
Discussion of New State Machines and
Specifications for Transport of Time
Sync in 802.1AS using 802.11 FTM

Geoffrey M. Garner
Consultant

gmgarner@alum.mit.edu

Carlos Aldana
Qualcomm

caldana@qca.qualcomm.com

IEEE 802.1 TSN TG
2016.05.14

Introduction

This presentation addresses comments #77 and #79 against 802.1AS-
Rev/D2.0

For comment #77, proposed requirements are
presented
For comment #79, proposed master and slave state
machines are presented (with some related
explanatory material)

May 2016 IEEE 802.1 TSN 2

Comment #77 – 1

Comment 77 pertains to subclause 12.3, Determination of TM and FTM
capability, and concerned whether a time-aware system compliant with
802.1AS-Rev shall support TM, or if it is sufficient to support FTM only. It was
decided (see the D2.0 final comment resolution):
If a time-aware system, where numberPorts = 1 and the single gPTP port is
associated with an 802.11 interface, then to be asCapable it shall support either:

• a) TM only, or
• b) FTM only, or
• c) both TM and FTM.

If a time-aware system, where numberPorts > 1 and at least one gPTP port is
associated with an 802.11 interface, then to be asCapable it shall support either:

• a) TM only, or
• b) both TM and FTM.

In addition, bits (of the variable tmFtmSupport) will be used to indicate TM and/or
FTM capability. Least significant bit will indicate TM capability. 2nd least significant
bit will represent FTM capability.

May 2016 IEEE 802.1 TSN 3

Comment #77 – 2

On initial consideration (by the editor), it as realized that adding this to
the draft would require a port of a time-aware system to know how
many ports its neighbor has
The reason for this is that asCapable is a property of the link and the two
endpoint ports of the link
With the wording of the comment resolution, asCapable would be set to
FALSE if, for example, one endpoint were a bridge that supported FTM but
not TM, even if the other endpoint were an end device that supported FTM
After discussion with the original commenter and one of the participants who
helped supply the comment resolution, it was determined that this was not
intended
Rather, asCapable is to be set to TRUE if the two endpoints both support
TM, both support FTM, and/or both support TM and FTM

•In the latter case, FTM will be used

However, there also will be a statement in 802.1AS that a time-aware relay
(see 3.24; we now use time-aware relay rather than time-aware bridge) shall
support TM (i.e., for compliance with 802.1AS-Rev)

•There will be a conformance statement in clause 5 and a PICS entry to this effect
May 2016 IEEE 802.1 TSN 4

Comment #77 – 3

The above is captured by the editor’s note on p.180, line 40
The above are not inconsistent
It is possible to require that a bridge (i.e., relay) support TM to be
considered compliant, yet allow time transfer using 802.1AS-Rev if the
mechanisms to accomplish it are present
This is also consistent with comment #25 against D3.0, and the proposed
resolution of this comment

Regarding the internal variable tmFtmSupport (it is per port), if we
implement the comment resolution we would set it as shown in the
table on the next slide. In this table
Peer supports TM if the timing measurement bit in the Extended
Capabilities information element defined in Table 8-103 of IEEE Std
802.11-2012 indicates that the peer 802.11 station is capable of
participating in the timing measurement protocol
Peer supports FTM if the fine timing measurement responder and initiator
bits in the Extended Capabilities information element defined in Table 9-
134 of PIEEE 802.11-REVmc/D5.3 indicates that the peer 802.11 station
is capable of participating in the fine timing measurement protocol

May 2016 IEEE 802.1 TSN 5

Comment #77 – 4

May 2016 IEEE 802.1 TSN 6

Port
Supports TM
and FTM

Port
Supports TM
only

Port
Supports
FTM only

Port
Supports
neither TM
nor FTM

Peer Supports
TM and FTM

11 01 10 00

Peer Supports
TM only

01 01 00 00

Peer Supports
FTM only

10 00 10 00

Peer Supports
neither FTM
nor TM

00 00 00 00

Least Significant 2 bits of tmFtmSupport

Comment #77 – 5

Assuming that FTM is used whenever possible, else TM is used if
possible, else the link is not asCapable (we assume below that there
are no other conditions that cause the per port, per domain
asCapable to be FALSE in the cases of the first two main bullet
items):

If (tmFtmSupport == 11 || tmFtmSupport == 10)
•State machines invoke FTM code and requirements

