Urgency Based Scheduler

IEEE802.1 Motion Preparation

Johannes Specht johannes.specht AT uni-due.de Univ. of Duisburg-Essen

Soheil Samii soheil.samii AT gm.com

General Motors

Purpose of this Slide Set

- UBS is a real-time traffic class proposed for standardization in IEEE 802.1TSN
- Complements existing TSN Quality of Service projects (802.1Qbv, 802.1Qci, 802.1Qch) with properties not yet covered
- The technical core concept was widely developed outside of an official IEEE 802.1 project, the latest concept demonstrating technical feasibility was presented in May 2015

(see http://www.ieee802.org/1/files/public/docs2015/new-tsn-specht-ubs-queues-0521-v0.pdf)

• This slide set serves for preparation of a motion in 802.1 to draft a PAR for standardization of UBS as a result of the discussion in September 2015 (see http://www.ieee802.org/1/files/public/docs2015/new-tsn-specht-ubs-comparison-and-steps-0915-v01.pdf)

Properties of UBS

Real-Time Capability/QoS

- QoS in the magnitude of IETF IntServ, but at significant lower implementation complexity
- Low End-to-End delay guarantees, also in unfriendly networks, faster than CBSA with Qci
- Applicable for Periodic-, Rate-Constrained and Event-Driven Streams at close-to-zero bandwidth overhead
- Formal proofs and simulations available

Reliability

- Independent of Clock Synchronization, avoids Common Cause Failures of TDM alternatives
- Integrated permanent protection against babbling idiots/malicious traffic at high accuracy, avoids "safety margins" which would decrease effective network utilization

Flexibility/Usability

- Talker driven transmission times, no application synchronization to network time required
- No setup and agreement on TDM parameters (cycle durations, time slots) required
- Simple delay analysis per hop, enables isolated analysis for partial networks
- Optional end-to-end delay guarantee tweaks by prioritization

Scalability

- The initial proposal in 2013 required per flow queues
- The May 2015 update massively reduced the number of queues to flow independent number
- Supporting the number of consistent streams per port can be adjusted via profiles (e.g. Automotive, Industrial Control, Aerospace)

See <u>http://www.ieee802.org/1/files/public/docs2015/new-tsn-specht-ubs-comparison-and-steps-0915-v01.pdf</u> for further details

Supporters

Abt, Werner(HMS)

Boiger, Christian(b-plus)

Ehrich, Heiko(TUEV Nord)

Hogenmueller, Thomas(Robert Bosch GmbH)

Jochim, Markus(General Motors)

Kehrer, Stephan(Hirschmann Automation and Control)

Kleineberg, Oliver(Hirschmann Automation and Control)

Osella, Massimo(General Motors)

Tretter, Albert(Siemens AG)

Woods, Jordon(Innovasic)

Zinner, Helge(Continental)

Primary Target Market

Automotive

- Primarily driven by Automotive needs for a Flexible Control Traffic Class See http://avnu.org/wp-content/uploads/2014/05/AVnu-AAA2C_Automotive-Requirements-for-a-Flexible-Control-Traffic-Class_Markus-Jochim-Johannes-Specht.pdf
- Large Market Volume See <u>http://www.ieee802.org/3/RTPGE/public/mar12/CFI_01_0312.pdf</u>
- Applicable in Active Safety and Automated Driving, Motion Control, Infotainment Domains and Ethernet Backbone Systems, potentially others
- Supports legacy low bandwidth real-time traffic (control loops, sensors, actuators), co-existent with new high bandwidth real-time traffic (Cameras, Radars, LiDARs, ...)
- Enables modularized network architecture design involving different parties (OEM Divisions, TIER1-, TIER2-suppliers)

See <u>http://www.ieee802.org/1/files/public/docs2014/new-tsn-specht-ubs-automotive-1114-v01.pdf</u>

Potential Target Markets

Industrial Networks

- Could be used in open systems for flexible applications
- Beneficial UBS properties
 - Asynchronous/non-TDM operation supports arbitrary mixed transmission periods
 - Not tied to particular clock sync domains
 - End-to-End latency can be re-computed easily during re-configuration
 - Non-prioritized or class-based priority setups maintain several plug-and-play characteristics from AVB Gen1
- See <u>http://www.ieee802.org/1/files/public/docs2014/cb-kiessling-Industrial-networks-0514-v01.pdf</u>

Aerospace

- Might extend the communication landscape in reliable avionics applications
- Beneficial UBS properties
 - Asynchronous/non-TDM operation provides high independence between components (simplifies safety demonstrations)
 - Protection against babbling idiots provides traffic enforcement
- See <u>http://www.ieee802.org/1/files/public/docs2015/TSN-Schneele-AFDX-0515-v01.pdf</u>