAdminKey attributes is for further study.
ETYn server
This process is identical to the "ETYn server specific" process defined in clause 10.3.1.
MAC FCS, 802.1AB/X, 802.3
These processes are as per the definitions of the "MAC FCS generation" in clause 8.8.1, "802.1AB/X processes" in clause 8.8.3 and "802.3 protocols" in clause 8.5.
Aggregation control
This process is the source part of the process of the same name in [IEEE 802.1AX].
NOTE 6 – The aggregation control process is a single process shared between the source and the sink of a pair of source/sink adaptation functions.
NOTE 7 – As per the IEEE model and given the automated key assignment, only ports from each aggregator's AP_List will be eligible to be selected by that aggregator.
Aggregator
This process is the source part of the process of the same name in [IEEE 802.1AX]. A coupled mux state machine model is used.
NOTE 8 – Each "Aggregator #k" process is a single process shared between the source and the sink of a pair of source/sink adaptation functions.
Defects						None.
Consequent actions		None.
Defect correlations			None.
Performance monitoring
For each aggregator:
	MI_pAggOctetsTxOK[1..Na] as per clause 6 of [IEEE 802.1AX].
	MI_pAggFramesTxOK[1..Na] as per clause 6 of [IEEE 802.1AX].
For each access point:
	MI_pOctetsTransmittedOK[1..Np] asper clause 6 of [IEEE 802.1AX].
	MI_pFramesTransmittedOK[1..Np] as per clause 6 of [IEEE 802.1AX].
[bookmark: _Toc126646823][bookmark: _Toc319901826]9.7.1.2	ETH link aggregation adaptation sink function (ETYn-Np/ETH-LAG-Na_A_Sk)
Symbol
[image:]
Figure 9-68 – ETYn-Np/ETH-LAG-Na_A_Sk symbol
Interfaces
Table 9-26 – ETYn-Np/ETH-LAG-Na_A_Sk interfaces
	Inputs
	Outputs

	ETYn_AP:
ETYn-Np_AI_D=
 ETYn_AI[1..Np]_D
ETYn-Np_AI_P=
 ETYn_AI[1..Np]_P
ETYn-Np_AI_DE=
 ETYn_AI[1..Np]_DE
ETYn-Np_AI_Clock
 ETYn_AI[1..Np]_Clock

ETYn-Np/ETH-LAG-Na _A_Sk_MP:
ETYn-Np/ETH-LAG-Na_A_Sk_
 MI_Active
ETYn-Np/ETH-LAG-Na_A_Sk_
 MI_PLLThr[1..Na]
	ETH-LAG_FP:
ETH-LAG-Na_CI_D=
 ETH-LAG_CI[1..Na]_D
ETH-LAG-Na_CI_P=
 ETH-LAG_CI[1..Na]_P
ETH-LAG-Na_CI_DE=
 ETH-LAG_CI[1..Na]_DE
ETH-LAG-Na_CI_Clock=
 ETH-LAG_CI[1..Na]_Clock
ETH- LAG-Na_CI_aSSF=
 ETH-LAG_CI[1..Na]_aSSF

ETYn-Np/ETH-LAG-Na _A_Sk_MP:
ETYn-Np/ETH-LAG-Na_A_Sk_
 MI_cPLL[1..Na]
ETYn-Np/ETH-LAG-Na_A_Sk_
 MI_cTLL[1..Na]
ETYn-Np/ETH-LAG-Na_A_Sk_
 MI_pAggOctetsRxOK[1..Na]
ETYn-Np/ETH-LAG-Na_A_Sk_
 MI_pAggFramesRxOK[1..Na]
ETYn-Np/ETH-LAG-Na_A_Sk_
 MI_pFramesReceivedOK[1..Np]
ETYn-Np/ETH-LAG-Na_A_Sk_
 MI_pOctetsReceivedOK[1..Np]
ETYn-Np/ETH-LAG-Na_A_Sk_
 MI_pFCSErrors[1..Np.]

Processes
A process diagram of this function is shown in Figure 9-69.
[image:]
Figure 9-69 – ETYn-Np/ETH-LAG-Na_A_Sk process
ETYn server
This process is identical to the "ETYn server specific" process defined in clause 10.3.2.
MAC FCS, 802.1AB/X, 802.3
These processes are as per the definitions of the "MAC FCS check" in clause 8.8.2, "802.1AB/X protocols" in clause 8.8.3 and "802.3 protocols" in clause 8.5.
Aggregation control
This process is the source part of the process of the same name in [IEEE 802.1AX].
NOTE 1 – The aggregation control process is a single process shared between the source and the sink of a pair of source/sink adaptation functions. The parameters used by this bidirectional process are defined in the interface section of the source adaptation function.
Aggregator
This process is the source part of the process of the same name in [IEEE 802.1AX]. A coupled mux state machine model is used.
NOTE 2 – Each "Aggregator #k" process is a single process shared between the source and the sink of a pair of source/sink adaptation functions. The parameters used by this bidirectional process are defined in the interface section of the source adaptation function.
Defects
dMNCD[j] (Member j not Collecting/Distributing): The defect shall be raised if an access point (port) in an aggregator's AP_List stays outside of the COLLECTING_DISTRIBUTING state for longer than Xraise seconds. The defect shall be cleared if the port enters the COLLECTING_DISTRIBUTING state and stays there for Xclear seconds.
		Xraise = Xclear = 1 second.
Consequent actions

		
NOTE 3 – In other words, aSSF will be raised at the output ETH-LAG_CI[k] of an aggregator if all ports in its assigned port list (AP_List[k]) have the dMNCD defect active.
Defect correlations
Defining

		
i.e., the number of active (no-defect) ports among those in an aggregator's AP_List,
then:

		

		
NOTE 4 – In other words, a cTLL (total link loss) fault cause will be raised if no ports are active for an aggregator. A cPLL (partial link loss) fault cause shall be raised if the number of active ports is less than the provisioned threshold.
Performance monitoring
For each aggregator:
	MI_pAggOctetsRxOK[1..Na] as per clause 6 of [IEEE 802.1AX].
	MI_pAggFramesRxOK[1..Na] as per clause 6 of [IEEE 802.1AX].
For each access point:
	MI_pFCSErrors[1..Np] as per clause 6 of [IEEE 802.1AX].
	MI_pOctetsReceivedOK[1..Np] as per clause 6 of [IEEE 802.1AX].
	MI_pFramesReceivedOK[1..Np] as per clause 6 of [IEEE 802.1AX].
[bookmark: _Toc126646824][bookmark: _Toc319901827]9.7.1.3	ETH link aggregation flow termination source function (ETH-LAG_FT_So)
Symbol
[image:]
Figure 9-70 – ETH-LAG_FT_So symbol
Interfaces
Table 9-27 – ETH-LAG_FT_So interfaces
	Inputs
	Outputs

	ETH-LAG_AP:
ETH-LAG_AI_D
ETH-LAG_AI_P
ETH-LAG_AI_DE
ETH-LAG_AI_ClocK
	ETH-LAG_TFP:
ETH-LAG_CI_D
ETH-LAG_CI_P
ETH-LAG_CI_DE
ETH-LAG_CI_ClocK

Processes
This function just forwards the ETH-LAG_AP information onto the ETH-LAG_FP without manipulation.
Defects						None.
Consequent actions		None.
Defect correlations			None.
Performance monitoring	None.
[bookmark: _Toc126646825][bookmark: _Toc319901828]9.7.1.4	ETH link aggregation flow termination sink function (ETH-LAG_FT_Sk)
Symbol
[image:]
[bookmark: _Toc172093998]Figure 9-71 – ETH-LAG_FT_Sk symbol
Interfaces
Table 9-28 – ETH-LAG_FT_Sk interfaces
	Inputs
	Outputs

	ETH-LAG_TFP:
ETH-LAG_CI_D
ETH-LAG_CI_P
ETH-LAG_CI_DE
ETH-LAG_CI_ClocK
ETH-LAG_CI_SSF

ETH-LAG_FT_Sk_MP:
ETH-LAG_TT_Sk_MI_SSF_Reported
	ETH-LAG_AP:
ETH-LAG_AI_D
ETH-LAG_AI_P
ETH-LAG_AI_DE
ETH-LAG_AI_ClocK
ETH-LAG_AI_TSF
ETH-LAG_AI_AIS

ETH-LAG_FT_Sk_MP:
ETH-LAG_TT_Sk_MI_cSSF

Processes
This function just forwards the ETH-LAG_FP information onto the ETH-LAG_AP without manipulation.
Defects:					None.
Consequent actions 			aTSF		CI_SSF
Defect correlations 			cSSF		CI_SSF and SSF_Reported
Performance monitoring	None.
[bookmark: _Toc126646826][bookmark: _Toc319901829]9.7.2	ETH-LAG to ETH adaptation function (ETH-LAG/ETH_A)
[bookmark: _Toc126646827][bookmark: _Toc319901830]9.7.2.1	ETH-LAG to ETH adaptation source function (ETH-LAG/ETH_A_So)
Symbol

Figure 9-72 – ETH-LAG/ETH_A_So symbol
Interfaces
Table 9-29 – ETH-LAG/ETH_A_So interfaces
	Inputs
	Outputs

	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_ClocK

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_ClocK

ETH_TP:
ETH_TI_ClocK

ETH-LAG/ETH_A_So_MP:
ETH-LAG/ETH_A_So_MI_Active
	ETH-LAG_AP:
ETH-LAG_AI_D
ETH-LAG_AI_P
ETH-LAG_AI_DE
ETH-LAG_AI_ClocK

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes
A process diagram of this function is shown in Figure 9-73.

[bookmark: _Toc172093999]Figure 9-73 – ETH-LAG/ETH_A_So process
See "Queueing" in clause 8.2 and "Replicate" in clause 8.4.
Defects						None.
Consequent actions		None.
Defect correlations			None.
Performance monitoring	None.
[bookmark: _Toc126646828][bookmark: _Toc319901831]9.7.2.2	ETH-LAG to ETH adaptation sink function (ETH-LAG/ETH_A_Sk)
Symbol
[image:]
Figure 9-74 – ETH-LAG/ETH_A_Sk symbol
Interfaces
Table 9-30 – ETH-LAG/ETH_A_Sk interfaces
	Inputs
	Outputs

	ETH-LAG_AP:
ETH-LAG_AI_D
ETH-LAG_AI_P
ETH-LAG_AI_DE
ETH-LAG_AI_ClocK
ETH-LAG-AI_TSF
ETH-LAG-AI_AIS

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETH-LAG/ETH_A_Sk_MP:
ETH-LAG/ETH_A_Sk_MI_Active
ETH-LAG/ETH_A_Sk_MI_FilterConfig
	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_ClocK
ETH_CI_SSF

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_ClocK
ETH_CI_SSF

Processes
A process diagram of this function is shown in Figure 9-75.

Figure 9-75 – ETH-LAG/ETH_A_Sk process
See "Filter" in clause 8.3 and "Replicate" in clause 8.4.
Defects						None.
Consequent actions		None.
Defect correlations			None.
Performance monitoring	None.
[bookmark: _Toc328035819][bookmark: _Toc339540526][bookmark: _Toc341957003]9.8	ETH MEP and MIP functions
MEP and MIP compound functions are defined in [ITU-T G.806]. This clause specifies the composition of those functions with ETH flow termination, adaptation and diagnostic atomic functions described in clauses 9.2, 9.3 and 9.4, respectively.
9.8.1	ETH NCM MEP function
An ETH NCM (network connection monitoring) MEP function is capable of originating, filtering and terminating proactive ETH OAM signals and originating, responding to and terminating diagnostic ETH OAM signals at the NCM MEG levels. The NCM MEP is composed of ETHx_FT, ETHD/ETH_A and ETHDe_FT atomic functions. This MEP is located at the ETH (sub)layer boundary and connected with ETHx/client_A or ETHx/ETH-m_A. Application with other adaptation functions and the model for multiple access points are for further study.

Figure 9-76 – ETH NCM MEP compound functions
9.8.2	ETH TCM MEP function
An ETH TCM (tandem connection monitoring) MEP function is capable of originating, filtering and terminating proactive ETH OAM signals and originating, responding to and terminating diagnostic ETH OAM signals at one of the TCM MEG levels. The TCM MEP is composed of ETHx/ETH_A, ETHx_FT, ETHD/ETH_A and ETHDe_FT atomic functions. In addition, it can be composed of ETHG/ETH_A, ETHG_FT, ETHD/ETH_A and ETDe_FT if ETH group MEG is configured and multiple access point pools are accommodated. This MEP is located within an ETH (sub)layer.

Figure 9-77 – ETH TCM MEP compound functions
9.8.3	ETH MIP function
An ETH MIP function is capable of responding to on-demand ETH OAM signals at one of the MEG levels in both directions. The MIP combines two back-to-back half-MIP functions. It consists of two pairs of ETHD/ETH_A and ETHDi_FT atomic functions, each facing opposite directions. The model for multiple flow points is for further study.

Figure 9-78 – ETH MIP compound functions
9.8.4	ETH half MIP function
An ETH half MIP function is capable of responding to on-demand ETH OAM signals at one of the MEG levels in a single direction. The half MIP is composed of a pair of ETHD/ETH_A and ETHDi_FT atomic functions. The model for multiple flow points is for further study.

Figure 9-79 – ETH MIP compound functions
[bookmark: _Toc126646830][bookmark: _Toc319901832][bookmark: _Toc328035820][bookmark: _Toc339540527][bookmark: _Toc341957004]10	Ethernet PHY layer functions (ETYn)
This Recommendation supports the following full-duplex Ethernet PHYs:
•	ETY1: 10BASE-T (twisted pair electrical; full-duplex only)
•	ETY2.1: 100BASE-TX (twisted pair electrical; full-duplex only; for further study)
•	ETY2.2: 100BASE-FX (optical; full-duplex only; for further study)
•	ETY3.1: 1000BASE-T (copper; for further study)
•	ETY3.2: 1000BASE-LX/SX (long- and short-haul optical; full duplex only)
•	ETY3.3: 1000BASE-CX (short-haul copper; full duplex only; for further study)
•	ETY4: 10GBASE-S/L/E (optical; for further study).
[bookmark: _Toc126646831][bookmark: _Toc319901833][bookmark: _Toc328035821][bookmark: _Toc339540528][bookmark: _Toc341957005]10.1	ETYn connection functions (ETYn_C)
Not applicable; there are no connection functions defined for this layer.
[bookmark: _Toc126646832][bookmark: _Toc319901834][bookmark: _Toc328035822][bookmark: _Toc339540529][bookmark: _Toc341957006]10.2	ETYn trail termination functions (ETYn_TT)
In the sink direction, Ethernet PHY trail termination functions (ETYn_TT) terminate received optical or electrical Ethernet signals, delivering a conditioned signal to the ETYn/ETH_Sk_A sink adaptation function. In the source direction, ETYn_TT trail termination accepts an electrical signal from the ETYn/ETH_So_A source adaptation function, and outputs an appropriate electrical or optical signal to the Ethernet electrical or optical delivery medium.
NOTE – The ETYn_TT functions are intended to encapsulate the whole functionality of the physical layer in the IEEE 802.3 model. The models in this Recommendation define this functionality just by reference to the IEEE model and intentionally do not provide details on it, as this functionality is well-understood from the IEEE work.
The types of ETYn functions are as defined in Table 10-1.
Table 10-1 – ETYn types
	ETYn type
	IEEE 802.3 interface type

	ETY1
	10BASE-T

	ETY2.1
	100BASE-TX

	ETY2.2
	100BASE-FX

	ETY3.1
	1000BASE-T

	ETY3.2
	1000BASE-LX/SX

	ETY3.3
	1000BASE-CX

	ETY4
	10GBASE-S/L/E

Note that the 10G WAN PHY is for further study.
[bookmark: _Toc126646833][bookmark: _Toc319901835]10.2.1	ETYn trail termination source function (ETYn_TT_So)
Symbol
[image:]
Figure 10-1 – ETYn_TT_So symbol
Interfaces
Table 10-2 – ETYn_TT_So interfaces
	Inputs
	Outputs

	ETYn_AP:
ETYn_AI_Data
ETYn_AI_ClocK
ETYn_AI_SSF
ETYn_AI_SSFrdi
ETYn_AI_SSFfdi

ETYn_RP:
ETYn_RI_RSF

ETYn_TT_So_MP:
ETYn_TT_So_MI_FTSEnable
	ETYn_TCP:
ETYn_CI_Data
ETYn_CI_ClocK

ETYn_RP:
ETYn_RI_FTS

ETYn_TT_So_MP:
ETYn_TT_So_MI_PHYType
ETYn_TT_So_MI_PHYTypeList

Processes
This source function together with the corresponding sink function implements all processes in the physical layer in the IEEE 802.3 model.
"Fault propagation" process
When the AI_SSF and the FTSEnable (forced transmitter shutdown) are true and RI_RSF (remote signal fail) is false, this process forces the transmitter shutdown by either turning off the output transmitting device or inserting error codes (e.g., /V/, 10B_ERR for 1 GbE).
As soon as the transmitter shutdown is forced, the RI_FTS is asserted. The RI_FTS is reset after [for further study] seconds the forcing of transmitter shutdown is removed.
NOTE – Further details have been intentionally left out of this Recommendation.
When the AI_SSFrdi is true and the PHY supports remote fault signalling, this process inserts the PHY-specific remote fault signal.
When the AI_SSFfdi is true and the PHY supports local fault signalling, this process inserts the PHY-specific local fault signal.
ETY2.2 and ETY4 support remote fault signalling. ETY4 supports local fault signalling.
Defects						None.
Consequent actions		None.
Defect correlations			None.
Performance monitoring	None.
[bookmark: _Toc126646834][bookmark: _Toc319901836]10.2.2	ETYn trail termination sink function (ETYn_TT_Sk)
Symbol

Figure 10-2 – ETYn_TT_Sk symbol
Interfaces
Table 10-3 – ETYn_TT_Sk interfaces
	Inputs
	Outputs

	ETYn_TCP:
ETYn_CI_Data

ETYn_RP:
ETYn_RI_FTS
	ETYn_AP:
ETYn_AI_Data
ETYn_AI_ClocK
ETYn_AI_TSF
ETYn_AI_TSFrdi
ETYn_AI_TSFfdi

ETYn_RP:
ETYn_RI_RSF

ETYn_TT_Sk_MP:
ETYn_TT_Sk_MI_cLOS
ETYn_TT_Sk_MI_cRDI
ETYn_TT_Sk_MI_cFDI

Processes
This sink function together with the corresponding source function implements all processes in the physical layer in the IEEE 802.3 model.
NOTE 1 – Further details have been intentionally left out of this Recommendation.
Fault propagation" process
When the PHY supports remote fault signalling, this process inserts the AI_TSFrdi in response to the PHY-specific remote fault signal.
When the PHY supports local fault signalling, this process inserts the AI_TSFfdi in response to the PHY-specific local fault signal.
ETY2.2 and ETY4 support remote fault signalling. ETY4 supports local fault signalling.
Defects
dLOS: The defect is detected as soon as the aMediaAvailable parameter (as defined in [IEEE 802.3]) gets a value different from available and the RI_FTS is false. The defect is cleared as soon as the aMediaAvailable parameter becomes available.
NOTE 2 – aRSF is generated and communicated to the ETY_TT_So (RI_RSF) to prevent a forced transmitter shutdown in case of dLOS. This Recommendation does not specify the remote fault Indication signalling.
dRDI: The defect is detected and cleared based on PHY-specific remote fault signalling (as defined in [IEEE 802.3]).
dFDI: The defect is detected and cleared based on PHY-specific local fault signalling (as defined in [IEEE 802.3]).
Consequent actions
aTSF dLOS
aRSF dLOS
aTSFrdi dRDI
aTSFfdi dFDI
Defect correlations
cLOS dLOS
cRDI dRDI
cFDI dFDI
Performance monitoring		None.
[bookmark: _Toc126646835][bookmark: _Toc319901837][bookmark: _Toc328035823][bookmark: _Toc339540530][bookmark: _Toc341957007]10.3	ETYn to ETH adaptation functions (ETYn/ETH_A)
Figures 10-3 and 10-4 illustrate the Ethernet trail termination to ETH adaptation function (ETYn/ETH_A and ETYn/ETH-m_A). Information crossing the ETH flow point (ETH_FP) and ETH termination flow point (ETH_TFP) is referred to as ETH characteristic information (ETH_CI). Information crossing the ETYn access point (ETY_AP) is referred to as ETYn adapted information (ETYn_AI). Note that ETYn/ETH-m_A is a compound function of ETYn/ETH_A and ETHx/ETHm_A (see clause 9.3.3).
[image:]
Figure 10-3 – ETYn server to ETH adaptation function
[image:]
Figure 10-4 – ETYn server to ETH-m adaptation function
The ETYn/ETH_A adaptation function shown in Figure 10-3 can be further decomposed into separate source and sink adaptation functions shown in Figure 10-5:
[image:]
Figure 10-5 – ETYn/ETH_A source and sink adaptation functions
[bookmark: _Ref98660611][bookmark: _Toc126646836][bookmark: _Toc319901838]10.3.1	ETYn to ETH adaptation source function (ETYn/ETH_A_So)
Symbol
[image:]
Figure 10-6 – ETYn/ETH_A_So symbol
Interfaces
Table 10-4 – ETYn/ETH_A_So interfaces
	Inputs
	Outputs

	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi
ETH_A_CI_PauseTrigger
ETH_CI_ClocK
ETH_CI_ESMC

ETH_TP:
ETH_TI_ClocK

ETYn/ETH_A_So_MP:
ETYn/ETH_A_So_MI_Active
ETYn/ETH_A_So_MI_TxPauseEnable
	ETYn_AP:
ETYn_AI_Data
ETYn_AI_ClocK
ETYn_AI_SSF
ETYn_AI_SSFrdi
ETYn_AI_SSFfdi

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETYn/ETH_A_So_MP:
ETYn/ETH_A_So_MI_pFramesTransmittedOK
ETYn/ETH_A_So_MI_pOctetsTransmittedOK

Processes
A process diagram of this function is shown in Figure 10-7.

Figure 10-7 – ETYn/ETH_A_So process
Processes
The queueing, replicate, 802.3 protocols, 802.1AB/X protocols and MAC FCS generate" processes are defined in clause 8.
The ETYn server specific source process pads frames shorter than the minimum frame size (of 64 octets) to the minimum frame size according to clause 3.2.8 of [IEEE 802.3].
NOTE – All source processes related to the Ethernet physical layer are encapsulated in this Recommendation by the ETYn_TT_So function.
The MAC frame counting process location is for further study.
Defects						None.
Consequent actions		None.
Defect correlations			None.
Performance monitoring	For further study.
[bookmark: _Ref98660774][bookmark: _Toc126646837][bookmark: _Toc319901839]10.3.2	ETYn to ETH adaptation sink function (ETYn/ETH_A_Sk)
Symbol
[image:]
Figure 10-8 – ETYn/ETH_A_Sk symbol
Interfaces
Table 10-5 – ETYn/ETH_A_Sk interfaces
	Inputs
	Outputs

	ETYn_AP:
ETYn_AI_Data
ETYn_AI_ClocK
ETYn_AI_TSF
ETYn_AI_TSFrdi
ETYn_AI_TSFfdi

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETYn/ETH_A_Sk_MP:
ETYn/ETH_A_Sk_MI_Active
ETYn/ETH_A_Sk_MI_FilterConfig
ETYn/ETH_A_Sk_MI_MAC_Length
	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi
ETH_CI_ClocK
ETH_CI_ESMC

ETYn/ETH_A_Sk_MP:
ETYn/ETH_A_Sk_MI_pErrors
ETYn/ETH_A_Sk_MI_pFramesReceivedOK
ETYn/ETH_A_Sk_MI_pOctetsReceivedOK

Processes
A process diagram of this function is shown in Figure 10-9.

Figure 10-9 – ETYn/ETH_A_Sk process
The filter, replicate, 802.3 protocols, 802.1AB/X protocols, MAC frame counting, MAC FCS check and MAC length check processes are defined in clause 8.
The ETYn server specific sink process is a null process.
NOTE – All sink processes related to the Ethernet physical layer are encapsulated in this Recommendation by the ETYn_TT_Sk function.
MAC frame counting is for further study.
Defects						None.
Consequent actions		aSSF AI_TSF
Defect correlations			None.
Performance monitoring	For further study.
[bookmark: _Toc214354093][bookmark: _Toc319901840][bookmark: _Toc328035824][bookmark: _Toc339540531][bookmark: _Toc341957008][bookmark: _Toc126646838]10.4	1000BASE-(SX/LX/CX) ETY to Coding sublayer adaptation functions (ETY3/ETC3_A)
This adaptation function adapts 1000BASE-SX, -LX, or -CX physical layer signals from / toGMII data octets. The combination of ETY3_TT and ETY3/ETC3_A represents the functions up to and including the PCS sublayer in the 802.3 model. The GMII data octets may be extracted from or mapped into GFP-T frames, as per clause 11.2 "SDH to ETC adaptation functions (Sn-X/ETC3_A)". It may also be extracted from and mapped into ODU0, as per clause 14.3.7.1of [ITUT G.798] (ODU0P/CBRx_A). In the latter case, the ETC3_CP from the ETY3/ETC3_A function is bound to the CBRx_CP of the ODU0P/CBRx_A function.
[bookmark: _Toc214354094][bookmark: _Toc319901841]10.4.1	ETY3 to ETC3 adaptation source function (ETY3/ETC3_A_So)
Symbol
[image:]
Figure 10-10 – ETY3/ETC3_A_So symbol
Interfaces
Table 10-6 – ETY3/ETC3_A_So interfaces
	Inputs
	Outputs

	ETC3_TCP:
ETC3_CI_Data_Control
ETC3_CI_ClocK
ETC3_CI_Control_Ind
ETC3_CI_SSF

ETY3/ETC3_A_So_MP:
ETY3/ETC3_A_So_MI_Active
	ETY3_AP:
ETY3_AI_Data
ETY3_AI_ClocK
ETY3_AI_SSF

Processes
The ETY3/ETC3_A_So function adapts 8B/10B codewords to the physical layer signal.
Defects						None.
Consequent actions		None.
Defect correlations			None.
Performance monitoring	For further study.
[bookmark: _Toc214354095][bookmark: _Toc319901842]10.4.2	ETY3 to ETC3 adaptation sink function (ETY3/ETC3_A_Sk)
Symbol
[image:]
Figure 10-11 – ETY3/ETC3_A_Sk symbol
Interfaces
Table 10-7 – ETY3/ETC3_A_Sk interfaces
	Inputs
	Outputs

	ETY3_AP:
ETY3_AI_Data
ETY3_AI_ClocK
ETY3_AI_TSF

ETY3/ETC3_A_Sk_MP:
ETY3/ETC3_A_So_MI_Active
	ETC3_TCP:
ETC3_CI_Data_Control
ETC3_CI_ClocK
ETC3_CI_Control_Ind
ETC3_CI_SSF

Processes
This function adapts the physical layer signal to 8B/10B codewords.
Defects						None.
Consequent actions		aSSF AI_TSF
Defect correlations			None.
Performance monitoring	For further study.
[bookmark: _Toc319901843][bookmark: _Toc328035825][bookmark: _Toc339540532][bookmark: _Toc341957009]10.5	ETCn trail termination functions (ETCn_TT)
For further study.
[bookmark: _Toc319901844][bookmark: _Toc328035826][bookmark: _Toc339540533][bookmark: _Toc341957010]10.6	ETCn to ETH adaptation functions (ETCn/ETH_A)
For further study.
[bookmark: _Toc319901845][bookmark: _Toc328035827][bookmark: _Toc339540534][bookmark: _Toc341957011]10.7	ETY4 to Ethernet PP-OS adaptation function (ETY4/ETHPP-OS_A)
The ETY4 to Ethernet PP-OS adaptation function supports transporting preamble and ordered set information of the 10GBASE-R signals over enhanced OPU2 payload area.
It adapts 10GBASE-R signals from/to data frames which include the preamble and start-of-frame delimiter and ordered sets from the inter-frame gap into ETHPP-OS_CI for subsequent mapping into an OPU2 with extended payload area as described in clause 11.5.3.
Note that there is no Ethernet MAC termination function. Consequently, since no error checking is performed on the Ethernet MAC frames, errored MAC frames are forwarded in both ingress and egress directions.
[bookmark: _Toc319901846]10.7.1	ETY4 to Ethernet PP-OS adaptation source function (ETY4/ETHPP-OS_A_So)
Symbol
[image:]
Figure 10-12 – ETY4/ETHPP-OS_A_So symbol
Interfaces
Table 10-8 – ETY4/ETHPP-OS_A_So interfaces
	Inputs
	Outputs

	ETHPP-OS_CP:
ETHPP-OS_CI_D
ETHPP-OS_CI_SSF

ETY4/ETHPP-OS_A_So_MP:
ETY4/ETHPP-OS_A_So_MI_Active
	ETY4_AP:
ETY4_AI_Data
ETY4_AI_ClocK
ETY4_AI_SSF

NOTE – ETHPP-OS_CI_D is composed of preamble, payload and order set information in [ITUT G.7041].
Processes
A process diagram of this function is shown in Figure 10-13.

Figure 10-13 – ETY4/ETHPP-OS_A_So process diagram
Activation: The ETY4/ETHPP-OS_A_So function shall access the ETY4 access point and perform the processes specified below when it is activated (MI_Active is true). Otherwise, it shall not access the ETY4 access point.
ETY4 server-specific processes: 		None.
NOTE – All source processes related to the Ethernet physical layer are encapsulated in this Recommendation by the ETYn_TT_So function.
Defects						None.
Consequent actions		None.
Defect correlations			None.
Performance monitoring	For further study.
[bookmark: _Toc319901847]10.7.2 	ETY4 to Ethernet PP-OS adaptation sink function (ETY4/ETHPP-OS_A_Sk)
Symbol
[image:]
Figure 10-14 – ETY4/ETHPP-OS_A_Sk symbol
Interfaces
Table 10-9 – ETY4/ETHPP-OS_A_Sk interfaces
	Inputs
	Outputs

	ETY4_AP:
ETY4_AI_Data
ETY4_AI_ClocK
ETY4_AI_TSF

ETY4/ETHPP-OS_A_Sk_MP:
ETY4/ETHPP-OS_A_Sk_MI_Active
	ETHPP-OS_CP:
ETHPP-OS_CI_D
ETHPP-OS_CI_SSF

Processes
A process diagram of this function is shown in Figure 10-15.

Figure 10-15 – ETY4/ETHPP-OS_A_Sk process diagram
Activation: The ETY4/ETHPP-OS_A_Sk function shall access the ETY4 access point and perform the processes specified below when it is activated (MI_Active is true). Otherwise, it shall activate the SSF signal and not report its status via the management point.
ETY4 server-specific processes: 	None.
NOTE – All sink processes related to the Ethernet physical layer are encapsulated in this Recommendation by the ETYn_TT_Sk function.
Defects						None.
Consequent actions
aSSF AI_TSF
Note that the replacement signal is generated in the subsequent adaptation source function ODU2P/ETHPP-OS_A_So.
Defect correlations			None.
Performance monitoring	For further study.
[bookmark: _Toc81793543][bookmark: _Toc84844997][bookmark: _Toc96922619][bookmark: _Toc98151665][bookmark: _Toc319901848][bookmark: _Toc328035828][bookmark: _Toc339540535][bookmark: _Toc341957012]11	Non-Ethernet server to ETH adaptation functions
[bookmark: _Toc70909999][bookmark: _Toc70910146][bookmark: _Toc70918169][bookmark: _Toc70940885][bookmark: _Toc70910002][bookmark: _Toc70910149][bookmark: _Toc70918172][bookmark: _Toc70940888][bookmark: _Toc70910011][bookmark: _Toc70910158][bookmark: _Toc70918181][bookmark: _Toc70940897][bookmark: _Toc81793544][bookmark: _Toc84844998][bookmark: _Toc96922620][bookmark: _Toc98151666][bookmark: _Toc319901849][bookmark: _Toc328035829][bookmark: _Toc339540536][bookmark: _Toc341957013]11.1	SDH to ETH adaptation functions (S/ETH_A)
[bookmark: _Toc81793545][bookmark: _Toc319901850]11.1.1	VC-n to ETH adaptation functions (Sn/ETH_A; n = 3, 3-X, 4, 4-X)
This covers non-concatenated, contiguously concatenated, and non-LCAS VCAT. See clause 11.1.2 for LCAS-capable VC-n-Xv/ETH adaptation functions.
[bookmark: _Toc76268572][bookmark: _Toc81793546][bookmark: _Toc319901851]11.1.1.1	VC-n to ETH adaptation source function (Sn/ETH_A_So)
This function maps ETH_CI information onto an Sn_AI signal (n = 3, 3-X, 4, 4-X).
Data at the Sn_AP is a VC-n (n = 3, 3-X, 4, 4-X), having a payload as described in [ITU-T G.707], but with indeterminate POH bytes: J1, B3, G1.
Symbol
[image:]
[bookmark: _Toc172094000]Figure 11-1 – Sn/ETH_A_So symbol
Interfaces
Table 11-1 – Sn/ETH_A_So interfaces
	Inputs
	Outputs

	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sn_TP:
Sn_TI_Clock
Sn_TI_FrameStart

Sn/ETH_A_So_MP:
Sn/ETH_A_So_MI_Active
Sn/ETH_A_So_MI_CSFEnable
Sn/ETH_A_So_MI_CSFrdifdiEnable
	Sn_AP:
Sn_AI_Data
Sn_AI_ClocK
Sn_AI_FrameStart

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes
A process diagram of this function is shown in Figure 11-2.