Else if (tmFtmSupport == 01)
•State machines invoke TM code and requirements

Else asCapable is FALSE for all domains on
this port

May 2016 IEEE 802.1 TSN 7

Comment #77 – 6

However, if the only purpose of the variable tmFtmSuport is to
indicate in the state machines whether TM or FTM is being invoked,
we do not need to distinguish the cases tmFtmSupport == 11 and
tmFtmSupport == 10, because FTM is invoked in both those cases
We could instead define an enumeration {TM, FTM, NEITHER},

perhaps taking on the values 0, 1, 2, and use (we could use FALSE
instead of NEITHER):

FTM represents the cases 11 and 10 in the
table
TM represents the case 01 in the table
NEITHER represents the case 00 in the table

We could then simply test for these values in the state machines
This is done in the discussion of comment #79, but we can easily

convert to testing for 11, 10, 01, and 00 if desired
May 2016 IEEE 802.1 TSN 8

Comment #79 – 1
Comment 79 pertains to the handling of FTM in the state machines
The comment and its resolution reflect the fact that, while TM is initiated by the

master, FTM is initiated by the slave sending an initial FTM request frame
This initial FTM request requests a burst of FTM frames from the master
The initial FTM request supplies the parameters for the master to use in
sending the burst (e.g., burst duration, number of frames in a burst, min
delta FTM, ASAP; see
http://www.ieee802.org/1/files/public/docs2016/asrev-caldana-FTM-
parameters-0116-v01.pdf for a discussion of these parameters)
If the master accepts the parameters, it sends the burst of FTM frames
On finishing, the master waits for a request from the slave for a new burst
(i.e., with a new initial FTM request)

The above differs from TM, and it would be highly desirable if FTM could be
specified in such a way that the media-independent layer of 802.1AS (and
therefore of IEEE 1588) is not changed (because, as of now, 802.11 FTM is
the only timing protocol that uses this approach)
A high-level description of a possible solution is in the Editor’s Note that begins

on p.175, line 2

May 2016 IEEE 802.1 TSN 9

Comment #79 - 2

To accomplish the above with only changes to the MD layer state machines,
we will do the following for the slave state machine
Add the sending of the initial FTM request frame to the slave state
machine in clause 12
After sending this request, the slave waits for FTM frames, and processes
them when they arrive (as in TM)
If no FTM frames are received, it means the request was denied by the
master, and a new initial FTM request is sent
At the end of the burst, we will assume, for now, that the slave makes a
new initial FTM request. With this assumption, the overall average rate at
which the slave receives time synchronization (i.e., FTM) messages
depends on the requested FTM parameters by the slave. An informative
Annex describing how the parameters may be chosen to achieve desired
Sync rates is planned.
However, more general behavior is possible. For example, a low-power
slave could go to sleep and wake up at some later time to make a new
request. If the TSN TG desires such more general behavior, a
presentation is needed to describe the details

May 2016 IEEE 802.1 TSN 10

Comment #79 – 3

To accomplish the above with only changes to the MD layer state
machines, we will do the following for the slave state machine
With the above approach for the slave state machine, the master state
machine must be de-coupled into 2 state machines:

•(1) Receipt and storing of time synch information from upstream
•(2) Receipt of initial FTM request and sending of FTM frames to the slave

Master state machine (1) will be constructed by modifying the existing
master state machine
Master state machine (2) is a new state machine, though much existing
code can be re-used.

Initial drafts for the revised state machines are on the following slides

First slide: Master State Machine 1
Second slide: Master State Machine 2
Third slide: Slave State Machine

May 2016 IEEE 802.1 TSN 11

rcvdMDSync = FALSE;

If (tmFtmSupport == TM)

{

 if ((++dialogToken % 256) == 0) dialogToken++;

 requestParams.DialogToken=dialogToken;

 requestParams.PeerMACAddress = dot11SlaveMac;

 setRequestParams(&requestParams, MDSyncSend);

 MLME-TIMINGMSMT.request(requestParams);

 requestParams.FollowUpDialogToken = 0; //In case no confirm is received

 slaveMacOfLastRequest = dot11SlaveMac;

}

else if (tmFtmSupport == FTM)

 saveMDSyncSend (&MDSyncSendSave, MDSyncSend);

INITIATE_REQUEST_WAIT_CONFIRM_OR_SAVE_INFO

rcvdMDSync && portOper &&

ptpPortEnabled && asCapable &&

tmFtmSupport == TM

If (tmFtmSupport == TM)

{

 dialogToken=0;

 paramsFromConfirm = NULL;

}

rcvdMDSync = FALSE;

INITIALIZING

!followUpInfoValid

MLME-TIMINGMSMT.confirm(¶msFromConfirm);

requestParams.FollowUpDialogToken = paramsFromConfirm.DialogToken;

requestParams.T1 = paramsFromConfirm.T1;

requestParams.T4 = paramsFromConfirm.T4;

// NOTE: In Timing Measurement, T1 is in units of 10 ns.

