802.1Qcc UNI: Multi Port End Systems

Rodney Cummings
National Instruments

Agenda

- Use cases
 - Show that Qcc (D0.5) can address multi port end systems
- Potential changes to Qcc
 - Including proposal to replace UNI's Interface Capabilities / Configuration with remote management of end system

Refresh of Qcc UNI (1 of 2)

- User → Network
 - EndStationInterfaces: List of ports (MAC address for each)
 - InterfaceCapabilities (for all ports):
 - VlanTag: Boolean (support add/remove of VLAN tags per port?)
 - 802-1CB: Boolean (support end system requirements?)
 - 802-1CB-StreamIdenTypeList: List of uint32 (0 or more .1CB types)
 - 802-1CB-SequenceTypeList: List of uint32 (0 or more .1CB types)

Refresh of Qcc UNI (2 of 2)

- Network → User
 - InterfaceConfig: List of 0 or more port configurations;
 Each config is MAC address (ID of port), then 0 or more of:
 - IEEE802-VlanTag: 12-bit VID and 3-bit PCP
 - IEEE802-MacAddresses: Source and Dest MAC addresses
 - IPv4-5tuple: Same encoding as 802.1CB
 - IPv6-5tuple: Same encoding as 802.1CB
 - ScheduledOffset: Uint32 nanosecs; Offset for scheduled talker

Use Cases for Two Port End System

1. Independent ports: No .1CB, No .1AX

2. Redundant only: Yes .1CB, No .1AX

3. Independent plus .1AX: No .1CB, Yes .1AX

4. Redundant plus .1AX: Yes .1CB, Yes .1AX

5. Bridged: Bridge is 802.1Q Qcc 5.4.1.8 requires remote management; Internal end station ports can apply use cases 1-4

Use Case 1: Independent Ports

- For independent networks, or to optimize bandwidth
 - Historically, user selects the port by traffic (i.e. above 802)
 - For TSN, if user selects port, effectively two end systems
 - Bandwidth optimization requires manual config (e.g. port-based VLAN)
- For TSN, we want network to select the port
 - "I can act as a talker of this stream on either port...
 I want network to tell me which to use"
- Qcc supports network selection of port
 - EndStationInterfaces with two ports (but no .1CB or .1AX)
 - InterfaceCapabilities returns config for only one port
 - Can include a VLAN tag

Use Case 2: Redundancy Only

- Let's assume that .1CB needs distinct VID per port
- Qcc supports distinct VID per port
 - InterfaceCapabilities: VlanTag TRUE, 802-1CB TRUE
 - No need for optional 802.1CB types (uses MAC/VLAN and CB tag)
 - InterfaceConfig: CNC returns distinct VID per port
- Non-TSN traffic (e.g. best effort) continues to use independent ports

802.1AX Background (1 of 2)

- For LAG/DRNI, .1AX selects port for each frame
- .1AX-2014 per-service frame distribution avoids this
 - Assigns specific traffic to one link
 - Optional feature of .1AX-2014 (5.3.1 item g)
 - Aka conversation-sensitive
 - Uses 12-bit Conversation ID
 - For C-tagged, maps 1-1 to the C-VID
 - For S-tagged and B-tagged, mapping table is used
- Ideally, use per-service for TSN traffic, and use .1AX distribution for all others (e.g. best effort)

802.1AX Background (2 of 2)

- Can Qcc's CNC detect when .1AX is in use on a link?
 - .1AX-2014 doesn't require remote management,
 but Qcc 5.4.1.8 requires it for bridge (that supports CNC)
 - Remote management not required for end station
 - Successful 'read' of .1AX aAggOperState of 'up' → in use
- Can Qcc's CNC detect when per-service is supported?
 - aAggPortAlgorithm provides the per-service algorithm
 - E.g. "Distribution based on C-VIDs"
 - Successful 'read' of .1AX aAggPortAlgorithm → supported