[bookmark: _Toc172094001]Figure 11-2 – Sn/ETH_A_So process
Queueing process
See clause 8.2.
Replicate" process
See clause 8.4.
802.3 MAC FCS generation
See clause 8.8.1.
Ethernet specific GFP-F source process
See clause 8.8.6.1.
Common GFP source process
See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).
VC-n specific GFP source process
See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the VC-n payload area according to clause 10.6 of [ITU-T G.707].
VC-n specific source process
C2: Signal label information is derived directly from the adaptation function type. The value for GFP mapping in Table 9-11 of [ITU-T G.707] is placed in the C2 byte position.
H4: For Sn/ETH_A_So with n = 3, 4, the H4 byte is sourced as all-zeros.
NOTE 1 – For Sn/ETH_A_So with n = 3-X, 4-X, the H4 byte is undefined at the Sn-X_AP output of this function (as per clause 12 of [ITU-T G.783]).
NOTE 2 – For Sn/ETH_A_So with n = 3, 4, 3-X, 4-X, the K3, F2, F3 bytes are undefined at the Sn-X_AP output of this function (as per clause 12 of [ITU-T G.783]).
Counter processes
For further study.
Defects						None.
Consequent actions
aCSF-RDI CI_SSFrdi and CSFrdifdiEnable and CSFEnable
aCSF-FDI CI_SSFfdi and CSFrdifdiEnable and CSFEnable
aCSF-LOS CI_SSF and CSFEnable
Defect correlations			None.
Performance monitoring	For further study.
[bookmark: _Toc319901852][bookmark: _Toc76268573][bookmark: _Toc81793547]11.1.1.2	VC-n to ETH adaptation sink function (Sn/ETH_A_Sk)
This function extracts ETH_CI information from the Sn_AI signal (n = 3, 3-X, 4, 4-X), delivering ETH_CI to ETH_TFP and ETH_FP.
Data at the Sn_AP is as described in [ITU-T G.707].
Symbol
[image:]
[bookmark: _Toc172094002]Figure 11-3 – Sn/ETH_A_Sk symbol
Interfaces
Table 11-2 – Sn/ETH_A_Sk interfaces
	Inputs
	Outputs

	Sn_AP:
Sn_AI_Data
Sn_AI_ClocK
Sn_AI_FrameStart
Sn_AI_TSF

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

Sn/ETH_A_Sk_MP:
Sn/ETH_A_Sk_MI_Active
Sn/ETH_A_Sk_MI_FilterConfig
Sn/ETH_A_Sk_MI_CSF_Reported
Sn/ETH_A_Sk_MI_MAC_Length
Sn/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sn/ETH_A_Sk_MP:
Sn/ETH_A_Sk_MI_AcSL
Sn/ETH_A_Sk_MI_AcEXI
Sn/ETH_A_Sk_MI_AcUPI
Sn/ETH_A_Sk_MI_cPLM
Sn/ETH_A_Sk_MI_cLFD
Sn/ETH_A_Sk_MI_cUPM
Sn/ETH_A_Sk_MI_cEXM
Sn/ETH_A_Sk_MI_cCSF
Sn/ETH_A_Sk_MI_pFCSError

Processes
A process diagram of this function is shown in Figure 11-4.

[bookmark: _Toc172094003]Figure 11-4 – Sn/ETH_A_Sk process
[bookmark: _Ref63846831]Filter process
See clause 8.3.
Replicate process
See clause 8.4.
802.3 MAC FCS check process
See clause 8.8.2.
Ethernet specific GFP-F sink process
See clause 8.8.6.2.
Common GFP sink process
See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported (MI_CMuxActive=false).
VC-n specific GFP sink process
See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the VC-n payload area according to clause 10.6 of [ITU-T G.707].
VC-n specific sink process
C2: The signal label is recovered from the C2 byte as per clause 6.2.4.2 of [ITU-T G.806]. The signal label for GFP mapping in Table 9-11 of [ITU-T G.707] shall be expected. The accepted value of the signal label is also available at the Sn/ETH_A_Sk_MP.
Defects
dPLM – See clause 6.2.4.2 of [ITU-T G.806].
dLFD – See clause 6.2.5.2 of [ITU-T G.806].
dUPM – See clause 6.2.4.3 of [ITU-T G.806].
dEXM – See clause 6.2.4.4 of [ITU-T G.806].
dCSF-LOS – See clause 8.8.6.2.
dCSF-RDI – See clause 8.8.6.2.
dCSF-FDI – See clause 8.8.6.2.
Consequent actions
The function shall perform the following consequent actions:
aSSF			AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS
aSSFrdi			dCSF-RDI and CSFrdifdiEnable
aSSFfdi			dCSF-FDI and CSFrdifdiEnable
Defect correlations
The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.
cPLM		dPLM and (not AI_TSF);
cLFD		dLFD and (not dPLM) and (not AI_TSF);
cUPM		dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);
cEXM		dEXM and (not dPLM) and (not dLFD) and (not AI_TSF);
cCSF 		(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported.
Performance monitoring
The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.
pFCSErrors: count of FrameCheckSequenceErrors per second.
NOTE – This primitive is calculated by the MAC FCS Check process.
[bookmark: _Toc319901853][bookmark: _Toc81793548]11.1.2	LCAS-capable VC-n-Xv to ETH adaptation functions (Sn-X-L/ETH_A; n = 3, 4)
[bookmark: _Toc319901854]11.1.2.1	LCAS-capable VC-n-Xv to ETH adaptation source function (Sn-X-L/ETH_A_So)
This function maps ETH_CI information onto an Sn-X-L_AI signal (n = 3 or 4).
Data at the Sn-X-L_AP is a VC-n-X (n = 3 or 4), having a payload as described in [ITU-T G.707], but with indeterminate POH bytes: J1, B3, G1.
Symbol
[image:]
[bookmark: _Toc172094004]Figure 11-5 – Sn-X-L/ETH_A_So symbol
Interfaces
Table 11-3 – Sn-X-L/ETH_A_So interfaces
	Inputs
	Outputs

	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sn-X-L_AP:
Sn-X-L_AI_XAT

Sn-X-L_TP:
Sn-X-L_TI_ClocK
Sn-X-L_TI_FrameStart

Sn-X-L/ETH_A_So_MP:
Sn-X-L/ETH_A_So_MI_Active
Sn-X-L/ETH_A_So_MI_CSFEnable
Sn-X-L/ETH_A_So_MI_CSFrdifdiEnable
	Sn-X-L_AP:
Sn-X-L_AI_Data
Sn-X-L_AI_ClocK
Sn-X-L_AI_FrameStart

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes
A process diagram of this function is shown in Figure 11-6.

[bookmark: _Toc172094005]Figure 11-6 – Sn-X-L/ETH_A_So process
See clause 11.1.1.1 for a description of Sn-X-L/ETH_A processes.
Defects						None.
Consequent actions
aCSF-RDI CI_SSFrdi and CSFrdifdiEnable and CSFEnable
aCSF-FDI CI_SSFfdi and CSFrdifdiEnable and CSFEnable
aCSF-LOS CI_SSF and CSFEnable
Defect correlations			None.
Performance monitoring	For further study.
[bookmark: _Toc319901855][bookmark: _Toc76268576][bookmark: _Toc81793550]11.1.2.2	LCAS-capable VC-n-Xv to ETH adaptation sink function (Sn-X-L/ETH_A_Sk)
This function extracts ETH_CI information from a VC-n-Xv server signal (n = 3 or 4), delivering ETH_CI to ETH_TFP and ETH_FP.
Data at the Sn-X-L_AP is a VC-n-Xv (n = 3 or 4), having a payload as described in [ITU-T G.707].
Symbol
[image:]
[bookmark: _Toc172094006]Figure 11-7 – Sn-X-L/ETH_A_Sk symbol
Interfaces
Table 11-4 – Sn-X-L/ETH_A_Sk interfaces
	Inputs
	Outputs

	Sn-X-L_AP:
Sn-X-L_AI_Data
Sn-X-L_AI_ClocK
Sn-X-L_AI_FrameStart
Sn-X-L_AI_TSF
Sn-X-L_AI_XAR

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

Sn-X-L/ETH_A_Sk_MP:
Sn-X-L/ETH_A_Sk_MI_Active
Sn-X-L/ETH_A_Sk_MI_FilterConfig
Sn-X-L/ETH_A_Sk_MI_CSF_Reported
Sn-X-L/ETH_A_Sk_MI_MAC_Length
Sn-X-L/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sn-X-L/ETH_A_Sk_MP:
Sn-X-L/ETH_A_Sk_MI_AcSL
Sn-X-L/ETH_A_Sk_MI_AcEXI
Sn-X-L/ETH_A_Sk_MI_AcUPI
Sn-X-L/ETH_A_Sk_MI_cPLM
Sn-X-L/ETH_A_Sk_MI_cLFD
Sn-X-L/ETH_A_Sk_MI_cUPM
Sn-X-L/ETH_A_Sk_MI_cEXM
Sn-X-L/ETH_A_Sk_MI_cCSF
Sn-X-L/ETH_A_Sk_MI_pFCSError

Processes
See process diagram and process description in clause 11.1.1.2. The additional Sn-X-L_AI_XAR interface is not connected to any of the internal processes.
Defects
dPLM – See clause 6.2.4.2 of [ITU-T G.806].
dLFD – See clause 6.2.5.2 of [ITU-T G.806].
dUPM – See clause 6.2.4.3 of [ITU-T G.806].
dEXM – See clause 6.2.4.4 of [ITU-T G.806].
dCSF-LOS – See clause 8.8.6.2.
dCSF-RDI – See clause 8.8.6.2.
dCSF-FDI – See clause 8.8.6.2.
Consequent actions
The function shall perform the following consequent actions:
aSSF		AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS
aSSFrdi			dCSF-RDI and CSFrdifdiEnable
aSSFfdi			dCSF-FDI and CSFrdifdiEnable
NOTE 1 – XAR = 0 results in AI_TSF being asserted, so there is no need to include it as an additional contributor to aSSF.
Defect correlations
The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.
cPLM		dPLM and (not AI_TSF)
cLFD		dLFD and (not dPLM) and (not AI_TSF)
cUPM		dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF)
cEXM		dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)
cCSF 		(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported
Performance monitoring
The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.
pFCSError: count of FrameCheckSequenceErrors per second.
NOTE 2 – This primitive is calculated by the MAC FCS check process.
[bookmark: _Toc81793551][bookmark: _Toc319901856]11.1.3	VC-m to ETH adaptation functions (Sm/ETH_A; m = 11, 11-Xv, 12, 12-Xv, 2)
[bookmark: _Toc76268578][bookmark: _Toc81793552][bookmark: _Toc319901857]11.1.3.1	VC-m to ETH adaptation source function (Sm/ETH_A_So)
This function maps ETH_CI information onto a VC-m server signal (m = 11, 11-X, 12, 12-X, 2) and sources the Sm_AP signal.
Data at the Sm_AP is a VC-m (m = 11, 11-X, 12, 12-X, 2), it has a payload as described in [ITUT G.707], but with indeterminate POH bytes: J2, V5[1-4], V5[8].
Symbol
[image:]
[bookmark: _Toc172094007]Figure 11-8 – Sm/ETH_A_So symbol
Interfaces
Table 11-5 – Sm/ETH_A_So interfaces
	Inputs
	Outputs

	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sm_AP:
Sm_AI_XAT

Sm_TP:
Sm_TI_ClocK
Sm_TI_FrameStart

Sm/ETH_A_So_MP:
Sm/ETH_A_So_MI_Active
Sm/ETH_A_So_MI_CSFEnable
Sm/ETH_A_So_MI_CSFrdifdiEnable
	Sm_AP:
Sm_AI_Data
Sm_AI_ClocK
Sm_AI_FrameStart

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes
A process diagram of this function is shown in Figure 11-9.

[bookmark: _Toc172094008]Figure 11-9 – Sm/ETH_A_So process
Queueing process
See clause 8.2.
Replicate process
See clause 8.4.
802.3 MAC FCS generation
See clause 8.8.1.
Ethernet specific GFP-F source process
See clause 8.5.4.1.1 of [ITU-T G.806]. GFP pFCS generation is disabled (FCSenable=false). The UPI value for frame-mMapped Ethernet shall be inserted (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are inserted into the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].
Response to ETH_CI_SSF asserted is for further study.
Common GFP source process
See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).
VC-m specific GFP source process
See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the VC-m payload area according to clause 10.6 of [ITU-T G.707].
VC-m specific source process
V5[5-7] and K4[1]: Signal label information is derived directly from the adaptation function type. The value for GFP mapping in Table 9-13 of [ITU-T G.707] is placed in the K4[1] extended signal label field as described in clause 8.2.3.2 of [ITU-T G.783].
K4[2]: For Sm/ETH_A_So with m = 11, 12, 2, the K4[2] bit is sourced as all-zeros.
NOTE 1 – For Sm/ETH_A_So with m = 11-X, 12-X, the K4[2] bit is undefined at the Sm-X_AP output of this function (as per clause 13 of [ITU-T G.783]).
NOTE 2 – For Sm/ETH_A_So with m = 11, 11-X, 12, 12-X, 2, the K4[3-8], V5[1-4] and V5[8] bits are undefined at the Sm-X_AP output of this function (as per clause 13 of [ITU-T G.783]).
Defects						None.
Consequent actions
aCSF-RDI CI_SSFrdi and CSFrdifdiEnable and CSFEnable
aCSF-FDI CI_SSFfdi and CSFrdifdiEnable and CSFEnable
aCSF-LOS CI_SSF and CSFEnable
Defect correlations			None.
Performance monitoring	For further study.
[bookmark: _Toc76268579][bookmark: _Toc81793553][bookmark: _Toc319901858]11.1.3.2	VC-m to ETH adaptation sink function (Sm/ETH_A_Sk)
This function extracts ETH_CI information from the Sm_AI signal (m = 11, 11-X, 12, 12-X, 2), delivering ETH_CI to ETH_TFP and ETH_FP.
Data at the Sm_AP is as described in [ITU-T G.707].
Symbol
[image:]
[bookmark: _Toc172094009]Figure 11-10 – Sm/ETH_A_Sk symbol
Interfaces
Table 11-6 – Sm/ETH_A_Sk interfaces
	Inputs
	Outputs

	Sm_AP:
Sm_AI_Data
Sm_AI_ClocK
Sm_AI_FrameStart
Sm_AI_TSF

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

Sm/ETH_A_Sk_MP:
Sm/ETH_A_Sk_MI_Active
Sm/ETH_A_Sk_MI_FilterConfig
Sm/ETH_A_Sk_MI_CSF_Reported
Sm/ETH_A_Sk_MI_MAC_Length
Sm/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sm/ETH_A_Sk_MP:
Sm/ETH_A_Sk_MI_AcSL
Sm/ETH_A_Sk_MI_AcEXI
Sm/ETH_A_Sk_MI_AcUPI
Sm/ETH_A_Sk_MI_cPLM
Sm/ETH_A_Sk_MI_cLFD
Sm/ETH_A_Sk_MI_cUPM
Sm/ETH_A_Sk_MI_cEXM
Sm/ETH_A_Sk_MI_cCSF
Sm/ETH_A_Sk_MI_pFCSError

Processes
A process diagram of this function is shown in Figure 11-11.

[bookmark: _Toc172094010]Figure 11-11 – Sm/ETH_A_Sk process
Filter process
See clause 8.3.
Replicate process
See clause 8.4.
802.3 MAC FCS check process
See clause 8.8.2.
Ethernet specific GFP-F sink process
See clause 8.5.4.1.2 of [ITU-T G.806]. GFP pFCS checking, GFP p_FCSError, p_FDis are not supported (FCSdiscard=false). The UPI value for frame-mapped Ethernet shall be expected (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are extracted from the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].
Common GFP sink process
See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).
VC-m specific GFP sink process
See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the VC-m payload area according to clause 10.6 of [ITU-T G.707].
VC-m specific sink process
V5[5-7] and K4[1]: The signal label is recovered from the extended signal label position as described in clause 8.2.3.2 of [ITU-T G.783] and clause 6.2.4.2 of [ITU-T G.806]. The signal label for GFP mapping in Table 9-13 of [ITU-T G.707] shall be expected. The accepted value of the signal label is also available at the Sm/ETH_A_Sk_MP.
Defects
dPLM – See clause 6.2.4.2 of [ITU-T G.806].
dLFD – See clause 6.2.5.2 of [ITU-T G.806].
dUPM – See clause 6.2.4.3 of [ITU-T G.806].
dEXM – See clause 6.2.4.4 of [ITU-T G.806].
dCSF-LOS – See clause 8.8.6.2.
dCSF-RDI – See clause 8.8.6.2.
dCSF-FDI – See clause 8.8.6.2.
Consequent actions
The function shall perform the following consequent actions:
aSSF		AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS
aSSFrdi			dCSF-RDI and CSFrdifdiEnable
aSSFfdi			dCSF-FDI and CSFrdifdiEnable
Defect correlations
The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.
cPLM		dPLM and (not AI_TSF)
cLFD		dLFD and (not dPLM) and (not AI_TSF)
cUPM		dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF)
cEXM		dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)
cCSF 		(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported
Performance monitoring
The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.
pFCSError: count of FrameCheckSequenceErrors per second.
NOTE – This primitive is calculated by the MAC FCS check process.
[bookmark: _Toc70910022][bookmark: _Toc70910169][bookmark: _Toc70918192][bookmark: _Toc70940908][bookmark: _Toc319901859][bookmark: _Toc81793554]11.1.4	LCAS-capable VC-m-Xv to ETH adaptation functions (Sm-X-L/ETH_A; m = 11, 12)
[bookmark: _Toc319901860]11.1.4.1	LCAS-capable VC-m-Xv to ETH adaptation source function (Sm-X-L/ETH_A_So)
This function maps ETH_CI information onto an Sm-X-L_AI signal (m = 11 or 12).
Data at the Sm-X-L_AP is a VC-m-X (m = 11 or 12), it has a payload as described in [ITUT G.707], but with indeterminate POH bytes: J2, V5[1-4], V5[8].
Symbol
[image:]
[bookmark: _Toc172094011]Figure 11-12 – Sm-X-L/ETH_A_So symbol
Interfaces
Table 11-7 – Sm-X-L/ETH_A_So interfaces
	Inputs
	Outputs

	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sm-X-L_AP:
Sm-X-L_AI_XAT

Sm _TP:
Sm_TI_ClocK
Sm_TI_FrameStart

Sm-X-L/ETH_A_So_MP:
Sm-X-L/ETH_A_So_MI_Active
Sm-X-L/ETH_A_So_MI_CSFEnable
Sm-X-L/ETH_A_So_MI_CSFrdifdiEnable
	Sm-X-L_AP:
Sm-X-L_AI_Data
Sm-X-L_AI_ClocK
Sm-X-L_AI_FrameStart

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes
A process diagram of this function is shown in Figure 11-13.

[bookmark: _Toc172094012]Figure 11-13 – Sm-X-L/ETH_A_So process
See clause 11.1.3.1 for a description of Sm-X-L/ETH_A processes.
Defects						None.
Consequent actions
aCSF-RDI CI_SSFrdi and CSFrdifdiEnable and CSFEnable
aCSF-FDI CI_SSFfdi and CSFrdifdiEnable and CSFEnable
aCSF-LOS CI_SSF and CSFEnable
Defect correlations			None.
Performance monitoring	For further study.
[bookmark: _Toc319901861][bookmark: _Toc76268582][bookmark: _Toc81793556]11.1.4.2	LCAS-capable VC-m-Xv to ETH adaptation sink function (Sm-X-L/ETH_A_Sk)
This function extracts ETH_CI information from the Sm-X-L_AI signal (m = 11 or 12), delivering ETH_CI to ETH_TFP and ETH_FP.
Data at the Sm_AP is as described in [ITU-T G.707].
Symbol
[image:]
[bookmark: _Toc172094013]Figure 11-14 – Sm-X-L/ETH_A_Sk symbol
Interfaces
Table 11-8 – Sm-X-L/ETH_A_Sk interfaces
	Inputs
	Outputs

	Sm-X-L_AP:
Sm-X-L_AI_Data
Sm-X-L_AI_ClocK
Sm-X-L_AI_FrameStart
Sm-X-L_AI_TSF
Sm-X-L_AI_XAR

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

Sm-X-L/ETH_A_Sk_MP:
Sm-X-L/ETH_A_Sk_MI_Active
Sm-X-L/ETH_A_Sk_MI_FilterConfig
Sm-X-L/ETH_A_Sk_MI_CSF_Reported
Sm-X-L/ETH_A_Sk_MI_MAC_Length
Sm-X-L/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Sm-X-L/ETH_A_Sk_MP:
Sm-X-L/ETH_A_Sk_MI_AcSL
Sm-X-L/ETH_A_Sk_MI_AcEXI
Sm-X-L/ETH_A_Sk_MI_AcUPI
Sm-X-L/ETH_A_Sk_MI_cPLM
Sm-X-L/ETH_A_Sk_MI_cLFD
Sm-X-L/ETH_A_Sk_MI_cUPM
Sm-X-L/ETH_A_Sk_MI_cEXM
Sm-X-L/ETH_A_Sk_MI_cCSF
Sm-X-L/ETH_A_Sk_MI_pFCSError

Processes
See the process diagram and process description in clause 11.1.1.2. The additional Sm-X-L_AI_XAR interface is not connected to any of the internal processes.
Defects
dPLM – See clause 6.2.4.2 of [ITU-T G.806].
dLFD – See clause 6.2.5.2 of [ITU-T G.806].
dUPM – See clause 6.2.4.3 of [ITU-T G.806].
dEXM – See clause 6.2.4.4 of [ITU-T G.806].
dCSF-LOS – See clause 8.8.6.2.
dCSF-RDI – See clause 8.8.6.2.
dCSF-FDI – See clause 8.8.6.2.
Consequent actions
The function shall perform the following consequent actions:
aSSF		AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS
aSSFrdi			dCSF-RDI and CSFrdifdiEnable
aSSFfdi			dCSF-FDI and CSFrdifdiEnable
NOTE 1 – XAR = 0 results in AI_TSF being asserted, so there is no need to include it as an additional contributor to aSSF.
Defect correlations
The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.
cPLM		dPLM and (not AI_TSF)
cLFD		dLFD and (not dPLM) and (not AI_TSF)
cUPM		dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF)
cEXM		dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)
cCSF 		(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported
Performance monitoring
The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.
pFCSError: count of FrameCheckSequenceErrors per second.
NOTE 2 – This primitive is calculated by the MAC FCS process.
[bookmark: _Toc81793557][bookmark: _Toc84844999][bookmark: _Toc96922621][bookmark: _Toc98151667][bookmark: _Toc319901862][bookmark: _Toc328035830][bookmark: _Toc339540537][bookmark: _Toc341957014]11.2	SDH to ETC adaptation functions (Sn-X/ETC3_A)
[bookmark: _Toc126646854][bookmark: _Toc319901863]11.2.1	VC-n-X to ETC3 adaptation source function (Sn-X/ETC3_A_So)
This function maps ETC_CI information from an ETC3 onto an Sn-X_AI signal (n=3, 4). This mapping is currently only defined for X=7 for VC-4 and X=22 for VC-3.
Data at the Sn-X_AP is a VC-n-Xv, it has a payload as described in [ITU-T G.707], but with indeterminate POH bytes: J1, B3, G1.
Symbol
[image:]
Figure 11-15 – Sn-X/ETC3_A_So symbol
Interfaces
Table 11-9 – Sn-X/ETC3_A_So interfaces
	Inputs
	Outputs

	ETC3_TCP:
ETC3_CI_Data_Control
ETC3_CI_ClocK
ETC3_CI_Control_Ind
ETC3_CI_SSF

Sn-X_TP:
Sn-X _TI_ClocK
Sn-X _TI_FrameStart

Sn-X/ETC3_A_So_MP:
Sn-X/ETC3_A_So_MI_Active
Sn-X/ETC3_A_So_MI_CSFEnable
	Sn-X_AP:
Sn-X_AI_Data
Sn-X_AI_ClocK
Sn-X_AI_FrameStart

Processes
A process diagram of this function is shown in Figure 11-16.

Figure 11-16 – Sn-X/ETC3_A_So process
Ethernet specific GFP-T source process
See clause 8.5.4.2.1 of [ITU-T G.806]. GFP pFCS generation is disabled (FCSenable=false). The UPI value for transparent Gb Ethernet shall be inserted (Table 6-3 of [ITU-T G.7041]). The Ethernet codeword information is inserted into the client payload information field of the GFP-T frames according to clause 8 of [ITU-T G.7041]. 65B rate adaptation is enabled (RAdisable=false).
NOTE – Equipment designed prior to this amendment may not support configuration of RAdisable; in such equipment the use of 65B rate adaptation is implicitly enabled.
Response to ETC3_CI_SSF is according to the principles in clauses 8.3 and 8.3.4 of [ITUT G.7041] and Appendix VIII of [ITU-T G.806]. Details are for further study.
Common GFP source process
See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).
VC-n-X specific GFP source process
See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the VC-n-X (n=3,4) payload area according to clause 10.6 of [ITU-T G.707].
VC-n-X specific source process
C2: Signal label information is derived directly from the adaptation function type. The value for GFP mapping in Table 9-11 of [ITU-T G.707] is placed in the C2 byte position.
NOTE – For Sn-X/ETC3_A_So, the H4, K3, F2, and F3 bytes are undefined at the Sn-X_AP output of this function (as per clause 12 of [ITU-T G.783]).
Defects					None.
Consequent actions
aCSF-RDI CI_SSFrdi and CSFrdifdiEnable and CSFEnable
aCSF-FDI CI_SSFfdi and CSFrdifdiEnable and CSFEnable
aCSF-LOS CI_SSF and CSFEnable
Defect correlations			None.
Performance monitoring	For further study.
[bookmark: _Toc319901864][bookmark: _Toc126646855]11.2.2	VC-n-X to ETC3 adaptation sink function (Sn-X/ETC3_A_Sk)
This function extracts ETC3_CI information from the Sn-X_AI signal (n=3, 4), delivering ETC3_CI to the ETC3_TCP.
Data at the Sn-X_AP is as described in [ITU-T G.707]. This mapping is currently only defined for X=7 for VC-4 and X=22 for VC-3.
Symbol
[image:]
Figure 11-17 – Sn-X/ETC3_A_Sk symbol
Interfaces
Table 11-10 – Sn-X/ETC3_A_Sk interfaces
	Inputs
	Outputs

	Sn-X_AP:
Sn-X_AI_Data
Sn-X_AI_ClocK
Sn-X_AI_FrameStart
Sn-X_AI_TSF

Sn-X/ETC3_A_Sk_MP:
Sn-X/ETC3_A_Sk_MI_Active
Sn-X/ETC3_A_Sk_MI_CSF_Reported

	ETC3_TCP:
ETC3_CI_Data_Control
ETC3_CI_ClocK
ETC3_CI_Control_Ind
ETC3_CI_SSF

Sn-X / ETC3_A_Sk_MP:
Sn-X / ETC3_A_Sk_MI_AcSL
Sn-X / ETC3_A_Sk_MI_AcEXI
Sn-X / ETC3_A_Sk_MI_AcPFI
Sn-X / ETC3_A_Sk_MI_AcUPI
Sn-X / ETC3_A_Sk_MI_cPLM
Sn-X / ETC3_A_Sk_MI_cLFD
Sn-X / ETC3_A_Sk_MI_cUPM
Sn-X / ETC3_A_Sk_MI_cEXM
Sn-X / ETC3_A_Sk_MI_cCSF
Sn-X / ETC3_A_Sk_MI_pCRC16Errors

Processes
A process diagram of this function is shown in Figure 11-18.

Figure 11-18 – Sn-X/ETC3_A_Sk process
Ethernet specific GFP-T sink process
See clause 8.5.4.2.2 of [ITU-T G.806]. GFP pFCS checking and GFP p_FCSError are not supported (FCSdiscard=false). The UPI value for transparent Gb Ethernet shall be expected (Table 6-3 of [ITU-T G.7041]). Frames discarded due to incorrect PFI or UPI values shall be counted in _pFDis. Errors detected in a received superblock are reported as a _pCRC16Error. If ECenable=true, then single transmission channel errors in the superblock shall be corrected using the superblock CRC-16. The Ethernet codeword information is extracted from the client payload information field of the GFP-F frames according to clause 8 of [ITU-T G.7041].
Common GFP sink process
See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported (MI_CMuxActive=false). Frames discarded due to EXI mismatch or errors detected by the tHEC shall be counted in _pFDis.
VC-n-X specific GFP sink process
See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the VC-n-X payload area according to clause 10.6 of [ITU-T G.707].
VC-n-X specific sink process
C2: The signal label is recovered from the C2 byte as per clause 6.2.4.2 of [ITU-T G.806]. The signal label for GFP mapping in Table 9-11 of [ITU-T G.707] shall be expected. The accepted value of the signal label is also available at the Sn-X/ETC3_A_Sk_MP.
Defects
dPLM – See clause 6.2.4.2 of [ITU-T G.806].
dLFD – See clause 6.2.5.2 of [ITU-T G.806].
dUPM – See clause 6.2.4.3 of [ITU-T G.806].
dEXM – See clause 6.2.4.4 of [ITU-T G.806].
dCSF – See clause 6.2.6.4 of [ITU-T G.806].
Consequent actions
The function shall perform the following consequent actions:
aSSF		AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF
Defect correlations
The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.
cPLM		dPLM and (not AI_TSF)
cLFD		dLFD and (not dPLM) and (not AI_TSF)
cUPM		dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF)
cEXM		dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)
cCSF as per clause 8.5.4.2.2 of [ITU-T G.806].
Performance monitoring
The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.
pCRC16Errors: count of superblock CRC-16 errors per second
_pFDis = sum (n_FDis_tHEC + n_FDis_eHEC_EXI + n_FDis_PTI_UPI)
[bookmark: _Toc81793558][bookmark: _Toc84845000][bookmark: _Toc96922622][bookmark: _Toc98151668][bookmark: _Toc319901865][bookmark: _Toc328035831][bookmark: _Toc339540538][bookmark: _Toc341957015]11.3	S4-64c to ETH-w adaptation functions
[bookmark: _Toc81793559][bookmark: _Toc84845001][bookmark: _Toc96922623][bookmark: _Toc98151669]This covers 64B/66B-encoded mapping of Ethernet frames into VC-4-64c.
For further study.
[bookmark: _Toc319901866][bookmark: _Toc328035832][bookmark: _Toc339540539][bookmark: _Toc341957016]11.4	PDH to ETH adaptation functions (P/ETH_A)
[bookmark: _Toc126646858][bookmark: _Toc319901867]11.4.1	Pq to ETH adaptation functions (Pq/ETH_A; q = 11s, 12s, 31s, 32e)
[bookmark: _Toc126646859][bookmark: _Toc319901868]11.4.1.1	Pq to ETH adaptation source function (Pq/ETH_A_So)
This function maps ETH_CI information onto a Pq_AI signal (q = 11s, 12s, 31s, 32e).
Data at the Pq_AP is a Pq (q = 11s, 12s, 31s, 32e), it has a payload as described in [ITUT G.7043] with a value of N=1. The VLI byte is reserved and not used for payload data.
Symbol
[image:]
Figure 11-19 – Pq/ETH_A_So symbol
Interfaces
Table 11-11 – Pq/ETH_A_So interfaces
	Inputs
	Outputs

	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Pq_TP:
Pq_TI_ClocK
Pq_TI_FrameStart

Pq/ETH_A_So_MP:
Pq/ETH_A_So_MI_Active
Pq/ETH_A_So_MI_CSFEnable
Pq/ETH_A_So_MI_CSFrdifdiEnable
	Pq_AP:
Pq_AI_Data
Pq_AI_ClocK
Pq_AI_FrameStart

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes
A process diagram of this function is shown in Figure 11-20.

Figure 11-20 – Pq/ETH_A_So process
Queueing process
See clause 8.2.
Replicate process
See clause 8.4.
802.3 MAC FCS generation
See clause 8.8.1.
Ethernet specific GFP-F source process
See clause 8.5.4.1.1 of [ITU-T G.806]. GFP pFCS generation is disabled (FCSenable=false). The UPI value for frame-mapped Ethernet shall be inserted (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are inserted into the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].
Response to ETH_CI_SSF asserted is for further study.
Common GFP source process
See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).
Pq specific GFP source process
See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the Pq payload area according to [ITU-T G.8040].
Pq specific source process
NOTE – the VLI byte is fixed stuff equal to 0x00 at the Pq_AP output of this function.
P31s specific
MA: Signal label information is derived directly from the adaptation function type. The value for GFP mapping in clause 2.1 of [ITU-T G.832] is placed in the payload type field of the MA byte.
Defects						None.
Consequent actions
aCSF-RDI CI_SSFrdi and CSFrdifdiEnable and CSFEnable
aCSF-FDI CI_SSFfdi and CSFrdifdiEnable and CSFEnable
aCSF-LOS CI_SSF and CSFEnable
Defect correlations			None.
Performance monitoring	For further study.
[bookmark: _Toc319901869][bookmark: _Toc126646860]11.4.1.2	Pq to ETH adaptation sink function (Pq/ETH_A_Sk)
This function extracts ETH_CI information from a Pq_AI signal (q = 11s, 12s, 31s, 32e), delivering ETH_CI to ETH_TFP and ETH_FP.
Data at the Pq_AP is a Pq (q = 11s, 12s, 31s, 32e), it has a payload as described in [ITUT G.7043] with a value of N=1. The VLI byte is reserved and not used for payload data.
Symbol
[image:]
Figure 11-21 – Pq/ETH_A_Sk symbol
Interfaces
Table 11-12 – Pq/ETH_A_Sk interfaces
	Inputs
	Outputs

	Pq_AP:
Pq_AI_Data
Pq_AI_ClocK
Pq_AI_FrameStart
Pq_AI_TSF

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

Pq/ETH_A_Sk_MP:
Pq/ETH_A_Sk_MI_Active
Pq/ETH_A_Sk_MI_FilterConfig
Pq/ETH_A_Sk_MI_CSF_Reported
Pq/ETH_A_Sk_MI_MAC_Length
Pq/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Pq/ETH_A_Sk_MP:
Pq/ETH_A_Sk_MI_AcSL
Pq/ETH_A_Sk_MI_AcEXI
Pq/ETH_A_Sk_MI_AcUPI
Pq/ETH_A_Sk_MI_cPLM
Pq/ETH_A_Sk_MI_cLFD
Pq/ETH_A_Sk_MI_cUPM
Pq/ETH_A_Sk_MI_cEXM
Pq/ETH_A_Sk_MI_cCSF
Pq/ETH_A_Sk_MI_pFCSError

Processes
A process diagram of this function is shown in Figure 11-22.