// upstreamTxTime is units of 2
-16

 nanoseconds.

K = 1;

// K is 1 for Timing Measurement.

residenceTime = MDSyncSend.rateRatio *

(paramsFromConfirm.T1 * 10
K

*(2
16

) - MDSyncSend.upstreamTxTime);

requestParams.VendorSpecific.correctionField =

residenceTime + MDSyncSend.followUpCorrectionField;

// NOTE: T1 and T4 are timestamps from a single

// local clock source. The roll-over of the 32-bit timestamps returned by

// MLME-TIMINGMSMT.request and MLME-TIMINGMSMT.indication must be accounted for.

SAVE_CONFIRM_INFO

rcvdMDSync &&

portOper &&

ptpPortEnabled &&

asCapable &&

tmFtmSupport == TM

rcvdMDSync &&

portOper &&

ptpPortEnabled &&

asCapable

BEGIN || (rcvdMDSync && (!portOper || !ptpPortEnabled || !asCapable))

followUpInfoValid =

(paramsFromConfirm != NULL) &&

(paramsFromConfirm.peerMacAddress == dot11SlaveMac) &&

(slaveMacOfLastRequest == dot11SlaveMac));

VALIDATE_FOLLOW_UP_INFO

requestParams.FollowUpDialogToken = 0;

FOLLOW_UP_INFO_INVALID

followUpInfoValid

UCT

rcvdConfirm && tmFtmSupport == TM

rcvdMDSync && portOper &&

ptpPortEnabled && tmFtmSupport == FTM

rcvdMDSync &&

portOper &&

ptpPortEnabled &&

asCapable &&

tmFtmSupport == FTM

If ((++dialogToken % 256) == 0) dialogToken++;

If (nframes_sent == initReqParams.framesPerBurst)

 dialogToken = 0;

requestParams.DialogToken=dialogToken;

requestParams.PeerMACAddress = dot11SlaveMac;

setRequestParams(&requestParams, MDSyncSend);

// In the following statement, MinDeltaFTM, which is in units of 100

// microseconds, is converted to UScaledNs (i.e., units of 2
-16

 ns, see 6.3.3.2)

nextRequestSendTime = currentTime + initReqParams.MinDeltaFTM *

 (65536 x 10
5
);

MLME-FINETIMINGMSMT.request(requestParams);

requestParams.FollowUpDialogToken = 0; //In case no confirm is received

slaveMacOfLastRequest = dot11SlaveMac;

// In the following statement, the burst duration parameter from 802.11RevMC is

// converted to UScaledNs (i.e., units of 2
-16

 ns, see 6.3.3.2). The

// quantity 2
initReqParams.burstDuration – 2

 is the burst duration in us.

// Also in the following statement, we are assuming that the burst duration

// starts when the initial FTM request is received. In actuality, the timer begins

// by the partial TSF timer value indicated in the initial FTM frame, which is

// slightly after the initial FTM request is received.

endOfBurstDurationTime = currentTime + 1000 * (2
16

) * 250 *

 (2
initReqParams.burstDuration – 2

);

INITIATE_REQUEST_WAIT_CONFIRM

portOper && ptpPortEnabled

&& asCapable

dialogToken=0;

paramsFromConfirm = NULL;

rcvdInitIndication = FALSE;

asCapable = FALSE;

INITIALIZING

!followUpInfoValid

MLME-FINETIMINGMSMT.confirm(¶msFromConfirm);

requestParams.FollowUpDialogToken = paramsFromConfirm.DialogToken;

requestParams.T1 = paramsFromConfirm.T1;

requestParams.T4 = paramsFromConfirm.T4;

// NOTE: In Fine Timing Measurement, T1 is in units of 0.1 ns.

// upstreamTxTime is units of 2
-16

 nanoseconds.

K = -3;

// K is 1 for Timing Measurement and -3 for Fine Timing Measurement.

residenceTime = MDSyncSend.rateRatio *

(paramsFromConfirm.T1 * 10
K

*(2
16

) - MDSyncSend.upstreamTxTime);

requestParams.VendorSpecific.correctionField =

residenceTime + MDSyncSend.followUpCorrectionField;

// NOTE: T1 and T4 are timestamps from a single

// local clock source.

