

THOUGHTS ON TSN SECURITY

Contributed by

Philippe Klein, PhD (philippe@broadcom.com)

METWORK SECURITY PROTOCOLS

Layer 4..7

Layer 3

Layer 2

SSL/ TLS,...

IPsec

MACsec

Description	Complexity	Performance
Application layer encryptionClient server mode	 Security built into the application Phased deployment difficult Client initiated Uses TCP connection oriented protocol 	 Assumes medium to low performance
Layer 3 "Network" securityEnd to End "tunnels"Peer to peer Protocol	 Complex protocol suite, many options Key management using IKE protocol and PKI for authentication 	Ranges from low to highSignificant header expansion
Layer 2 securityHop by hopPeer to peer protocol	 Relatively simple to implement Phased deployment possible Key management (MKA via 802.1X-2010) 	Designed for high throughputMinimal header expansion

MACsec SCOPE

- IEEE Std 802.1AE (aka MACsec) Media Access Control (MAC) Security
- "MAC Security (MACsec) allows authorized systems that attach to and interconnect LANs in a network to maintain confidentiality of transmitted data and to take measures against frames transmitted or modified by unauthorized devices."
- Relationship between IEEE Std 802.1AE and other IEEE 802 standards
 - IEEE Std 802.1X specifies Port-based Network Access Control, and provides a means of authenticating and authorizing devices attached to a LAN.

WHAT IS MACsec?

Hop-to-hop Layer 2 Security

- Protects communication between trusted components of the network infrastructure
 - All frames exchanged between the two elements (called SecY) are authenticated and optionally encrypted
- Controls access to the network when combined with 802.1X
- Provides source authentication, integrity, and confidentiality using strong crypto (AES-GCM)

Secure LANs from attacks of:

- Wiretapping (confidentiality)
- Impersonation (authentication)
- Masquerading (MAC address spoofing)
- Man-in-the-Middle attacks
- Replay attack (authentication + anti-replay counter)
- Denial-of-Service (DOS) attacks

Does not:

- Protect against attacks of trusted components themselves
- Provide end-to-end security
- Replace 802.11i

SECURE MAC SERVICE RELATIONSHIP

Connectivity Associations (CA)

Set of stations that can securely communicate with each other using Secure Channels

Secure Channels (SC)

 An uni-directional channel identified by an SC Identifier in the packet header used to communicate between stations belonging to the same CA

Security Association (SA)

 An active key associated for each SC. Standard requires 2 active SAs per SC to support noninterrupting key swap

Usage Scenarios

- Point to Point LANs
- Shared Media LANs
- Provider Bridged Networks

2_STATION SC

Figure 7-1—Two stations connected by a point-to-point LAN

Figure 7-3—Secure communication between two stations

Figure 7-2—Two stations in a CA created by MACsec Key Agreement

3_STATION SC

Figure 7-4—Four stations attached to a shared media LAN

Figure 7-6—Secure communication between three stations

MACsec - ENCRYPTION

SecY – MAC Security Entity

SecY ARCHITECTURE & OPERATION

MACsec ENCRYPTION

Cypher Suite: 128 or 256 AES-GCM (Galois/Counter Mode)

MACsec - AUTHENTICATION

MACsec FRAME CRYPTOGRAPHIC PROTECTION

- 802.X authentication is used to authenticate end stations
- MKA (MACsec Key Agreement) Protocol is used to exchange session keys based on CA Key

IEEE Std 802.1X - PORT BASED NETWORK ACCESS CONTROL

802.1X EAP (EXTENSIBLE AUTHENTICATION PROTOCOL)

- Define a frameset to allow different Authentication METHODs
 - Pre shared keys,
 - Certificates,
 - Passwords,
 - SIM credentials,
 - Biometrics,...
- AEPol/AEPoW: define container messages to carry the authentication protocol over wired and wireless links

IEEE 802.1X MKA KEY DISTRIBUTION

CAK Secure Connectivity Association Key

CK Integrity Check Value Key

KEK Key Encrypting Key

SAK Secure Association Key

Figure 6-4—Use of pairwise CAKs to distribute group SAKs allows implementation of a policy of perfect forward security

MACsec - CHALLENGES

END TO END FOR SERVICE PROVIDERS

Examples of End to End Hybrid Networks for Service Providers

HYBRID HOME NETWORK CONNECTIVITY

NATIVE L2 SECURITY SCHEMES

Technology	Authentication	Encryption	Comments
Ethernet / IEEE 802.3	EAP	AES-128 GCM	IEEE 802.1AE (MACsec), 802.1X
MoCA	Proprietary (dynamic) PSKs	DES AES-128 CBC	The whole MPDU is encrypted in the PHY (including the Eth MAC header)
HomePlug AV2 / IEEE 1901	Proprietary (dynamic) PSKs	AES-128 CBC	
WiFi / IEEE 802.11	EAP	AES-128 CCMP	802.1X, AES-GCM for 802.11ad
DoCSIS	Proprietary PSK	DES AES-128 CBC	http://www.cablelabs.com/specification/docsis-3-1-security-specification DPoE Security and Certificate Specification includes EAP http://www.cablelabs.com/wp-content/uploads/specdocs/DPoE-SP- SECv1.0-I05-140327.pdf
EPON	EAP	AES-128 GCM	IEEE 802.1AE (MACsec) , 802.1X
ADSL	PAP/CHAP	none	L3 encryption

EAP = Extendable Authentication Protocol (RFC 3748)

GCM = Galois/Counter Mode

PSK = Private Shared Key

DPoE = DOCSIS Provisioning of EPON Specifications

DEVIL'S ADVOCATE (NO FLAME PLEEEASE)

- Hop to hop "limitation"
 - Packet need to decrypted to access the inner VLAN tag
 - Key "explosion" Let be realistic Key management was and still is the main roadblock to security deployment...
- 802.1AEcg (aims to Provider bridges)
 - VLAN is copied outside the encrypted fields
- What if:
 - Same key could now be OPTIONALLY reused if the Authentication Method and credentials are the same on 2 links...
 - If the SA is the same on Ingress and Egress, could the encrypted packets be forwarded as is?
 - Better performance ?
 - Better transit protection ?
 - Retain network synchronization accuracy ?
 - Optional link or path authentication

Notice that this scheme was already presented at the Ethernet Summit in 2014 by Vitesse Semiconductors

Q: What about IEEE 1588 Annex K?

MY (HUMBLE) CONCLUSIONS

- IEEE 802.1AE (MACsec) is a robust solution for network wide security at the link layer but ...
- More effort should be made to address the "low end" (SMB ? / SOHO / Home) market
- Hard to promote as many "customers" are foreseeing the need for security
- Seen as expensive and cumbersome
- Must be actively promoted beyond Ethernet Core Networks
- MUST BE INTEGRATED UP FRONT IN ARCHITECTURE DESIGN

Thank you