Figure 11-22 – Pq/ETH_A_Sk process
Filter process
See clause 8.3.
Replicate process
See clause 8.4.
802.3 MAC FCS check process
See clause 8.8.2.
Ethernet specific GFP-F sink process
See clause 8.5.4.1.2 of [ITU-T G.806]. GFP pFCS checking, GFP p_FCSError, p_FDis are not supported (FCSdiscard=false). The UPI value for frame-mapped Ethernet shall be expected (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are extracted from the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].
Common GFP sink process
See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported (MI_CMuxActive=false).
Pq specific GFP sink process
See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the Pq payload area according to [ITU-T G.8040].
Pq specific sink process
NOTE 1 – the VLI byte at the Pq_AP input of this function is ignored.
P31s specific
MA: The signal label is recovered from the payload type field in the MA byte as per clause 6.2.4.2 of [ITU-T G.806]. The signal label for GFP mapping in clause 2.1 of [ITU-T G.832] shall be expected. The accepted value of the signal label is also available at the P31s/ETH_A_Sk_MP.
Defects
dPLM – See clause 6.2.4.2 of [ITU-T G.806].
dLFD – See clause 6.2.5.2 of [ITU-T G.806].
dUPM – See clause 6.2.4.3 of [ITU-T G.806].
dEXM – See clause 6.2.4.4 of [ITU-T G.806].
dCSF-LOS – See clause 8.8.6.2.
dCSF-RDI – See clause 8.8.6.2.
dCSF-FDI – See clause 8.8.6.2.
NOTE 2 – dPLM is only defined for q = 31s. dPLM is assumed to be false for q = 11s, 12s, 32e.
Consequent actions
The function shall perform the following consequent actions:
aSSF		AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS
aSSFrdi			dCSF-RDI and CSFrdifdiEnable
aSSFfdi			dCSF-FDI and CSFrdifdiEnable
Defect correlations
The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.
cPLM		dPLM and (not AI_TSF)
cLFD		dLFD and (not dPLM) and (not AI_TSF)
cUPM		dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);
cEXM		dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)
cCSF 		(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported
Performance monitoring
The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.
pFCSError: count of FrameCheckSequenceErrors per second.
NOTE 3 – This primitive is calculated by the MAC FCS check process.
[bookmark: _Toc319901870][bookmark: _Toc76268571]11.4.2	LCAS-capable Pq-Xv to ETH adaptation functions (Pq-X-L/ETH_A; q = 11s, 12s, 31s, 32e)
[bookmark: _Toc319901871]11.4.2.1	LCAS-capable Pq-Xv to ETH adaptation source function (Pq-X-L/ETH_A_So)
This function maps ETH_CI information onto a Pq-X-L_AI signal (q = 11s, 12s, 31s, 32e).
Data at the Pq-X-L_AP is a Pq-X-L (q = 11s, 12s, 31s, 32e), it has a payload as described in [ITUT G.7043].
Symbol
[bookmark: _MON_1157911723][bookmark: _MON_1157911798][bookmark: _MON_1157911900][bookmark: _MON_1157912037][bookmark: _MON_1157912181][bookmark: _MON_1157912265][bookmark: _MON_1157912400][bookmark: _MON_1157912746][bookmark: _MON_1157912894][bookmark: _MON_1159088923][bookmark: _MON_1240727056][bookmark: _MON_1157911475][bookmark: _MON_1157911540][image:]
Figure 11-23 – Pq-X-L/ETH_A_So symbol
Interfaces
Table 11-13 – Pq-X-L/ETH_A_So interfaces
	Inputs
	Outputs

	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Pq-X-L_AP:
Pq-X-L_AI_XAT

Pq-X-L_TP:
Pq-X-L_TI_ClocK
Pq-X-L_TI_FrameStart

Pq-X-L/ETH_A_So_MP:
Pq-X-L/ETH_A_So_MI_Active
Pq-X-L/ETH_A_So_MI_CSFEnable
Pq-X-L/ETH_A_So_MI_CSFrdifdiEnable
	Pq-X-L_AP:
Pq-X-L_AI_Data
Pq-X-L_AI_ClocK
Pq-X-L_AI_FrameStart

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes
A process diagram of this function is shown in Figure 11-24.

Figure 11-24 – Pq-X-L/ETH_A_So process
Queueing process
See clause 8.2.
Replicate process
See clause 8.4.
802.3 MAC FCS generation
See clause 8.8.1.
Ethernet specific GFP-F source process
See clause 8.5.4.1.1 of [ITU-T G.806]. GFP pFCS generation is disabled (FCSenable=false). The UPI value for frame-mapped Ethernet shall be inserted (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are inserted into the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].
Response to ETH_CI_SSF asserted is for further study.
Common GFP source process
See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).
Pq-X-L specific GFP source process
See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the Pq-X-L payload area according to [ITU-T G.8040].
Pq-X-L specific source process
P31s-X-L specific
MA: Signal label information is derived directly from the adaptation function type. The value for GFP mapping in clause 2.1 of [ITU-T G.832] is placed in the payload type field of the MA byte.
NOTE – the VLI byte is undefined at the Pq-X-L_AP output of this function.
Defects				None.
Consequent actions
aCSF-RDI CI_SSFrdi and CSFrdifdiEnable and CSFEnable
aCSF-FDI CI_SSFfdi and CSFrdifdiEnable and CSFEnable
aCSF-LOS CI_SSF and CSFEnable
Defect correlations			None.
Performance monitoring	For further study.
[bookmark: _Toc319901872]11.4.2.2	LCAS-capable Pq-Xv to ETH adaptation sink function (Pq-X-L/ETH_A_Sk)
This function extracts ETH_CI information from a Pq-X-L_AI signal (q = 11s, 12s, 31s, 32e), delivering ETH_CI to ETH_TFP and ETH_FP.
Data at the Pq-X-L_AP is a Pq-X-L (q = 11s, 12s, 31s, 32e), it has a payload as described in [ITUT G.7043].
Symbol
[image:]
Figure 11-25 – Pq-X-L/ETH_A_Sk symbol
Interfaces
Table 11-14 – Pq-X-L/ETH_A_Sk interfaces
	Inputs
	Outputs

	Pq-X-L_AP:
Pq-X-L_AI_Data
Pq-X-L_AI_ClocK
Pq-X-L_AI_FrameStart
Pq-X-L_AI_TSF
Pq-X-L_AI_XAR

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

Pq-X-L/ETH_A_Sk_MP:
Pq-X-L/ETH_A_Sk_MI_Active
Pq-X-L/ETH_A_Sk_MI_FilterConfig
Pq-X-L/ETH_A_Sk_MI_CSF_Reported
Pq-X-L/ETH_A_Sk_MI_MAC_Length
Pq-X-L/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

Pq-X-L/ETH_A_Sk_MP:
Pq-X-L/ETH_A_Sk_MI_AcSL
Pq-X-L/ETH_A_Sk_MI_AcEXI
Pq-X-L/ETH_A_Sk_MI_AcUPI
Pq-X-L/ETH_A_Sk_MI_cPLM
Pq-X-L/ETH_A_Sk_MI_cLFD
Pq-X-L/ETH_A_Sk_MI_cUPM
Pq-X-L/ETH_A_Sk_MI_cEXM
Pq-X-L/ETH_A_Sk_MI_cCSF
Pq-X-L/ETH_A_Sk_MI_pFCSError

Processes
A process diagram of this function is shown in Figure 11-26.

Figure 11-26 – Pq-X-L/ETH_A_Sk process
Filter process
See clause 8.3.
Replicate process
See clause 8.4.
802.3 MAC FCS check process
See clause 8.8.2.
Ethernet specific GFP-F sink process
See clause 8.5.4.1.2 of [ITU-T G.806]. GFP pFCS checking, GFP p_FCSError, p_FDis are not supported (FCSdiscard=false). The UPI value for frame-mapped Ethernet shall be expected (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are extracted from the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].
Common GFP sink process
See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported (MI_CMuxActive=false).
Pq-X-L specific GFP sink process
See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the Pq-X-L payload area according to [ITU-T G.8040].
Pq-X-L specific sink process
P31s-X-L specific
MA: The signal label is recovered from the payload type field in the MA byte as per clause 6.2.4.2 of [ITU-T G.806]. The signal label for GFP mapping in clause 2.1 of [ITU-T G.832] shall be expected. The accepted value of the signal label is also available at the P31s-X-L/ETH_A_Sk_MP.
NOTE 1 – The Pq-X-L_AI_XAR interface is not connected to any of the internal processes.
Defects
dPLM – See clause 6.2.4.2 of [ITU-T G.806].
dLFD – See clause 6.2.5.2 of [ITU-T G.806].
dUPM – See clause 6.2.4.3 of [ITU-T G.806].
dEXM – See clause 6.2.4.4 of [ITU-T G.806].
dCSF-LOS – See clause 8.8.6.2.
dCSF-RDI – See clause 8.8.6.2.
dCSF-FDI – See clause 8.8.6.2.
NOTE 2 – dPLM is only defined for q = 31s. dPLM is assumed to be false for q = 11s, 12s, 32e.
Consequent actions
The function shall perform the following consequent actions:
aSSF		AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS
aSSFrdi			dCSF-RDI and CSFrdifdiEnable
aSSFfdi			dCSF-FDI and CSFrdifdiEnable
NOTE 3 – XAR=0 results in AI_TSF being asserted, so there is no need to include it as an additional contributor to aSSF.
Defect correlations
The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.
cPLM		dPLM and (not AI_TSF)
cLFD		dLFD and (not dPLM) and (not AI_TSF)
cUPM		dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF)
cEXM		dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)
cCSF 		(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported
Performance monitoring
The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.
pFCSError: count of FrameCheckSequenceErrors per second.
NOTE 4 – This primitive is calculated by the MAC FCS check process.
[bookmark: _Toc81793560][bookmark: _Toc84845002][bookmark: _Toc96922624][bookmark: _Toc98151670][bookmark: _Toc319901873][bookmark: _Toc328035833][bookmark: _Toc339540540][bookmark: _Toc341957017]11.5	OTH to ETH adaptation functions (O/ETH_A)
[bookmark: _Toc319901874]11.5.1	ODUk to ETH adaptation functions (ODUkP/ETH_A)
[bookmark: _Toc319901875]11.5.1.1	ODUk to ETH adaptation source function (ODUkP/ETH_A_So)
The ODUkP/ETH_A_So function creates the ODUk signal from a free running clock. It maps the ETH_CI information into the payload of the OPUk, adds OPUk overhead (RES, PT) and default ODUk overhead.
Symbol
[image:]
[bookmark: _Toc172094014]Figure 11-27 – ODUkP/ETH_A_So symbol
Interfaces
Table 11-15 – ODUkP/ETH_A_So interfaces
	Inputs
	Outputs

	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

ODUkP/ETH_A_So_MP:
ODUkP/ETH_A_So_MI_Active
ODUkP/ETH_A_So_MI_CSFEnable
ODUkP/ETH_A_So_MI_CSFrdifdiEnable
	ODUkP_AP:
ODUkP_AI_Data
ODUkP_AI_ClocK
ODUkP_AI_FrameStart
ODUkP_AI_MultiframeStart

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes
A process diagram of this function is shown in Figure 11-28.

[bookmark: _Toc172094015]Figure 11-28 – ODUkP/ETH_A_So process
Queueing process
See clause 8.2.
Replicate process
See clause 8.4.
802.3 MAC FCS generation
See clause 8.8.1.
Ethernet specific GFP-F source process
See clause 8.5.4.1.1 of [ITU-T G.806]. GFP pFCS generation is disabled (FCSenable=false). The UPI value for frame-mapped Ethernet shall be inserted (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are inserted into the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].
Common GFP source process
See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).
ODUkP specific GFP source process
See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the ODUk payload area according to clause 17.4 of [ITU-T G.709].
ODUkP specific source process

[bookmark: _Ref524355927][bookmark: _Toc166989991][bookmark: _Toc172094016]Figure 11-29 – ODUkP specific source process
Clock and (multi)frame start signal generation
The function shall generate a local ODUk clock (ODUkP_AI_CK) with a clock rate within the minimum to maximum clock rate of the specified ODU signal as given in Table 14-2 of [ITU-T G.798]. The jitter and wander requirements as defined in Annex A of [ITU-T G.8251] (ODCa clock) apply.
The function shall generate the (multi)frame start reference signals AI_FS and AI_MFS for the ODUk signal. The AI_FS signal shall be active once per 122 368 clock cycles. AI_MFS shall be active once every 256 frames.
PT: The payload type information is derived directly from the adaptation function type. The value for GFP mapping shall be inserted into the PT byte position of the PSI overhead as defined in clause 15.9.2.1.1 of [ITU-T G.709].
RES: The function shall insert all-zeros into the RES bytes.
CSF: The function shall signal the failure of the client signal to the far end by use of the Bit 1 of the PSI[2] byte of the payload structure identifier as defined in clause 17.1 of [ITU-T G.709].
All other bits of the ODUk overhead should be sourced as "0"s, except the ODUk-PM STAT field which should be set to the value "normal path signal" (001).
Counter processes
For further study.
Defects						None.
Consequent actions
aCSF-RDI CI_SSFrdi and CSFrdifdiEnable and CSFEnable
aCSF-FDI CI_SSFfdi and CSFrdifdiEnable and CSFEnable
aCSF-LOS CI_SSF and CSFEnable
aCSF-OPU CI_SSF and CSFEnable
Defect correlations			None.
Performance monitoring	For further study.
[bookmark: _Toc319901876]11.5.1.2	ODUk to ETH adaptation sink function (ODUkP/ETH_A_Sk)
The ODUkP/ETH_A_Sk extracts ETH_CI information from the ODUkP payload area, delivering ETH_CI to ETH_TFP and ETH_FP. It extracts the OPUk overhead (PT and RES) and monitors the reception of the correct payload type.
Symbol
[image:]
[bookmark: _Toc172094017]Figure 11-30 – ODUkP/ETH_A_Sk symbol
Interfaces
Table 11-16 – ODUkP/ETH_A_Sk interfaces
	Inputs
	Outputs

	ODUkP_AP:
ODUkP_AI_Data
ODUkP_AI_ClocK
ODUkP_AI_FrameStart
ODUkP_AI_MultiframeStart
ODUkP_AI_TSF

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ODUkP/ETH_A_Sk_MP:
ODUkP/ETH_A_Sk_MI_Active
ODUkP/ETH_A_Sk_MI_FilterConfig
ODUkP/ETH_A_Sk_MI_CSF_Reported
ODUkP/ETH_A_Sk_MI_MAC_Length
ODUkP/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

ODUkP/ETH_A_Sk_MP:
ODUkP/ETH_A_Sk_MI_AcPT
ODUkP/ETH_A_Sk_MI_AcEXI
ODUkP/ETH_A_Sk_MI_AcUPI
ODUkP/ETH_A_Sk_MI_cPLM
ODUkP/ETH_A_Sk_MI_cLFD
ODUkP/ETH_A_Sk_MI_cUPM
ODUkP/ETH_A_Sk_MI_cEXM
ODUkP/ETH_A_Sk_MI_cCSF
ODUkP/ETH_A_Sk_MI_pFCSError

Processes
A process diagram of this function is shown in Figure 11-31.

[bookmark: _Toc172094018]Figure 11-31 – ODUkP/ETH_A_Sk process
Filter process
See clause 8.3.
Replicate process
See clause 8.4.
802.3 MAC FCS check process
See clause 8.8.2.
Ethernet specific GFP-F sink process
See clause 8.5.4.1.2 of [ITU-T G.806]. GFP pFCS checking, GFP p_FCSError, p_FDis are not supported (FCSdiscard=false). The UPI value for frame-mapped Ethernet shall be expected (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are extracted from the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].
Common GFP sink process
See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported (MI_CMuxActive=false).
ODUkP specific GFP sink process
See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the ODUk payload area according to clause 17.4 of [ITU-T G.709].
ODUkP specific sink process

[bookmark: _Ref524356104][bookmark: _Toc166989993][bookmark: _Toc172094019]Figure 11-32 – ODUkP specific sink process
PT: The function shall extract the PT byte from the PSI overhead as defined in clause 8.7.1 of [ITUT G.798]. The payload type value for GFP mapping in clause 15.9.2.1.1 of [ITU-T G.709] shall be expected. The accepted PT value is available at the MP (MI_AcPT) and is used for PLM defect detection.
RES: The value in the RES bytes shall be ignored.
CSF: The function shall extract the CSF signal indicating the failure of the client signal out of the Bit 1 of the PSI[2] byte of the payload structure identifier as defined in clause 17.1 of [ITUT G.709].
Defects
dPLM – See clause 6.2.4.1 of [ITU-T G.798].
dLFD – See clause 6.2.5.2 of [ITU-T G.806].
dUPM – See clause 6.2.4.3 of [ITU-T G.806].
dEXM – See clause 6.2.4.4 of [ITU-T G.806].
dCSF-LOS – See clause 8.8.6.2.
dCSF-RDI – See clause 8.8.6.2.
dCSF-FDI – See clause 8.8.6.2.
Consequent actions
The function shall perform the following consequent actions:
aSSF		AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS
aSSFrdi			dCSF-RDI and CSFrdifdiEnable
aSSFfdi			dCSF-FDI and CSFrdifdiEnable
Defect correlations
The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.
cPLM		dPLM and (not AI_TSF)
cLFD		dLFD and (not dPLM) and (not AI_TSF)
cUPM		dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF)
cEXM		dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)
cCSF 		(dCSF-LOS or dCSF-OPU or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported
Performance monitoring
The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.
pFCSErrors: count of FrameCheckSequenceErrors per second.
NOTE – This primitive is calculated by the MAC FCS Check process.
[bookmark: _Toc319901877]11.5.2	LCAS-capable ODUk-Xv to ETH adaptation functions (ODUkP-X-L/ETH_A; k = 1, 2, 3)
[bookmark: _Toc319901878]11.5.2.1	LCAS-capable ODUk-Xv to ETH adaptation source function (ODUkP-X-L/ETH_A_So)
The ODUkP-X-L/ETH_A_So function creates the ODUk-X-L signal from a free running clock. It maps the ETH_CI information into the payload of the OPUk-Xv (k = 1, 2, 3), adds OPUk-Xv Overhead (RES, vcPT).
Symbol
[image:]
[bookmark: _Toc172094020]Figure 11-33 – ODUkP-X-L/ETH_A_So symbol
Interfaces
Table 11-17 – ODUkP-X-L/ETH_A_So interfaces
	Inputs
	Outputs

	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

ODUkP-X-L_AP:
ODUkP-X-L_AI_XAT

ODUkP-X-L/ETH_A_So_MP:
ODUkP-X-L/ETH_A_So_MI_Active
ODUkP-X-L/ETH_A_So_MI_CSFEnable
ODUkP-X-L/ETH_A_So_MI_CSFrdifdiEnable
	ODUkP-X-L_AP:
ODUkP-X-L_AI_Data
ODUkP-X-L_AI_ClocK
ODUkP-X-L_AI_FrameStart
ODUkP-X-L_AI_MultiframeStart

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes
A process diagram of this function is shown in Figure 11-34.

[bookmark: _Toc172094021]Figure 11-34 – ODUkP-X-L/ETH_A_So process
See clause 11.5.1.1 for a description of ODUkP-X-L/ETH_A processes.
ODUkP-X-L specific source process

[bookmark: _Toc166989996][bookmark: _Toc172094022]Figure 11-35 – ODUkP-X-L specific source process
Clock and (multi)frame start signal generation
The function shall generate a local ODUk clock (ODUkP_AI_CK) with a clock rate within the minimum to maximum clock rate of the specified ODU signal as given in Table 14-2 of [ITU-T G.798]. The jitter and wander requirements as defined in Annex A of [ITU-T G.8251] (ODCa clock) apply.
The function shall generate the (multi)frame start reference signals AI_FS and AI_MFS for the ODUk signal. The AI_FS signal shall be active once per XAT * 122 368 clock cycles. AI_MFS shall be active once every 256 frames.
vcPT: The payload type information is derived directly from the adaptation function type. The value for GFP mapping shall be inserted into the vcPT byte position of the PSI overhead as defined in clause 18.1.2.2 of [ITU-T G.709].
RES: The function shall insert all-zeros into the RES bytes.
CSF: The function shall signal the failure of the client signal to the far end by use of the Bit 1 of the PSI[2] byte of the payload structure identifier as defined in clause 18.1.2.2.1.3 of [ITU-T G.709].
All other bits of the ODUk overhead should be sourced as "0"s, except the ODUk-PM STAT field which should be set to the value "normal path signal" (001).
Counter processes
For further study.
Defects						None.
Consequent actions
aCSF-RDI CI_SSFrdi and CSFrdifdiEnable and CSFEnable
aCSF-FDI CI_SSFfdi and CSFrdifdiEnable and CSFEnable
aCSF-LOS CI_SSF and CSFEnable
aCSF-OPU CI_SSF and CSFEnable
Defect correlations			None.
Performance monitoring	For further study.
[bookmark: _Toc319901879]11.5.2.2	LCAS-capable ODUk-Xv to ETH adaptation sink function (ODUkP-X-L/ETH_A_Sk)
The ODUkP-X-L/ETH_A_Sk extracts ETH_CI information from the ODUkP-Xv payload area, delivering ETH_CI to ETH_TFP and ETH_FP. It extracts the OPUk-Xv overhead (vcPT and RES) and monitors the reception of the correct payload type.
Symbol
[image:]
[bookmark: _Toc172094023]Figure 11-36 – ODUkP-X-L/ETH_A_Sk symbol
Interfaces
Table 11-18 – ODUkP-X-L/ETH_A_Sk interfaces
	Inputs
	Outputs

	ODUkP-X-L_AP:
ODUkP-X-L_AI_Data
ODUkP-X-L_AI_ClocK
ODUkP-X-L_AI_FrameStart
ODUkP-X-L_AI_MultiframeStart
ODUkP-X-L_AI_TSF
ODUkP-X-L_AI_XAR

ETHTF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:
ETH_PI_D
ETH_PI_P
ETH_PI_DE

ODUkP-X-L/ETH_A_Sk_MP:
ODUkP-X-L/ETH_A_Sk_MI_Active
ODUkP-X-L/ETH_A_Sk_MI_FilterConfig
ODUkP-X-L/ETH_A_Sk_MI_CSF_Reported
ODUkP-X-L/ETH_A_Sk_MI_MAC_Length
ODUkP-X-L/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

ODUkP-X-L/ETH_A_Sk_MP:
ODUkP-X-L/ETH_A_Sk_MI_AcVcPT
ODUkP-X-L/ETH_A_Sk_MI_AcEXI
ODUkP-X-L/ETH_A_Sk_MI_AcUPI
ODUkP-X-L/ETH_A_Sk_MI_cVcPLM
ODUkP-X-L/ETH_A_Sk_MI_cLFD
ODUkP-X-L/ETH_A_Sk_MI_cUPM
ODUkP-X-L/ETH_A_Sk_MI_cEXM
ODUkP-X-L/ETH_A_Sk_MI_cCSF
ODUkP-X-L/ETH_A_Sk_MI_pFCSError

Processes
See the process diagram and process description in clause 11.5.1.2. The additional ODUkPXL_AI_XAR interface is not connected to any of the internal processes.
ODUkP-X-L specific sink process

[bookmark: _Toc166989998][bookmark: _Toc172094024]Figure 11-37 – ODUkP-X-L specific sink process
PT: The function shall extract the vcPT byte from the PSI overhead as defined in clause 8.7.3 of [ITU-T G.798]. The payload type value for GFP mapping in clause 18.1.2.2 of [ITU-T G.709] shall be expected. The accepted PT value is available at the MP (MI_AcPT) and is used for PLM defect detection.
RES: The value in the RES bytes shall be ignored.
CSF: The function shall extract the CSF signal indicating the failure of the client signal out of the Bit 1 of the PSI[2] byte of the payload structure identifier as defined in clause 18.1.2.2.1.3 of [ITUT G.709].
Defects
dVcPLM – See clause 6.2.4.2 of [ITU-T G.798].
dLFD – See clause 6.2.5.2 of [ITU-T G.806].
dUPM – See clause 6.2.4.3 of [ITU-T G.806].
dEXM – See clause 6.2.4.4 of [ITU-T G.806].
dCSF-LOS – See clause 8.8.6.2.
dCSF-RDI – See clause 8.8.6.2.
dCSF-FDI – See clause 8.8.6.2.
Consequent actions
The function shall perform the following consequent actions:
aSSF		AI_TSF or dVcPLM or dLFD or dUPM or dEXM or dCSF-LOS
aSSFrdi			dCSF-RDI and CSFrdifdiEnable
aSSFfdi			dCSF-FDI and CSFrdifdiEnable
NOTE 1 – XAR = 0 results in AI_TSF being asserted, so there is no need to include it as an additional contributor to aSSF.
Defect correlations
The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.
cVcPLM		dVcPLM and (not AI_TSF)
cLFD		dLFD and (not dVcPLM) and (not AI_TSF)
cCSF 		(dCSF-LOS or dCSF-OPU or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported
Performance monitoring
The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.
pFCSError: count of FrameCheckSequenceErrors per second.
NOTE 2 – This primitive is calculated by the MAC FCS check process.
[bookmark: _Toc319901880]11.5.3	ODU2P to Ethernet PP-OS adaptation functions (ODU2P/ETHPP-OS_A)
The ODU2P to Ethernet PP-OS adaptation function supports transporting preamble and ordered set information of the 10GBASE-R signals over the enhanced OPU2 payload area.
It provides an XGMII service over ODU2 with an extended OPU2 payload area.
As shown in Figure 46-3 of [IEEE 802.3], the Ethernet data stream at the XGMII consists of: <inter-frame><preamble><sfd><data><efd>. For the purposes of these mappings, the client data frames include the <preamble><sfd><data> information, and the ordered sets include specific information carried in the <inter-frame> characters. The mapping of both client data frames and ordered sets into ODU2 using GFP-F frames is described in this clause. Note that there is no Ethernet MAC termination function. Consequently, since no error checking is performed on the Ethernet MAC frames, errored MAC frames are forwarded at both the ingress and egress to the GFP adaptation functions.
[bookmark: _Toc319901881]11.5.3.1	ODU2P to Ethernet PP-OS adaptation source function (ODU2P/ETHPP-OS_A_So)
The ODU2P/ETHPP-OS_A_So function creates the ODU2P signal from a free running clock. It maps the ETHPP-OS_CI information into the payload of the OPU2P, adds OPU2P overhead (RES, PT) and default ODU2P overhead.
Symbol
 [image:]
Figure 11-38 – ODU2P/ETHPP-OS_A_So symbol
Interfaces
Table 11-19 – ODU2P/ETHPP-OS_A_So interfaces
	Inputs
	Outputs

	ETHPP-OS_CP:
ETHPP-OS_CI_D
ETHPP-OS_CI_SSF

ODU2P/ETHPP-OS_A_So_MP:
ODU2P/ETHPP-OS_A_So_MI_Active
ODU2P/ETHPP-OS_A_So_MI_CSFEnable
	ODU2P_AP:
ODU2P_AI_Data
ODU2P_AI_ClocK
ODU2P_AI_FrameStart
ODU2P_AI_MultiframeStart

NOTE – ETHPP-OS_CI_D is composed of preamble, payload and order set information in [ITUT G.7041].
Processes
A process diagram of this function is shown in Figure 11-39.

Figure 11-39 – ODU2P/ETHPP-OS_A_So process
Ethernet specific GFP-F source process
The Ethernet frames are inserted into the client payload information field of the GFP-F frames according to clause 7.9.2 of [ITU-T G.7041].
The UPI values for frame-mapped Ethernet shall be inserted for data or ordered sets respectively (Table 6-3 of [ITU-T G.7041]). The rest of the fields except the UPI field in the type header are static as:
•	PTI = 000 (Client data)
•	PFI = 0 (No FCS)
•	EXI = 0000 (Null extension header)
GFP client management frames (PTI = 100) are inserted if CI_SSF is input and GFP pFCS generation is disabled (FCSenable=false).
Common GFP source process
See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).
ODU2P specific GFP source process
See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the ODU2 payload area according to clause 17.4.1 of [ITU-T G.709]. OPU CSF may be generated if CI_SSF is input.
ODU2P specific source process
See clause 11.5.1.1 (k=2).
Defects						None.
Consequent actions		aCSF-LOS CI_SSF and CSFEnable
						aCSF-OPU CI_SSF and CSFEnable
Defect correlations			None.
Performance monitoring	For further study.
[bookmark: _Toc319901882]11.5.3.2	ODU2P to Ethernet PP-OS adaptation sink function (ODU2P/ETHPP-OS_A_Sk)
The ODU2P/ETHPP-OS_A_Sk extracts ETHPP-OS_CI information from the ODU2P payload area, delivering ETHPP-OS_CI to ETHPP-OS_TCP. It extracts the OPU2P overhead (PT and RES) and monitors the reception of the correct payload type.
Symbol
[image:]
Figure 11-40 – ODU2P/ETHPP-OS_A_Sk symbol
Interfaces
Table 11-20 – ODU2P/ETHPP-OS_A_Sk interfaces
	Inputs
	Outputs

	ODU2P_AP:
ODU2P_AI_Data
ODU2P_AI_ClocK
ODU2P_AI_FrameStart
ODU2P_AI_MultiframeStart
ODU2P_AI_TSF

ODU2P/ETHPP-OS_A_Sk_MP:
ODU2P/ETHPP-OS_A_Sk_MI_Active
ODU2P/ETHPP-OS_A_Sk_MI_CSF_Reported
	ETHPP-OS_CP:
ETHPP-OS_CI_D

ODU2P/ETHPP-OS_A_Sk_MP:
ODU2P/ETHPP-OS_A_Sk_MI_AcPT
ODU2P/ETHPP-OS_A_Sk_MI_AcEXI
ODU2P/ETHPP-OS_A_Sk_MI_AcUPI
ODU2P/ETHPP-OS_A_Sk_MI_cPLM
ODU2P/ETHPP-OS_A_Sk_MI_cLFD
ODU2P/ETHPP-OS_A_Sk_MI_cUPM
ODU2P/ETHPP-OS_A_Sk_MI_cEXM
ODU2P/ETHPP-OS_A_Sk_MI_cCSF

Processes
A process diagram of this function is shown in Figure 11-41.