Use Case 3: Independent plus .1AX

- As with use case 1, network selects port for TSN
- Qcc supports network selection of port
 - InterfaceCapabilities: VlanTag TRUE, 802-1CB FALSE
 - CNC detects .1AX, including per-service
 - InterfaceConfig: CNC returns config for only one port
 - Includes VID for per-service
 - TSN layers are not aware of .1AX... talker just adds the tag
 - .1AX config of per-service VID uses its mechanisms (e.g. LACP)

Use Case 4: Redundant plus .1AX

- Similar to use case 2: Distinct VID per port
- Qcc supports distinct VID per port
 - InterfaceCapabilities: VlanTag TRUE, 802-1CB TRUE
 - CNC detects .1AX, including per-service
 - InterfaceConfig: CNC returns distinct VID per port
 - Used for both: .1AX per-service, and .1CB

Potential Changes to Qcc

Management of End Stations in .1Q

- Remote mgmt of end stations not specified in .1Q
 - Intro text for clause 12 refers to Bridge only
 - PICS entry for Bridge only, not End Station (Annex B)

A.5 Major capabilities

RMGT Is a remote management protoco supported?	MGT:O PBBTE OR TPMR: M	5, A.15	Yes []	No []
--	------------------------------	---------	---------	--------

- PICS RMGT A.15 lists protocols (e.g. SNMP, RESTCONF) and encodings (e.g. MIBs, YANGs)
- NETCONF and RESTCONF introductions
 - "configuration of network devices"
 - End station (host) is <u>not</u> a network device (bridge/router)

Qcc IntfCap/Conf in Remote Mgmt

Summary of equivalents in managed objects

IntfCap/Conf Element	In managed object?	Mgmt protocol failure?
Cap: VlanTag	N	N
Cap: 802-1CB	N	Y (successful .1CB read)
Cap: .1CB Types	N	Y (successful .1CB write)
Conf: VlanTag	N in .1Q, Y in .1CB	-
Conf: Stream MacAddr	Y (.1CB)	-
Conf: Stream IP tuple	Y (.1CB)	-
Conf: Stream Scheduled Offset	N	-

Only the .1CB elements can be managed remotely

How Does Qcc Reference CB Mgmt?

YANG snippet from InterfaceConfiguration:

```
leaf-list CB-StreamIdenTypeList {
    type uint32;
    description

    "This provides a list of the optional
    Stream Identification Types as specified in
    IEEE Std 802.1CB.

Each stream identification type is provided
    as a 32-bit unsigned integer. The upper
    three octets contain the OUI, and
    the lowest octet contains the
    Type Number.
```

- Reference by formal name in 802.1CB, with brief summary
 - Avoids duplication of 802.1CB text

Add End Station Remote Mgmt?

- "Todo" list if we do it in 802.1Q
 - Add to conformance (clause 5, annex B, etc)
 - Require for TSN remote management feature
 - Question: Not specific to Qcc... is it in scope?
 - Add concept of managed config of Streams
 - Currently 'Idle' in Annex Z due to many open issues
 - Specify managed objects for Stream's VLAN tag
 - Specify managed objects for Talker's ScheduledOffset
- Editor's preference: No (new idea)
 - If desired, address in a future 802.1Q PAR

Remove Interface Cap/Config?

- Some verbal comments have implied that we should remove Interface Capabilities/Config from Qcc, and replace it with remote mgmt of end station
 - Breaks MSRP
 - Even MSRPv0 does interface config (e.g. VID)
 - Prevents integration of TLVs into non-mgmt protocols
 - 802.1: LLDP, LACP, ...
 - 1722.1
 - Other automotive protocols
 - Other industrial protocols
- Editor's preference: No

Other Potential Qcc Changes

- Add an Annex (informative) to describe uses cases 1-5
 - Can help to clarify .1AX usage
- Add text to IntfConfig to clarify use case 1
 - Not only configuration, but "here is the port to use"
- Add text to IntfCap to clarify that when 802-1CB is FALSE, VlanTag TRUE means the capability to apply a distinct VID per port
- Editor proposes to submit comments to Qcc D0.6

Thank you