// The roll-over of the 48-bit timestamps returned by

// MLME-FINETIMINGMSMT.request and MLME-FINETIMINGMSMT.indication must be

// accounted for.

// A frame is only counted as being sent, for purposes of number of frames in a burst, if a

// confirm is received. It is up to IEEE Std 802.11 to handle the case where a confirm

// is not received.

nframes_sent += 1;

SAVE_CONFIRM_INFO

portOper && ptpPortEnabled &&

asCapable && currentTime >= nextRequestSendTime &&

nframes_sent <= initReqParams.framesPerBurst &&

currentTime <= endOfBurstDurationTime

(BEGIN || !portOper || !ptpPortEnabled) && tmFtmSupport == FTM

followUpInfoValid =

(paramsFromConfirm != NULL) &&

(paramsFromConfirm.peerMacAddress == dot11SlaveMac) &&

(slaveMacOfLastRequest == dot11SlaveMac));

VALIDATE_FOLLOW_UP_INFO

requestParams.FollowUpDialogToken = 0;

FOLLOW_UP_INFO_INVALID

followUpInfoValid

UCT

rcvdConfirm

setAsCapable (initReqParams)

nframes_sent = 1;

SET_AS_CAPABLE

rcvdInitIndication

portOper && ptpPortEnabled && asCapable && (nframes_sent >

initReqParams.framesPerBurst || currentTime > endOfBurstDurationTime)

!portOper || !ptpPortEnabled ||

!asCapable

rcvdIndication && portEnabledOper &&

pttptpPortEnabled && asCapable

previousIndParams = NULL;

rcvdIndication = FALSE;

nframesrcvd=0

DISCARD

BEGIN || RESTART || (!porOper || !ptpPortEnabled ||

!asCapable))

if (tmFtmSupport == TM)

 MLME-TIMINGMSMT.indication(&indParams);

else if (tmFtmSupport == FTM) {

 MLME-FINETIMINGMSMT.indication(&indParams);

 nframesrcvd++;

 if (nframesrcvd == initReqParams.framesPerBurst) || (currentTime >

endofBurstDurationTime)

 RESTART=1;

}

if ((previousIndParams != NULL) &&

 (previousIndParams.PeerMacAddress == dot11SlaveMac) &&

 (indParams.FollowUpDialogToken != 0))

{

 neighborRateRatio =

 (indParams.T1-previousIndParams.T1) /

 (indParams.T2-previousIndParams.T2);

//NOTE: Other methods of computing neighborRateRatio may can be used.

if (tmFtmSupport == TM)

 K = 1;

else if (tmFtmSupport == FTM)

 K = -3;

//K = 1 for Timing Measurement and K = -3 for Fine Timing Measurement

 neighborPropDelay =

 (((indParams.T4 - indParams.T1) -

 neighborRateRatio * (indParams.T3 - indParams.T2)) / (2.0)) * (10
K
);

//NOTE: Other methods of computing neighborPropDelay may can be used.

 MDSyncReceive = setMDSyncReceive(indParams);

 MDSyncReceive.VendorSpecific.rateRatio += (neighborRateRatio – 1);

 MDSyncReceive.VendorSpecific.upstreamTxTime = indParams.T2* (2
16

) *(10
K
) -

 neighborPropDelay*(2
16

)/neighborRateRatio;

//NOTE: Actions performed with the timestampError paramers of indParams are

// implementation independent.

 passMDSyncReceiveToPortSync(&MDSyncReceive);

 previousIndParams = indParams;

}

previousIndParams = indParams;

rcvdIndication = FALSE;

CONSTRUCT_MD_SYNC_RECEIVE_STRUCTURE

rcvdIndication &&

portEnabledOper &&

pttptpPortEnabled &&

asCapable && !RESTART

INITIALIZING

RESTART=0

if (tmFtmSupport == FTM)

MLME-FINETIMINGMSMTRQ.request

rcvdIndicationTimeoutTime=currentTim

e+(10^7)*(2^16)

//the rcvdIndicationTimeoutTime

interval is 10ms

 (rcvdIndication && tmFTMSupport==FTM)

|| (tmFTMSupport==TM)

 currentTime>rcvdIndicationTimeoutTime

&&

 tmFTMSupport == FTM

RESTART

March 2016 IEEE 802.1 TSN 12

Thank you