Figure 11-41 – ODU2P/ETHPP-OS_A_Sk process
Ethernet specific GFP-F sink process:
The Ethernet frames are extracted from the client payload information field of the GFP-F frames according to clause 7.9 of [ITU-T G.7041].
See clause 8.5.4.1.2 of [ITU-T G.806]. GFP pFCS checking, GFP p_FCSError, p_FDis are not supported (FCSdiscard=false). The UPI value for frame-mapped Ethernet shall be expected for data or ordered sets respectively (Table 6-3 of [ITU-T G.7041]).
Client signal fail from GFP-F or OPU may generate LF as included ETHPP-OS_CI_D.
Common GFP sink process
See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported (MI_CMuxActive=false).
ODU2 specific GFP sink process
See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the ODU2 payload area according to clause 17.4.1 of [ITU-T G.709].
ODU2P specific sink process
See clause 11.5.1.2 (k=2).
Defects
dPLM – See clause 6.2.4.1 of [ITU-T G.798].
dLFD – See clause 6.2.5.2 of [ITU-T G.806].
dUPM – See clause 6.2.4.3 of [ITU-T G.806].
dEXM – See clause 6.2.4.4 of [ITU-T G.806].
dCSF-LOS – See clause 8.8.6.2.
dCSF-OPU – For further study.
Consequent actions
The function shall perform the following consequent actions:
aSSF		AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS
Defect correlations
The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.
cPLM		dPLM and (not AI_TSF)
cLFD		dLFD and (not dPLM) and (not AI_TSF)
cUPM		dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF)
cEXM		dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)
cCSF 		(dCSF-LOS or dCSF-OPU) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported
Performance monitoring
For further study.
[bookmark: _Toc319901883]11.5.4	ODU0P to 1 GbE client adaptation functions (ODU0P/CBRx_A)
The adaptation function that supports the transport of 1GbE signals in the OTN is the ODU0P to the client adaptation function (ODU0P/CBRx_A) (0≤x≤1.25G) described in [ITU-T G.798]. When the client is 1 GbE, the CBRx and ETC3 signals are equivalent; as such the ETY3/ETC3_A functions are bound to the ODU0P/CBRx_A functions.
[bookmark: _Toc81793561][bookmark: _Toc84845003][bookmark: _Toc96922625][bookmark: _Toc98151671][bookmark: _Toc319901884][bookmark: _Toc328035834][bookmark: _Toc339540541][bookmark: _Toc341957018]11.6	MPLS to ETH adaptation functions (MPLS/ETH_A)
For further study.
[bookmark: _Toc81793562][bookmark: _Toc84845004][bookmark: _Toc96922626][bookmark: _Toc98151672][bookmark: _Toc319901885][bookmark: _Toc328035835][bookmark: _Toc339540542][bookmark: _Toc341957019]11.7	ATM VC to ETH adaptation functions (VC/ETH_A)
For further study.
[bookmark: _Toc81793563][bookmark: _Toc84845005][bookmark: _Toc96922627][bookmark: _Toc98151673][bookmark: _Toc319901886][bookmark: _Toc328035836][bookmark: _Toc339540543][bookmark: _Toc341957020]11.8	RPR to ETH adaptation functions (RPR/ETH_A)
For further study.
[bookmark: _Toc84845006][bookmark: _Toc96922628][bookmark: _Toc98151674][bookmark: _Toc319901887]

[bookmark: _Toc328035837][bookmark: _Toc339540544][bookmark: _Toc341957021]Appendix I

Applications and functional diagrams
(This appendix does not form an integral part of this Recommendation.)
Figure I.1 presents the set of atomic functions associated with the Ethernet signal transport, shown in several example applications.
•	Ethernet UNI/NNI interface port on EoT equipment.
•	Ethernet over SDH NNI interface port on EoT equipment.
•	Ethernet UNI interface port supporting multiplexed access on EoT equipment.

16	Rec. ITUT G.8021/Y.1341 (05/2012)

[bookmark: _Toc172094025][bookmark: _Hlt486930938]Figure I.1 – Ethernet atomic functions in several possible applications

[bookmark: _Toc319901888][bookmark: _Toc328035838][bookmark: _Toc339540545][bookmark: _Toc341957022]Appendix II

AIS/RDI mechanism for an Ethernet private line over a
single SDH or OTH server layer
(This appendix does not form an integral part of this Recommendation.)
In order to address fault notification for failures in either the access links or within the SDH / OTH server layer, the following functionality is required:
a)	Convey fault notification for an access link failure from one side of the network to the other.
b)	Convey fault notification for an SDH / OTH server layer failure to the access links.
[ITU-T G.7041] defines client management frames (CMFs) for conveying information about the client signal from an ingress edge NE to the egress edge NE. Defined CMF signals are client signal fail (CSF), client forward defect indication (FDI) and client reverse defect indication (RDI) implementing the remote fail indication mechanism.
[ITU-T G.806] defines the equipment functional details of the CSF and RFI mechanisms.
This Recommendation defines the Ethernet specific equipment functional details for the CSF and RFI mechanisms.
The combination of the above three Recommendations provides the functionality required by (a) and (b).
In addition, this basic functionality can be further enhanced to support fault notification for the Ethernet client by using Ethernet physical layer defect signals shown in Appendix VI of [ITUT G.7041] by means of Ethernet OAM. For example, use of the link fault flag defined in clause 57 of [IEEE 802.3] (EFM OAM), in conjunction with the GFP-F CMF CSF and RFI indications. This is illustrated below.
A simplifying assumption can be made regarding the conditioning of the Ethernet access links on either side of the SDH / OTH transport network. For an EPL application, the access link is specific to a single service and since an Ethernet service is bi-directional, a fault in either direction should result in the access link being conditioned as "failed".
The following fault scenarios and accompanying figures illustrate this example of interworking of the EFM OAM link fault flag with the GFP-F CMF CSF and RFI indications to appropriately condition the Ethernet access links. Only uni-directional faults are considered, the scenarios can be combined as per the superposition principle to describe bi-directional faults. Furthermore, only an SDH server layer is shown in the examples. CE = Customer edge. PE = Provider edge.
Scenario 1
In Figure II.1, a uni-directional fault occurs on the east access link on ingress to the carrier network.

Figure II.1 – Fault on ingress
–	The east PE detects a loss of signal on the ingress access link:
•	802.3 EFM OAM sends "Link fault" upstream, interspersed with Idles;
•	GFP-F CMF CSF indication is sent into the network.
–	The east CE detects "Link fault":
•	Idles are sent towards the network and towards the enterprise.
–	The west PE detects the GFP-F CMF CSF indication:
•	If there is no network_ETH_AIS indication available, the laser (or electrical driver) is shutdown.
–	The west CE detects a loss of signal:
•	802.3 EFM OAM sends "Link fault" upstream, interspersed with Idles;
•	Idles are sent towards the enterprise.
Scenario 2
In Figure II.2, a uni-directional fault occurs westbound on the server layer within the carrier network.

Figure II.2 – Fault within a carrier network
–	An NE in the carrier network detects the failure of one of the member paths of a VCAT group:
•	SDH path AIS is generated downstream on the affected path.
–	The west PE detects SDH path AIS:
•	SDH path RDI is generated back into the network on the associated path;
•	GFP-F CMF RDI is generated back into the network;
•	if there is no network_ETH_AIS indication available, the laser (or electrical driver) is shut down.
–	The west CE detects a loss of signal:
•	802.3 EFM OAM sends "Link fault" upstream, interspersed with Idles;
•	Idles are sent towards the enterprise.
–	The east PE detects the GFP-F CMF RDI indication:
•	If there is no network_ETH_RDI indication available, the laser (or electrical driver) is shut down.
–	The east CE detects a loss of signal:
•	802.3 EFM OAM sends "Link fault" upstream, interspersed with Idles;
•	Idles are sent towards the enterprise.
Note that for a network failure affecting all member paths of a VCAT group (where LCAS is not supported) the same steps above apply, with the addition of SDH path AIS and RDI being sent on all the member paths.
Scenario 3
In Figure II.3, a uni-directional fault occurs on the west access link towards the enterprise network.

Figure II.3 – Fault on egress
–	The west CE detects a loss of signal:
•	802.3 EFM OAM sends "Link fault" upstream, interspersed with Idles;
•	Idles are sent towards the enterprise.
–	The west PE detects the link fault indication:
•	GFP-F CMF RDI indication is sent into the network;
•	Idles are sent towards the CE.
–	The east PE detects the GFP-F CMF RDI indication:
•	If there is no network_ETH_RDI indication available, the laser (or electrical driver) is shutdown.
–	The east CE detects a loss of signal:
•	802.3 EFM OAM sends "Link fault" upstream, interspersed with Idles;
•	Idles are sent towards the enterprise.
Note that a PE only reacts to the reception of a link fault indication when there are no other conditioning alarms (i.e., the PE takes no further conditioning action when it receives a link fault indication in response to having shutdown its own egress laser).
[bookmark: _Toc319901889]

[bookmark: _Toc328035839][bookmark: _Toc339540546][bookmark: _Toc341957023]Appendix III

Compound functions
(This appendix does not form an integral part of this Recommendation.)
ETH MEP and MIP compound functions are defined in clause 9.8 of this Recommendation.
[bookmark: _Toc319901890]

[bookmark: _Toc328035840][bookmark: _Toc339540547][bookmark: _Toc341957024]Appendix IV

Startup conditions
(This appendix does not form an integral part of this Recommendation.)
The set of interconnected ETH_FF processes must be loop-free, otherwise the integrity of the network may be compromised. This requirement implies that one can only include ports of the ETH_FF process in the ETH_C function if it is known that this will not create a loop.
In [b-IEEE 802.1D] and [IEEE 802.1Q] this is secured by starting in a state without connectivity, except for the exchange of BPDUs. Consequently, the spanning tree protocol extends the connectivity while making sure that this does not create any loops.
This means that the ETH_C function as defined in this Recommendation, on startup of the equipment may not contain an ETH_FF that includes more than one port of its enclosing ETH_FF process. After startup, ports may be added to the ETH_FF process under the control of the spanning tree protocol. Alternatively, this may be done under control of a management system, as long as the management system can guarantee that there are no loops created.
[bookmark: _Toc319901891]

[bookmark: _Toc328035841][bookmark: _Toc339540548][bookmark: _Toc341957025]Appendix V

SDL descriptions
(This appendix does not form an integral part of this Recommendation.)
In this Recommendation, detailed characteristics of equipment functional blocks are described with SDL diagrams specified in [ITU-T Z.100]. The SDL diagrams use the following conventions.

Figure V.1 – SDL symbols
[bookmark: _Toc319901892]

[bookmark: _Toc328035842][bookmark: _Toc339540549][bookmark: _Toc341957026]Appendix VI

Calculation methods for frame loss measurement
(This appendix does not form an integral part of this Recommendation.)
Frame loss measurement is performed by the collection of counter values for ingress and egress service frames and the exchange of OAM frames with the local counter value between a pair of MEPs. In this Recommendation two different mechanisms are defined for frame loss measurement and both mechanisms have different calculation methods.
[bookmark: _Toc319901893][bookmark: _Toc328035843][bookmark: _Toc339540550][bookmark: _Toc341957027]VI.1	Dual-ended loss measurement
This is performed by proactive OAM and both MEPs send dual-ended CCM frames to its peer MEP periodically. The calculation method specified in the proactive loss measurement process is depicted as shown in Figure VI.1.
[image:]
Figure VI.1 – Dual-ended ETH LM
[bookmark: _Toc319901894][bookmark: _Toc328035844][bookmark: _Toc339540551][bookmark: _Toc341957028]VI.2	Single-ended loss measurement
This is performed by the on-demand OAM and an MEP which sends LMM frames to its peer MEP and receives LMR frames from its peer MEP. The calculation method specified in the LM control process is depicted as shown in Figure VI.2.
[image:]
Figure VI.2 – Single-ended ETH LM
[bookmark: _Toc319901895]

[bookmark: _Toc328035845][bookmark: _Toc339540552][bookmark: _Toc341957029]Appendix VII

Considerations of the support of a rooted multipoint EVC service
(This appendix does not form an integral part of this Recommendation.)
This appendix considers the support of a rooted multipoint service defined in [ITU-T G.8011]. Connectivity of a rooted multipoint service is established between one or more rooted points and zero or more leaf points. Each leaf point can only exchange data with the root point, while a root point can exchange data with each leaf point and other root points. Consequently, some extended mechanisms on the ETH layer is required to disable the connectivity between particular pairs of points.
Two potential models are introduced in this appendix. The first model is achieved by the enhancement of a port group functionality to the ETH flow forwarding function. The second model is composed of the usage of asymmetric VLANs configuration described in clause B.1.3 of [IEEE 802.1Q]. The subclasses below describe a principle of the operation for each model.
NOTE 1 – The asymmetric VLAN model will be included in the main body of a later version of this Recommendation after the development of the functional modelling and the study of interworking between the asymmetric VLAN model and the port group model.
NOTE 2 – Both the port group and the asymmetric VLAN models are also applicable to other network scenarios such as the multipoint-to-multipoint service defined in [ITU-T G.8011] while this appendix addresses the rooted multipoint service only. Examples of application to other scenarios will be considered in a later version of this Recommendation.
[bookmark: _Toc319901896][bookmark: _Toc328035846][bookmark: _Toc339540553][bookmark: _Toc341957030]VII.1	Port group function
The port group function is achieved by the enhancement to the ETH flow forwarding function defined in clause 9.1.1. Figure VII.1 shows a principle of the operation for the port group function. A port group is configured to the ports {A, B, C} for which the split horizon behaviour are applied in an ETH flow forwarding function. Frames arriving via an input port in the port group can be forwarded to one or more output ports with the exception of the output ports that are members of the port group. Frames arriving on an input port that is not a member of the port group can be forwarded to any output ports with the exception of the port over which the frame arrived. As a result, the direct communication between members of the port group can be disabled.

Figure VII.1 – Principle of the port group function
Figure VII.2 shows an example of the port group function composing a rooted-multipoint EVC. The node X in this figure is configured to disable the forwarding ETH_CI traffic signal between members of the port group {X2, X3, X4}.

Figure VII.2 – Application example of the port group function
[bookmark: _Toc319901897][bookmark: _Toc328035847][bookmark: _Toc339540554][bookmark: _Toc341957031]VII.2	Configuration of asymmetric VLANs
Clause B.1.3 of [IEEE 802.1Q] describes a configuration example of asymmetric VLANs to support a rooted multipoint service. The configuration allocates two different VLANs to the traffic generated by a root and a leaf (leaves) respectively. As a result, it can disable the direct communication between any pair of leaves. To facilitate an appropriate MAC learning over the different VLANs, this configuration uses a shared VLAN learning (SVL) mode described in clause 9.1.1.
Figure VII.3 shows an example of the operation. In this figure, the ports A, B, and C are attached to leaf nodes while the port X is attached to a root node. The VID M allocated to the traffic from the root node to leaf nodes is configured on ports A, B and C. The VID N allocated to the traffic from the leaf nodes to a root node is configured on port X only. As a result, asymmetric VLANs are configured and the appropriate connectivity between ports A, B, C and X is established.

Figure VII.3 – Principle of the asymmetric VLANs
Figure VII.4 shows an application example of the asymmetric VLANs to a rooted multipoint service. Note that both a root node and leaf nodes can use the single VID or untagged frames on the client ports (depicted as yellow bidirectional arrows in this figure), while multiple VIDs are required within the EVC. This VID configuration on the client ports can be achieved by the VID translation and/or untagging on the output interfaces.

Figure VII.4 – Application example of the asymmetric VLANs
NOTE 3 – This appendix only describes a scenario of the single rooted multipoint environment as a basic example. However, the asymmetric VLAN model can also support multiple root nodes and/or grouping of leaf nodes as advanced rooted multipoint scenarios.
[bookmark: _Toc319901898]

[bookmark: _Toc328035848][bookmark: _Toc339540555][bookmark: _Toc341957032]Appendix VIII

Configurations for ingress VID filtering
(This appendix does not form an integral part of this Recommendation.)
This appendix describes an example of the configuration for ingress VID filtering described in [IEEE 802.1Q].

Figure VIII.1 –Example of configuration for ingress VID filtering
Table VIII-1 – VID configuration
	VID
	Port A
	Port B
	Port C
	Port D

	
	Ingress
	Egress
	Ingress
	Egress
	Ingress
	Egress
	Ingress
	Egress

	10
	
	
	
	
	
	
	
	

	20
	
	
	
	
	
	
	
	

	30
	
	
	
	
	
	
	
	

	40
	
	
	
	
	
	
	
	

	Others
	
	
	
	
	
	
	
	

Figure VIII.1 and Table VIII-1 show an example of the configuration. For the ingress configuration, MI_Vlan_Config[] signal is set to ETHx/ETH-m_A_Sk function and ETH_CI signals corresponding VIDs are connected to ETH_FF processes in ETH_C function. For the egress configuration, MI_Vlan_Config[] signal is set to ETHx/ETH-m_A_So function and ETH_CI signals corresponding VIDs are connected to ETH_FF processes in ETH_C function.
On ports A and B in this example, MI_Vlan_Config[1…4094] are set to ETHx/ETH-m_A_Sk in order to disable the ingress VID filtering. In this case, all incoming VIDs traffic is forwarded once to ETH_C. Since ETH_FF is connected to configured ingress and egress ports only, the traffic is forwarded to the appropriate ports.
[bookmark: _Toc328035849][bookmark: _Toc339540556][bookmark: _Toc341957033]

Appendix IX

Handling of Expected Defects
(This appendix does not form an integral part of this Recommendation.)
This appendix describes how the Expected Defect Messages (EDMs) can be used to avoid spurious Loss of Continuity defects, and provides some recommendations for how the Element Management Function (EMF) should control the associated Management Information (in particular, ETHx_FT_Sk_MI_CC_Enable).
There are two primary use cases for handling of expected defects:
· Interruption events, such as in-service software upgrade, where transmission of CCMs is interrupted but there is no impact on the flow of data frames.
· Service Activation, in particular adding a new end-point to an existing multipoint service.
These are discussed further below, followed by some additional considerations.

IX.1	Interruption events
In implementations where the OAM Generation functions execute in different hardware to that used for traffic forwarding – typically either a dedicated hardware chip designed for OAM, or in software on a general-purpose CPU – it is possible that the OAM traffic may be interrupted without affecting the data traffic flow, as shown in Figure IX-1. The desirable behaviour in this case may be for any peer devices to ignore the loss-of-continuity of the OAM traffic (since there is no interruption in the data traffic). If the interruption is due to a failure and is hence unexpected, that may not be possible; however, if it is due to an administrative action, then there is the possibility of notifying the peer in advance of the event. Examples of such intentional events include software or firmware upgrades, or manual recovery from earlier failure conditions.
Loss of continuity
Data Traffic
OAM Traffic
OAM and Data handled in different hardware
Data Traffic
OAM Traffic
OAM interrupted but data continues to flow

Figure IX-1 – Example where OAM functions and data traffic forwarding are in different hardware.
A mechanism to notify the peer MEPs in advance is particularly useful when OAM is used across multiple administrative domains (eg across a UNI or ENNI), as in these cases it may not be possible to correlate the event with the loss of continuity at the management layer. The Expected Defect Message provides such a mechanism, by indicating that a loss of continuity is expected for a specified duration. It is triggered by setting MI_EDM_Enable to true, and MI_EDM _Duration to the expected duration for which CCM transmission will be interrupted.
On receiving an EDM, the peer MEP relays the information to the EMF. If configured to do so, the EMF can then unset MI_CC_Enable in the flow termination sink function of the MEP (ETHx_FT_Sk or ETHG_FT_Sk), to disable receipt of CCMs for the duration specified in the EDM. When receipt of CCMs is disabled, loss of continuity (dLOC) does not result in either alarms (cLOC) or consequent actions (aTSF). After the specified duration, the EMF re-enables MI_CC_Enable; if CCMs have resumed, then dLOC will no longer be detected. If CCMs are still not being received, then dLOC will still be detected and this will result in alarms (cLOC) and consequent actions (aTSF).
An example showing the use of EDM in this case is shown in Figure IX-2.
[image:]
Figure IX-2 – Example showing EDM used to handle an interruption event

IX.2	Service Activation
To enable correct operation of Continuity Checks in G.8013-based Ethernet OAM, it is necessary to configure each MEP in a MEG with its own unique MEP ID (via MI_MEP_ID), and in addition with the MEP IDs of all of its peer MEPs (via MI_PeerMEP_ID[]).
This can cause difficulties when adding a new end-point (and hence a new MEP) to an existing service: to avoid spurious defects and alarms, the configuration must be changed on all of the existing MEPs simultaneously with enabling CCMs on the new MEP. Again this is particularly challenging when the MEPs are in different administrative domains.
The spurious alarms can be avoided in this case using the Expected Defect message, as follows. When the new MEP is added, before enabling CCM transmission, Expected Defect messages are sent. As in the above case, on receiving these, the existing MEPs in the MEG relay the information to their corresponding EMFs, and if so configured, the EMFs disabled CCM reception. The EMFs at the existing MEPs can then add the MEP ID of the new MEP to the list of Peer MEP IDs (MI_PeerMEP_ID[]) without triggering any Loss of Continuity alarms or consequent actions for the new MEP, even though CCMs are not yet being received. Once this is done, CCM transmission can be enabled at the new MEP, and this will not trigger Unexpected MEP defects (dUNM) at the existing MEPs, as the new MEP ID has already been added to their lists of Peer MEPs. Finally once the duration in the EDM has passed, the EMFs at the existing MEPs re-enable CCM reception.
An example showing this sequence can be seen in Figure IX-3.
[image:]
Figure IX-3 – Example showing EDM used to handle a new MEP

IX.3	Additional Considerations
It should not be possible – maliciously or accidentally – to circumvent normal fault monitoring by continuously sending Expected Defect notifications for an extended period of time. This can be prevented in a number of ways:
· Implementations should limit the maximum value of MI_EDM _Duration that the user can specify. In some cases, the EMF may be able to derive the value without input from the end user; for example, in the case of an in-service software upgrade, the EMF can determine how long this will take, and hence for how long normal CCM transmission will be interrupted. It can then set MI_EDM_Enable and MI_EDM _Duration accordingly.
· The Expected Defect signal (MI_EDM_Received) should be ignored by the EMF unless processing is explicitly enabled by the user. The EMF should allow the user control over when this is enabled; for example, the user may wish to only allow Expected Defect notifications to be processed during a maintenance window. Even when enabled by the user, the EMF should temporarily disable the handling in some cases as described below.
· The EMF should allow the user to specify the maximum duration of an Expected Defect notification that will be handled. If an EDM is received indicating a longer duration than this, the duration is truncated to this value.
· The EMF should limit the number of times an Expected Defect notification is processed in a given period of time, for example to 3 times in a month. Note that the limit applies to each series of consecutive EDMs (from the same peer MEP), not to the number of individual EDM frames received.
· To prevent multiple uses of the Expected Defect notification in quick succession, the EMF should disable processing for a short time after the end of each expected defect condition.
· Whenever an Expected Defect notification is received, this should be logged by the EMF, so that any long-term trends can be analysed and misuse can be detected.

Bibliography

[b-ITU-T G.704]		Recommendation ITU-T G.704 (1998), Synchronous frame structures used at 1544, 6312, 2048, 8448 and 44 736 kbit/s hierarchical levels.
[b-ITU-T I.732]			Recommendation ITU-T I.732 (2000), Functional characteristics of ATM equipment.
[b-ITU-T M.3208.1]		Recommendation ITU-T M.3208.1 (1997), TMN management services for dedicated and reconfigurable circuits network: Leased circuit services.
[b-IEEE 802.1D]		IEEE 802.1D (2004), IEEE Standard for Local and metropolitan area networks: Media Access Control (MAC) Bridges.

[bookmark: _GoBack]
		Rec. ITUT G.8021/Y.1341 (05/2012)	364

image63.emf
D(OAM),P(P),DE(DE)1DM(SA(OAM),TxTimeStampf(OAM),Local Time,TestID(OAM))DA(OAM)=MI_MEP_MACYNWaitingDA(OAM)=MC Class1orP(P),

image64.emf
InitMI_1DM_Start(SA,P, Test ID)MI_1DM_Intermediate_RequestRunning1DM(rSA,rP,TxTimeStampf, RxTimef,rTestID)N_FD[count] = RxTimef –TxTimeStampfrSA=SA?YNCount=0count++MI_1DM_Result (count, N_FD[])NYTest ID!=NULL and rTestID!=TestIDMI_1DM_TerminateMI_1DM_Result (count, N_FD[])YNrP=P?

image65.emf
DisabledMI_1DM_Enable!MI_1DM_EnableEnabledN_FD = RxTimef –TxTimeStampfrSA=MI_1DM_MAC_SA?YN1DM_Result(N_FD)NYMI_1DM_TestID!=NULL and rTestID!=MI_1DM_TestID1DM(rSA,rP,TxTimeStampf, RxTimef,rTestID)rP=MI_1DM_Pri?YN

image66.emf
On-demandOAM InsertionTSTGenerationOn-demandOAM ExtractionOn-demandOAMExtractionTSTReceptionMEPMIPMEPETH_CIETH_CIETH_CIETH_CID,P,DED,P,DETSTControl_SoMI_TST (DA,DE,P,MI_TST_TerminateTST(DA, P, TLV, TID)MI_MEP_MACMI_MEP_MACMI_TST_Result(REC,CRC,BER,OO)MI_TST_Result (Sent)TSTControl_SkMI_TST_Start (SA, pattern)MI_TST_TerminateTST (SA, TID, TLV)Pattern, Length, Period)

image67.emf
Set(0,TxTimer)

Sent=0

Waiting Test

TxTimer

TST(DA,P,DE,TLV,TID)

TLV=Generate(Pattern,Length)

MI_TST_Terminate

MI_TST_Result(

Sent)

Sent++

TID++

Init

MI_Test(

DA,DE,P,Pattern, Length, Period)

set(Period,TxTimer)

image68.emf
TST(DA,P,DE,TLV,TID)

Waiting

OAM=TST(

DA,

TLV,

TID

)

D(OAM), P(P), DE(DE)

image69.emf
G.8021-Y.1341(12)_F8-70

D(OAM),P(P),

DE(DE)

TST(

SA(OAM),

TID(OAM),

TLV(OAM))

DA(OAM)=MI_MEP_MAC or

DA(OAM)=MC Class1

Y

N

Waiting

oleObject24.bin

image70.emf
Init

MI_TST_Start(SA,Pattern)

OLD_TID=Undef

REC=0

CRC=0

BER=0

OO=0

Waiting Test

TST(rSA,rTLV,TID)

REC++

IF (Pattern=1 or Pattern=3) &&

(CheckCRC(TLV)==Fail)

THEN CRC++

IF Check(Pattern,TLV)==FAIL

THEN BER++

IF OLD_TID!=Undef

THEN

IF TID!=OLD_TID+1

THEN OO++

OLD_TID=TID

MI_TST_Terminate

MI_TST_Result(

REC,CRC,BER,OO)

Timer

Set(5s,Timer)

rSA=SA?

Y

N

Init

MI_TST_Start(SA,Pattern)

OLD_TID=Undef

REC=0

CRC=0

BER=0

OO=0

Waiting Test

TST(rSA,rTLV,TID)

REC++

IF (Pattern=1 or Pattern=3) &&

(CheckCRC(TLV)==Fail)

THEN CRC++

IF Check(Pattern,TLV)==FAIL

THEN BER++

IF OLD_TID!=Undef

THEN

IF TID!=OLD_TID+1

THEN OO++

OLD_TID=TID

MI_TST_Terminate

MI_TST_Result(

REC,CRC,BER,OO)

Timer

Set(5s,Timer)

rSA=SA?

Y

N

image71.emf
G.8021-Y.1341(12)_F8-72

ETH_CIETH_CI

ETH_CI

ETH_CI

ETH_CIETH_CI

MEPMIPMEP

LTR

Generation

On-demand

OAM

Extraction

On-demand

OAM

Insertion

On-demand OAM

Insertion

LTR

Reception

D,P,DE

D,P,DED,P,DE

D,P,DE

MEP LTM

Reception

On-demand OAM

Extraction

LM

Control

LTM

Generation

LTR

Generation

MIP LTM

Reception

On-demand OAM

Extraction

On-demand OAM

Insertion

On-demand OAM

Insertion

MI_LT(TA,TTL, P)

MI_LT_Result(Results)

LTM(TA,TTL,

TID, P)

D,P,DE

D,P,DE

RI_LTM

(D,P,DE)

RI_LTM

(D,P,DE)

RI_LTR(SA,

TTL,TID,TLV)

M

I

_

M

I

P

_

M

A

C

M

I

_

M

E

P

_

M

A

C

D,P,DE

MI_MEP_MAC

oleObject25.bin

image72.emf
Iinit

MI_LT(TA,P)

LTM(TA,P, TID)

Waiting for LTR

TID++

LTR(SA,TTL,

rTID,TLV)

Timer

Results=Results+{(SA,TTL,TLV)}

MI_LT_Result(Results)rTID==TID?

Yes

No

TTL,

TTL,

Set(5s,Timer)

Results={}

image73.emf
LTM(TA,P, TID)

OAM=LTM(

TA,TTL,TID)

D(OAM), P(P),

DE(0)

TTL,

image74.emf
G.8021-Y.1341(12)_F8-75

8765

5

9

432

2

1

1

876543

3

21

1

13

17

21

25

29

33

:

last

8765432187654

4

321

SA = Undefined

Ethertype = 89-02MEL =

Undef

Version = 0

Opcode = 05 (LTM)

DA = 01-80-C2-00-00-3y where y is changed to MI_MEL by the OAM insertion process.

Flags

TLV offset = 17

Transaction ID continued

Transaction ID = LTM(TID)

TTL = LTM(TTL)

Originating MAC = MI_MEP_MAC

Target MAC = LTM(TA)

[TLV starts here]

END TLV = 0

oleObject26.bin

image75.emf
Init

D(D),P(P),DE(DE)

TTL(D)>0

TMAC(D)=MI_MIP_MAC

|| Forward(TMAC(D))

TTL(D)--

D(D),P(P),DE(DE)

RI_LTM(D,P,DE)

Yes

Yes

TMAC(D)!=MI_MIP_MAC

&& TTL>0

Init

D(D),P(P),DE(DE)

TTL(D)>0

TMAC(D)=MI_MIP_MAC

|| Forward(TMAC(D))

TTL(D)--

D(D),P(P),DE(DE)

RI_LTM(D,P,DE)

Yes

Yes

TMAC(D)!=MI_MIP_MAC

&& TTL>0

image76.emf
Init

D(D),P(P),DE(DE)

TTL(D)>0

TMAC(D)=MI_MEP_MAC

|| Forward(TMAC(D))

TTL(D)--

RI_LTM(D,P,DE)

Yes

Yes

image77.emf
RI_LTM(D,P,DE)

DA(D)=OrigMAC(D)

OPC(D)=04

Send_LTR(

D,P,DE)

Waiting

Timer

D(D),P(P),DE(DE)

Process Send_LTR(D,P,DE)

Wait_Time=Random(0..1s)

Set(Wait_Time,Timer)

image78.emf
G.8021-Y.1341(12)_F8-79

8765

5

9

432

2

1

1

876543

3

21

1

13

17

21

25

8765432187654

4

321

Ethertype = 89-02

Version = 0

Opcode = 04 (LTR)

END TLV = 0

TLV offset = 6

DA = orig MAC(RI_LTM(D))

Flags

Transaction ID continued

TTL = TTL(RI_LTM(D))

Transaction ID = transaction ID(RI_LTM(D))

Relay action

(reserved for IEEE)

MEL =

undef

SA = undefined

oleObject27.bin

image79.emf
DA(D)=MI_MEP_MAC

D(D),P(P),DE(DE)

SA=SA(D)

TID=TID(D)

TLV=TLV(D)

LTR(SA,TID,TTL,

TLV)

YesNo

TTL=TTL(D)

image80.emf
On-demandOAMExtractionOn-demandOAM InsertionSLMGenerationSLRReceptionOn-demandOAMInsertionOn-demandOAM ExtractionOn-demandOAMInsertionOn-demandOAMExtractionSLM ReceptionSLR GenerationMEPMIPMEPETH_CIETH_CIETH_CIETH_CIETH_CIETH_CIETH_CIETH_CID,P,DED,P,DED,P,DED,P,DESLControlMI_SL_Start(DA,P,Test_ID,Length,Period)MI_SL_TerminateSLM (DA, P, MEP_ID,RI_SLR(rTest_IDTxFCf,TxFCb)MI_MEP_MACMI_MEP_MACrMEP_ID,MI_SL_Result(N_TF,N_LF,F_TF,F_LF)Test_ID, TxFCl, TLV)MI_MEP_IDRI_SLM (OAM, P, DE,TxFCb)MI_MEP_IDOn-demandMI_SL_Intermediate_Request

image81.emf
Extraction

OAM

Insertion

SLM

Generation

SLR

Reception

On-demandOAM

Insertion

On-demandOAM

Extraction

Insertion

Extraction

SLM Reception

SLR Generation

MEP MIP MEP

ETH_CI ETH_CI ETH_CI ETH_CI

ETH_CIETH_CIETH_CIETH_CI

D,P,DE

D,P,DE

D,P,DE

D,P,DE

SLM (DA, P, MEP_ID,

RI_SLR(

TxFCf, TxFCb)

MI_MEP_MAC

MI_MEP_MACMI_MEP_MAC

rMEP_ID, rTestID,

RI_SL_Result(

N_TF,N_LF,F_TF,F_LF)

Test_ID, TxFCl, TLV)

MI_MEP_ID

RI_SLM (

OAM, P, DE,

TxFCb)

MI_MEP_ID

SL

Control

Proactive

Proactive OAM

Proactive

OAM

Proactive

OAM

Proactive

MI_SL_Enable

MI_SL_Period

MI_SL_Pri

MI_SL_MAC_DA

MI_SL_Length

MI_SL_Test_ID

image82.emf
Init

MI_SL_Start (

DA, P, Test_ID, Length, Period)

Set (0, TxTimer)

N_TF = N_LF = F_TF = F_LF = 0

saved = false

TxTimer

RI_SLR (rMEP_ID, rTest_ID,

TxFCf, TxFCb)

TimeoutTimerMI_SL_Terminate

TLV = Generate

(Length)

TxFCl++

SLM (DA, P,

MEP_ID,

Test_ID,

TxFCl, TLV)

MI_SL_Result (

N_TF, N_LF, F_TF, F_LF)

Set (5s,

TimeoutTimer)

Running

Set (Period,

TxTimer)

If saved THEN {

 N_TF += |TxFCb – TxFCb_svd|

 N_LF += |TxFCb – TxFCb_svd| -|RxFCl – RxFCl_svd|

 F_TF += |TxFCf – TxFCf_svd|

 F_LF += |TxFCf – TxFCf_svd| -|TxFCb – TxFCb_svd|

}

TxFCf_svd = TxFCf

TxFCb_svd = TxFCb

RxFCl_svd = RxFCl

RxFCl++

saved = true

Reset (TxTimer)

MI_SL_Intermediate_Request

MI_SL_Result (

N_TF, N_LF, F_TF, F_LF)

image83.emf
Init

MI_SL_Enable

Set (0, TxTimer)

N_TF = N_LF = F_TF = F_LF = 0

Saved = false

TxTimer

RI_SLR (rMEP_ID, rTest_ID,

TxFCf, TxFCb)

ReportTimer!MI_SL_Enable

TLV = Generate

(MI_SL_Length)

TxFCl++

If saved THEN {

 N_TF += |TxFCb – TxFCb_svd|

 N_LF += |TxFCb – TxFCb_svd| -|RxFCl – RxFCl_svd|

 F_TF += |TxFCf – TxFCf_svd|

 F_LF += |TxFCf – TxFCf_svd| -|TxFCb – TxFCb_svd|

}

SLM (MI_SL_MAC_DA,

MI_SL_Pri,

MI_SL_MEP_ID,

MI_SL_Test_ID,

TxFCl,TLV)

RI_SL_Result(

N_TF,N_LF,

F_TF,F_LF)

Set (1s,

ReportTimer)

Running

Set (1s,

ReportTimer)

Set (MI_SL_Period,

TxTimer)

TxFCf_svd = TxFCf

TxFCb_svd = TxFCb

RxFCl_svd = RxFCl

RxFCl++

saved = true

N_TF = 0

N_LF = 0

F_TF = 0

F_LF = 0

image84.emf
SLM(DA,P,MEP_ID,

OAM=SLM(DA,P,MEP_ID,

Test_ID,TxFCl,TLV)

D(OAM), P(P),

DE(0)

Test_ID,TxFCl,TLV)

image85.emf
D(OAM),

P(P),

DE(DE)

DA(OAM)=MI_MEP_MAC or

DA(OAM)=MC Class1

RxFCl(MEP_ID(OAM), Test_ID(OAM)) ++

Y

N

Waiting

TxFCb= RxFCl(MEP_ID(OAM), Test_ID(OAM))

RI_SLM(OAM, P, DE,

TxFCb)

image86.emf
Waiting

RI_SLM (OAM,P,DE,

TxFCb)

D(OAM),

D.P(P),

D.DE(DE)

DA(OAM)=SA(OAM)

SA(OAM)=Undefined

OPC(OAM)=SLR

Responder_MEP_ID(OAM)=MI_MEP_ID

TxFCb(OAM)=TxFCb

image87.emf
D(OAM),

P(P),

DE(DE)

RI_SLR(

Test ID(OAM),

DA(OAM)=MI_MEP_MAC

Y

N

Waiting

TxFCf(OAM),

TxFCb(OAM))

MEP_ID(OAM),

image88.emf
On-demandOAM Insertion1SLGenerationOn-demandOAM ExtractionOn-demandOAMExtraction1SL ReceptionMEPMIPMEPETH_CIETH_CIETH_CIETH_CID,P,DED,P,DE1SLControl_SoMI_1SL_Start(DA,P,Test_ID,Length,Period)MI_1SL_Terminate1SL(DA, P, MEP_ID,MI_MEP_MACMI_MEP_MACMI_1SL_Result(N_TF,N_LF)Test_ID, TxFCl, TLV)MI_MEP_IDOn-demand1SLControl_SkOn-demandMI_1SL_Start (SA, TestID)MI_1SL_Terminate1SL_(rSA, r MEPID, rTestID, TxFCf, RxFCl)MI_1SL_Interemdiate_Request

image89.emf
OAM

Insertion

1SL

Generation

On-demandOAM

Extraction Extraction

1SL Reception

MEP MIP MEP

ETH_CI ETH_CI ETH_CIETH_CI

D,P,DE

D,P,DE

1SL(DA, P, MEP_ID,

MI_MEP_MACMI_MEP_MAC

Test_ID,TxFCl,TLV)

MI_MEP_ID

1SL

Control_So

Proactive

Proactive OAM Proactive

MI_1SL_Enable

MI_1SL_Period

MI_1SL_Pri

MI_1SL_MAC_DA

MI_1SL_Length

MI_1SL_Test_ID

1SL

Control_Sk

Proactive

MI_1SL_Enable

MI_1SL_Test_ID

MI_1SL_MAC_SA

1SL_(rSA, r MEP_ID, rTest_ID,

TxFCf, RxFCl)

1SL_Result

image90.emf
G.8021-Y.1341(12)_F8-93

timerMI_1SL_Terminate

Init

TLV=Generate(Length)

MI_1SL_Start(DA,

P, Test_ID, Length, Period)

Set(0, Timer)

Running

1SL(DA, P, MEP_ID,

Test_ID, TxFCI, TLV)

TxFCI++

Set(Period, Timer)

oleObject28.bin

image91.emf
Init

MI_1DM_Start(DA

MI_1DM_Terminate

Running

Timer

Set(0,Timer)

Disabled

MI_1SL_Enable

!MI_1SL_Enable

Enabled

Timer

Set(0,Timer)

1SL(MI_1SL_MAC_DA,

Set(MI_1SL_Period,Timer)

MI_1SL_Pri,

MI_MEP_ID,

TLV)

MI_1SL_Test_ID,

TxFCl,

TLV=Generate(

MI_1SL_Length)

TxFCl++

image92.emf
1SL (DA, P, MEP_ID,

Test_ID, TxFCl, TLV)

Waiting

OAM=1SL(

DA,

P,

MEP_ID,

Test_ID,

TxFCl,

TLV)

D(OAM),P(P),DE(0)

image93.emf
D(OAM),

P(P),

DE(DE)

DA(OAM)=MI_MEP_MAC

Y

N

Waiting

DA(OAM)=MC Class1

or

1SL(SA(OAM),

MEP_ID(OAM),

Test_ID(OAM),

TxFCf(OAM),

RxFCl)

RxFCl(MEP_ID(OAM), Test_ID(OAM)) ++

image94.emf
InitMI_1SL_Start(SA,TestID)MI_1SL_Intermediate_RequestRunning1SL(rSA,rMEP_ID, rTest_IDTxFCf, RxFCl)rSA=SA?YNMI_1SL_Result (N_TF,N_LF)NYTest_ID!=NULL and rTest_ID!=Test_IDN_TF=0, N_LF=0saved = falseIf saved THEN {N_TF+ = |TxFCf –TxFCf_svd| N_LF+ = |TxFCf –TxFCf_svd| -|RxFCl –RxFCl_svd|}TxFCf _svd =TxFCfRxFCl _svd = RxFClsaved = trueMI_1SL_TerminateMI_1SL_Result (N_TF,N_LF)

image95.emf
Disabled

MI_1SL_Enable

!MI_1SL_Enable

Enabled

rSA=

MI_1DM_MAC_SA?

Y

N

1SL_Result(N_TF,N_LF)

N_TF=0, N_LF=0

saved = false

ReportTimer

N_TF=0,

N_LF=0

Set(1s,

ReportTimer)

Set(1s,

ReportTimer)

1SL(rSA,rMEP_ID, rTest_ID

TxFCf, RxFCl)

Y

MI_1SL_Test_ID!=NULL and

rTest_ID!=MI_1SL_Test_ID

N

If saved THEN {

N_TF+ = |TxFCf–TxFCf_svd|

N_LF+ = |TxFCf–TxFCf_svd| -|RxFCl–RxFCl_svd|

}

TxFCf_svd=TxFCf

RxFCl_svd= RxFCl

saved = true

image96.emf
DDEP

CSFInsert

MI_MEP_MACMI_MELMI_CSF_PeriodMI_CSF_PriDDEPaCSF-RDIaCSF-FDIaCSF-LOSMI_CSFdciEnable

image97.emf
CSF DisabledaCSF-RDI ||aCSF-FDI || aCSF-LOSTimerD(OAM),P(MI_CSF_Pri),DE(0)CSF EnabledSet(0, Timer)Set(MI_CSF_Period, Timer)D(D), P(P), DE(DE)D(D), P(P), DE(DE)CSF_Type = getCSFType (!aCSF-RDI &&!aCSF-FDI && !aCSF-LOSaCSF-RDI,aCSF-FDI,aCSF-LOS)OAM=CSF(MI_MEP_MAC,MI_MEL,MI_CSF_Period)CSF_Type,OAM=CSF(MI_MEP_MAC,MI_MEL,MI_CSF_Period)DCI,D(OAM),P(MI_CSF_Pri),DE(0)

MI_CSFdciEnableNY

image1.emf
<client>_FP<client>_CPETH_FPETCn_TCPETCn_APETH_APETH_APETH_TFPETH_FPETH_TFPETHODUkP_AP

NOTE －ETH_TFP interface of adaptation functions towards the ETH_FT functions connects to logical link control.

See [ITU-T G.8010] and function definition for details.

ETCnETCn/ETHETYn/ETHETHxETHx/ETHETHxBP_FPETHx/BPETHx/<client>Sn/ETHSn_APODUkP/ETHETH_APETH_TFPETHxETHx/ETH-mETHG_APPETHG_TFPPETHGETHG/ETH

(Note)

ETH-LAG_APETH-LAGETYn-Np/ETH-LAG-NaETYn/ETCnETYnETY_TCPSn-X_APETYn_APSn-X/ETC3

Na Np

ETH-LAG_FPETH-LAG/ETHETH_APETH_TFPETHxETHx/ETHGPq/ETHPq_APETY4/ETHPP-OSODU2P/ETHPP-OSETY3/CBRxODU0P/CBRxODU2P_APODU0P_APETHETH_FPETH_TFP

(Note)

ETH_FPETH_FPETH_FPETH_FPETH_FP

(Note)(Note)(Note)(Note)(Note)

Sn-X-L/ETHSn-X-L_APETH_FP

(Note)

Sm-X-L/ETHSm-X-L_APETH_FP

(Note)

Sm/ETHSm_APETH_FP

(Note)

Pq-X-L/ETHPq-X-L_APETH_FP

(Note)

ODUkP-X-L/ETHODUkP-X-L_APETH_FP

(Note)

MPLS_APMPLS/ETHETH_FP

(Note)

VC/ETHVC_APETH_FP

(Note)

RPR_APRPR/ETHETH_FP

(Note)

ETH_FP

(Note)

S4-64c/ETHwS4-64c_APETH_FP

(Note)

<server>_AP<server>/ETHETH_APETH_TFPETHDeETHD/ETHETH_APETH_TFPETHDeETHD/ETHETH_APETH_TFPETHDeETHD/ETHETH_APETH_TFPETHDeETHD/ETH

n n n n

ETH_APETH_TFPPETHDeETHD/ETH

n n

ETH_APETH_TFPETHDiETHD/ETHETH_APETH_TFPETHDiETHD/ETHETH_FPETH_TFPMCC_CPETHx/MCC

image98.emf
G.8021-Y.1341(12)_F8.103

CSF

Extract

MI_MEL

PCSF

P

DE

DED

D

oleObject29.bin

image99.emf
Waiting

D(D),P(P),DE(DE)

Etype(D)=89-02 &

MEL(D)==MI_MEL &

OPC(D)=52?

D(D),P(P),DE(DE)

CSF(CSF(D))

N

Y

Waiting

D(D),P(P),DE(DE)

Etype(D)=89-02 &

MEL(D)==MI_MEL &

OPC(D)=52?

D(D),P(P),DE(DE)

CSF(CSF(D))

N

Y

image100.emf
BNMInsert

MI_BNM_EnableMI_BNM_Enable_AlwaysMI_BNM_PeriodMI_BNM_PriMI_BNM_PortIDMI_BNM_Enable_SFMI_MEP_MACMI_Client_MELMI_BNM_Hold_TimeD P DED P DENominalBWCurrentBW

image101.emf
Disabled

MI_BNM_Enable

ReportedBW = CurrentBW

nCount = BNM_Fast_Count

Holding = False

Set (0, TxTimer)

Enabled

!MI_BNM_Enable

Reset (TxTimer)

Reset (HoldTimer)

CurrentBWTxTimerHoldTimer

CurrentBW =

ReportedBW?

Holding?

Holding = False

Reset (HoldTimer)

Y

N

N

 OAM = BNM (MI_MEP_MAC,

 MI_Client_MEL,

 MI_BNM_Period,

 NominalBW

 ReportedBW,

 PortID)

ReportedBW > 0 or

MI_BNM_Enable_SF

Set (MI_BNM_Period, TxTimer)

Y

ReportedBW != NominalBW or

MI_BNM_Enable_Always

 If (MI_BNM_PortID = set)

 PortID = MI_BNM_PortID

 else

 PortID = 0

Holding = False

ReportedBW = CurrentBW

nCount = BNM_Fast_Count

Set (0, TxTimer)

N

N

Y

Y

D(D), P(P), DE(DE)

D(D), P(P), DE(DE)

Holding = True

Set (MI_BNM_Hold_Time,

HoldTimer)

nCount = 0 ?

nCount --

Set (BNM_Fast_Period, TxTimer)

N

Y

nCount > 0 ?

N

Y

D(OAM), P(MI_BNM_Pri), DE(0)

image102.emf
BNMExtract

MI_BW_Report(SA, PortID, NominalBW, CurrentBW)DPDEMI_MEP_MAC

image103.emf
For all SA, for all PortID:

n_bw(SA, PortID) = 0

c_bw(SA, PortID) = 0

Waiting

D(OAM), P(P), DE(DE)Timer (SA, PortID)

DA(OAM)=MI_MEP_MAC or

DA(OAM) = MC Class 1?

 n_bw(SA(OAM), PortID(OAM)) != NominalBW(OAM) or

 c_bw(SA（OAM), PortID(OAM)) != CurrentBW(OAM) ?

n_bw(SA(OAM), PortID(OAM)) = NominalBW(OAM)

c_bw(SA（OAM), PortID(OAM)) = CurrentBW(OAM)

Y

N

N

n_bw(SA, PortID) = 0

c_bw(SA, PortID) = 0

Y

MI_BW_Report(SA, PortID,

n_bw(SA, PortID),

c_bw(SA, PortID))

MI_BW_Report(

 SA(OAM), PortID(OAM),

 NominalBW(OAM),

 CurrentBW(OAM))

NominalBW(OAM) = CurrentBW(OAM) ?

Set (K*Period(OAM),

Timer(SA(OAM), PortID(OAM)))

Reset (Timer(SA(OAM), PortID(OAM)))

Y

N

image104.emf
EDM Generation

DMI_MELMI_MEP_MACMI_MCC_PriMI_EDM_PeriodMI_EDM_DurationMI_MEP_IDMI_EDM_Enable

MCC Generation

MCC_CI_DETH_CIMEPETHxETHx/MCC_A_so

EDM Reception

DMI_MELMI_MEP_MACMI_EDM_Received(MEP_ID,Duration)

MCC Reception

MCC_CI_DETH_CIMEPETHxETHx/MCC_A_skMIPOther adaptationOther adaptationETH_AIETH_AI

image105.emf
EDM Generation

MI_EDM_PeriodMI_EDM_DurationDMI_MEP_IDMI_EDM_Enable

image106.emf
! MI_EDM_EableTimer

D = (MI_MEP_ID,

MI_EDM_Duration)

D(D)

Idle

MI_EDM_Enable

Set (0, Timer)

Defect

Reset (Timer)

Set (MI_EDM_Period,

Timer)

image107.emf
EDM Reception

MI_EDM_Received(MEP_ID,Duration)D

image108.emf
MI_EDM_Received

(MEP_ID,Duration)

Waiting

D(D)

image109.emf
G.8021-Y.1341(12)_F8-105

Queueing

MI_Queue_Config

ETH_CI

ETH_CI

MI_PM_count

oleObject30.bin

image110.emf
G.8021-Y.1341(12)_F8-106

Filter

MI_FilterConfig

ETH_CI_D

ETH_CI_D

oleObject31.bin

image111.emf
G.8021-Y.1341(12)_F8-107

Sink

Replicate

Source

Replicate

ETH_PI

Ethernet frames

(To 802.3 protocols)

Ethernet frames

(From 802.3 protocols)

To filter

To ETH_TFPFrom queueingFrom ETH_TFP

(ETHTF_PP)

(ETHTF_PP)

oleObject32.bin

image112.emf
G.8021-Y.1341(12)_F8-108

OAM

LACP

LAMP

ITU-T

OSSP

Slow protocols

Pause

MAC control

802.3 protocols

ESMC

oleObject33.bin

image2.emf
G.8021-Y.1341(12)_F6-1

LOC[i] Cleared

expCC[i]Timer

dLOC[i]

dLOC[i] detected

expCCM[i]

!dLOC[i]

Set(K*MI_CC_Period, Timer)

Reset(Timer)

Set(K*MI_CC_Period, Timer)

Set(K*MI_CC_Period,Timer)

image113.emf
G.8021-Y.1341(12)_F8-109

ETH frame

MI_TxPauseEnableCI_PauseTrigger

ETH frame

Pause transmit

oleObject34.bin

image114.emf
G.8021-Y.1341(12)_F8-110

Pause receive

Pause request control frame

oleObject35.bin

image115.emf
G.8021-Y.1341(12)_F8-111

ETYn_AI

MI_MAC_Length

ETYn_AI

MAC length check

oleObject36.bin

image116.emf
G.8021-Y.1341(12)_F8-112

ETYn_AI

MI_FramesTransmittedOK

ETYn_AI

MAC frame count

MI_OctetsTransmittedOK

oleObject37.bin

image117.emf
G.8021-Y.1341(12)_F8-113

ETH_CI

ETH_CI

MAC FCS generation

oleObject38.bin

oleObject1.bin

image118.emf
G.8021-Y.1341(12)_F8-114

MAC FCS supervision

ETH_CI

ETH_CI

FrameCheckSequenceErrors

Performance monitoringpFCSErrors

oleObject39.bin

image119.emf
G.8021-Y.1341(12)_F8-115

ETH_CI

Other

802.1X process

802.1X protocol

802.1X

Multiplexer

ETH_CI

oleObject40.bin

image120.emf
G.8021-Y.1341(12)_F8-116

ETH_CI

Other

802.1AB process

802.1AB protocol

802.1AB

Multiplexer

ETH_CI

oleObject41.bin

image121.emf
G.8021-Y.1341(12)_F8-117

Queue

oleObject42.bin

image122.emf
G.8021-Y.1341(12)_F8-118

Priority

splitter

oleObject43.bin

image3.emf
G.8021-Y.1341(12)_F6-2

<Defect> Detected

<Event>(Period)<Clear_event>

Timer

!<Defect>

!<Defect>

<Defect> Cleared

Period<Old_Period>

N

Y

Old_Period=Period

Reset(Timer)Reset(Timer)

<Event>(Period)

<Defect>

Set(K*Period, Timer)

Old_Period=Period

Set(K*Period, Timer)Set(K*Old_Period, Timer)

image123.emf
G.8021-Y.1341(12)_F8-119

Priority

merger

oleObject44.bin

image124.emf
G.8021-Y.1341(12)_F8-120

Conditioner

oleObject45.bin

image125.emf
G.8021-Y.1341(12)_F8-121

Scheduler

oleObject46.bin

image126.emf
NCMMEPETH/<client>ETHETHD/ETHETHDe

Client Layer CTPETH TTP

ETH/ETHETHETHD/ETHETHDeTCMMEP

Group

ETHD/ETH

TCMMEP

ETHG/ETHETHDeETHGTCSMIPETHD/ETHETHDiETHDiETHD/ETHETHD/ETH

GroupMIP

ETHDiETHDiETHD/ETH6xETHD/ETHETH/ETH-mETHDeETHNCMMEP

CTP PoolCTP Pool

ETH/ETHETHETHD/ETHETHDeTCMMEP

Group

ETHD/ETH

TCMMEP

ETHG/ETHETHDeETHGTCSMIPETHD/ETHETHDiETHDiETHD/ETHETHD/ETH

GroupMIP

ETHDiETHDiETHD/ETH6xETHD/ETHETH/ETH-mETHDeETHNCMMEP

CTP PoolCTP Pool

ETH/ETHETHETHD/ETHETHDeTCMMEPTCSMIPETHD/ETHETHDiETHDiETHD/ETH6x<SRV>/ETH<SRV>

ETH TTPETH CTP

ETHxSublayerETHxSublayer

sublayerboundarysublayerboundarylayerboundary

ETHxSublayer

layerboundary

ETH TTPETH CTPServer Layer TTPETH CTP

image127.emf
G.8021-Y.1341(12)_F9-2

ETH_CI_OAM

traffic unit

ETH_CI

Data traffic unit

L/TPAD

PAD

Payload

M_SDU

OAM EtypeOpcode specific fields

MELVer

Opc

SADA

FOffs

ETH_CI traffic unitETH_CI traffic unitETH_CI traffic unitETH_CI traffic unitETH_CI_D

oleObject47.bin

image128.emf
G.8021-Y.1341(12)_F9-3

L/T

L/T

PAD

PAD

PAD

PAD

Payload

Payload

M_SDU

OAM Etype

OAM Etype

Opcode specific fields

Opcode

specific

fields

MEL

MEL

Ver

Ver

Opc

Opc

SADA

F

F

Offs

Offs

ETH_AI traffic unitETH_AI traffic unitETH_AI traffic unitETH_AI traffic unitETH_AI_D

TPIDTCI

81-00PCPCFIVID

88-a8PCPDEIVID

TPIDTCI

81-00PCPCFIVID

88-a8PCPDEIVID

Untagged ETH_AI

data traffic unit

Tagged ETH_AI

data traffic unit

Untagged ETH_AI

OAM traffic unit

Tagged ETH_AI

OAM traffic unit

C-VLAN tag format CFI = 0(fixed)

S-VLAN tag format

C-VLAN tag format CFI = 0(fixed)

S-VLAN tag format

oleObject2.bin

oleObject48.bin

image129.emf
G.8021-Y.1341(12)_F9-4

PAD

OAM Etype

Opcode specific OAM

information

MELVer

Opc

FOffsDASATPIDTCI

oleObject49.bin

image130.emf
G.8021-Y.1341(12)_F9-5

ETH_FP

ETH_FP

ETH_FP

ETH_FP

ETH_FP

ETH_C_MP

ETH_FP

ETH

oleObject50.bin

image131.emf
G.8021-Y.1341(12)_F9-6

...

...

ETH_C_MI

ETH_CIETH_CIETH_CIETH_CI

ETH Connection

ETH_FFETH_FF

ETH_CIETH_CIETH_CIETH_CI

oleObject51.bin

image132.emf
G.8021-.1341(12)_F9-7Y

MI_FF_LearningMI_FF_STP_LearningState[]

ETH_CI

Address

(Address, {port})

Address table

(Address, port)

ETH_CI

LearningForwarding

MI_FF_Flush_Config

MI_FF_Flush_Learned

MI_FF_Group_Default

MI_FF_ETH_FF

MI_FF_Ageing

0

1

2

n

0

1

2

n

0

1

2

n

0

1

2

n

oleObject52.bin

image133.emf
G.8021-.1341(12)_F9-8Y

MI_FF_Learning

MI_FF_Learning

MI_FF_STP_LearningState[]

MI_FF_STP_LearningState[]

ETH_CI

ETH_CI

ETH_CI

ETH_CI

Address

Address

(Address, {port})

(Address, {port})

Address Table

(Address, port)

(Address, port)

ETH_CI

ETH_CI

Learning

Learning

Forwarding

Forwarding

MI_FF_Flush_Config

MI_FF_Flush_Learned

MI_FF_Group_Default

MI_FF_ETH_FF

MI_FF_Ageing

0

0

1

1

2

2

n

n

0

0

1

1

2

2

n

n

0

0

1

1

2

2

n

n

0

0

1

1

2

2

n

n

image4.emf
BS++

GS=0

If BadSecond

GS++

BS=0

dDEGCleared

BS==MI_LM_DEGM

dDEG

dDEGdetected

GS==MI_LM_M

!dDEG

nN_TF(N_TF)

nN_LF(N_LF)

Yes

Yes

No

BS=GS=0

BadSecond=0

If ((N_TF>MI_LM_TFMIN)

&& (N_LF>=0))

Yes

No

If ((N_LF/N_TF)>

MI_LM_DEGTHR)

Yes

No

BadSecond=1

Yes

BadSecond=0

No

No

oleObject53.bin

image134.emf
ETH_CI_D/P/DEETH_AI_D/P/DEETH_AI_D/P/DEETH_AI_D/P/DEETH_AI_D/P/DEETH_CI_D/P/DEETH_CI_D/P/DEETH_CI_D/P/DEETH_CI_D/P/DEETH_CI_APSETH_CI_SSF/SSD/APSETH_CI_SSF/SSDETH_AI_TSF/TSDETH_AI_TSF/TSDETHx/ETHETHxETHx/ETHETHxETHx/ETHETHxETHx/ETHETHx

ProtectionWorkingNormal

ETH_C

image135.emf
G.8021-Y.1341(12)_F9-10

ETH_CI_D/P/DE

Normal

SNC protection process

Bridge

Selector

WPWP

protectionworking

ETH_CI_MI_PS

ETH_CI_D/P/DEETH_CI_D/P/DE/APSETH_CI_SSF/SSDETH_CI_SSF/SSD

oleObject54.bin

image136.emf
Ring Protection Control ProcessETH_CI_RAPSETH_CI_SSFControlTopology_Change ETH_CI_SSFETH_CI_RAPSTopology_Change

ETHxETHx/ETH-mETHDeETHD/ETHETHDiETHDi/ETH

ETH_CI_SSFETH_AI_TSFETH_CETH_C_MI_RAPS

image137.emf
ETHx

ETHx_FT_So_MPETH_RP

ETH_TFP

ETH_AP

ETH_TP

image138.emf
ETH_AI_D/P/DERI_CC_RxFClRI_CC_TxFCfRI_CC_RDIMI_CC_Enable

DataData

BlockRI_CC_BlkETH_AI_D/P/DERI_CC_RxFClRI_CC_TxFCfRI_CC_RDIMI_CC_Enable

DataData

BlockRI_CC_BlkMEPProActive-OAMInsertionMI_MELMI_MEP_MACMEPProActive-OAMInsertionMI_MELMI_MEP_MACPDE

Data

DE

Data

D

OAM

DPDEDMRDMRGenerationRI_DMM(OAM,P,DE)DMMGenerationDPDEDMM

DMM(DA,P,1,Test ID TLV,TLV)

DMMZYXMux

Proactive DMControl

MI_DM_LengthMI_DM_PeriodMI_DM_PriRI_DM_Result (B_FD,F_FD,N_FD)MI_DM_MAC_DAMI_DM_EnableRI_DMR(rSA, TxTimeStampf,

RxTimeStampf, TxTimeStampb,RxTimeb,rTestID)

MI_DM_Test_ID1DMGenerationDPDE1DM

1DM(DA,P,1,Test ID TLV,TLV)

1DMZYXMux

Proactive 1DMControl_So

MI_1DM_LengthMI_1DM_PeriodMI_1DM_PriMI_1DM_MAC_DAMI_1DM_EnableMI_1DM_Test_IDDPDELMRLMRGenerationRI_LMM(OAM,P,DE)LMMGenerationDPDELMM

LMM(DA,P,1)

LMMZYXMux

Proactive LMControl

MI_LM_PeriodMI_LM_PriMI_LM_MAC_DACCM GenerationDDEP

OAM

CCMMI_CC_PeriodMI_MEG_IDMI_MEP_IDMI_CC_PriMI_CC_PriMI_CC_PeriodMI_MEG_IDMI_MEP_IDRI_LM_Result (N_TF,N_LF,F_TF,F_LF)RI_LMR

(rSA,TxFCf,RxFCfTxFCb,RxFCl)

TxFCMI_LMC_EnableMI_CounterSLMGenerationDPDESLM

SLM(DA,P,MEP_ID,Test _ID,TxFCl,TLV)

SLMZYXMux

Proactive SLControl

MI_SL_LengthMI_SL_PeriodMI_SL_PriMI_SL_MAC_DAMI_SL_EnableMI_SL_Test_IDDPDESLRSLRGenerationRI_SL_Result (N_TF,N_LF,F_TF,F_LF)RI_SLM(OAM,P,DE,TxFCb)RI_SLR

(rMEP_ID,rTest_ID,TxFCf,TxFCb)

1SLGenerationDPDE1SL

1SL(DA,P,MEP_ID,Test_ID,TxFCl,TLV)

1SLZYXMux

Proactive 1SLControl_So

MI_1SL_LengthMI_1SL_PeriodMI_1SL_PriMI_1SL_MAC_DAMI_1SL_EnableMI_1SL_Test_IDETH_CI_D/P/DEDPDEETH_CI_D/P/DEDPDECounterTxFC[]MI_LML_EnableDPDEDPDE

DataDataData

MI_CC_PriTI_TimeStampl

image139.emf
Data.D(D),

Data.P(P),

Data.DE(DE)

D(D),

P(P),

DE(DE)

Waiting

OAM.D(D),

OAM.P(P),

OAM.DE(DE)

D(D),

P(P),

DE(DE)

MEL(D)=MI_MEL

IF(DA(D)==01-80-C2-00-00-3*)

{

x=MI_MEL

DA(D)=01-80-C2-00-00-3x

}

SA(D)=MI_MEP_MAC

Data.D(D),

Data.P(P),

Data.DE(DE)

D(D),

P(P),

DE(DE)

Waiting

OAM.D(D),

OAM.P(P),

OAM.DE(DE)

D(D),

P(P),

DE(DE)

MEL(D)=MI_MEL

IF(DA(D)==01-80-C2-00-00-3*)

{

x=MI_MEL

DA(D)=01-80-C2-00-00-3x

}

SA(D)=MI_MEP_MAC

image140.emf
ETHx

ETHx_FT_Sk_MPETH_RP

ETH_TFP

ETH_AP

ETH_TP

image141.emf
ETH_CI_D/P/DEETH_CI_SSFETH_CI_D/P/DEETH_CI_SSFMEPProactive-MEPProactive-OAMextractionOAMextractionMI_MELDDEPAISDDEPAISDDEDDEPCCMDataDDEPCCMDDEPCCMRxFClTxFCfRxFCbTxFCbRI_CC_RxFClRI_CC_TxFCfRI_CC_RxFClRI_CC_TxFCf

LCKReception

PLCKDDEDefectCorrelationdLOC[i]dUNLdMMGdUNMCI_SSFdDEG[1]MI_cLOC[i]MI_cUNLMI_cMMGMI_cUNMMI_cRDIMI_cLCKMI_cSSFMI_cDEGdUNPdRDI[i]dAISdLCKdUNPrMI_cUNPMI_cUNPrDefectCorrelationdLOC[i]dUNLdMMGdUNMCI_SSFCI_SSFdDEG[1]dDEG[1]MI_cLOC[i]MI_cUNLMI_cMMGMI_cUNMMI_cLOC[i]MI_cUNLMI_cMMGMI_cUNMMI_cRDIMI_cRDIMI_cLCKMI_cSSFMI_cDEGMI_cDEGdUNPdRDI[i]dAISdLCKdUNPrMI_cUNPMI_cUNPrMI_cUNPMI_cUNPrMI_cUNPrMI_CC_Enable

AISReception

DEPDEP

DMMReception

DEPDEP

DMRReception

DEPDEP

1DMReception

DMMDMRD

RI_DMR

DD

Proactive 1DMControl_Sk

1DM

RI_DMM1DM_Result

DEPDEP

SLMReception

DEPDEP

SLRReception

SLMSLRDD

RI_SLM

RI_SLRBlockaBLKRI_CC_RDIETH_AI_D/P/DEDPDERI_CC_BlkBlockRI_CC_RDIETH_AI_D/P/DERI_CC_BlkConsequentActionaTSFaTSDaAISETH_AI_TSF / TSD / AISConsequentActionETH_AI_TSF / TSD / AISdLOC[i]dUNLdMMGdUNMdRDI[i]dAISdLCKCI_SSFdDEG[1]dUNPrdUNPdLOC[i]dUNLdMMGdUNMdRDI[i]dAISdLCKdRDI[i]dAISdLCKCI_SSFCI_SSFdDEG[1EG[1dUNPrdUNPdUNPrdUNP

XYZ1DMDmux XYZDMRDmux RI_SLRXYZSLRDmux

Defect GenerationDefect GenerationnN_TFnN_LFnF_TFnF_LFnN_TFnN_LFnF_TFnF_LFnN_TFnN_LFnF_TFnF_LFunexpMEPunexpMEGunexpMELunexpPeriodunexpPriorityRDI[i]expCCM[i]unexpMEPunexpMEPunexpMEGunexpMEGunexpMELunexpMELunexpPeriodunexpPeriodunexpPriorityunexpPriorityRDI[i]RDI[i]expCCM[i]expCCM[i]MI_LM_DEGMMI_LM_MMI_LM_DEGTHRMI_LM_TFMINMI_LM_DEGMMI_LM_MMI_LM_DEGTHRMI_LM_TFMINaRDI[1]aTSFPerformanceMonitoringPerformanceMonitoringMI_1SecondMI_pN_TFMI_pN_LFMI_pF_TFMI_pF_LFMI_pN_DSMI_pF_DSMI_1SecondMI_pN_TFMI_pN_LFMI_pF_TFMI_pF_LFMI_pN_DSMI_pF_DSMI_pB_FDMI_pB_FDVMI_pF_FDMI_pF_FDVMI_pN_FDMI_pN_FDVRI_DM_Result1DM_ResultRI_SL_ResultAISLCK

AISLCK

CounterDataDataPDEPDEP

LMMReception

DEPDEP

LMRReception

LMMLMRD

RI_LMR

D

RI_LMMXYZLMRDmux

RxFCRI_DMMRI_DMRRI_DM_ResultRI_SLMRI_SL_ResultRI_LMMRI_LMRRI_LM_Result

MI_CC_PeriodMI_CC_PriMI_MEG_IDMI_PeerMEP_ID[]MI_Get_SvdCCMMI_SvdCCMMI_MEL

MI_CC_EnableMI_1DM_EnableMI_1DM_MAC_SAMI_1DM_PriaBLKaRDIMI_CC_PeriodMI_CC_PriMI_MEG_IDMI_PeerMEP_ID[]MI_Get_SvdCCMMI_SvdCCMLMpCCM ReceptionDEPDEP

1SLReception

D

Proactive 1SLControl_Sk

1SL

1SL_ResultXYZ1SLDmux

MI_1SL_EnableMI_1SL_MAC_SAMI_1SL_Test_ID1SL_ResultDDECounter

Data

P

DataData

RxFC[]MI_CC_PriMI_LMC_EnableTI_TimeStamplTI_TimeStamplDEPDEP

BNMExtract

BNMDMI_BW_ReportMI_MEP_MACMI_1DM_Test_ID

image5.emf
G.8021-Y.1341(12)_F8-1

MI_MEL

PP

P

P

PP

DEDE

DE

DE

DEDE

DD

D

D

DD

Port

1

2N

OAM MEL

Filter

image142.emf
ETHG_FT_So_MPETH_RP

ETH_TFP

ETH_AP

ETHG

ETH_TP

image143.emf
RI_CC_RxFClRI_CC_TxFCfRI_CC_RDIMI_CC_EnableBlockRI_CC_BlkRI_CC_RxFClRI_CC_TxFCfRI_CC_RDIMI_CC_Enable

DataData

BlockETH_AI_D/P/DEETH_AI_D/P/DERI_CC_BlkMEPProActive-OAMInsertionMI_MELMI_MEP_MACMEPProActive-OAMInsertionMI_MELETH_CI_D/P/DEDPDEETH_CI_D/P/DEDPDEMI_MEP_MAC

Data

PDE

Data

DE

Data

D

OAM

DPDEDMRDMRGenerationRI_DMM(OAM,P,DE)DMMGenerationDPDEDMM

DMM(DA,P,1,Test ID TLV,TLV)

DMMZYXMux

Proactive DMControl

MI_DM_LengthMI_DM_PeriodMI_DM_PriRI_DM_Result (B_FD,F_FD,N_FD)MI_DM_MAC_DAMI_DM_EnableRI_DMR(rSA, TxTimeStampf,

RxTimeStampf, TxTimeStampb,RxTimeb,rTestID)

MI_DM_Test_ID1DMGenerationDPDE1DM

1DM(DA,P,1,Test ID TLV,TLV)

1DMZYXMux

Proactive 1DMControl_So

MI_1DM_LengthMI_1DM_PeriodMI_1DM_PriMI_1DM_MAC_DAMI_1DM_EnableMI_1DM_Test_IDDPDELMRLMRGenerationRI_LMM(OAM,P,DE)LMMGenerationDPDELMM

LMM(DA,P,1)

LMMZYXMux

Proactive LMControl

MI_LM_PeriodMI_LM_PriMI_LM_MAC_DACCM GenerationDDEP

OAM

CCMMI_CC_PriMI_CC_PeriodMI_MEG_IDMI_MEP_IDMI_CC_PriMI_CC_PeriodMI_MEG_IDMI_MEP_IDRI_LM_Result (N_TF,N_LF,F_TF,F_LF)RI_LMR

(rSA,TxFCf,RxFCf,TxFCb,RxFCl)

TxFCMI_LMC_EnableMI_CounterSLMGenerationDPDESLM

SLM(DA,P,MEP_ID,Test _ID,TxFCl,TLV)

SLMZYXMux

Proactive SLControl

MI_SL_LengthMI_SL_PeriodMI_SL_PriMI_SL_MAC_DAMI_SL_EnableMI_SL_Test_IDDPDESLRSLRGenerationRI_SL_Result (N_TF,N_LF,F_TF,F_LF)RI_SLM(OAM,P,DE,TxFCb)RI_SLR

(rMEP_ID,rTest_ID,TxFCf,TxFCb)DataData

ETH_AI_D/P/DEETH_AI_D/P/DE

DataData

ETH_AI_D/P/DEETH_AI_D/P/DE

Data

PDEDED

Data

PDEDEDETH_CI_D/P/DEDPDEETH_CI_D/P/DEDPDEETH_CI_D/P/DEDPDEETH_CI_D/P/DEDPDE1SLGenerationDPDE1SL

1SL(DA,P,MEP_ID,Test_ID,TxFCl,TLV)

1SLZYXMux

Proactive 1SLControl_So

MI_1SL_LengthMI_1SL_PeriodMI_1SL_PriMI_1SL_MAC_DAMI_1SL_EnableMI_1SL_Test_IDCounterTxFC[]DPDEDPDE

DataDataDataDataDataDataData

DPDEDPDEMI_LML_EnableMI_CC_PriTI_TimeStampl

image144.emf
ETH_RPETHG_FT_Sk_MP

ETH_TFP

ETH_AP

ETHG

ETH_TP

image145.emf
ETH_CI_D/P/DE_CI_SSFETH_CI_D/P/DEETH_CI_SSFMEPProactive-MEPProactive-OAMextractionOAMextractionMI_MELDDEPAISDDEPAISDDEPCCMDataDDEPCCMDDEPCCMRI_CC_RxFClRI_CC_TxFCfRI_CC_RxFClRI_CC_TxFCf

LCKReception

PLCKDDEDefectCorrelationdLOC[i]dUNLdMMGdUNMCI_SSFdDEG[1]MI_cLOC[i]MI_cUNLMI_cMMGMI_cUNMMI_cRDIMI_cLCKMI_cSSFMI_cDEGdUNPdRDI[i]dAISdLCKdUNPrMI_cUNPMI_cUNPrDefectCorrelationdLOC[i]dUNLdMMGdUNMCI_SSFCI_SSFdDEG[1]dDEG[1]MI_cLOC[i]MI_cUNLMI_cMMGMI_cUNMMI_cLOC[i]MI_cUNLMI_cMMGMI_cUNMMI_cRDIMI_cRDIMI_cLCKMI_cSSFMI_cDEGMI_cDEGdUNPdRDI[i]dAISdLCKdUNPrMI_cUNPMI_cUNPrMI_cUNPMI_cUNPrMI_cUNPrMI_CC_Enable

AISReception

DEPDEP

DMMReception

DEPDEP

DMRReception

DEPDEP

1DMReception

DMMDMRDDD1DMDEPDEP

SLMReception

DEPDEP

SLRReception

SLMSLRDD

RI_SLM

RI_DMMRI_DMRRI_DM_ResultRI_SLMRI_SLRRI_SL_ResultBlockaBLKRI_CC_RDIRI_CC_BlkBlockDPDERI_CC_RDIETH_AI_D/P/DEETH_AI_D/P/DERI_CC_BlkConsequentActionaTSFaTSDaAISETH_AI_TSF / TSD / AISConsequentActionETH_AI_TSF / TSD / AISdLOC[i]dUNLdMMGdUNMdRDI[i]dAISdLCKCI_SSFdDEG[1]dUNPrdUNPdLOC[i]dUNLdMMGdUNMdRDI[i]dAISdLCKdRDI[i]dAISdLCKCI_SSFCI_SSFdDEG[1EG[1dUNPrdUNPdUNPrdUNP

RI_DMRProactive 1DMControl_Sk1DM_ResultXYZ1DMDmux XYZDMRDmux RI_DMMRI_SLRXYZSLRDmux

Defect GenerationDefect GenerationnN_TFnN_LFnF_TFnF_LFnN_TFnN_LFnF_TFnF_LFnN_TFnN_LFnF_TFnF_LFunexpMEPunexpMEGunexpMELunexpPeriodunexpPriorityRDI[i]expCCM[i]unexpMEPunexpMEPunexpMEGunexpMEGunexpMELunexpMELunexpPeriodunexpPeriodunexpPriorityunexpPriorityRDI[i]RDI[i]expCCM[i]expCCM[i]MI_LM_DEGMMI_LM_MMI_LM_DEGTHRMI_LM_TFMINMI_LM_DEGMMI_LM_MMI_LM_DEGTHRMI_LM_TFMINaRDI[1]aTSFPerformanceMonitoringPerformanceMonitoringMI_1SecondMI_pN_TFMI_pN_LFMI_pF_TFMI_pF_LFMI_pN_DSMI_pF_DSMI_1SecondMI_pN_TFMI_pN_LFMI_pF_TFMI_pF_LFMI_pN_DSMI_pF_DSMI_pB_FDMI_pB_FDVMI_pF_FDMI_pF_FDVMI_pN_FDMI_pN_FDVRI_DM_Result1DM_ResultRI_SL_ResultAISLCK

AISLCK

CounterDDEDataPDEPDEP

LMMReception

DEPDEP

LMRReception

LMMLMRD

RI_LMR

D

RI_LMMXYZLMRDmux

RxFCRI_LMMRI_LMRRI_LM_Result

MI_CC_PeriodMI_CC_PriMI_MEG_IDMI_PeerMEP_ID[]MI_Get_SvdCCMMI_SvdCCMMI_MEL

MI_CC_EnableaBLKaRDIMI_CC_PeriodMI_CC_PriMI_MEG_IDMI_PeerMEP_ID[]MI_Get_SvdCCMMI_SvdCCMLMpCCM ReceptionDataDPDEETH_AI_D/P/DEETH_AI_D/P/DEDDEDataPDataDPDEETH_AI_D/P/DEETH_AI_D/P/DEDDEDataPDataETH_CI_D/P/DEETH_CI_D/P/DEETH_CI_D/P/DEETH_CI_D/P/DEDEPDEP

1SLReception

D

Proactive 1SLControl_Sk

1SL

1SL_ResultXYZ1SLDmux

MI_1SL_EnableMI_1SL_MAC_SAMI_1SL_Test_ID1SL_ResultRxFClTxFCfRxFCbTxFCbCounterRxFC[]

Data

DataDataDataData

DataData

DDEPDDEPDDEPMI_LMC_EnableMI_CC_PriTI_TimeStamplTI_TimeStamplDEPDEP

BNMExtract

DMI_BW_ReportMI_MEP_MACBNMMI_1DM_EnableMI_1DM_MAC_SAMI_1DM_PriMI_1DM_Test_ID

image146.emf
ETH_AP

ETH_FP

ETHx/ETH

ETHx/ETH_A_So_MP

image147.emf
ETH_CI_P/DE/DSelectorLCKGenerationMI_Admin_StateOAM MELFilterETH_CI_APSNormalLockMI_LCK_PeriodMI_Client_MELMI_LCK_PriMI_APS_PriAPS InsertMI_MELPDEDPDEDETH_AI_P/DE/DMI_MEP_MACPDEDPDEDPDEDPDEDPDEDPDEDMI_CSF_PeriodCSF InsertPDEDPDEDMI_CSF_PriETH_CI_SSFMI_CSF_EnableMI_CSFrdifdiEnableConsequent ActionsaCSF-RDIaCSF-FDIaCSF-LOSMI_CSFdciEnable

image148.emf
ETH_AP

ETH_FP

ETHx/ETH

ETHx/ETH_A_Sk_MP

image149.emf
APS

Extract

Selector

AIS Insert

MI_MEL

OAM MEL

Filter

MI_Admin_State

ETH_AI_P/DE/D

ETH_CI_P/DE/DETH_CI_APS

NormalLock

MI_LCK_Period

MI_Client_MELMI_Client_MEL

MI_LCK_Pri

MI_AIS_Pri

MI_AIS_Period

Consequent

Actions

aAIS

ETH_CI_SSF

aSSF

ETH_AI_TSF/AIS/TSD

ETH_CI_SSD

MI_MEP_MAC

LCK

Generation

P

D

E

DP

D

E

D

P

D

E

DP

D

E

D

P

D

E

DP

D

E

D

P

D

E

DP

D

E

D

CSF

Extract

P

D

E

DP

D

E

D

MI_CSFrdifdiEnable

MI_CSF_Reported

Defect

Correlations

dCSF

MI_cCSF

Defect

Generation

image150.emf
ETH_AP

ETH_TFPETH_FP

ETHx/ETH-m

ETHx/ETH-m_A_MP

image151.emf
ETHx/ETH-m

ETH_AP

ETH_TFPETH_FP

ETHTF_PP

ETHF_PP

ETHx/ETH-m_A_Sk_MP

ETH_AP

ETH_TFPETH_FP

ETHx/ETH-m

ETHx/ETH-m_A_So_MP

oleObject3.bin

image152.emf
ETH_AP

ETH_TFPETH_FP

ETHx/ETH-m

ETHx/ETH-m_A_So_MP

ETHTF_PP

ETHF_PP

image153.emf
VID MUXVLAN TAGPReplicateVIDDPDEMI_EtypeMI_VLAN_Config[1…M]PMI_PCP_ConfigMI_Admin_StateOAM MEL FilterETH_CI_P/DE/DPDEDMI_MELReplicateETH_PI_PETH_PI_DEETH_PI_DMI_MEP_MACSelectorNormalETH_CI_P/DE/DLCK GenerationPDEDLockPDEDPDEDXMI_Client_MEL[1…M]MI_LCK_Period[1…M]MI_LCK_Pri[1…M]SelectorNormalETH_CI_P/DE/DLCK GenerationPDEDLockPDEDPDEDYSelectorNormalETH_CI_P/DE/DLCK GenerationPDEDLockPDEDPDEDZDEGenerationDDEPPDEDPDEDPDEDConsequent ActionsaCSF-RDIaCSF-FDIaCSF-LOSMI_CSF_PeriodMI_CSF_PriETH_AI_P/DE/DMI_CSF_EnableMI_CSFfdirdiEnableETH_CI_SSFCSFInsertPDEDETH_TFPETH_TFPMI_CSFdciEnable

image154.emf
ETHx/ETH-m

ETH_AP

ETH_TFPETH_FP

ETHx/ETH-m_A_Sk_MP

ETHTF_PP

ETHF_PP

image155.emf
VID DEMUX

VLAN

TAG

P

Regeneration

D

E

MI_PVID

MI_VLAN_Config[1…M]

P

MI_PCP_Config

MI_Admin_State

CSF

Extract

ETH_CI_P/DE/D

MI_MEL

MI_MEP_MAC

MI_Client_MEL[1…M]

MI_LCK_Period[1…M]

MI_LCK_Pri[1…M]

DE

Selector

D

D

E

P

ETH_AI_P/DE/D

P

Selector

MI_Etype

DE

MI_AIS_Period[1…M]

MI_AIS_Pri[1…M]

Replicate

ETH_PI_P

ETH_PI_DE

ETH_PI_D

OAM

MEL Filter

P

D

E

DP

D

E

D

P

D

E

DP

D

E

D

Frame

Type Filter

P

D

E

DP

D

E

D

MI_Frametype_Config

P

D

E

DP

D

E

D

Filter

MI_Filter_Config

P

D

E

DP

D

E

D

MI_CSF_Reported

Defect

Correlations

dCSF

MI_cCSF

Defect

Generation

P

D

E

D

P

D

E

D

Selector

Normal

Lock

Selector

Normal

Lock

P

D

E

D

P

D

E

D

X

LCK

Generation

AIS

Insert

AIS

Insert

ETH_CI_P/DE/D

Consequent

Actions

aAIS

MI_CSFrdifdiEnable

ETH_AI_TSF/AIS

P

D

E

DP

D

E

D

ETH_TFP

ETH_TFP

MI_Admin_

State

D

P

VID

MI_P_Regenerate

ETH_CI_SSF

P

D

E

D

Selector

Normal

Lock

Selector

Normal

Lock

P

D

E

D

P

D

E

D

Y

LCK

Generation

AIS

Insert

AIS

Insert

ETH_CI_P/DE/D

aSSF

aSSF

[1]

ETH_CI_SSF

P

D

E

D

Selector

Normal

Lock

Selector

Normal

Lock

P

D

E

D

P

D

E

D

Z

LCK

Generation

AIS

Insert

AIS

Insert

ETH_CI_P/DE/D

ETH_CI_SSF

image156.emf
ETH_AP

ETHG/ETH

ETHG/ETH_A_So_MP

ETH_FP

image157.emf

image158.emf
ETHG/ETH_A_Sk_MP

ETH_AP

ETHG/ETH

ETH_FP

image159.emf
MI_Admin_State

CSF

Extract

MI_MEL

MI_MEP_MAC

MI_Client_MEL[1…M]

MI_LCK_Period[1…M]

MI_LCK_Pri[1…M]

MI_AIS_Period[1…M]

MI_AIS_Pri[1…M]

OAM MEL Filter

P

D

E

D

MI_CSF_Reported

Defect

Correlations

dCSF

MI_cCSF

Defect

Generation

P

D

E

D

Selector

Normal

Lock

Selector

Normal

Lock

P

D

E

D

P

D

E

D

LCK

Generation

AIS

Insert

AIS

Insert

ETH_CI_P/DE/D

Consequent

Actions

aAIS

MI_CSFrdifdiEnable

ETH_AI_AIS/TSF/TSD

MI_Admin_

State

ETH_CI_SSF

P

D

E

D

Selector

Normal

Lock

Selector

Normal

Lock

P

D

E

D

P

D

E

D

LCK

Generation

AIS

Insert

AIS

Insert

ETH_CI_P/DE/D

aSSF

aSSF

[1]

ETH_CI_SSF

P

D

E

D

Selector

Normal

Lock

Selector

Normal

Lock

P

D

E

D

P

D

E

D

LCK

Generation

AIS

Insert

AIS

Insert

ETH_CI_P/DE/D

ETH_CI_SSF/SSD

P

D

E

DP

D

E

D

APS

Extract

P

D

E

D

ETH_AI_P/DE/D

P

D

E

D

ETH_AI_P/DE/D

P

D

E

D

ETH_AI_P/DE/D

MI_MEL

MI_MEL

ETH_CI_APS

image160.emf
ETH_AP

ETH_TFPETH_FP

ETHx/ETHG

ETHx/ETHG_A_MP

image161.emf
ETHx/ETHG

ETH_AP

ETH_TFPETH_FP

ETHTF_PP

ETHF_PP

ETHx/ETHG_A_Sk_MP

ETH_AP

ETH_TFPETH_FP

ETHx/ETHG

ETHx/ETHG_A_So_MP

image6.emf
G.8021-Y.1341(12)_F8-2

Running

D(D),P(P),DE(DE)

Etype(D)=89-02 &

MEL(D)<=MI_MEL

N

Y

D(D),P(P),DE(DE)

image162.emf
ETH_AP

ETH_TFPETH_FP

ETHx/ETHG

ETHx/ETHG_A_So_MP

ETHTF_PP

ETHF_PP

image163.emf
G.8021-Y.1341(12)_F9-38

Replicate

OAM MEL filter

DDD

D

D

DD

D

PPP

P

P

PP

P

DEDEDE

DE

DE

DEDE

DE

DE

DE

Selector

VID MUX

Normal

Z

Normal

Y

Normal

X

LockLockLock

LCK

generation

LCK

generation

LCK

generation

ETH_CI_P/DE/DETH_CI_P/DE/DETH_CI_P/DE/D

MI_MEP_MAC

MI_Client_MEL[1...M]

MI_LCK_Period[1...M]

MI_LCK_Pri[1...M]

MI_Admin_State

MI_MEL

MI_VLAN_Config[1...M]

MI_Etype

MI_PCP_Config

ETH_PI_P

ETH_PI_DE

ETH_PI_D

P replicate

P

P

D

VLAN TAG

DE generate

ETH_CI_P/DE/D

ETH_AI_P/DE/D

VID

oleObject55.bin

image164.emf
ETHx/ETHG

ETH_AP

ETH_TFPETH_FP

ETHx/ETHG_A_Sk_MP

ETHTF_PP

ETHF_PP

image165.png

image166.emf
ETH_AP

MCC_CP

ETHx/MCC

ETHx/MCC_A_So_MP

image167.emf
MCCGeneration

MCC_CI_D

DCNEDM

ETH_AI_D/P/DEMI_MELMI_MEP_MACMI_MCC_Pri

EDM Generation

MI_EDM_PeriodMI_EDM_DurationDMI_MEP_IDMI_EDM_Enable

image168.emf
WaitingDCN(D)EDM(D)

X=MI_MEL

DA(D)=01-80-C2-00-00-3x

SA(D)=MI_MEP_MAC

MEL(D)=MI_MEL

OPC(D)=41(MCC)

OUI(D)=00-19-A7(ITU)

SubOPC= FFS (DCN)

MCCdata(D)=DCN(D)

SubOPC= 01 (EDM)

MCCdata(D)=EDM(D)

D(D)

P(MI_MCC_Pri)

DE(0)

image169.emf
ETH_AP

MCC_CP

ETHx/MCC

ETHx/MCC_A_Sk_MP

image170.emf
EDM Reception

MI_EDM_Received(MEP_ID,Duration)

MCC Reception

MI_MELMI_MEP_MACMCC_CI_D

EDM

ETH_AI_D/P/DED

DCN

oleObject4.bin

image171.emf
ETHDe

ETHDe_FT_So_MPETH_RP

ETH_TFP

ETH_AP

ETH_TP

image172.emf
TxFC[]MEPOnDemand-OAMInsertion

ETH_AI_D/P/DEDPDEMI_MEL

LBMGenerationLBRGeneration

DPDEDPDE

LTMGeneration

DPDEMI_MEP_MACDataLBMLBRLTMDataDataRI_LBM(D,P,DE)DPDE

1DM Generation

1DMDPDE

TST Generation

TSTMI_1DM_Start(DA,P,MI_1DM_Terminate

LTRGeneration

DPDELTRRI_LTM(D,P,DE)

MEPOnDemand-OAMInsertion

ETH_AI_D/P/DEDPDEMI_MEL

ETH_CI_D/P/DEETH_CI_D/P/DELBMGenerationLBRGeneration

DPDEPDE

LTMGeneration

DPDEMI_MEP_MACDataLBMLBRLTMDataDataMI_LM_Start(DA,P,Period)MI_LM_TerminateMI_LM_Result(N_TF, N_LF, F_TF, F_LF)RI_LMR(rSA,TxFCf,RxFCf,TxFCb,RxFCl)MI_LM_Start(DA,P,Period)MI_LM_TerminateMI_LM_Result(N_TF, N_LF, F_TF, F_LFRI_LMR()RI_LBM(D,P,DE)DPDE

1DM Generation

1DMDPDE

TST Generation

TSTMI_1DM_Start(DA,P,MI_1DM_Terminate1DM(DA,P,0,Test TD TLV,TLV)TST(DA,P,DE,TLV,TLD)

LTRGeneration

DPDELTRLTM(TA,TTL,TID,P)RI_LTM(,P,DE)

TST Control_So

MI_TST(DA,DE,P,Pattern, Length, Period)MI_TST_TerminateMI_TST_Result(Sent)

LTControl

MI_LT(TA,P)MI_LT_Result(Results)RI_LTR(SA,TTL,TID,TLV)TTL,

TST Control_So

MI_TST(DA,DE,P,Pattern, Length, Period)MI_TST_TerminateMI_TST_Result(Sent)MI_LT(TA,P)MI_LT_Result(Results)RI_LTR(SA,TTL,TID,TLV)TTL,

LBControl

MI_LB_Discover(P)MI_LB_Discover_Result(MACs)MI_LB_Series(DA,DE,P,N,Period)MI_LB_Series_Result(REC,ERR,OO)MI_LB_Test(DA,DE,P,Pattern, Length, Period)MI_LB_Test_TerminateRI_LBR(SA,rTLV,TID)MI_LB_Test_Result(Sent,REC,CRC,BER,OO)Length, MI_LB_Discover(P)MI_LB_Discover_Result(MACs)MI_LB_Series(DA,DE,P,N,Period)MI_LB_Series_Result(REC,ERR,OO)MI_LB_Test(DA,DE,P,Pattern, Length, Period)MI_LB_Test_TerminateRI_LBR(SA,rTLV,TID)MI_LB_Test_Result(Sent,REC,CRC,BER,OO)Length, Test ID,Length,Period)

DMMGeneration

DPDEDPDEDMMDMR

DMRGeneration

RI_DMM(D,P,DE)

DMMGeneration

DPDEDPDEDMMDMR

ControlOn-demandDM

DMM(DA,P,0,Test ID TLV,TLV)

DMRGeneration

RI_DMM(D,P,DE)

DMMZYXMuxControl_SoOn-demand1DM1DMZYXMuxDMMGeneration

DPDEDPDESLMSLR

DMRGenerationSLMGeneration

DPDEDPDEM

ControlOn-demandSL

SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV)

SLRGeneration

MI_SL_Result(N_TF,N_LF,F_LF)

SLMZYXMux

RI_SLR(rMEP_ID,rTest_ID,TxFCf,TxFCb)MI_SL_Start(DA,P,Test ID,Length,Period)MI_SL_TerminateRI_SLM(OAM,P,DE,TxFCb)MI_DM_TerminateMI_DM_Result(count,B_FD[],F_FD[],N_FD[])MI_DM_TerminateMI_DM_Result(count,B_FD[],F_FD[],N_FD[])MI_DM_Start(DA,P,MI_DM_Start(DA,P,Test ID,Length,Period)RI_DMR(rSA,TxTimeStampf, RxTimeStampf,TxTimeStampb,RxTimeb,rTest_ID)

DMMGeneration

DPDEDPDEDMMDMR

DMRGeneration

RI_LMM(D,P,DE)

LMMGeneration

DPDEDPDEDMMDMR

ControlOn-demandLM

LMM(DA,P,0)

LMRGeneration

RI_(D,P,DE)

LMMZYXMuxCounterGeneration

DPDE1SL

Generation

DPDE

Control_SoOn-demand1SL

1SL(DA,P,MEP_ID,Test_ID,TxFCl,TLV)

1SLZYXMux

MI_1SL_Start(DA,P,Test ID,Length,Period)MI_1SL_Terminate

1SL

MI_MEP_IDTI_TimeStamplMI_LM_Intermediate_RequestMI_DM_Intermediate_RequestMI_SL_Inermediate_Request

image173.emf
ETHDe

ETH_RPETHDe_FT_Sk_MP

ETH_TFP

ETH_AP

ETH_TP

image174.emf
MEPOndemand-OAMExtraction

DPDEMI_MEL

ETH_CI_D/P/DEMEP LBM ReceptionLBR Reception

DPDEDPDE

DMM Reception

DPDE

DMR Reception

DPDEDPDEETH_AI_D/P/DELBMLBRDMMDMR1DMDataData

1DM Reception

RI_LBM(D,P,DE)RI_LBR(SA,rTLV,TID)RI_DMM(D,P,DE)RI_DMR(rSA,TxTimeStampf,DataRxTimeStampf,TxTimeStampb,

1DM Control_Sk

MI_1DM_Result(count, N_FD[])MI_1DM_Start(SA,P,Test_ID)MI_1DM_TerminateXYZ

1DMDmux

XYZ

DMRDmux

RxTimeb,rTest_ID)

LMM Reception

DPDE

LMR Reception

DPDELMMLMRRI_LMM(D,P,DE)RI_LMR(rSA,TxFCf, RxFCb,TxFCb, RxFCl)XYZ

LMRDmux

RxFC[]Counter

TST Reception

DPDE

Reception

DPDEDPDETSTLTMLTR

TST Control_Sk

MI_TST_Start(SA,pattern)MI_TST_TerminateMI_TST_Result(REC,CRC,BER,OO)RI_LTR(SA,TTL,TID,TLV)RI_LTM(D,P,DE)MI_MEP_MAC

MEP LTM LTR ReceptionSLM Reception

DPDE

SLR Reception

DPDESLMSLRRI_SLR(rMEP_ID,rTest_ID,TxFCf, TxFCb)XYZ

SLRDmux

RI_SLM(OAM,P,DE,TxFCb)DPDE1SL

1SL Reception1SL Control_Sk

MI_1SL_Result(N_TF,N_LF)MI_1SL_Start(SA,Test_ID)MI_1SL_TerminateXYZ

1SLDmux

TI_TimeStamplMI_1DM_Intermediate_RequestMI_1SL_Intermediate_Request

image175.emf
ETHDi

ETHDi_FT_So_MPETH_RP

ETH_TFP

ETH_AP

image176.emf
G.8021-Y.1341(12)_F9-46

D

D

P

P

DE

DE

Data

L

B

R

L

T

R

M

I

P

O

A

M

i

n

s

e

r

t

i

o

n

MI_MEL

ETH_CI_D/P/DE

ETH_AI_D/P/DE

MI_MIP_MAC

LTR generation

LBR generationRI_LBM(D, P, DE)

RI_LTM(D, P, DE)

oleObject56.bin

image177.emf
ETHDi

ETH_RPETHDi_FT_Sk_MP

ETH_TFP

ETH_AP

image178.emf
G.8021-Y.1341(12)_F9-48

D

D

D

P

P

P

DE

DE

DE

Data

Data

Data

L

T

M

L

B

M

L

T

M

M

I

P

O

A

M

e

x

t

r

a

c

t

i

o

n

M

I

P

O

A

M

i

n

s

e

r

t

i

o

n

MI_MEL

ETH_CI_D/P/DE

ETH_AI_D/P/DE

MI_MIP_MAC

MIP LBM

reception

MIP LTM

reception

RI_LTM(D, P, DE)

RI_LBM(D, P, DE)

oleObject57.bin

image7.emf
G.8021-Y.1341(12)_F8-3

PDE

MI_LCK_Period

MI_Client_MEL

MI_LCK_Pri

MI_MEP_MAC

LCK

Generate

D

image179.emf
ETH_AP

ETH_FP

ETHD/ETH

image180.emf
G.8021-Y.1341(12)_F9-50

CI_DCI_PCI_DE

AI_DAI_PAI_DE

oleObject58.bin

image181.emf
ETH_AP

ETH_FP

ETHD/ETH

image182.emf
G.8021-Y.1341(12)_F9-52

CI_DCI_PCI_DE

AI_DAI_PAI_DE

oleObject59.bin

image183.emf
ETH_AP

ETH_FP

ETHDi/ETH

ETHDi/ETH_A_So_MP

image184.emf
G.8021-Y.1341(12)_F9-54

D

D

P

P

DE

DE

ETH_CI_RAPSETH_CI_P/DE/D

RAPS insert

MI_MEL

MI_RAPS_Pri

MI_MIP_MAC

ETH_AI_P/DE/D

oleObject60.bin

image185.emf
ETH_AP

ETH_FP

ETHDi/ETH

ETHDi/ETH_A_Sk_MP

oleObject5.bin

image186.emf
G.8021-Y.1341(12)_F9-56

D

D

P

P

DE

DE

ETH_CI_SSFETH_CI_RAPSETH_CI_P/DE/D

RAPS extract

MI_RAPS_MEL

ETH_AI_P/DE/DETH_AI_TSF

Consequent

actions

aSSF

oleObject61.bin

image187.emf
G.8021-Y.1341(12)_F9-57

Replicate

802.3 protocols

Server specific

<server>/ETH_A_So

<server>_AP<server>_AP

<server>/ETH_A_Sk

Server specific

802.3 protocols

(Note)

Replicate

Filter

ETH_TP

ETH_PP

Queuing

ETH_TFPETH_FPETH_TFPETH_FP

oleObject62.bin

image188.emf
G.8021-Y.1341(12)_F9-58

ETH_FP

ETH_TCS_So_MP

ETH_FP

oleObject63.bin

image189.emf
G.8021-Y.1341(12)_F9-59

Scheduler

Priority

splitter

Priority

merger

ETH_CI_D/P/DE

ETH_CI_D/P/DE

MI_Prio_Config

MI_Queue_Config[]

MI_Sched_Config

QueueQueue

oleObject64.bin

image190.emf
G.8021-Y.1341(12)_F9-60

ETH_FP

ETH_TCS_Sk_MP

ETH_FP

oleObject65.bin

image8.emf
Timer

D(OAM),

P(MI_LCK_Pri),

DE(0)

OAM=LCK(

MI_MEP_MAC,

MI_Client_MEL,

MI_LCK_Period

)

LCK Generate

Set(0, Timer)

Set(MI_LCK_Period, Timer)

Timer

D(OAM),

P(MI_LCK_Pri),

DE(0)

OAM=LCK(

MI_MEP_MAC,

MI_Client_MEL,

MI_LCK_Period

)

LCK Generate

Set(0, Timer)

Set(MI_LCK_Period, Timer)

image191.emf
G.8021-Y.1341(12)_F9-61

MI_Prio_Config

MI_Cond_Config[]

Priority

splitter

Priority

merger

ConditionerConditioner

ETH_CI_D/P/DE

ETH_CI_D/P/DE

oleObject66.bin

image192.emf
G.8021-Y.1341(12)_F9-62

ETH_FPETH_FP

ETH_GTCS_So_MP

ETH_FPETH_FP

oleObject67.bin

image193.emf
G.8021-Y.1341(12)_F9-63

Scheduler

Priority

splitter

Priority

splitter

Priority

merger

Priority

merger

ETH_CI_D/P/DEETH_CI_D/P/DE

ETH_CI_D/P/DEETH_CI_D/P/DE

MI_Prio_Config[]

MI_Queue_Config[][]

MI_sched_Config[]

QueueQueueQueueQueue

oleObject68.bin

image194.emf
G.8021-Y.1341(12)_F9-64

ETH_TFPETH_FP

ETH-LAG/ETH

ETH-LAG_AP

ETH-LAG-Np-1

ETYn_CIETYn_CIETYn_CIETYn_CI

ETYn-Np/ETH-LAG-1

ETYnETYn

ETH-LAG_AP

ETYn-Np_AP =

ETYn_AP[1...Np]

ETH-LAG

ETH-LAG_AP

ETH_TFPETH_FP

ETH-LAG/ETH

oleObject69.bin

image195.emf
G.8021-Y.1341(12)_F9-65

ETH_TFPETH_TFPETH_FPETH_FP

ETH-LAG/ETHETH-LAG/ETH

ETH-LAG_AP

ETH-LAG-Np-Na

ETYn_CIETYn_CIETYn_CI

ETYn-Np/ETH-LAG-Na

ETYn_CI

ETYn-Np_AP =

ETYn_AP[1...Np]

ETH-LAG-Na_AP =

ETH-LAG_AP[1...Na]

ETH-LAGETH-LAG

ETH-LAG_APETH-LAG_AP

ETH_TFPETH_TFPETH_FPETH_FP

ETH-LAG/ETHETH-LAG/ETH

ETYnETYn

oleObject70.bin

image9.emf
G.8021-Y.1341(12)_F8-5

8765

5

9

432

2

1

1

876543

3

21

1

13

17

8765432187654

4

321

DA = 01-80-C2-00-00-3x, where x = MI_Client_MEL

SA = MI_MEP_MAC

Ethertype = 89-02

MEL =

MI_Client

_MEL

Version = 0Opcode = 35 (LCK)

END TLV = 0TLV offset = 0

Period =

MI_LCK

_Period

00000

image196.emf
ETYn_AP

ETH-LAG_FP

ETYn-Np/ETH-LAG-Na_A_So_MP

ETYn-Np/

ETH-LAG-Na

image197.emf
Aggregation

Control

Aggregator #1

ETYn server #1

802.1AB/X #1

802.3 #1

ETYn server #2

802.1AB/X #2

802.3 #2

ETYn server #Np

802.1AB/X #Np

802.3 #Np

Aggregator #2Aggregator #Na

M

I

_

p

F

r

a

m

e

s

T

r

a

n

s

m

i

t

t

e

d

O

K

[

1

.

.

N

p

]

M

I

_

p

O

c

t

e

t

s

T

r

a

n

s

m

i

t

t

e

d

O

K

[

1

.

.

N

p

]

C

I

_

P

a

u

s

e

T

r

i

g

g

e

r

[

1

.

.

N

p

]

M

I

_

T

x

P

a

u

s

e

E

n

a

b

l

e

[

1

.

.

N

p

]

M

I

_

A

g

g

[

1

.

.

N

a

]

_

.

.

.

M

I

_

A

g

g

P

o

r

t

[

1

.

.

N

p

]

_

.

.

.

M

I

_

p

A

g

g

O

c

t

e

t

s

T

x

O

K

[

1

.

.

N

a

]

M

I

_

p

A

g

g

F

r

a

m

e

s

T

x

O

K

[

1

.

.

N

a

]

ETY_AI[1]ETY_AI[2]ETY_AI[Np]

ETH-LAG_CI[1]ETH-LAG_CI[2]ETH-LAG_CI[Na]

...

.........

...

...

...

...

...

...

MAC FCS #1MAC FCS #2MAC FCS #Np

...

image198.emf
ETYn-Np/ETH-LAG-Na_A_Sk_MP

ETYn_AP

ETH-LAG_FP

ETYn-Np/

ETH-LAG-Na

image199.emf
Aggregation

Control

Aggregator #1

ETYn server #1

MAC FCS #1

802.3 #1

ETYn server #2

MAC FCS #2

802.3 #2

ETYn server #Np

MAC FCS #Np

802.3 #Np

Aggregator #2Aggregator #Na

M

I

_

p

F

r

a

m

e

s

R

e

c

e

i

v

e

d

O

K

[

1

.

.

N

p

]

M

I

_

p

O

c

t

e

t

s

R

e

c

e

i

v

e

d

O

K

[

1

.

.

N

p

]

M

I

_

p

A

g

g

O

c

t

e

t

s

R

x

O

K

[

1

.

.

N

a

]

M

I

_

p

A

g

g

F

r

a

m

e

s

R

x

O

K

[

1

.

.

N

a

]

M

I

_

c

P

L

L

[

1

.

.

N

a

]

M

I

_

c

T

L

L

[

1

.

.

N

a

]

M

I

_

P

L

L

T

h

r

[

1

.

.

N

a

]

ETY_AI[1]ETY_AI[2]

ETY_AI[Np

]

ETH-LAG_CI[1]ETH-LAG_CI[2]ETH-LAG_CI[Na]

...

.........

...

...

...

...

...

...

M

I

_

p

F

C

S

E

r

r

o

r

s

[

1

.

.

N

p

]

802.1AB/X #1802.1AB/X #2802.1AB/X #Np

...

image200.wmf
[

]

[

]

Õ

Î

¬

k

MI_AP_List

j

j

dMNCD

aSSF

LAG_CI[k]_

-

ETH

oleObject71.bin

image201.wmf
[

]

[

]

(

)

[

]

å

Î

=

k

MI_AP_List

j

j

dMNCD

not

k

mAP_Active

oleObject72.bin

image202.wmf
[

]

[

]

0

k

mAP_Active

k

LAG_cTLL

-

ETH

=

¬

oleObject73.bin

oleObject6.bin

image203.wmf
[

]

[

]

(

)

[

]

[

]

(

)

k

MI_PLLThr

k

mAP_Active

and

k

mAP_Active

0

k

LAG_cPLL

-

ETH

<

<

¬

oleObject74.bin

image204.emf
ETH-LAG

ETH-LAG_TT_So_MP

ETH-LAG_TFP

ETH-LAG_AP

image205.emf
ETH-LAG

ETH-LAG_TT_Sk_MP

ETH-LAG_TFP

ETH-LAG_AP

image206.emf
ETH-LAG_AP

ETH_TFPETH_FP

ETHTF_PP

ETHF_PPETH_TP

ETH-LAG/ETH

ETH-LAG/ETH_A_So_MP

oleObject75.bin
�

ETH-LAG_AP

ETH_TFP

ETH_FP

ETHTF_PP

ETHF_PP

ETH_TP

ETH-LAG/ETH

ETH-LAG/ETH_A_So_MP

image207.emf
G.8021-Y1341(12)_F9-73

Replicate

ETH-LAG_AI

ETH_CI

(ETH_TFP)

ETH_CI

(ETH_FP)

ETH_PI

(ETHTF_PP)

ETH_PI

(ETHF_PP)

ETH_TIQueuing

oleObject76.bin

image208.emf
ETH-LAG_AP

ETH_TFPETH_FP

ETH-LAG/ETH_A_Sk_MP

ETHTF_PP

ETHF_PP

ETH-LAG/ETH

image209.emf
G.8021-Y1341(12)_F9-75

Replicate

ETH-LAG_AI

ETH_CI

(ETH_TFP)

ETH_CI

(ETH_FP)

ETH_PI

(ETHTF_PP)

ETH_PI

(ETHF_PP)

MI_FilterConfig

Filter

image10.emf
G.8021-Y.1341(12)_F8-6

MI_Admin_State

Selector

LCK

DD

D

PP

P

DEDE

DE

Normal

oleObject77.bin

image210.emf
G.8021-Y.1341(12)_F9-76

ETHx

ETHD/ETH

ETHDe

oleObject78.bin

image211.emf
G.8021-Y.1341(12)_F9-77

ETHx

ETHG

ETHD/ETH

ETHD/ETH

ETHx/ETH

ETHG/ETH

ETHDe

ETHDe

oleObject79.bin

image212.emf
G.8021-Y.1341(12)_F9-78

ETHD/ETH

ETHD/ETH

ETHDi

ETHDi

oleObject80.bin

image213.emf
G.8021-Y.1341(12)_F9-79

ETHD/ETH

ETHDi

oleObject81.bin

image214.emf
ETYn

ETYn_TT_So_MPETYn_RP

ETYn_TCP

ETYn_AP

oleObject7.bin

image215.emf
G.8021-Y.1341(12)_F10-2

ETYn_AI

ETYn_TT_Sk_MI

ETYn_CI

ETYn_TT_Sk

ETYn_RI

oleObject82.bin

image216.emf
ETYn_AP

ETH_TFPETH_FP

ETYn/ETH

ETYn/ETH_A_MP

image217.emf
ETYn_AP

ETYn/ETH-m

ETYn/ETH-m_A_MP

ETH_TFPETH_FP

image218.emf
ETYn/ETH

ETYn_AP

ETH_TFPETH_FP

ETHTF_PP

ETHF_PP

ETYn/ETH_A_Sk_MP

ETYn_AP

ETH_TFPETH_FP

ETYn/ETH

ETYn/ETH_A_So_MP

image219.emf
ETYn_AP

ETH_TFPETH_FP

ETHTF_PP

ETHF_PP

ETYn/ETH_A_So_MP

ETH_TP

ETYn/ETH

ETH_CI_ClocK

ETH_CI_ESMC

image220.emf
G.8021-Y1341(12)_F10-7

Replicate

ETYn_AI

ETH_CI

(ETH_TFP)ETH_CI_ESMCETH_CI_Clock

ETH_CI

(ETH_FP)

ETH_PI

(ETHTF_PP)

ETH_PI

(ETHF_PP)

ETH_TI

CI_PauseTrigger

MI_TxPauseEnable

MI_pFrames

TransmittedOK

MI_pOctets

TransmittedOK

Queueing

802.1AB/X protocols

802.3 protocols

MAC frame counter

MAC FCS generation

ETYn server specific

oleObject83.bin

image221.emf
ETYn_AP

ETH_TFPETH_FP

ETYn/ETH_A_Sk_MP

ETHTF_PP

ETHF_PP

ETYn/ETH

ETH_CI_ClocK

ETH_CI_ESMC

image222.emf
G.8021-Y1341(12)_F10-9

Replicate

ETYn_AI

ETH_CI

(ETH_TFP)ETH_CI_ESMCETH_CI_Clock

ETH_CI

(ETH_FP)

ETH_PI

(ETHTF_PP)

ETH_PI

(ETHF_PP)

MI_FilterConfig

MI_MAC_Length

MI_pErrors

MI_pFrames

ReceivedOK

MI_pOctets

ReceivedOK

Filter

802.1AB/X protocols

802.3 protocols

MAC frame counter

MAC frame check

MAC length check

ETYn server specific

image11.emf
Normal

Locked

D(D),P(P),DE(DE)

Normal.D(D),

Normal.P(P),

Normal.DE(DE)

MI_Admin_State(State)

D(D),P(P),DE(DE)

LCK.D(D),

LCK.P(P),

LCK.DE(DE)

Normal.D(D),

Normal.P(P),

Normal.DE(DE)

MI_Admin_State(State)

LCK.D(D),

LCK.P(P),

LCK.DE(DE)

State=Locked?

State=Normal?

N

Y

Y

N

oleObject84.bin

image223.emf
ETY3_AP

ETC3_TCP

ETY3/ETC3

ETY3/ETC3_A_So_MP

image224.emf
ETY3/ETC3

ETY3_AP

ETC3_TCP

ETY3/ETC3_A_Sk_MP

image225.emf
ETY4_AP

ETHPP-OS_CP

ETY4/ETHPP-OS

ETY4/ETHPP-OS_A_So_MP

image226.emf
G.8021-Y.1341(12)_F10-13

ETHPP-OS_CI_D

ETY4 server-specific

processes

ETY4_AI

oleObject85.bin

image227.emf
ETY4/ETHPP-OS

ETY4_AP

ETHPP-OS_CP

ETY4/ETHPP-OS_A_Sk_MP

image228.emf
G.8021-Y.1341(12)_F10-15

ETHPP-OS_CI_DETHPP-OS_CI_SSF

ETY4 server-specific

processes

ETY4_AI

oleObject86.bin

image229.emf
Sn_AP

ETH_TFPETH_FP

ETHTF_PP

ETHF_PP

Sn/ETH_A_So_MP

Sn_TP

Sn/ETH

image12.emf
AIS Insert

MI_AIS_Period

MI_Client_MEL

MI_AIS_Pri

MI_MEP_MAC

aAIS

G.8021-Y.1341(12)_F8-8

P

P

DE

DED

D

image230.emf
G.8021-Y1341(12)_F11-2

Replicate

Sn_AI_CK

Sn_AI_CK

ETH_PI_D

(ETHF_PP)

802.3 MAC FCS

ETH_CI_SSF

(ETH_FP)

ETH_CI_D

(ETH_TFP)

ETH_CI_D

(ETH_FP)

Queueing

ETH_PI_D

(ETHTF_PP)

MI_CSFenable

MI_CSFrdifdiEnable

ETH specific

GFP-F processes

Common

GFP-F processes

VC-n specific

GFP-F processes

VC-n specific

processes

Sn_AI_DSn_AI_FS

Sn_AI_FSSn_AI_D

GFP_FS

GFP_FS

GFP_Frame

GFP_Frame

ETH_Frame + FCS

ETH_Frame

Sn_TI_CK

Sn_TI_FS

CMuxConfig

CMuxActive = false

FCSenable = false

oleObject87.bin

image231.emf
Sn/ETH

Sn_AP

ETH_TFPETH_FP

Sn/ETH_A_Sk_MPETHTF_PP

ETHF_PP

image232.emf
G.8021-Y1341(12)_F11-4

Replicate

ETH_PI_D

(ETHTF_PP)

802.3 MAC Frm Chk

MAC LengthChk

MI_CSFrdifdiEnable

ETH specific

GFP-F processes

Common

GFP-F processes

VC-n specific

GFP-F processes

VC-n specific

processes

GFP_Frame/FS/SF

ETH_Frame + FCS

ETH_Frame + FCS

ETH_Frame

CMuxConfig

CMuxActive = false

FCSdiscard = false

Filter

ETH_PI_D

(ETHF_PP)

SF

SF

SF

Sn_AI_D/CK/FS/TSF

Sn_AI_D/CK/FS/TSF

AcSL

AcEXI

cLFD

cPLM

cEXM

cUPM

pFCSErrors

MI_FilterConfig

MI_MAC_Length

GFP_Frame/FS/SF

AcUPI

ETH_CI_D

ETH_CI_SSF

(ETH_TFP)

ETH_CI_D

ETH_CI_SSF

ETH_FP)

oleObject88.bin

image233.emf
Sn-X-L_AP

ETH_TFPETH_FP

ETHTF_PP

ETHF_PP

Sn-X-L/ETH_A_So_MP

Sn-X-L_TP

Sn-X-L_AI_X

AT

Sn-X-L/ETH

image234.emf
G.8021-Y1341(12)_F11-6

Replicate

Sn_AI_CK

Sn_AI_CK

ETH_PI_D

(ETHF_PP)

802.3 MAC FCS

ETH_CI_SSF

(ETH_FP)

ETH_CI_D

(ETH_TFP)

ETH_CI_D

(ETH_FP)

Queueing

ETH_PI_D

(ETHTF_PP)

MI_CSFenable

MI_CSFrdifdiEnable

ETH specific

GFP-F processes

Common

GFP-F processes

VC-n specific

GFP-F processes

VC-n specific

processes

Sn_AI_DSn_AI_FS

Sn_AI_FSSn_AI_D

GFP_FS

GFP_FS

GFP_Frame

GFP_Frame

ETH_Frame + FCS

ETH_Frame

Sn_TI_CK

Sn_AI_X

AT

Sn_TI_FS

CMuxConfig

CMuxActive = false

FCSenable = false

oleObject89.bin

image235.emf
Sn-X-L_AP

ETH_TFPETH_FP

Sn-X-L/ETH_A_Sk_MP

ETHTF_PP

ETHF_PP

Sn-X-L/ETH

Sn-X-L_AI_X

AR

image236.emf
Sm_AP

ETH_TFPETH_FP

ETHTF_PP

ETHF_PP

Sm/ETH

Sm/ETH_A_So_MP

Sm_TP

oleObject8.bin

image237.emf
G.8021-Y1341(12)_F11-9

Replicate

Sm_AI_CK

Sm_AI_CK

ETH_PI_D

(ETHF_PP)

802.3 MAC FCS

ETH_CI_SSF

(ETH_FP)

ETH_CI_D

(ETH_TFP)

ETH_CI_D

(ETH_FP)

Queueing

ETH_PI_D

(ETHTF_PP)

MI_CSFenable

MI_CSFrdifdiEnable

ETH specific

GFP-F processes

Common

GFP-F processes

VC-m specific

GFP-F processes

VC-m specific

processes

Sm_AI_DSm_AI_FS

Sm_AI_FSSm_AI_D

GFP_FS

GFP_FS

GFP_Frame

GFP_Frame

ETH_Frame + FCS

ETH_Frame

Sm_TI_CK

Sm_TI_FS

CMuxConfig

CMuxActive = false

FCSenable = false

oleObject90.bin

image238.emf
Sm/ETH

Sm_AP

ETH_TFPETH_FP

ETHTF_PP

ETHF_PP

Sm/ETH_A_Sk_MP

image239.emf
G.8021-Y1341(12)_F11-11

Replicate

ETH_PI_D

(ETHTF_PP)

802.3 MAC Frm Chk

MI_CSFrdifdiEnable

ETH specific

GFP-F processes

Common

GFP-F processes

VC-m specific

GFP-F processes

VC-m specific

processes

GFP_Frame/FS/SF

ETH_Frame + FCS

ETH_Frame

CMuxConfig

CMuxActive = false

FCSdiscard = false

Filter

ETH_PI_D

(ETHF_PP)

SF

SF

Sm_AI_D/CK/FS/TSF

Sm_AI_D/CK/FS/TSF

AcSL

AcEXI

cLFD

cPLM

cEXM

cUPM

pFCSErrors

MI_FilterConfig

GFP_Frame/FS/SF

AcUPI

ETH_CI_D

ETH_CI_SSF

(ETH_TFP)

ETH_CI_D

ETH_CI_SSF

(ETH_FP)

oleObject91.bin

image240.emf
Sm-X-L_AP

ETH_TFPETH_FP

ETHTF_PP

ETHF_PP

Sm-X-L/ETH_A_So_MP

Sm-X-L_TP

Sm-X-L_AI_X

AT

Sm-X-L/ETH

image241.emf
G.8021-Y1341(12)_F11-13

Replicate

Sm_AI_CK

Sm_AI_CK

ETH_PI_D

(ETHF_PP)

802.3 MAC FCS

ETH_CI_SSF

(ETH_FP)

ETH_CI_D

(ETH_TFP)

ETH_CI_D

(ETH_FP)

Queueing

ETH_PI_D

(ETHTF_PP)

MI_CSFenable

MI_CSFrdifdiEnable

ETH specific

GFP-F processes

Common

GFP-F processes

VC-m specific

GFP-F processes

VC-m specific

processes

Sm_AI_DSm_AI_FS

Sm_AI_FSSm_AI_D

GFP_FS

GFP_FS

GFP_Frame

GFP_Frame

ETH_Frame + FCS

ETH_Frame

Sm_TI_CK

Sm_AI_X

AT

Sm_TI_FS

CMuxConfig

CMuxActive = false

FCSenable = false

oleObject92.bin

image242.emf
Sm-X-L_AP

ETH_TFPETH_FP

Sm-X-L/ETH_A_Sk_MP

ETHTF_PP

ETHF_PP

Sm-X-L/ETH

Sm-X-L_AI_X

AR

image243.emf
Sn-X_AP

ETC3_TCP

Sn-X/ETC3

Sn-X/ETC3_A_So_MP

Sn-X_TP

image13.emf
AIS Disabled

aAIS(1)Timer

D(OAM),

P(MI_AIS_Pri),

DE(0)

OAM=AIS(

MI_MEP_MAC,

MI_Client_MEL,

MI_AIS_Period

)

AIS Enabled

aAIS(0)

Set(0, Timer)

Set(MI_AIS_Period, Timer)

D(D),P(P),DE(DE)

D(D),P(P),DE(DE)

image244.emf
G.8021-Y1341(12)_F11-16

Sn-X_AI_CK

Sn-X_AI_CK

ETC3_CI_

SSF

ETC3_CI_

Clock

ETC3_CI_

Control_Ind

ETC3_CI_

Data_Control

MI_CSFenable

ETC3 specific

GFP-T processes

Common

GFP-T processes

VC-n-X specific

GFP-T processes

VC-n4-X specific

processes

Sn-X_AI_DSn-X_AI_FS

Sn-X_AI_FSSn-X_AI_D

GFP_FS

GFP_FS

GFP_Frame

GFP_Frame

Sn-X_TI_CK

Sn-X_TI_FS

CMuxConfig

CMuxActive = false

FCSenable = false

(From ETC3_TCP)

oleObject93.bin

image245.emf
Sn-X/ETC3

Sn-X_AP

ETC3_TCP

Sn-X/ETC3_A_Sk_MP

image246.emf
G.8021-Y1341(12)_F11-18

ETC3_CI_Data_Control

ETC3_CI_Clock

ETC3_CI_Control_Ind

ETC3_CI_SSF

(To ETC3_TCP)

AcPFI

AcEXI

AcSL

AcUPI

ETH specific

GFP-T processes

Common

GFP-T processes

VC-n-X specific

GFP-T processes

VC-n-X specific

processes

GFP_Frame/FS/SF

GFP_Frame/FS/SF

CMuxConfig

CMuxActive = false

FCSdiscard = false

Sn-X_AI_D/CK/FS/TSF

Sn-X_AI_D/CK/FS/TSF

pCRC 16

cUPM

cCSF

cEXM

cLFD

cPLM

oleObject94.bin

image247.emf
Pq_AP

ETH_TFPETH_FP

ETHTF_PP

ETHF_PP

Pq/ETH

Pq/ETH_A_So_MP

Pq_TP

image248.emf
G.8021-Y1341(12)_F11-20

Replicate

ETH_PI_D

(ETHF_PP)

802.3 MAC FCS

ETH_CI_SSF

(ETH_FP)

ETH_CI_D

(ETH_TFP)

ETH_CI_D

(ETH_FP)

Queueing

ETH_PI_D

(ETHTF_PP)

MI_CSFenable

MI_CSFrdifdiEnable

ETH specific

GFP-F processes

Common

GFP-F processes

Pq specific

GFP-F processes

Pq specific

processes

GFP_FS

GFP_FS

GFP_Frame

GFP_Frame

ETH_Frame + FCS

ETH_Frame

Pq_TI_CK

Pq_TI_FS

CMuxConfig

CMuxActive = false

FCSenable = false

Pq_AI_D/CK/FS

Pq_AI_D/CK/FS

oleObject95.bin

image249.emf
Pq/ETH

Pq_AP

ETH_TFPETH_FP

ETHTF_PP

ETHF_PP

Pq/ETH_A_Sk_MP

image250.emf
G.8021-Y1341(12)_F11-22

Replicate

ETH_PI_D

(ETHTF_PP)

802.3 MAC Frm Chk

MI_CSFrdifdiEnable

ETH specific

GFP-F processes

Common

GFP-F processes

Pq specific

GFP-F processes

Pq specific

processes

GFP_Frame/FS/SF

ETH_Frame + FCS

ETH_Frame

CMuxConfig

CMuxActive = false

FCSdiscard = false

Filter

ETH_PI_D

(ETHF_PP)

SF

SF

Pq_AI_D/CK/FS/TSF

Pq_AI_D/CK/FS/TSF

AcSL

AcEXI

cLFD

cPLM

cEXM

cUPM

pFCSErrors

MI_FilterConfig

GFP_Frame/FS/SF

AcUPI

ETH_CI_D

ETH_CI_SSF

(ETH_TFP)

ETH_CI_D

ETH_CI_SSF

(ETH_FP)

image14.emf
G.8021-Y.1341(12)_F8-10

8765

9

5

432

2

1

1

876543

3

21

1

13

17

8765432187654

4

321

DA = 01-80-C2-00-00-3x, where x = MI_Client_MEL

SA = MI_MEP_MAC

Ethertype = 89-02

MEL =

MI_Client

_MEL

Version = 0Opcode = 33 (AIS)

END TLV = 0TLV offset = 0

Period =

MI_AIS

_Period

00000

oleObject96.bin

image251.emf
Pq-X-L_AP

ETH_TFPETH_FP

ETHTF_PP

ETHF_PP

Pq-X-L/ETH_A_So_MP

Pq-X-L_TP

Pq-X-L_AI_X

AT

Pq-X-L/ETH

image252.emf
G.8021-Y1341(12)_F11-24

Replicate

ETH_PI_D

(ETHF_PP)

802.3 MAC FCS

ETH_CI_SSF

(ETH_FP)

ETH_CI_D

(ETH_TFP)

ETH_CI_D

(ETH_FP)

Queueing

ETH_PI_D

(ETHTF_PP)

MI_CSFenable

MI_CSFrdifdiEnable

ETH specific

GFP-F processes

Common

GFP-F processes

Pq-X-L specific

GFP-F processes

Pq-X-L specific

processes

GFP_FS

GFP_FS

GFP_Frame

GFP_Frame

ETH_Frame + FCS

ETH_Frame

Pq-X-L_TI_CK

Pq-X-L_AI_X

AT

Pq-X-L_TI_FS

CMuxConfig

CMuxActive = false

FCSenable = false

Pq-X-L_AI_D/CK/FS

Pq-X-L_AI_D/CK/FS

oleObject97.bin

image253.emf
Pq-X-L_AP

ETH_TFPETH_FP

Pq-X-L/ETH_A_Sk_MP

ETHTF_PP

ETHF_PP

Pq-X-L/ETH

Pq-X-L_AI_X

AR

image254.emf
G.8021-Y1341(12)_F11-26

Replicate

ETH_PI_D

(ETHTF_PP)

802.3 MAC Frm Chk

MI_CSFrdifdiEnable

ETH specific

GFP-F processes

Common

GFP-F processes

Pq-X-L specific

GFP-F processes

Pq-X-L specific

processes

GFP_Frame/FS/SF

ETH_Frame + FCS

ETH_Frame

CMuxConfig

CMuxActive = false

FCSdiscard = false

Filter

ETH_PI_D

(ETHF_PP)

SF

SF

Pq-X-L_AI_D/CK/FS/TSFPq-X-L_AI_X

AR

Pq-X-L_AI_D/CK/FS/TSF

AcSL

AcEXI

cLFD

cPLM

cEXM

cUPM

pFCSErrors

MI_FilterConfig

GFP_Frame/FS/SF

AcUPI

ETH_CI_D

ETH_CI_SSF

(ETH_TFP)

ETH_CI_D

ETH_CI_SSF

(ETH_FP)

oleObject98.bin

image255.emf
ODUkP_AP

ETH_TFPETH_FP

ETHTF_PP

ETHF_PP

ODUkP/ETH_A_So_MP

ODUkP/ETH

image256.emf
G.8021-Y1341(12)_F11-28

Replicate

ETH_PI_D

(ETHF_PP)

802.3 MAC FCS

ETH_CI_SSF

(ETH_FP)

ETH_CI_D

(ETH_TFP)

ETH_CI_D

(ETH_FP)

Queueing

ETH_PI_D

(ETHTF_PP)

MI_CSFenable

MI_CSFrdifdiEnable

ETH specific

GFP-F processes

Common

GFP-F processes

ODUkP specific

GFP-F processes

ODUkP specific

processes

ODUkP_AI_CK/FS

ODUkP_AI_D

GFP_FS

GFP_FS

GFP_Frame

GFP_Frame

ETH_Frame + FCS

ETH_Frame

CMuxConfig

CMuxActive = false

FCSenable = false

ODUkP_AI_D/CK/FS/MFS

oleObject99.bin

oleObject9.bin

image257.emf
G.8021-Y.1341(12)_F11-29

Free run clock

generator (ODCa)

CK

1

122368

FS

1

256

MI_Active

MFS

CSF

PT

RES

ODUk OH is set to all-0's,

except PM STAT = 001

ODUkP_AP

AI_CKAI_FSAI_MFSAI_D

oleObject100.bin

image258.emf
ODUkP_AP

ETH_TFPETH_FP

ODUkP/ETH_A_Sk_MP

ETHTF_PP

ETHF_PP

ODUkP/ETH

image259.emf
G.8021-Y1341(12)_F11-31

Replicate

ETH_PI_D

(ETHTF_PP)

802.3 MAC Frm Chk

MAC Length Chk

MI_CSFrdifdiEnable

ETH specific

GFP-F processes

Common

GFP-F processes

ODUkP specific

GFP-F processes

ODUkP specific

processes

GFP_Frame/FS/SF

ETH_Frame + FCS

ETH_Frame + FCS

ETH_Frame

CMuxConfig

CMuxActive = false

FCSdiscard = false

Filter

ETH_PI_D

(ETHF_PP)

SF

SF

SF

ODUkP_AI_D/CK/FS/MFS/TSF

ODUkP_AI_D/CK/FS/TSF

AcPT

AcEXI

cLFD

cCSF

cPLM

cEXM

cUPM

pFCSErrors

MI_FilterConfig

MI_MAC_Length

GFP_Frame/FS/SF

AcUPI

ETH_CI_D

ETH_CI_SSF

(ETH_TFP)

ETH_CI_D

ETH_CI_SSF

(ETH_FP)

oleObject101.bin

image260.emf
G.8021-Y.1341(12)_F11-32

MI_cCSF

MI_cPLM

MI_AcPT

ODUkP_AP

AI_TSFAI_CKAI_DAI_FSAI_MFS

AI_TSF

dCSF

dPLM

dCSF

D

e

f

e

c

t

c

o

r

r

e

l

a

t

i

o

n

s

Extract PT

Extract CSF

PT process

dPLM

MI_Active

oleObject102.bin

image261.emf
ODUkP-X-L_AP

ETH_TFPETH_FP

ETHTF_PP

ETHF_PP

ODUkP-X-L/ETH_A_So_MP

ODUkP-X-L_AI_X

AT

ODUkP-X-L/ETH

image262.emf
G.8021-Y1341(12)_F11-34

Replicate

ETH_PI_D

(ETHF_PP)

802.3 MAC FCS

ETH_CI_SSF

(ETH_FP)

ETH_CI_D

(ETH_TFP)

ETH_CI_D

(ETH_FP)

Queueing

ETH_PI_D

(ETHTF_PP)

MI_CSFenable

MI_CSFrdifdiEnable

ETH specific

GFP-F processes

Common

GFP-F processes

 ODUkP-X-L specific

GFP-F processes

ODUkP-X-L specific

processes

ODUkP-X-L_AI_D/CK/FS/MFS

ODUk-X-L_AI_CK/FSODUkP-X-L_AI_D

GFP_FS

GFP_FS

GFP_Frame

GFP_Frame

ETH_Frame + FCS

ETH_Frame

CMuxConfig

CMuxActive = false

FCSenable = false

ODUkP-X-L_AI_X

AT

oleObject103.bin

image15.emf
G.8021-Y.1341(12)_F8-11

MI_APS_Pri

MI_MEL

MI_MEP_MAC

APS

Insert

P

P

A

P

S

DE

DE

D

D

image263.emf
G.8021-Y.1341(12)_F11-35

Free run clock

generator (ODCa)

CK

1

(X*122368)

AT

FS

1

256

MI_Active

MFS

CSF

PT

RES

ODUk OH is set to all-0's,

except PM STAT = 001

ODUkP-X-L_AP

AI_CKAI_FSAI_MFSAI_D

oleObject104.bin

image264.emf
ODUkP-X-L_AP

ETH_TFPETH_FP

ODUkP-X-L/ETH_A_Sk_MP

ETHTF_PP

ETHF_PP

ODUkP-X-L/ETH

ODUkP-X-L_AI_X

AR

image265.emf
G.8021-Y.1341(12)_F11-37

MI_cCSF

MI_cVcPLM

MI_AcVcPT

ODUkP-X-L_AP

AI_TSFAI_CKAI_DAI_FSAI_MFS

AI_TSF

dCSF

dVcPLM

dCSF

D

e

f

e

c

t

c

o

r

r

e

l

a

t

i

o

n

s

Extract vcPT

Extract CSF

vcPT process

dVcPLM

MI_Active

oleObject105.bin

image266.emf
ODU2P_AP

ETHPP-OS_CP

ODU2P/ETHPP-OS

ODU2P/ETHPP-OS_A_So_MP

image267.emf
G.8021-Y1341(12)_F11-39

CI_D_SSFETHPP-OS_CI_D

MI_CSFEnable

ETHPP-OS specific

GFP-F processes

Common

GFP-F processes

ODU2P specific

GFP-F processes

ODU2P specific

processes

ODU2P_AI_D/K/FS/MFS

GFP_FS

GFP_FS

GFP_Frame

GFP_Frame

CMuxConfig

CMuxActive = false

FCSenable = false

ODU2P_AI_D/K/FS

oleObject106.bin

image268.emf
ODU2P/ETHPP-OS

ODU2P_AP

ETHPP-OS_CP

ODU2P/ETHPP-OS_A_Sk_MP

image269.emf
G.8021-Y1341(12)_F11-41

AcPFI

AcUPI

pCRC 16

cUPM

cCSF

cEXM

dLFD

cPLM

AcEXI

AcPT

ETHPP-OS specific

GFP-F processes

Common

GFP-F processes

ODU2P specific

GFP-F processes

ODU2P specific

processes

ODU2P_AI_D/CK/FS/TSF

GFP_Frame/FS/SF

GFP_Frame/FS/SF

CMuxConfig

CMuxActive = false

FCSdiscard = false

ODU2P_AI_D/CK/FS/TSF

ETHPP_OS_CI_D

oleObject10.bin

oleObject107.bin

image270.emf
G.8021-Y1341(12)_FI-1

ETH/<client>ETH/<client>ETH/<client>

Client:

– Bridge protocol (BP)

– Internet protocol (IP)

ETH_FTETH_FTETH_FT

<client>_CI

(

)

[non]-continuous flow

of client PDUs

ETH/<client>_A_MI

ETH_FT_MI

ETH_AI

(

)

[non]-continuous

MAC SDU flow

ETH_CI

(

)

[non]-continuous flow

of DA/SA/M_SDU

ETH_TFP

Ethernet flow

domain (ETH_FD)

<server>/ETH_A<server>/ETH_A<server>/ETH_A<server>/ETH_A

ETH_FP

ETH_CI

ETY_AI

<server>

_TT

<server>

_TT

<server>

_TT

<server>

_TT

ETH FPP LinkETH FPP LinkETH FPP LinkETH FPP Link

ETY_CI

SDH servers (S):

OTH servers

(ODU):

Ethernet servers

(ETYn):

– 10BASE (ETY1)

– 100BASE (ETY2)

– 1000BASE (ETY3)

– 10GBASE (ETY4)

– Sn/Sn-Xc/Sn-Xv

– Sm/Sm-Xv

– ODUkP/ODUk-Xv

MPLS server

(MPLS)

ATM server (VC)

oleObject108.bin

image271.emf
G.8021-Y.1341(12)_FII-1

CECE

Ethernet

802.3 PHY

MAC layer

PHY layer

EPL service

802.3 PHY

GFP-F connection

MAC frame

visibility

CMF_CSF

PEPE

SDH path (s)

n

Laser

shutdown

Link faultLink fault

Ethernet

Ethernet transport

network

MAC frame

visibility

(ETH layer)

oleObject109.bin

image272.emf
G.8021-Y.1341(12)_FII-2

CECE

Ethernet

802.3 PHY

MAC layer

PHY layer

EPL service

802.3 PHY

GFP-F connection

MAC frame

visibility

CMF_RDI

PEPE

SDH paths

n-1

Laser

shutdown

Laser

shutdown

Link faultLink fault

Ethernet

Ethernet transport

network

MAC frame

visibility

(ETH layer)

SDH path

Path RDI

Path AIS

oleObject110.bin

image273.emf
G.8021-Y.1341(12)_FII-3

CECE

Ethernet

802.3 PHY

MAC layer

PHY layer

EPL service

802.3 PHY

GFP-F connection

MAC frame

visibility

CMF_RDI

PEPE

Laser

shutdown

Link faultLink fault

Ethernet

Ethernet transport

network

MAC frame

visibility

(ETH layer)

SDH path (s)

n

oleObject111.bin

image16.emf
Waiting

D(D),P(P),DE(DE)

D(D),P(P),DE(DE)

APS(APS)

OAM=APS(

MI_MEP_MAC,

MI_MEL,

APS

)

D(OAM),P(MI_APS_Pri),

DE(0)

Waiting

D(D),P(P),DE(DE)

D(D),P(P),DE(DE)

APS(APS)

OAM=APS(

MI_MEP_MAC,

MI_MEL,

APS

)

D(OAM),P(MI_APS_Pri),

DE(0)

image274.emf
G.8021-Y.1341(12)_FV.1

state

send

receive

task

decision

oleObject112.bin

image275.png

image276.png

image277.emf
G.8021-Y.1341(12)_FVII-1

A

B

C

Port group {A, B, C}

ETH_FF

X

oleObject113.bin

image278.emf
G.8021-Y.1341(12)_FVII-2

Root

Port group

configuration

X1

X2

X3

X4

Leaf

Leaf

Leaf

oleObject114.bin

image279.emf
G.8021-Y.1341(12)_FVII-3

A

A

B

B

C

C

ETH_FF

(VID=M)

ETH_FF

(VID=N)

X

X

oleObject115.bin

image17.emf
G.8021-Y.1341(12)_F8-13

8765

5

9

432

2

1

1

876543

3

21

1

13

17

21

8765432187654

4

321

DA = 01-80-C2-00-00-3x, where x = MI_MEL

SA = MI_MEP_MAC

Ethertype = 89-02

MEL =

MI_MEL

Version = 0

Opcode = 39 (APS)

END TLV = 0

TLV offset = 400000000

APS_Specific_Information continued

APS_Specific_Information = APS

image280.emf
G.8021-Y.1341(12)_FVII-4

Root

X1

X2

X3

X4

Leaf

Leaf

Leaf

oleObject116.bin

image281.emf
G.8021-Y.1341(12)_FVIII.1

FF10FF20FF30FF40FFx

ETH_C

1...40941...4094

2030

SkSk

SoSo

Sk

Port CPort BPort A

SoSo

Port D

Sk

10

10

1020

20

2030

30

40

40

40

102040

oleObject117.bin

image282.png

image283.emf
Existing MEP 1Existing MEP 100EMFNew MEP 2EMF

CCM (MEP 1)CCM (MEP 1)Add peer MEP 2 (from EMS)

Sk_MI_PeerMEP_ID[1]New MEP:So_MI_EDM_Enable= TRUE

Exp Defect PDU (MEP 2) (duration=5min)

Sk_MI_CC_Enable= FALSESk_MI_PeerMEP_ID[1, 2]

CCM (MEP 1)CCM (MEP 2)

No LOC for MEP 2 since CCM reception is disabledSk_MI_CC_Enable= TRUE

CCM (MEP 1)CCM (MEP 2)CCM (MEP 1)CCM (MEP 1)

So_MI_EDM_Enable= FALSESo_MI_CC_Enable= TRUESk_MI_EDM_Received(MEP2, duration=5min)No defect since MEP2 is now expected

oleObject11.bin

image18.emf
G.8021-Y.1341(12)_F8-14

APS

Extract

P

P

A

P

S

DE

DE

D

D

MI_MEL

oleObject12.bin

image19.emf
G.8021-Y.1341(12)_F8-15

Waiting

D(D),P(P),DE(DE)

Etype(D)=89-02 &

MEL(D)<=MI_MEL &

OPC(D)=39?

N

Y

D(D),P(P),DE(DE)

APS(APS(D))

oleObject13.bin

image20.emf
G.8021-Y.1341(12)_F8-16

Proactive

OAM

Extraction

Proactive

OAM

Insertion

On-demand

OAM

Extraction

Proactive

OAM

Extraction

ETH_CI

D,P,DE

RI_CC_RxFCl

RI_CC_TxFCf

RI_CC_RxFCl

RI_CC_TxFCf

CCM

Reception

CCM

Generation

On-demand

OAM

Extraction

Proactive

OAM

Insertion

CCM

Reception

CCM

Generation

ETH_CI

O

A

M

O

A

M

O

A

M

O

A

M

D

a

t

a

D

a

t

a

D

a

t

a

D

a

t

a

D

a

t

a

D

a

t

a

D

a

t

a

D

a

t

a

ETH_CIETH_CI

ETH_CI

ETH_CI

MI_CC_Enable,

MI_LMC_Enable,

MI_MEG_ID,

MI_MEP_ID,

MI_CC_Period,

MI_CC_Pri

MI_MEL,

MI_MEG_ID,

MI_PeerMEP_ID[],

MI_CC_Period,

MI_CC_Pri,

MI_Get_SvdCCM

MI_CC_Enable,

MI_LMC_Enable,

MI_MEG_ID,

MI_MEP_ID,

MI_CC_Period,

MI_CC_Pri

MI_CC_PriMI_CC_Pri

RI_CC_RDI

MI_CC_PriMI_CC_Pri

RI_CC_RDI

MI_SvdCCM

ETH_CIETH_CI

D,P,DE

MEPMIPMEP

D,P,DE

D,P,DE

RxFCl

CounterCounter

CounterCounter

TxFCl

RxFCl

TxFCl

RDI[i]

RDI[i]

EventsEvents

LMpLMp

M

I

_

L

M

C

_

E

n

a

b

l

e

M

I

_

L

M

C

_

E

n

a

b

l

e

CountersCounters

RxFCb,

TxFCb

RxFCb,

TxFCb

MI_MEL,

MI_MEG_ID,

MI_PeerMEP_ID[],

MI_CC_Period,

MI_CC_Pri,

MI_Get_SvdCCM

MI_SvdCCM

oleObject14.bin

image21.emf
Enabled

Timer

D(OAM), P(MI_CC_Pri),

DE(0)

Disabled

MI_CC_Enable

!MI_CC_Enable

Set(MI_CC_Period, Timer)

Stop(Timer)

Set(MI_CC_Period, Timer)

MI_LMC_Enable?

OAM=CCM(

MI_CC_MEG,

MI_CC_MEP,

MI_CC_Period,

RI_CC_RDI,

,

RI_CC_RxFCl,

)

OAM=CCM(

MI_CC_MEG,

MI_CC_MEP,

MI_CC_Period,

RI_CC_RDI,

0,

0,

0

)

N

Y

TxFCl

RI_CC_TxFCf

image22.emf
G.8021-Y.1341(12)_F8-18

MEP ID = MI_MEP_ID

MEG ID = MI_MEG_ID

8765

5

9

432

2

1

1

876543

3

21

1

13

17

21

25

29

33

37

41

45

49

53

57

61

65

73

77

81

85

89

93

8765432187654

4

321

DA = 01-80-C2-00-00-3x, where x is changed to MI_MEL by the OAM MEP insertion process

SA = Undefined

Ethertype = 89-02MEL =

Undef

Version = 0

Opcode = 01 (CCM)

Sequence number = 0

END TLV (0)

TLV offset = 70MI_CC

_Period

0000R

D

I

000

Sequence number continued

TxFCf=TxFCl, if MI_LMC_Enable else 0

RxFCb=RI_CC_RxFCl, if MI_LMC_Enable else 0

TxFCb=RI_CC_TxFCf, if MI_LMC_Enable else 0

Reserved (0)

oleObject15.bin

image23.emf
WaitingD(OAM), P(P), DE(DE)MEL(OAM)==MI_MELunexpMEL(Period(OAM))MEG(OAM)==MI_MEG_IDunexpMEG(Period(OAM))MEP(OAM) in MI_PeerMEP_ID[]unexpMEP(Period(OAM))Period(OAM)==MI_CC_PeriodunexpPeriod(Period(OAM))P==MI_CC_PriunexpPriority(Periiod(OAM))RxFCl(RxFCl)TxFCf(TxFCf(OAM))TxFCb(TxFCb(OAM))RxFCb(RxFCb(OAM))NNNNNYYYYYexpCCM[Index(OAM.MEP)]SvdCCM:=(D,P,DE)SvdCCM:=(D,P,DE)MI_Get_SvdCCmMI_SvdCCM(SvdCCM)Period(OAM)=000YNRDI[Index(MEP(OAM))]=RDI(OAM)RI_CC_RxFCl(RxFCl)RI_CC_TxFCf(TxFCf(OAM))

image24.emf
D(D),P(P),DE

(DE)

D(D),P(P),DE

(DE)

P==MI_CC_Pri

Y

N

TxFCl++

& DE==<false>

Waiting

image25.emf
D(D),P(P),DE

(DE)

D(D),P(P),DE

(DE)

N

P==MI_CC_Pri

& DE==<false>

Waiting

Y

RxFCl++

image26.emf
Timer

Enabled

nN_TF(N_TF)

nN_LF(N_LF)

nF_TF(F_TF)

nF_LF(F_LF)

N_TF=0

N_LF=0

F_TF=0

F_LF=0

MI_LMC_Enable

Disabled

!MI_LMC_Enable

Set(1s, Timer)

Set(1s, Timer)

TxFCf(TxFCf)

RxFCb(RxFCb)

TxFCb(TxFCb)

RxFCl(RxFCl)

N_TF=N_LF=0

F_TF=F_LF=0

TxFCf_svd=TxFCb_svd=0

RxFCb_svd=RxFCl_svd=0

saved=false

IF saved THEN

{

}

TxFCb_svd=TxFCbTxFCb_svd=TxFCb

TxFCf_svd=TxFCf

RxFCf_svd=RxFCf

TxFCf_svd=TxFCf

RxFCb_svd=RxFCb

RxFCl_svd=RxFCl

saved=true

N_TF+=|TxFCf-TxFCf_svd|

N_LF+=|TxFCf-TxFCf_svd| -|RxFCl-RxFCl_svd|

F_TF+=|TxFCb-TxFCb_svd|

F_LF+=|TxFCb-TxFCb_svd| -|RxFCb-RxFCb_svd|

image27.emf
G.8021-Y.1341(12)_F8-23

On-demand OAM

Insertion

LBM

Generation

LBR

Reception

 LBM MIP

Reception

LBR

Generation

MEPMIPMEP

ETH_CI

D, P, DE

LB

Control

LBM(DA, P, DE, TLV, TID)

MI_LB_Discover(P)

MI_LB_Discover_Result(MACs)

MI_LB_Series(DA, DE, P, N, Length, Period)

MI_LB_Series_Result(REC, ERR, OO)

MI_LB_Test(DA, DE, P, Pattern, Length, Period)

MI_LB_Test_Terminate

MI_LB_Test_Result(Sent, REC, CRC, BER, OO)

RI_LBR(SA, rTLV, TID)

MI_MEP_MAC

ETH_CI

ETH_CI

ETH_CI

ETH_CI

M

I

_

M

I

P

_

M

A

C

D,P,DE

On-demand OAM

Extraction

On-demand OAM

Extraction

M

I

_

M

E

P

_

M

A

C

On-demand OAM

Insertion

D, P, DE

D,P,DED, P, DE

ETH_CI

ETH_CIETH_CI

On-demand OAM

Extraction

 LBM MEP

Reception

RI_LBM(

D, P, DE)

On-demand OAM

Insertion

LBR

Generation

RI_LBM(

D, P, DE)

D, P, DE

oleObject16.bin

image28.emf
Init

MI_LB_Discover(

P)

MI_LB_Series(

DA,DE,P, N, Length, Period)

MI_LB_Test(

DA,DE,P,Pattern, Length, Period)

DiscoverDiscoverSeriesSeriesTestTest

image29.emf
Discover

LBM(01-80-C2-00-00-3x,

P,0,Null, TID)

Waiting Discover

RI_LBR(SA,rTLV,TID)

MACs=MACs+SA

set Timer 5

TID++

MACs={}

Timer

MI_LB_Discover_Result

(MACs)

InitInit

image30.emf
Series

set(0, TxTimer)

OLD_TID=Undef

REC=0

OO=0

Waiting Series

TxTimer

LBM(DA,P,DE,TLV, TID)

TID++

IF N>1

THEN

set(Period, TxTimer)

N-

ELSE

set(5s, Timer)

RI_LBR(SA,rTLV,TID)

REC++

IF OLD_TID!=Undef

THEN

IF TID!=OLD_TID+1

THEN OO++

OLD_TID=TID

Timer

MI_LB_Series_Result(

REC,OO)

-

TLV=Generate(Length)

InitInit

image31.emf
G.8021-Y.1341(12)_F8-27

Init

Test

set(0, TxTimer)

OLD_TID=Undef

Sent=0

REC=0

CRC=0

BER=0

OO=0

Waiting Test

TxTimer

LBM(DA,P,DE,TLV,TID)

TLV=Generate(Pattern,Length)

RI_LBR(SA,rTLV,TID)

REC++

IF (Pattern=1 or Pattern=3) &&

 (CheckCRC(TLV)==Fail)

THEN CRC++

IF Check(Pattern,TLV)==FAIL

THEN BER++

IF OLD_TID!=Undef

THEN

 IF TID!=OLD_TID+1

 THEN OO++

OLD_TID=TID

MI_LB_TEST_Terminate

MI_LB_Test_Result(

Sent,REC,CRC,BER,OO)

Sent++

TID++

Set(Period,TxTimer)

Timer

set(5s, Timer)

oleObject17.bin

image32.emf
LBM(DA,P,DE,TLV,TID)

OAM=LBM(

DA,TLV,TID)

D(OAM), P(P),

DE(DE)

image33.emf
G.8021-Y.1341(12)_F8-29

last

Flags = 0

8765

5

9

432

2

1

1

876543

3

21

1

13

17

21

25

29

33

:

8765432187654

4

321

DA = LBM(DA)

SA = Undefined

Ethertype = 89-02

MEL =

Undef

Version = 0

Opcode = 03 (LBM)

TLV = LBM(TLV)

TLV offset = 4

Transaction ID continued

Transaction ID = LBM(TID)

END TLV (0)

oleObject18.bin

image34.emf
DA(D)=MI_MIP_MAC

RI_LBM(D,P,DE)

D(D),P(P),DE(DE)

Y

N

image35.emf
DA(D)=MI_MEP_MAC

RI_LBM(D,P,DE)

D(D),P(P),DE(DE)

DA(D)=Multicast

Address?

Send_MC_LBR(

D,P,DE)

Waiting

Timer

RI_LBM(D,P,DE)

Process Send_MC_LBR(D,P,DE)

Wait_Time=Random(0..1s)

Set(Wait_Time,Timer)

Yes

No

YesNo

image36.emf
RI_LBM(D,P,DE)

RI_LBM(D,P,DE)

DA(D)=SA(D)

OPC(D)=02

image37.emf
G.8021-Y.1341(12)_F8-33

last

Flags =

Flags(RI_LBM(D))

8765

5

9

432

2

1

1

876543

3

21

1

13

17

21

25

29

33

:

8765432187654

4

321

DA = SA(RI_LBM(D))

SA = Undefined

Ethertype = 89-02

MEL =

Undef

Opcode = 02 (LBR)

TLV = TLV(RI_LBM(D))

TLV offset =

TLV offset(RI_LBM(D))

Transaction ID continued

Transaction ID =

Transaction ID(RI_LBM(D))

END TLV = END

TLV(RI_LBM(D))

Version = Version

(RI_LBM(D))

oleObject19.bin

image38.emf
DA(D)=MI_MEP_MAC

D(D),P(P),DE(DE)

SA=SA(D)

TID=TID(D)

TLV=TLV(D)

RI_LBR(SA,TID,TLV)

YesNo

image39.emf
LMRGenerationDataDataCounterTxFCl[]On-demandOAM ExtractionOn-demandOAM InsertionOn-demandOAM InsertionOn-demandOAM ExtractionOn-demandOAM InsertionOn-demandOAM ExtractionMEPMIPMEPETH_CIETH_CIETH_CIETH_CIETH_CIETH_CIETH_CIETH_CID,P,DED,P,DERI_LMM(D,P,DE)MI_MEP_MACLMRReceptionLMRLMRMI_MEP_MACD,P,DED,P,DELMControlLMM(DA,P,0)On-demandRI_LMR (TxFCf,RxFCf,TxFCb,RxFCl)rSA,LMMGenerationLMMDataDataCounterTxFCl[]LMMReceptionLMMDataDataCounterRxFCl[]DataDataCounterRxFCl[]MI_LM_Start(DA,P,Period)MI_LM_TerminateMI_LM_Result(N_TF, N_LF, F_TF, F_LF)MI_LM_Intermediate_Request

image40.emf
G.8021-Y.1341(12)_F8-36

Proactive

OAM

Extraction

Proactive

OAM

Insertion

On-demand

OAM

Extraction

Proactive

OAM

Extraction

ETH_CI

RxFCl[]

RI_LMM(D,P,DE)

Proactive

LM

Control

RI_LMR

(rSA, TxFCf, RxFCf,

TxFCb, RxFCI)

MI_LM_Enable

MI_LM_MAC_DA

MI_LM_Period

MI_LM_Pri

On-demand

OAM

Insertion

Proactive

OAM

Insertion

LMR

Reception

LMM

Generation

LMM

Reception

LMR

Generation

ETH_CI

LMR

LMMLMM

LMR

D

a

t

a

D

a

t

a

D

a

t

a

D

a

t

a

D

a

t

a

D

a

t

a

D

a

t

a

D

a

t

a

ETH_CIETH_CI

ETH_CI

ETH_CI

ETH_CIETH_CI

TxFCl[]

MEPMIPMEP

RxFCl[]

TxFCl[]

MI_MEP_MAC

MI_MEP_MAC

D,P,DE

CounterCounter

CounterCounter

D,P,DE

D, P, DED,P,DE

LMM (DA, P, 1)

LM_Result

oleObject20.bin

image41.emf
InitMI_LM_Start(DA,P,Period)RunningTimerLMM(DA,P)IF saved THEN{}TxFCb_svd=TxFCbTxFCb_svd=TxFCbTxFCf_svd=TxFCfRxFCf_svd=RxFCfTxFCf_svd=TxFCfRxFCf_svd=RxFCfRxFCl_svd=RxFClsaved=trueSet(0,Timer)Set(Period,Timer)N_TF+=|TxFCb-TxFCb_svd|N_LF+=|TxFCb-TxFCb_svd| -|RxFCl-RxFCl_svd|F_TF+=|TxFCf-TxFCf_svd|F_LF+=|TxFCf-TxFCf_svd| -|RxFCf-RxFCf_svd|RI_LMR(rSA,TxFCf,,RxFCf,TxFCb,RxFCl)MI_LM_TerminateMI_LM_Result(N_TF,N_LF, F_TF, F_LF),0N_TF=N_LF=0F_TF=F_LF=0TxFCf_svd=TxFCb_svd=0RxFCf_svd=RxFCl_svd=0saved=falseMI_LM_Intermediate_RequestMI_LM_Result(N_TF,N_LF, F_TF, F_LF)

image42.emf
Disabled

MI_LML_Enable

Enabled

Timer

LMM(MI_LM_MAC_DA,

Set(0,Timer)

Set(MI_LM_Period,Timer)

!MI_LML_Enable

MI_LM_Pri, 1)

TxFCb_svd=TxFCbTxFCb_svd=TxFCb

TxFCf_svd=TxFCf

RxFCf_svd=RxFCf

TxFCf_svd=TxFCf

RxFCf_svd=RxFCf

RxFCl_svd=RxFCl

saved=true

RI_LM_Result(

N_TF,N_LF, F_TF, F_LF)

N_TF= |TxFCb-TxFCb_svd|

N_LF= |TxFCb-TxFCb_svd| -|RxFCl-RxFCl_svd|

F_TF= |TxFCf-TxFCf_svd|

F_LF= |TxFCf-TxFCf_svd| -|RxFCf-RxFCf_svd|

RI_LMR(rSA,TxFCf,

RxFCf,TxFCb,RxFCl)

N_TF=N_LF=0

F_TF=F_LF=0

TxFCf_svd=TxFCb_svd=0

RxFCf_svd=RxFCl_svd=0

saved=false

Y

N

saved

Enabled

Enabled

image43.emf
LMM(DA,P)

LMM.D(OAM),

LMM.P(P),

LMM.DE(0)

OAM=LMM(

DA,

TxFC[P]

)

,Type

Type,

WaitingWaiting

image44.emf
LMM_D(OAM),

LMM_P(P),

LMM_DE(DE)

RI_LMM(OAM,P,DE)

DA(OAM)=MI_MEP_MAC or

DA(OAM)=MC Class1

RxFCf(OAM)=RxFC[P]

Y

N

Waiting

image45.emf
RI_LMM(OAM,P,DE)

LMR.D(OAM),

LMR.P(P),

LMR.DE(DE)

DA(OAM)=SA(OAM)

SA(OAM)=Undefined

OPC(OAM)=LMR

TxFCb=TxFC[P]

Waiting

image46.emf
G.8021-Y.1341(12)_F8-43

Flags =

Flags(RI_LMM(D))

8765

5

9

432

2

1

1

876543

3

21

1

13

17

21

25

29

8765432187654

4

321

SA = Undefined

Ethertype = 89-02

MEL =

Undef

Version = version

(RI_LMM(D))

Opcode = 42 (LMR)

TLV offset =

TLV offset(RI_LMM(D))

END TLV =

END TLV(RI_LMM(D))

TxFCf continued

RxFCf continued

RxFCf = RxFCf(RI_LMM(D))

TxFCf = TxFCf(RI_LMM(D))

DA = SA(RI_LMM(D))

TxFCb continued

TxFCb = Tx counter

oleObject21.bin

image47.emf
LMR_D(OAM),

LMR_P(P),

LMR_DE(DE)

DA(OAM)=MI_MEP_MAC

Y

N

RI_LMR (

rSA(OAM),

TxFCf(OAM),

RxFCf(OAM),

TxFCb(OAM),

RxFC[P])

Waiting

image48.emf
Data.D(D),

Data.P(P),

Data.DE(DE)

Data.D(D),

Data.P(P),

Data.DE(DE)

Y

N

DE==<false>

Waiting

YY

TxFCl[P]++

Etype(D)==89-02 & MEL(D)==MI_MEL &

(OPC(D)==LMM || OPC(D)==LMR ||

OPC(D)==DMM || OPC(D)==DMR ||

OPC(D)==1DM ||

OPC(D)==SLM || OPC(D)==SLR ||

OPC(D)==1SL)

N

TxFCl[P]++

Etype(D)==89-02 & MEL(D)==MI_MEL &

(OPC(D)==LMM || OPC(D)==LMR ||

OPC(D)==DMM || OPC(D)==DMR ||

OPC(D)==1DM ||

OPC(D)==SLM || OPC(D)==SLR ||

OPC(D)==1SL)

N

image49.emf
Data.D(D),

Data.P(P),

Data.DE(DE)

Data.D(D),

Data.P(P),

Data.DE(DE)

Y

N

DE==<false>

Waiting

Y

RxFCl[P]++

Etype(D)==89-02 & MEL(D)==MI_MEL &

(OPC(D)==LMM || OPC(D)==LMR ||

OPC(D)==DMM || OPC(D)==DMR ||

OPC(D)==1DM ||

OPC(D)==SLM || OPC(D)==SLR ||

OPC(D)==1SL)

N

image50.emf
On-demandOAMExtractionOn-demandOAM InsertionDMMGenerationDMRReceptionOn-demandOAMInsertionOn-demandOAM ExtractionOn-demandOAMInsertionOn-demandOAMExtractionDMM ReceptionDMR GenerationMEPMIPMEPETH_CIETH_CIETH_CIETH_CIETH_CIETH_CIETH_CIETH_CID,P,DED,P,DERI_DMM(D,P,DE)D,P,DED,P,DEDM ControlMI_DM_Start(DA,P,Test ID, Length, Period)MI_DM_TerminateDMM(DA,P,0,Test ID TLV,TLV)RI_DMR(TxTimeStampf,RxTimeStampf,TxTimeStampb,RxTimeb,rTestID)MI_MEP_MACMI_MEP_MACrSA,MI_DM_Result(count, B_FD[], F_FD[] ,N_FD[])On-demandMI_DM_Intermediate_Request

image51.emf
Extraction

Insertion

DMM

Generation

DMR

Reception

On-demandOAM

Insertion

On-demandOAM

Extraction

Insertion

Proactive OAM

Extraction

DMM Reception

DMR Generation

MEP MIP MEP

ETH_CI ETH_CI ETH_CI ETH_CI

ETH_CIETH_CIETH_CIETH_CI

D,P,DE

D,P,DE

RI_DMM(D,P,DE)

D,P,DE

D,P,DE

DM

Control

MI_DM_Enable

DMM(DA,P,1,Test ID TLV,TLV)

RI_DMR(

TxTimeStampf,

RxTimeStampf,

TxTimeStampb,

RxTimeb,

MI_MEP_MAC

MI_MEP_MAC

rSA,

Proactive OAM

Proactive OAM

Proactive OAM

MI_DM_Period

MI_DM_Pri

DM_Result

Proactive

MI_DM_MAC_DA

MI_DM_Length

MI_DM_Test_ID

rTestID)

image52.emf
InitMI_DM_Intermediate_RequestRunningTimerDMM(DA,P,0,Test ID TLV,TLV)RunningRI_DMR(TxTimeStampf,RxTimeStampf,TxTimeStampb,RxTimeb,rTestID)B_FD[count]=(RxTimeb –TxTimeStampf)RunningRunningSet(0,Timer)Set(Period,Timer)–(TxTimeStampb –RxTimeStampf)YNrSA,rSA=DA?MI_DM_Result(count, B_FD[], F_FD[] ,N_FD[])F_FD[count] = RxTimeStampf –TxTimeStampf N_FD[count] = RxTimeb –TxTimeStampbYNTxTimeStampb=RxTimeStampf=0?F_FD[count] = InvalidN_FD[count] = Invalid

count=0

count++MI_DM_Start(DA,P,Test ID,Length,Period)NYTestID!=NULL and rTestID!=TestIDTLV=Generate(Length)Test ID TLV=GenID (Test ID)MI_DM_TerminateInitMI_DM_Result(count, B_FD[], F_FD[] ,N_FD[])

image53.emf
Disabled

MI_DM_Enable

Enabled

Timer

DMM(MI_DM_MAC_DA,

B_FD=(RxTimeb–TxTimeStampf)

Set(0,Timer)

Set(MI_DM_Period,Timer)

DM_Result(B_FD, F_FD, N_FD)

–(TxTimeStampb–RxTimeStampf)

Y

N

rSA=DA?

F_FD = RxTimeStampf–TxTimeStampf

N_FD = RxTimeb–TxTimeStampb

Y

N

TxTimeStampb=

RxTimeStampf=0?

F_FD= Invalid

N_FD = Invalid

!MI_DM_Enable

TLV=Generate(

MI_DM_Length)

MI_DM_Pri,

1,

Test ID TLV,

TLV)

N

Y

MI_DM_TestID!=NULL and

rTestID!=MI_DM_TestID

RI_DMR(

TxTimeStampf,

RxTimeStampf,

TxTimeStampb,

RxTimeb,

rTestID)

rSA,

Test ID TLV=GenID(

MI_DM_TestID)

Enabled

Enabled

image54.emf
DMM(DA,P

OAM=DMM(DA,P,

Type,TestID TLV,TLV)

D(OAM), P(P),

DE(0)

TxTimeStampf(OAM)=

Local Time

Type,TestID TLV,TLV)

image55.emf
G.8021-Y.1341(12)_F8-53

D(OAM),

P(P),

DE(DE)

RI_DMM(OAM, P, DE)

DA(OAM)=MI_MEP_MAC or

DA(OAM)=MC Class1

RxTimeStampf(OAM)=

Local_Time

Y

N

Waiting

oleObject22.bin

image56.emf
G.8021-Y.1341(12)_F8-54

RI_DMM(OAM, P, DE)

D(OAM),

D.P(P),

D.DE(DE)

DA(OAM)=SA(OAM)

SA(OAM)=Undefined

OPC(OAM)=DMR

TxTimeStampb(OAM)=Local Time

Waiting

oleObject23.bin

image57.emf
D(OAM),

P(P),

DE(DE)

RI_DMR(

TxTimeStampf(OAM),

Local Time,

Test ID(OAM))

DA(OAM)=MI_MEP_MAC

Y

N

Waiting

RxTimeStampf(OAM),

TxTimeStampb(OAM),

SA(OAM),

image58.emf
Insertion1DMGenerationOn-demandOAMExtractionExtraction1DMReceptionMEPMIPMEPETH_CIETH_CIETH_CIETH_CID,P,DED,P,DE1DM Control_SoMI_1DM_Start(DA,P,Test ID,Length,Period)MI_1DM_Terminate1DM(DA,P,0,Test ID TLV,TLV)1DM Control_SkMI_1DM_Start(SA,P,TestID)MI_MEP_MACMI_1DM_Result(count, N_FD[])On-demand OAMOn-demand OAMMI_1DM_TerminateOn-demandOn-demand 1DM(rSA,P,TxTimeStampf,RxTimef,rTestID)MI_1DM_Intermediate_Request

image59.emf
Insertion1DMGenerationOn-demandOAMExtractionExtraction1DMReceptionMEPMIPMEPETH_CIETH_CIETH_CIETH_CID,P,DED,P,DE1DM Control_So1DM(DA,P,1,Test ID TLV,TLV)1DM Control_Sk1DM(rSA,P,TxTimeStampf,RxTimef,rTestID)MI_1DM_MAC_SAMI_1DM_EnableMI_MEP_MAC1DM_ResultProactive OAMProactive OAMMI_1DM_EnableMI_1DM_PeriodMI_1DM_PriMI_1DM_MAC_DAMI_1DM_LengthProactiveProactiveMI_1DM_TestIDMI_1DM_TestIDMI_1DM_Pri

image60.emf
Init

MI_1DM_Start(DA

MI_1DM_Terminate

Running

Timer

Set(0,Timer)

Set(Period,Timer)

Init

MI_1DM_Start(

DA,P,TestID,Length,Period)

MI_1DM_Terminate

Running

Timer

Set(0,Timer)

Set(Period,Timer)

TLV=Generate(Length)

Test ID TLV=GenID(Test ID)

1DM(DA,P)1DM(DA,P

Test ID TLV,TLV)

,0,

image61.emf
Init

MI_1DM_Start(DA

MI_1DM_Terminate

Running

Timer

Set(0,Timer)

Disabled

MI_1DM_Enable

!MI_1DM_Enable

Enabled

Timer

Set(0,Timer)

TLV=Generate(

MI_1DM_Length)

1DM(MI_1DM_MAC_DA,

Set(MI_1DM_Period,Timer)

MI_1DM_Pri,

1,

TLV)

Test ID TLV,

Test ID TLV=GenID(

MI_1DM_Test ID)

image62.emf
1DM(DA,P,

Type,TestID TLV,TLV)

Waiting

OAM=1DM(

DA,

P,

LocalTime,

)

D(OAM), P(P), DE(0)

Type,

TLV

Test ID TLV,

